
Response to the Reviewers and Editor 

The paper received very constructive and stimulating comments and suggestions from four 
Reviewers and the Editor. Thank you. There were two major points of critique that are the 
weak conclusion of maximization of entropy production in hydrology and the method of 
inference using power calculations and balances. Both points are due to the lack of theory 
that was obviously missing in the original manuscript, which is needed in the support of the 
novel ideas in my opinion and has been pointed out correctly by the reviewers. Note, some 
theory has been already touched upon in the detailed replies, but is still incomplete. 

During my work on the revisions I realized that while the theory is tractable, the way of 
thinking of classic hydrologic problems in the context of entropy production and inference 
requires some serious adaptation. This is mainly due to the two-scale nature of the entropy 
balance equation constituting simultaneously a quite new perspective in hydrology, and 
potentially opening new ways for inference and upscaling in my opinion. Therefore, I 
decided to start with applications of the theory to the most basic hydrologic profiles with 
steady state and also transient groundwater flow, which is useful in the aforementioned 
adaption process. And it turns out that new equations arise that, for example, relate the 
microscopic entropy production with an effective conductance coefficient connecting the 
flow with the force at the macroscale, which I call the method of inference from entropy 
balance considerations. 

In my opinion, this study and the results constitute a full research paper proposing a new 
method and providing new insights into hydrology from a thermodynamic perspective. 
Therefore the topic of maximization of entropy production was removed from this 
manuscript and committed to a separate study in order not to confuse the reader.  

 

 

Response to the Reviewers 

In the following, comments by Referee#1 are indicated with [R#1] in italic and replies by 
the author are indicated by [K]. 
 
[R#1] The MEP principle is applied to a synthetic hillslope based on a spatially-distributed 
andd physics-based model. The entropy production is computed. The research question is 
important and interesting. The methodology is reasonable. I have a few major comments 
related to the design of the simulation experiments. I hope my comments are useful for the 
authors to revise the manuscript. 
 
[K] I would like to thank the reviewer for the constructive comments, questions and 
suggestions, which help to improve the manuscript. 
 



 
[R#1] Lines 25-27 on Page 5127: Rainfall and other climatic variables (such as temperature 
and humidity) may be correlated. If rainfall is reduced b by about 30% but other vari- ables 
are not changed, this may be not realistic. Why not obtain the climatic data from a semi-arid 
watershed?  
 
[K] It is correct that rainfall and other climatic variables may be correlated. In the 
simulations, reducing the rainfall was a pragmatic approach in order to facilitate additional 
simulations in future with increasing rainfall that are consistent with the current setup in 
order to interrogate the results for different ratios of saturated hydraulic conductivity and 
rainfall rates Ksat/PCP. I feel this is reasonable given the large uncertainty of hourly rainfall, 
which may result in similar climate variable combinations, which were used in the 
simulations and which are reasonable in my opinion. (No rainfall was generated at time 
steps originally without rainfall.) 
 
 
[R#1] Related to the comment above: “Runoff out of the domain occurred only for Ksat = 
0.0005 (m h−1 ) and S2 and was only 2.2 % of the annual precipitation.” (lines 7-8 on page 
5129). Even though for the case of runoff (Q)=2.2% of the annual precipitation (R) → the ratio 
of annual evaporation (E) to precipitation, E/PCP=0.98 → according to Budyko curve, 
Ep/PCP>3 → potential evaporation Ep>1900 mm since R=637 mm (line 1 on page 5128). I am 
not sure whether the setting of climatic variables can reach this potential evaporation 
(temperature is 291 K, line 27 on page 5127). It may be better to constrain the system to the 
observed pattern or reality when the MEP principle is used for understanding the system. 
 
[K] The climatic variables were obtained from the North American Regional Reanalysis Data 
Set for the water year 1998/1999 over Oklahoma and were used in previous studies (e.g. 
Kollet et a., 2008), which resulted in reasonable evapotranspiration checked against 
Ameriflux tower data. (The calculation of bare soil evaporation, which is relevant for 
presented study, is addressed in detail below.) Note, that in the aforementioned simulation 
case, runoff was produced by excess infiltration due to the local, random heterogeneity at 
the outlet of the hillslope at the "microscopic" scale. Different random realizations may not 
produce any excess infiltration runoff at all. Because the Budyko concept is valid at the 
watershed scale, I am not sure about its direct applicability to the hillslope simulations 
presented here. Yet it is correct that Ep~1900mm would be high, but not completely 
unrealistic in my opinion. Large Ep/PCP ratios may also be linked to the thermodynamic 
equilibrium assumption, which is inherent in the calculation of bare soil evaporation in the 
simulation explained and discussed below. 
 
In the context of the Budyko concept, I feel it is remarkable that the simulations actually 
demonstrate that a system can be sustained at dynamic equilibrium along the arid, water 
limited envelope curve (Ep/PCP > 1) including a saturated zone. This is only possible, 
because of the non-linearity of variably saturated flow. 
 
 
[R#1] A further comment based on the above comments, how is evaporation determined? 
PCP=E for most of the cases. In these cases, the competition between evaporation and runoff is 



removed. “. . ..entropy production inside equals the net entropy exchange with the outside.” 
(Lines 3-5 on page 2125). How is the power by the evaporation process related to the power 
computed in this paper? Maximum entropy production (or power) principle is used for a 
particular flux, and the conductance coefficient is treated as the decision variable. From the 
system perspective, the entropy production by all the fluxes such as discharge and evaporation 
may need to be summed (Wang et al., 2015, DOI: 10.1002/2014WR016857). There are two 
types of competition or tradeoff in the system: 1) flux and gradient for a particularly flux; 2) 
among different types of fluxes (e.g., evaporation versus runoff). In this paper, some of 
competitions (e.g., runoff and evaporation) is pre-defined. Some discussions and clarifications 
will potentially be valuable for the readers. 
 
[K] In the simulations, the variably saturated groundwater-surface water flow model 
ParFlow (PF) coupled to the land surface model CLM (Common Land Model) was used. PF 
calculates variably saturated flow based on Richards equations in a continuum approach, 
and surface runoff based on a free surface overland flow boundary condition. CLM 
calculates the water and energy balance i.e. the exchange of moisture and energy (including 
evaporation from the bare soil, E) with the atmosphere based on the Monin-Obhukov 
similarity principle. Thus, E is calculated based on  
 
 

 

where ρatm is the density of the atmosphere; raw is an exchange functional explained below; 
and qatm and qs are the atmospheric and soil specific humidities, respectively.  
 
The exchange functional raw is determined by turbulence generated mechanically (based on 
the logarithmic wind profile) and by buoyancy forces, and is thus a function of the stability 
of the atmosphere and must be determined iteratively. The atmospheric specific humidity 
qatm is provided by the atmospheric forcing time series and qg is calculated using Kelvin's 
equation, which includes the soil matric potential. The latter constitutes an important 
coupling of variably saturated subsurface flow with the evaporation and is handled in an 
operator splitting approach in PF.CLM: at each time step, PF calculates the moisture 
redistribution based on the evaporative sinks provided by CLM in the top model layer; then 
the matric potential values are passed to CLM, which in turn are used to calculate the 
moisture dependent energy fluxes including E. Thus, neither evaporation nor the top 
boundary condition for subsurface soil moisture redistribution or runoff is pre-defined. 
They all interact freely based on the coupling, which is key in the entropy production 
considerations. This is also the reason why decades of spinup simulations need to be 
performed until the system reaches a dynamic equilibrium. It is important to mention that 
the application of Kelvin's equation is based on the assumption of thermodynamic 
equilibrium and may lead to a positive bias in bare soil evaporation estimates, when 
compared to measurements. This may also be the case here, however, it is not the goal to 
reproduce measurements, but incorporate important couplings and represent realistically 
the important degrees of freedom of the subsurface coupled to the land surface. 
 



The power budget is performed for the subsurface, where the power due to evaporation is 
related to sinks in the top model as explained above. The sinks produce gradients and fluxes 
toward the top model layer producing power, which were calculated locally using equation 
7 through 9 and including the local power budget given by equation 10. Equivalently, 
precipitation produces gradients and fluxes away from the top model layer producing 
power, which was calculated in the same way. In that way all the fluxes producing power 
were summed. At dynamic equilibrium, the global power budget was closed to an 
increment of 10-12 to 10-14 m2a-1! 
 
While globally (over the entire hillslope) PCP = E, there is still competition between the net 
flux q (entering along the recharge zone as qinf and leaving along the discharge zone as qex), 
evaporation, and the dynamic water table. This competition results in the maximization of 
entropy production in the recharge/discharge zone. It is true that net entropy production 
over the entire domain is zero given that PCP=E, however there is net entropy export in the 
recharge zone because of qinf and net entropy import in the discharge zone because of qex.  
 
In addition to the explanation of the summation of all fluxes, it is important to re-emphasize 
the difference between the useful approach outlined in Wang et al., 2015, DOI: 
10.1002/2014WR016857 and the presented study. Wang et al. already work at the 
macroscopic scale assuming that there exists a representative macroscopic soil chemical 
potential µs and effective transfer coefficient, ke, for the soil-land surface flux (in their case 
vegetation flux). In the presented study, a "microscopic" point of few is taken in which the 
nonlinear fluxes, gradients and interactions with evaporation evolve freely, without any 
constraint or predefined decision variable. Note that competitions are not predefined. 
Simulating the actual "microscopic" process the study shows that entropy production 
maximization occurs at the macroscopic level out of the non-linear processes. In addition, 
an approach is suggested to arrive at a macroscopic soil chemical potential and effective 
exchange coefficient as it is used in Wang et al. 
 
 
[R#1] Lines 11-13 on Page 5128: No flux cross the vertical boundary at x=0? Why not set free 
discharge at the boundary of x=0 and assuming negligible water depth in the channel?  
 
[K] The hillslope can discharge freely at the top at x=0 based on the free surface overland 
flow boundary condition and zero depth gradient condition.  
 
 
[R#1] Line 17 on Page 5128: “In order to identify” 
Equation (4) on page 5129 and other places: the superscript of net exfiltration/infiltration is 
changed to (-ex, inf)? 
 
[K] This will be reconciled in the revised manuscript.  
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In the following, comments by Referee#2 are indicated with [R#2] and replies by the author 
are indicated by [K]. 
 
[R#2] This paper applies the maximum entropy production (or maximum power) principle to 
a relative simple model of the unsaturated zone. It determines the power in each grid cell of 
which the spatiotemporal mean is taken. This is done for different values of Ksat and it 
appears that two maxima in power exist. Subsequently, a conceptual model is described and 
from the spatiotemporal mean of the fluxes and of power an effective conductance is 
calculated. Interestingly, the two optimum values of Ksat collapse into a single value of the 
effective conductance. Both analyses are done for a case of homogeneous Ksat and a 
heterogeneous Ksat field. This is an interesting paper and eventually worth publishing. 
However, some more clarification and rewriting are needed before that. 
 
[K] I would like to thank the reviewer for the constructive comments, questions and 
suggestions, which help to improve the manuscript. 
 
[R#2] For example, I was especially confused by the conceptual model (Fig. 5). This model is 
presented as being the same model as in Kleidon and Schymanski (2008) and Westhoff et al. 
(2014). However, in their models there is competition between runoff and evaporation which 
is missing in Fig. 5. But I was even more confused, because Kleidon and Schymanski (2008) and 
Westhoff et al. (2014) optimized their conductance within the framework of their model, 
where for each value of the conductance the power is calculated. In this paper, the maximum 
power principle is used to come to a macroscopic head difference and a macroscopic 
conductance that can replace the microscopic heads and the microscopic K(theta). This is a 
completely different methodology to get the macroscopic parameters. I suggest to better 
communicate this in the revised version. 
 
[K] In my opinion, the conceptual model is the same as in Kleidon and Schymanski (2008) 
and Westhoff et al. (2014). In the presented study, there is competition between the net flux 
(between the recharge and discharge zone) and evaporation, equivalent to the competition 
between runoff and evaporation in e.g. Westhoff et al. (2014). Note, neither the net flux nor 
evaporation are prescribed in the simulations; both are a function of the non-linear 
hydrodynamics of variably saturated flow, and the reciprocal, nonlinear dependence of 
evaporation on the moisture state of the shallow subsurface and the atmospheric forcing. 
This has been discussed in the reply to Referee#1 and will be repeated below for 
completeness. 
 
The conceptual model is perhaps better reflected in the figure A below with a connected, 
dual bucket model, which may replace figure 5 in the revised manuscript. Here, the 
recharge and discharge zones are represented with buckets having a high and low hydraulic 
head Hh and Hl, which are connected through an interface with a conductance λeff. 
 
I agree that the proposed methodology is completely different, because no fluxes, etc. are 
prescribed in the microscopic simulations, which lead to maximization of power purely 
from the non-linear competition between variably saturated subsurface flow and 
evaporation driven by an atmospheric time series.  
 



 
Figure A. Conceptual approximation of the "microscopic" hillslope model with a connected, 
dual bucket model. 
 
[R#2] Besides this I also miss a verification of the macroscopic model: Once the optimum 
macroscopic parameters have been defined, run the macroscopic model with the same 
climatic forcing as the microscopic model and compare the resulting fluxes with the 
microscopic model. This may also shed more light on the fact that two optima of Ksat collapse 
into one optima in lambda (why this happens is still unclear to me). 
 
[K] The macroscopic model is macroscopic in space and time at dynamic equilibrium. Non-
linear variability can not be resolved. Thus, it can not be applied to the hourly climate 
forcing and simply be validated with the microscopic model. At this point the goal was to 
suggest a methodology to arrive at a macroscopic model including a macroscopic force, 
which is otherwise unseizebale. However, at this point, it is not clear how to validate this 
macroscopic force or effective conductance coefficient, because both are not measurable 
quantities. The results shown in figure 7 suggest that the mean hydraulic head at the 
bottom of the flow domain, which can be measured in the field, may be a good indicator of 
the effective state of conductance. Similar indicators are required for the effective force in 
order to ultimately validated the macroscopic model and make the model useful for 
predictions in future. 
 
The collapse of the Ksat into one optima in lamda is due to the fact that the effective 
exchange coefficient does not increase monotonously with Ksat (figure 6b). The 
conductance of the macroscopic system decreases as soon as the groundwater reservoir 
falls dry (grey area in figure 6a). This is to the nonlinear dependence of the relative 
permeability on the degree of saturation, which is described by the van Genuchten 
relationship in the model. 
 
 
[R#2] P5127, L25: add a graph with time series of the forcing 
 



[K] The atmospheric time series consists of 8 forcing variables (long-/shortwave radiation, 
precipitation, air temperature, 2 wind speed components, specific humidity, barometric 
pressure). The plot will be provided in the revised manuscript containing exemplarily time 
series of precipitation and air temperature. 
 
 
[R#2] P5131, Eq. 10 and 11: Power cannot be summed. Instead the mean should be taken, 
so it should be divided by NT and NK. 
 
[K] This will be reconciled in the revised manuscript.  
 
 
[R#2] P5132, L7-13: To make this point clearer, I suggest adding a similar figure as Fig.1 but 
than for a dry and a wet period in time. 
 
[K] This will be included in the revised manuscript.  
 
 
[R#2] P5133, L1: The zone of net inflow is not necessary a net exporter of power. Rephrase to 
‘incoming water produces more power than outgoing water’ or ‘incoming fluxes are driven by 
larger gradients than outgoing fluxes P5133, L3: Are the different zones related to the part 
they cover at the pf-curves (e.g. convex or concave parts of the curve)? 
 
[K] This will be rephrased.  
 
 
[R#2]  P5133, L22-23: If the cross-section is taken a little bit to the right or left, the P values 
will be much larger in the groundwater reservoir. 
 
[K ] This is correct, but the general shape will be very similar or the same.  
 
 
[R#2] P5133, L27: Why does the spatiotemporal mean darcy flux change with changing 
Ksat? The input (rainfall) and output (evaporation) of water is fixed, so the total mean 
flux should remain constant. 
 
[K ] Because the mean Darcy flux is function of the Ksat at dynamic equilibrium. 
 
 
[R#2] P5135, L20- P5136, L3: I suggest to move this part to the introduction, since it explains 
the objective of the paper much better than currently. 
 
[K] This is a good suggestion and will be revised.  
 
 
[R#2] P5137, L11-14: I don’t understand this explanation 
 



[K] Lambda does not increase monotonically with Ksat. When the groundwater reservoir 
falls dry lambda decreases with increasing Ksat. 
 
 
[R#2] P5138, L1-7: I don’t understand this part. Please be more specific: e.g. to which 
subfigures are you referring? Do you mean that the slope of lambda in increasing 
monotonously? 
 
[K] Here I was trying to explain which effective parameter is responsible for the maximum 
in the power. The explanation will be revised with clear references to the different 
subfigures.  
 
 
[R#2] P5140, L4: Power can indeed not be measured directly, but suction heads and K(theta) 
can. With this, power can be calculated (although I recognize that these observations are 
point measurements, while in real hillslopes macropores are also present) 
 
[K] This is correct, but I validation with point measurements will be very difficult.  
 
 
[R#2] Fig. 3: Indicate in Fig. 2 which cross-section is taken for this figure. 
 
[K] This will be done in the revised manuscript. 
 
 
[R#2] P5126, L18: Two maxima in power were found, but for different conductance values 
(and unique climatic forcing) 
 
[K] Will be corrected in the revised manuscript. 
 
 
[R#2] P5127, L20: If PF.CLM provides evaporation, than net radiation, sensible heat and 
ground heat fluxes are not needed for this exercise. 
 
[K] CLM calculates iteratively evaporation based on closing the energy balance Rnet = LH + 
H + G. Therefore the energy fluxes are needed. 
 
 
[R#2]  P5128, L6: remove the percentage sign? 
 
[K] Will be reconciled in the revised manuscript.  
 
 
[R#2] P5128, L12: ‘and of . . . at the top’: rephrase 
 
[K] Will be rephrased in the revised manuscript.  
 



 
[R#2]  P5129, L12: PCP: keep to the conventions of HESS: Variables consist of one letter/ 
symbol and the rest in sub- or superscript (applies also to other variables) 
 
[K] Will be corrected in the revised manuscript.  
 
 
[R#2]  P5129, Eq. 4: add the overflow terms 
 
[K] Correct, they will be added in the revised manuscript.  
 
 
[R#2]  P5133, L8-9: The stair-step like representation can also be seen as a numerical artefact. 
 
[K] It is a numerical artifact in the sense that it is a result of the finite difference 
approximation in the realm of discrete mathematics. 
 
 
[R#2]  P5134, L26: What is meant by ‘correct location’? 
 
[K] More data points are needed with respect to different Ksat to resolve the discontinuity 
more accurately. 
 
 
[R#2]  P5136, L24: the maximum at log(Ksat) = -3 is difficult to see in Fig. 6a. It rather seems 
to have a maximum at the edge of the parameter space. 
 
[K] I checked the values again and the maximum is located at log(Ksat) = -3. 
 
 
[R#2] P5138, L9-10: please rephrase. There exist a maximum in power in the MATHEMATICAL 
model of the hillslope. 
 
[K] Will be rephrased in the revised manuscript. 
 
 
[R#2] Fig 1: Indicate that blue is relatively dry and red is wet (or use a logarithmic scale). 
 
[K] This will be revised. 
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In the following, comments by Referee E. Zehe are indicated with [Z] and replies by the 
author are indicated by [K]. 
 
[Z] This study examines free energy conversions associated with subsurface water flows within 
numerical experiments at a synthetic hillslope. More specifically the author perturbed 
saturated hydraulic conductivity for a given set of soil hydraulic parameters in search for an 
optimum value maximizing entropy production/power in subsurface flows and elaborates on 
the role of the groundwater surface and on the role of purely random heterogeneity in this 
context. Furthermore, the author proposes an interesting approach how to use MEP for 
inferring/upscaling functional optimum, effective subsurface water characteristics within 
larger control volumes. Particularly, the last point is interesting and novel. The proposed study 
is, hence, without of high potential interest for HESS.  
 
Nevertheless, I got the imprecision that the study is compiled a little too hastily, which is partly 
reflected in superficial referencing (as explained below) and the too narrow range of 
properties that is investigated within the experiments. The study would greatly from a 
thorough revision a) to improve physical rigor in the proposed approach how to estimate 
“power” within the model domain and to broaden the type and range of terrestrial controls on 
subsurface water flows and related free energy dissipation within the numerical experiments. 
 

[K] I would like to thank the reviewer for the constructive comments, questions and 
suggestions, which help to improve the manuscript. The points raised above also with 
respect to physical rigor and broadening the range of terrestrial controls will be addresses 
below and in detail in the revised manuscript.  
 

 

[Z] I encourage the author, for whom I have high respect, to further optimize this potentially 
very interesting study by addressing the following points: 
Major point concerning referencing: 

• I appreciate the authors effort to refer to recent studies dealing with thermodynamic 
optimality in hydrology (some of those I authored/co-authored myself). The way how 
these studies are discussed is, however, not appropriate. After reading the introduction, 
one is left with the imprecision that this is the first study using “physics-based” models 
instead of bucket models shed light on the role of MEP in hydrology. This is not quite 
the case, for instance: o Porada et al. (2011) used a 1d-implementation of the Richards 
equation combined with a SVAT-approach and showed for the 35 largest catchments in 
the world, that the MEP optimized configuration plotted in a short envelope around the 
Budyko curve. 

o Zehe et al. (2013) used a 2-d Richards-model (coupled with a SVAT and 1 d 
overland flow) within numerical experiments exploring free energy conversions 
and dissipation associated with subsurface water flows and different runoff 
components. More specifically we perturbed the flow resistance in hillslope 
scale models and found the those values which optimize steady state production 
of entropy (or equivalently the reduction of free energy), perform acceptable in 
predicting rainfall runoff behavior two different catchment. 



o Kleidon and Renner (2013) proposed a simple model (based on three 
parameters) to predict land surface energy exchange based on the idea of 
maximizing power in the virtual and sensible heat flux and that the sensible 
heat flux operates at the Carnot limit. The model performs strikingly well when 
being compared against flux tower data in different land use settings during 
convective conditions. 

 
I very much agree that “physics based” models are superior for exploring to which extent 
thermodynamic optimality indeed applies; however, it is a matter of fairness to acknowledge 
that this has been addressed by the reported studies. Maybe the formulation PDE based or 
hyper resolution models is more appropriate as physics-based, as it does not imply the other 
models are not based on physics. 
 
[K] I do not want to leave the impression of unfairness. I am very much aware of the 
aforementioned studies, which are of deep interest to me and contribute truly novel ideas 
to hydrology. By physics based and as a difference to previous studies I meant that Richards 
equation is applied at the support scale, and production of entropy is calculate at this scale 
as it is suggested by the theory in my opinion. To illustrate this, following Kondepudi and 
Prigogine 1998, the entropy balance equation is 
 

 (i) 

where the first term on the left hand side is the temporal entropy change; the second term 
on the left hand side is the divergence of the entropy current (entropy that enters/leaves 
the macroscopic domain); and σ is internal entropy production due to sum of all internal, 
"microscopic" forces, Fi, and fluxes, Ji, defined as  
 

 (ii) 

In the simulations, the entropy production was calculated directly at the support scale by 
summation of all local forces and fluxes. The term power was used because temperature 
does not change. However, this is inappropriate, because generation of power is simply 
neglected; it is the microscopic dissipation of the gradients by the fluxes in (ii), which 
produces the entropy as pointed out by the Referee. Additional thoughts on equation (i) and 
(ii) will be provided below, which will lead to a reanalysis of the simulation results and 
clarifications in the revised manuscript. 
 
 
[Z] Major scientific points: 
The author propose essentially to calculate power based on in- and outward soil water fluxes 
into the model grid elements and local gradients, to summarize these values over time and 
then compile the spatial integral. With this he adopts a macroscale formulation of power 
(usually employed at the system scale using fluxes across the boundaries and macroscale 
gradients) which applies for steady states in gradients and fluxes to the microscale. This is due 
to several reasons inappropriate because the grid scale gradients get depleted by the fluxes 
within a simulation time step means there is no steady state. 



 
[K] In the simulations, conditions of dynamic equilibrium were produced i.e. the simulation 
year was run repeatedly with identical hourly atmospheric forcing until the water balance 
and entropy (ds/dt=0) over the simulation year did not change. This required more than 30 
years (in some of the heterogeneous cases 60 years) of simulation! The only assumption in 
equation (i) is that the system is not far from equilibrium, which is the case in the 
simulations. Thus, applying equation (i) to instantaneous fluxes and gradients while 
including all required components in the divergence of the entropy current is appropriate 
in my opinion and results in ds/dt = 0 over one full cycle at dynamic equilibrium i.e. the 
statistical steady state. This is discussed again below. 
 
 
[Z] Secondly, soil water fluxes are essentially dissipative by their nature (pushing the system 
back to local thermodynamic equilibrium) and kinetic energy associated with soil water fluxes 
is marginal (this where power could be extracted from to perform work). The calculated term 
is thus not power (a source term in the free energy balance) but dissipation (the sink term in 
the free energy balance). As eq. 10 deals in fact dealing with dissipation, the proposed 
summation in is hence not appropriate, as positive and negative terms cancel out. (The latter 
wouldn’t harm when dealing with a system conserving free energy, which does not perform 
work when traveling along a closed path). One can think about a case where all summands in 
Eq. 10 cancel, the equations suggests that nothing happened at all; although gradients have 
been depleted and re-established many, many times and which implies dissipation of energy. 
Maybe, the way to go is to multiply the net flux into a local grid element with temporal change 
in the local potential (see post discussion of Zehe et al. 2013 for the details) or to use the 
method proposed in Zehe et al. (2013). 
 
[K] The Referee is correct that the theory and analysis needs to be clarified. It was intended 
to integrate the equation (i) over the dynamic equilibrium of one cycle/year by calculating 
the total entropy production, which equals the divergence of the entropy current, because 
ds/dt = 0 over one full cycle i.e. one complete simulation year. Thus, it is correct that there 
is entropy production (dissipation) even if the net flux is zero. This and additional 
implications can ben illustrated in a simple thought experiment: removing the topographic 
slope from the synthetic hillslope experiment results in a bucket which is closed laterally 
and at the bottom, and is in contact with the atmosphere at the top. Performing the same 
dynamic equilibrium simulations as before will result in a net or mean flux of zero over one 
full cycle (because the bucket can not dry out infinitely). Because of the fluctuations in the 
flux there will be dissipation and entropy production. Thus, ds/dt = 0 over one full cycle; 
and the internal entropy production integrated over one full cycle equals the divergence of 
the entropy current integrated over one full cycle. However, the divergence of the entropy 
current now consists of the exchange with the outside via the top boundary 
(evaporation/infiltration) and the internal, local fluctuations close to equilibrium, which 
may be understood as local (entropy) sinks/sources. Thus, in the analysis these fluctuations 
need to be included. To check this I integrated  

 (iii) 

 
and  



 

 (iv) 

over one full cycle over the hillslope for one example of Ksat = 0.01 m/h (where µ is the 
chemical potential, in this case the hydraulic head; and T is temperature, in this case 
constant), which yields an absolute difference of -5.53x10-10 m2/a, which is on the order of 
10-15% of the total entropy production. This tells me that the system is entropy 
conservative and equation (i) is applicable at dynamic equilibrium. 
 
[Z] The authors needs to show that his analysis reflects steady state behavior by compiling 
longer simulations using a longer time series reflecting the more than one year of forcing 
conditions. 
 
[K] Dynamic equilibrium (statistical steady state) over one full cycle/year is the 
prerequisite of the proposed method and was ensured with multiple decades of spinup 
simulation. 
 
 
[Z] I d’ like to encourage the author to better link the numerical experiment to natural systems 
and to explore a wider range in natural controls. The proposed simulation domain has, expect 
of a very small and homogeneous topographic gradient, not much in common with a natural 
hillslope. Also the soil should be better characterized than just dropping the van Genuchten-
Mualem parameters (similarly the boundary conditions). Even when the author prefers not to 
deal with transpiration, it is straight forward to compare for instance fine and coarse porous 
soils (with different importance of capillary pressure in this concert), different topographic 
gradients (to come closer to a hillslope) and eventually forms. 
 
[K] The constructive suggestions by the Referee are very well received. A direct link to 
natural systems is the ultimately goal including the demonstration of the predictive 
capability of the methodology. Also major aspects raised by the Referee such geometry of 
the hillslope, soil characterization, boundary conditions, and additional processes such as 
transpiration need to be addressed. However, this is beyond the scope of a single study, 
because of the required compute time of the hyper resolution simulations for dynamic 
equilibrium and extremely large set of potential simulations. The scope of the study is to 
propose a new methodology supported by, at this point, synthetic hillslope experiments.  
 
 
[Z] The reported dependence that purely random heterogeneity in ksat yields to an elevated 
maximum in dissipation is by far too interesting, to treat it in such a brief manner. How does 
this depend on the variance of ksat (which I missed by the way in the manuscript)? How does 
this change when adding a spatial co-variance? Is it a steady decrease within increasing 
correlation length, or is there a maximum dependent on the correlation length? This is 
particularly interesting as correlation lengths in natural soils are short (several meters). 
 



[K] This appears to be indeed the case, but must be corroborated in the revised analysis. 
Following the discussion above, entropy production may increase with random 
heterogeneity, because of an increase in the fluctuations of the flux and perhaps also 
because of an increase in the mean flux. Again, there is an extremely large set of simulations 
required in order to interrogate the impact of e.g. spatial structure at different scales. In the 
revised manuscript, additional results will be provided for different variances of the 
random distribution. 
 
 
[Z] The last part dealing with MEP as an inference principle and the suggested approach to 
estimate a macroscopic gradient and conductance is for me the most interesting part of the 
study. However, the provide evidence does support the conclusion that MEP applies indeed to 
hydrological system in the sense that an optimized effective conductance performs well 
against observations. This implies a) to show that optimum hillslope structure have predictive 
power against data and that the up-scaled effective conductance works well when being used 
within a water balance simulations carried out at larger grid cells (as for instance shown by 
Lee et al. 2007). Westhoff and Zehe (2013) showed that MEP is not useful for conceptual 
modelling, as the optimum parameters had not predictive power for the water balance; Zehe 
et al. (2013) reports to 2 successful cases, which can be just a coincidence). So there is still 
room for more evidence here. 
 
[K] The Referee is correct that the demonstration of the predictive power against data and 
in water balance simulations at larger grid cells is lacking. At this point, it is not clear how to 
provide evidence, because the relationships provided so far are for a limited set of synthetic 
cases. More simulations and application to a natural hillslope are planned in future but are 
out of the scope of this study in my opinion. 
 
 
 [Z] Please not that Eq. 1 is only valid, in case of mass flows, which are driven by chemical 
potentials and during steady states. 
 
[K] Please see my replies with regard to equation (i). 
 
 
[Z] Power is as a flux an intensive property and can thus not be imported/exported or 
balanced. Please refer to in/export of free energy which is an additive quantity. 
 
[K] This will be clarified in the revised manuscript following also the discussion above. The 
entropy balance including fluctuations will be revised. 
 
 
[Z] Hourly differences of P-ET are not equal to infiltration but equal to infiltration and surface 
runoff (Eq. 4). Why not using the influx into the model domain? 
 
[K] Correct, surface runoff will be added to the equation. 
 
 



[Z] How does the model deal with the saturated zone- in an iterative manner allowing for a 
free surface or by using storage coefficients? 
 
[K] Richards equation is applied in a continuum approach including the saturated and 
variably saturated zone allowing for a free surface (water table). 
 
 
[Z] Is it not really astonishing, that a saturated domain builds up as you use a no flow 
boundary? 
 

[K] The domain could be infinitely deep and there still would be a water table, which is 
purely the result of the interaction of non-linear, variably saturated flow and 
evaporation/infiltration at the top based on the atmospheric forcing time series. 
 
 
[Z] Page 5131 typo: toward by towards 
 
[K] Will be corrected in the revised manuscript. 
 
 
[Z] The gradient should point into the opposite direction of the flux (which reflects the second 
law of thermodynamics) not into direction of the flux 
 
[K] This will be corrected. 
 
 
[Z] Maybe replace small scale chaos with small scale disorder 
 
[K] This suggestion will be honored. 
 
 
  



In the following, comments by Referee S. Schymanski are indicated with [S] and replies by 
the author are indicated by [K]. 
 
 
[S] The paper contains a range of interesting results and discussion, but I believe that the 
insights with respect to maximum entropy production or power presented in this study could 
be enhanced a lot and need some clarifications. I also found some potential 
flaws that need to be dealt with. 
 
[K] I would like to thank the reviewer for the constructive comments, questions and 
suggestions, which help to improve the manuscript. 
 
 
[S] First of all, the author did not explain how water fluxes are calculated in the model, 
whether hydraulic heads used for calculation of entropy production include gravitational 
potential and how fluxes out of the domain were modelled. 
 
[K] In the model, the fluxes are calculated based on Richards equation. Entropy production 
calculations are based on hydraulic head, which includes the gravitational potential per 
definition. Fluxes in and out of the domain are modeled as sources and sinks that come from 
the coupling with CLM. This will be elaborated in detail in the revised manuscript.  
 
 
[S] Power (representative of entropy production) is only calculated for internal flow processes, 
no calculation of entropy exchange between grid cells or for water exchange across the 
boundaries is presented. As the author points out on P. 5126 L1, entropy production or power 
is a positive quantity by definition, so I am uncertain how to interpret Fig. 2 with positive and 
negative values of average net power. In fact, the big red block with sharp boundaries in Fig. 
2a looks like an artefact to me and should be analysed/discussed in more detail. At steady 
state, entropy in each grid cell must be constant, meaning that the entropy produced 
internally must equal the net export of entropy to the surroundings Schymanski et al. (2010). 
For a dynamic steady state, as assumed in the present paper, this must be true for long-term 
average entropy balance, so I believe that a detailed calculation of the entropy balance, not 
only entropy production, may give an additional indication of the consistency in the 
calculations. 
 
[K] The entropy balance is  
 

 (i) 

where s is the entropy, t is time, Js is the entropy current, Γs is the entropy source/sink, and 
σ is the internal entropy production of the macroscopic domain (always positive). 
 
In our case, the divergence of the entropy current can be expanded as follows 
 



 (ii) 

where µ is the chemical potential, J is the flux at the macroscopic scale. 
 
Applying equation (ii) over one full cycle with a periodic source/sink leads to the 
temporally integrated form with ds/dt = 0 indicated by the overbar  
 

 (iii) 

 
In equation (iii), at the microscopic scale, the entropy production and source/sink term at 
the land surface, because of evaporation/infiltration, can be expanded as follows 
 

 (iv) 

where  and  are the microscale forces and fluxes; and γi is the strength of the local 
sources/sinks, and µγ is the chemical potential of the sources/sinks. Thus, equation (iv) 
incorporates two scales: the divergence of the entropy current at the macroscale (first two 
terms), and the sources/sinks and entropy production at the microscale (remaining two 
terms).  
 
In order to explicitly resolve the microscale terms, the hillslope is discretized at the 
microscale using the uniform grid of ParFlow (finite control volumes with two-point flux 
approximation). The fluxes in the domain are calculated based on Richards equation at 
isothermal conditions. Thus, the chemical potential is the hydraulic head (though I stick to µ 
here). The time series of sources/sinks (i.e. infiltration/evaporation) are obtained from the 
coupling with CLM, which calculates soil moisture dependent evaporation based on the 
Monin-Obukhov similarity principle. 
 
Additionally, the first macroscopic term on the left hand side can be expanded to 
 

 (v) 

where the divergence of the entropy current due to the divergence of the flux is calculated 
over individual grid cells and integrated over the full domain i.e. the hillslope (or the 
subdomains i.e. the recharge and discharge zones). 
 
This part of the divergence, which can be positive or negative locally, was the variable to be 
plotted in figure 2 and may show different patterns based on the local dynamics of the 
hillslope and the periodic sources/sinks. In my opinion, these patterns reflect, which parts 
of the domain act as effective entropy exporters or importers. At dynamic equilibrium over 
one complete cycle, the periodic entropy sources/sinks are balanced by (1) the microscale 
entropy production (right hand side of equation (iv)), (2) the macroscale chemical potential 
and divergence of the flux (first term left hand side of  equation (iv)), and a mean 



macroscale gradient and flux across the hillslope (second term left hand side of  equation 
(iv)) 
 
 

 (vi) 

because of  
 

 (vii) 

where γin,i and γout,i are the periodic infiltration and exfiltration fluxes at grid cell i, 
respectively.  
 
This is proposed to be exploited in the upscaling of a macroscopic force across the hillslope 
and ultimately the derivation of an effective exchange coefficient. The complete entropy 
balance calculation is ongoing, and the expanded and revised theory and analysis will be 
included in the revisions of the manuscript. 
 
 
[S ] Secondly, the author presents the mere existence of a maximum in power with varying 
conductance as indication that “power is indeed maximized” in the simulations. For this 
statement to be substantiated, it would be necessary to demonstrate that the conductivity 
resulting in maximum power is indeed the one a hillslope naturally assumes. This has not been 
done and hence all that could be concluded from this study is that maxima exist along the 
range of simulated conductivities. In this context, I am uncertain how to interpret the deduced 
“effective” conductivity and the fact that only one maximum in power is expressed over the 
range of calculated effective conductivities.  
 
[K] I agree that the maximum in power has only been shown along a range of simulated 
conductivities. No connection to reality has been established at this point. This will be 
clearly stated in the revised manuscript. Based on the comments of all Referees and the 
additional calculations performed so far, the analysis needs to be revised, the relationships 
need to be re-established including the interpretation of the results.  
 
 
[S] According to P. 5137 L4, the author calculates the effective conductivity as the ratio of 
average power to the square of average hydraulic head difference. This derivation seems 
flawed, as the mean of a ratio is not equal to the ratio of two means, and the mean of a square 
is not equal to the square of a mean. For a correct calculation, the variances and covariances 
of the variables need to be considered. 
 
[K] I calculated the effective force from the ratio of the average power to the flux, and with 
this force in hand I calculated the effective conductivity from the ratio of the average flux to 
the force.  
 



 
[S] I also failed to see the merit of deducing effective conductances and pressure heads from 
the numerical simulations, given that both of these vary in space and time. I think that 
derivation of effective static soil properties and effective hillslope or catchment geometry 
would be more useful. Or, even better, if a global optimum in Ksat with respect to macroscopic 
power or entropy production exists, it would be very interesting to assess if real hillslopes tend 
towards such an optimal value. 
 
[K] I agree that relating a global optimum Kast with respect to macroscopic power to a real 
hillslope and deriving static soil properties would be extremely useful. I fell that the 
derivation of effective conductances and forces is a useful step in this direction. 
 
 
[S] I hope that these and the below step-by-step comments will help to improve the manuscript 
and make it an inspiring and useful addition to the scientific literature. 
 
[K] I would like to thank the Referee again for his useful comments and suggestions 
 
 
 [S] 1. Throughout: The use of the term optimization is confusing. Entropy production is 
maximized by optimization of some system properties such as effective conductance or spatial 
arrangement. If entropy production were to be optimized, as stated in this manuscript, I would 
expect that something else was the objective function to be maximized or minimized, while 
entropy production was the adjustable lever. On P5125L3 the term “entropy production 
optimization (EPO)” is introduced. How does this differ from “maximum entropy production 
(MEP)”? 
 
[K] I agree that the term optimization is used inconsistently. This will be clarified in the 
revised manuscript. The idea of introducing the term entropy production optimization was, 
because apparently there is still debate about minimization and maximization of entropy 
production in natural systems. 
 
 
[S] 2. Throughout: It would be helpful to remind the reader every now and then what the 
different abbreviations mean, e.g. S1 and S2 being homogeneous or heterogeneous Ksat 
respectively. 
 
[K] The suggestion will be honored in the revised manuscript.  
 
 
[S] 3. Throughout: Please do not use the word “chaos” when referring to heterogeneity. Chaos 
has a specific mathematical definition and could confuse readers. 
 
[K] The suggestion will be honored in the revised manuscript.  
 
 
[S] 4. P5124L13: inference tool 



 
[K] This will be corrected in the revised manuscript. 
 
 
[S] 5. P5125L10: The property of being well mixed or not is unrelated to being stationary or 
non-linear. To avoid confusion, this section should be re-written and a discussion of 
macroscopic variables could also be added here. 
 
[K] With well-mixed I mean that there are no internal gradients. This section will be 
revised.  
 
 
[S] 6. P5125L15–: The discussion of entropy production and associated variables is very 
confusing. What kind of entropy production is maximised, what are relevant system 
boundaries? The units given here are not consistent: Chemical potential should be energy per 
mass or per mole, entropy production should be energy per Kelvin per time, power should be 
energy per time by definition. Using the notation  here, energy should be ML2T−2, but this is 
neither reflected in the units of entropy production, nor in the chemical potential or power. 
 
[K] The internal entropy production of the system (hillslope) is maximized, which is 
bounded by no-flow conditions along the bottom and vertical faces, and a free surface 
overland flow boundary condition at the top (that reduces to no-flow under unsaturated 
conditions, Kollet and Maxwell (2006)). The hillslope exchanges mass with the outside via 
sources/sinks (infiltration/evaporation), which are calculated by the land surface model 
CLM.   I followed the convention by Westhoff et al. (2104), equation (1), which the Referee 
coauthored. Following this convention, entropy production has the units ML2T-3K-1. 
 
 
[S] 7. P5126L5: Clearer formulation:  is optimised to maximise P. 
 
[K] The suggestion will be honored in the revised manuscript.  
 
 
[S] 8. P5126L14–16: Kleidon and Schymanski (2008) did not show that entropy is maximised, 
they hypothesised that this might be the case. I was hoping that the present manuscript would 
test this hypothesis. 
 
[K] The statement will be revised in the manuscript. 
 
 
[S] 9. P5126L24: Linearity is not needed to use an idealized box model. 
 
[K] The statement will be revised in the manuscript.  
 
 
[S] 10. P5127L6–10: Need to explain what are the state variables that are supposed to be 
optimised for maximum entropy production or power. 



 
[K] Optimization will be clarified in the manuscript.  
 
 
[S] 11. P5127L16: 2D horizontally or vertically? 
 
[K] 2D vertically, which follows from "cross-section of a synthetic hillslope" in the same 
sentence. 
 
 
[S] 12. P5128L10–16: A conceptual drawing of the system boundaries and exchange would be 
helpful here. Why no-flow conditions? Where does the water go? How are the fluxes within the 
system and across boundaries computed?  
 
[K] A drawing will be provided. No-flow, because a cross-section of a closed basin or 
symmetric valley with a (dry) stream in the center of the valley was considered. The fluxes 
are computed with the coupled model ParFlow-CLM, in which Parflow simulates variably 
saturated subsurface flow and overland flow, and CLM calculates the 
infiltration/evaporation fluxes at the land surface. Both are coupled via sources/sinks in 
ParFlow and the soil moisture in the top ten model layers. There are a number of references 
on this; the most important details will be repeated in the revised manuscript for 
completeness. 
 
 
[S] 13. P5128L17: maximum in P (not optimum) 
 
[K] This will be corrected in the revised manuscript. 
 
 
[S] 14. P5131L16: This implies no drainage, however on P5529L7 it was mentioned that 
drainage does occur in some simulations. 
 
[K] A single simulation showed minor surface discharge out of the domain. The equation (4) 
and language will be revised accordingly. 
 
 
[S] 15. P5131L19: What does it mean that infiltration equals negative evaporation? Why 
negative? 
 
[K] At dynamic equilibrium, infiltration Qinf = Q equals evaporation Qev = -Q. This will be 
rephrased. 
 
 
[S] 16. P5133L7–11: Would this stepwise representation of topography lead to an 
overestimation of power compared to a more smooth representation? 
 
[K] I will perform additional simulations in order to interrogate this question. 



 
 
[S] 17. P5133L15–19: I was not able to follow here. I did not see the circulation patterns 
or understand whether these bands in Fig. 2 have a meaning or are an artefact. 
 
[K] The circulation refers to figure 1, where a net flow occurs from right to left (from the 
recharge to the discharge zone), which is expressed in the lateral gradient of H. The bands 
are explained at 5133, 5-11. 
 
 
[S] 18. P5134L8–9: I see no evidence for the statement that there is some sort of maximization 
in the critical zone. Figs. 4 and 6 show that there are maxima as Ksat is varied, but the 
evidence that the hillslope tends towards such states is not given. 
 
[K] This will be revised in the manuscript. 
 
 
[S] 19. P5135L13: These circulation cells sound interesting, but I was not able to see 
them. 
 
[K] They are expressed as gradients in H in figure 1 (color gradients). 
 
 
[S] 20. P5135L15: This is interesting. Does a random perturbation generally result in 
larger effective conductance, then? 
 
[K] In this presented analysis yes. This must be double checked in the revised analysis. 
 
 
[S] 21. P5136L1–3: This has actually been done in Schymanski et al. (2010): A “microscopic” 
spatially resolved ecohydrological model was transferred into a macroscopic 2-box model with 
effective parameters, which were optimised using the MEP principle, and the model results 
turned out to be very similar to the microscopic model simulations. Could this be attempted 
here as well? 
 
[K] Yes, this could be attempted here as well in my opinion. 
 
 
[S] 22. P5136L22: The equation given here is wrong, as the mean of a quotient is not equal to 
the quotient of two means. The mean H is equal to the mean of P/q, not to the mean of P 
divided by the mean of q, as long as P and q are not independent variables. Therefore, the 
interpretation of these results is likely flawed. 
 
[K] This will be reconciled in the revised manuscript.  
 
 



[S] 23. P5137L4: Again, mean should be calculated as the mean of all values of , not as the 
mean of P divided by the square of the mean H. 
 
[K] This will be reconciled in the revised manuscript.  
 
 
[S] 24. P5137L18–20: This conclusion seems unjustified. All the figure shows is that there is a 
maximum but not that the hillslope tends towards such a maximum. 
 
[K] This will be rephrased in the revised manuscript.  
 
 
[S] 25. P5138L9–10: Again, the results do not indicate to me that a hillslope tends towards an 
MEP state, they just show that there are maxima in power for certain values of saturated 
hydraulic conductivity. 
 
[K] This will be rephrased in the revised manuscript.  
 
 
[S] 26. P5138L20–24: I don’t see the use of deriving “effective gradients in case of known net 
fluxes”. Both fluxes and gradients vary in time, so what would we gain by this? 
 
[K] For example, if we obtain effective gradients and exchange coefficients that can be 
related to observable quantities then we may be able to predict net fluxes based on these 
variables at different scales in the natural system. 
 
 
[S] 27. P5140L9–11: It would be interesting to add an entropy balance to these calculations, in 
order to test whether the theoretical framework is indeed consistent. 
 
[K] This is already in progress. 
 
 
[S] 28. Fig. 1: Why qualitative and not e.g. a logarithmic colour scheme? Shurely, the colour 
scheme does follow some mathematical transformation anyway. What is the meaning of 
evaporation greater 0 and infiltration lower than 0 for discharge vs. recharge? This 
distincition did not make any sense to me.  
 
[K] Hydraulic head may be negative in parts of the domain, therefore no logarithmic 
transformation. The sign of evaporation and infiltration follows the convention that the flux 
is positive along the positive z-axis. 
 
[S] 29. Fig. 2: I had to look twice in the original manuscript to verify that the red bar was not a 
printout error. It may be good to mention in the caption that this is the actual result, and 
discuss in the text what caused it. Here, the scale could also be made quantitative. 
 



[K] The red bar is related to in the divergence of the entropy current Js, which has 

been discussed above. More explanation will be provided in the revised manuscript. 
 
 
[S] 30. Fig. 6: The arrangement of a-d is different to Fig. 4, while the shape of Fig. 6a is similar 
to Fig. 4a. Is this coincidence or a mix-up of the axes labels? 
 
[K] This is a coincidence.  
  



In the following, comments by Referee S. Schymanski are indicated with [S] and replies by 
the author are indicated by [K]. 
 
[S] I would like to thank the author for the clarifications and additional analysis laid out in his 
response. I look forward to seeing the new results. Here I would like to re-emphasise the lack of 
and need for consistency in units. Entropy production can indeed be expressed in units of 
ML2T-3K-1, as done in Westhoff et al. (2014). However, in the present manuscript, on 
P5125L17, the units are given as MT-2K-1, i.e. L2T-1 are missing. Since Eq. 1 in the manuscript is 
identical to Eq. 1 in Westhoff et al. (2014), and the units of the variables mentioned in Lines 
18–19 are also identical, the units for σ in Line 17 are probably just a typographical error. 
However, the units given for P in Line 25 are also inconsistent with “power per unit area”, 
which should be MT-3, i.e. energy (ML2T-2) per time per area. This is probably because Eq. 2 is 
missing a ρg (see Eq. 6 in Westhoff et al., 2014). Fixing this will probably not change the 
interpretation of the results (the missing variables are constants), but it will lead to less 
confusion and help the reader better understand what is being calculated, and how the results 
relate quantitatively to other results. 

For the additional equations presented in response to my comments, I would also like to 
encourage clear statements about the units of each variable. This will help understand the 
derivations and calculations. For example, if s and Js are expressed per unit surface area, how 
are the entropy fluxes at the boundaries (Js) related to area? Are they computed per area of 
the receiving grid cells or the whole projected hillslope area? I would also like to encourage 
explicit analysis of the entropy transport due to the boundary fluxes, as these largely 
determine the entropy balance of the system. An inflow of free water (infiltration) could be 
seen as an outflow of entropy independent of soil moisture (chemical potential of free water), 
while evaporation could be seen as an inflow of entropy that depends on soil moisture 
(chemical potential of bound water). There are probably alternative ways of defining 
consistent entropy balance components, but such explicit consideration of the entropy balance 
allows for detailed consistency checks of definitions and of the thermodynamic fluxes in the 
model as I have found while conducting the analysis published in Schymanski et al. (2010).  

[K] Thank you for the note. I fully agree with the Referee that consistency in units is 
important and helps the reader in the understanding of the theory, results and discussion. 
Emphasis will be placed in the revised manuscript on this aspect. This will certainly also 
include details of the entropy balance including the fluxes in out of the domain. I also find 
that this leads to useful consistency checks at the microscopic and macroscopic scales. In 
my opinion, this also helps in connecting the different components of the entropy balance in 
the interpretation of the results.  
 
Unfortunately, the units for the entropy production on 5125, 17 are a typographical error. It 
is correct that the units of P on line 25 were normalized by the specific weight of water, 
which was stated on line 22 in the original manuscript.  
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Abstract 10 

In this study, the method of inference of macroscale potentials, forces and exchange coefficients for 11 

variably saturated flow is outlined based on the entropy balance. The theoretical basis of the method of 12 

inference is the explicitly calculation of the internal entropy production from microscale flux-force 13 

relationships using e.g. hyper-resolution variably saturated groundwater flow models. Emphasis is placed 14 

on the two-scale nature of the entropy balance equation that allows incorporating simultaneously 15 

movement equations at the micro- and macroscale. The method is demonstrated with simple hydrologic 16 

cross-sections at steady state and cyclic sources/sinks at dynamic equilibrium, and provides a 17 

thermodynamic point of view of upscaling in variably saturated groundwater flow. The current 18 

limitations in the connection with observable variables and predictive capabilities are discussed, and 19 

some perspectives for future research are provided. 20 

 21 

  22 



Introduction 23 

The current earth sciences literature suggests that entropy balance considerations were mainly applied 24 

in the context of optimality and self-organization. This is because theories of optimality and self-25 

organization are appealing when dealing with complex non-linear systems, because of their apparent 26 

usefulness in interpreting interactions of gradients and fluxes and in quantifying (predicting) systems' 27 

states and uncertainties. In this context, the entropy balance received attention, because of its physics-28 

based foundation in non-equilibrium thermodynamics and potential connection with information theory 29 

(e.g., Dewar 2003, Koutsoyiannis 2014). The entropy balance appears to be useful in applications to 30 

hydrologic (e.g., Zehe et al. 2013, Ehret et al. 2014), ecohydrologic (e.g., Dewar 2010, Miedziejko and 31 

Kedziora 2014, del Jesus et al. 2012), and atmospheric sciences (e.g., Paillard and Herbert 2013), and in 32 

general to open complex nonlinear thermodynamic systems (Abe and Okuyama 2011). 33 

The entropy balance states that in an open system, the change in entropy equals the internal production 34 

of entropy minus the divergence of the entropy current. A dynamic equilibrium or steady state is 35 

obtained, when entropy production inside (due to e.g. flow processes of heat and water) equals the 36 

divergence of the entropy current i.e. the entropy exchange with the outside. Note also, dynamic 37 

equilibrium refers to a state of stationarity in the statistical sense. Optimality of the dynamic equilibrium 38 

may be achieved, because the gradient, which drives the flux and, thus the production of entropy, is 39 

reciprocally depleted by the same flux (Kleidon et al. 2013).  40 

In hydrology, the entropy balance has been applied to conceptual problems based on the overarching 41 

rational that entropy production is maximized (maximum entropy production, MEP) in obtaining a state 42 

of dynamic equilibrium by optimizing the fluxes and gradients in competition via an adjustment of some 43 

(non-)linear exchange coefficient. There have been some studies demonstrating, how entropy 44 

production can be optimized as a function of an exchange coefficient to obtain a system's state at which 45 

entropy production is indeed at its maximum. In hydrology, there are quite a few examples of the 46 



application and discussion of the MEP principle (e.g., Ehret et al. 2014, Westhoff et al. 2014, Kleidon and 47 

Schymanski 2008) also in connection with data (e.g., Zehe et al. 2013). However, its validity and 48 

applicability to hydrologic systems is still in question (Westhoff and Zehe 2013). 49 

 50 

Often the entropy balance has been applied at steady state with simple bucket models, which are well-51 

mixed (i.e. without internal gradients). For example, Porada et al. (2011) performed a detailed entropy 52 

production analysis of the land surface hydrologic cycle including the shallow vadose zone assuming 53 

vertical equilibrium of the soil bucket model. Applying linear bucket models without considering internal 54 

gradients, Kleidon and Schymanski (2008) showed that if the natural system possesses enough degrees 55 

of freedom, in case of steady state, the system will tend towards a certain exchange coefficient, when 56 

entropy production is maximized. For similar bucket models, Westhoff et al. (2014) demonstrated the 57 

impact of periodic boundary forcing on entropy production, which may result in more than one 58 

maximum for unique values of the exchange coefficient at dynamic equilibrium. Interestingly, these 59 

studies did not calculate the internal entropy production explicitly; entropy production was estimated 60 

indirectly from the exchange with the outside (i.e. the divergence of the entropy current).  61 

Schymanski et al. (2010) recognized the potential in explicitly estimating the internal entropy production 62 

using a simple microscale Klausmeier model (Klausmeier 1999), which is based on coupled equations of 63 

moisture and biomass and is able to produce vegetation patterns, in order to optimize effective values of 64 

a simple two-box model. This study highlights an interesting aspect of entropy balance considerations 65 

related to the inference of upscaled effective parameters and state variables to represent subgrid scale 66 

variability in coarse scale (macroscale) models. Thus, ultimately, the appeal of the entropy balance 67 

maybe the inference of upscaled or effective exchange coefficients and forces/gradients, which may be 68 

used to quantitatively describe the complex system without the explicit knowledge about microscopic 69 

details (Dewar 2009). In this context, a popular example is gas diffusion, which can be captured by an 70 



inferred, macroscopic diffusion coefficient and gradient instead of honoring the motion and interactions 71 

of individual molecules.  72 

In this study, the method of inference of effective hydrologic exchange coefficients, potentials and forces 73 

is outlined using the entropy balance equation in applications to simple hydrologic cross-sections. The 74 

following sections provide the basic theory with an emphasis on the two-scale nature of the entropy 75 

balance, and the application to the hydrologic cross-sections with ensuing discussion and conclusions. 76 

 77 

Basic theory and the two-scale nature of the entropy balance 78 

The theory outlined in Kondepudi and Prigogine (2015) is applied to the problem of variably saturated 79 

groundwater flow at constant temperature. Based on conservation of energy (and the balance equation 80 

for concentrations, which is not required in this analysis) Kondepudi and Prigogine (2015) write the 81 

entropy balance as follows 82 

𝑠′+ 𝛻 ⋅ 𝐽𝑠 = 𝜎 (1), 83 

where 𝑠′ (ML-1T-3K-1) is the change in the entropy density with time; 𝐽𝑠 (MT-3K-1) is the entropy current per 84 

unit volume; and 𝜎 (ML-1T-3K-1) is the internal entropy production per unit volume, which is always 85 

positive by definition. Thus, the change of entropy density with time of a macroscopic volume depends 86 

on the divergence of the entropy current and the internal entropy production. 87 

In the considered case of variably saturated groundwater flow, 𝐽𝑠 = 𝐽𝑀/𝑇, where J (ML-2T-1) is the mass 88 

flow per unit area, M (L2T-2) is the chemical potential at the macroscale and 𝑇 (K) is the temperature. 89 

Defining q (ML-3T-1) and f (L2T-2) as the fluxes and forces at the microscale per unit volume, the 90 

divergence of the entropy current and the internal entropy production can be expanded as follows 91 

𝑠′+ (𝑀/𝑇)(𝛻 ⋅ 𝐽) + 𝐽 ⋅ �𝛻(𝑀/𝑇)� = ∑𝑞𝑓/𝑇 (2). 92 



Equation (2) exhibits the unique characteristics of incorporating two scales: the entropy density change 93 

with time and divergence of the entropy current at the macroscale (all terms on the left hand side), and 94 

the entropy production at the microscale i.e. the sum of all products of the internal microscopic fluxes 95 

and forces (term on the right hand side). Note, in the following, T (K) is omitted in the equations and 96 

units, because T = constant in the following derivations. 97 

Performing an entropy balance at true steady state leads to 98 

𝑀(𝛻 ⋅ 𝐽) + 𝐽 ⋅ (𝛻𝑀) = 𝜎 (3) 99 

because 𝑠′ = 0. In contrast, performing an entropy balance under the influence of periodic external 100 

forcing requires integration over one full forcing cycle at dynamic equilibrium of equation 2 indicated by 101 

overbars  102 

𝑀(𝛻 ⋅ 𝐽)����������� + 𝐽 ⋅ (𝛻𝑀)����������� = 𝜎� (4). 103 

with 𝑠′� = 0 over one full cycle. Both approaches will be applied in the following section, in order to 104 

arrive at effective variables at the macroscale. 105 

In order to further emphasize the two-scale nature of equations 1 and 2, movement equations are 106 

introduced at the macro- and microscale. At the macroscale, Μ (L2T-2) is defined as the sum of the 107 

macroscopic pressure potential 𝛹 (L2T-2), and gravitational potential gz (L2T-2), leading to 108 

𝑀 = 𝛹 + 𝑔𝑧 (5); 109 

and is, thus, equivalent to the hydraulic head; (𝛻𝑀) symbolizes a macroscopic force F (L2T-2) being the 110 

difference in the macroscopic chemical potentials 111 

(𝛻𝑀) = 𝐹 = 𝑀ℎ𝑖𝑔ℎ − 𝑀𝑙𝑜𝑤 (6); 112 

and, at the moment, 𝐽 is defined as a conductance concept  113 



𝐽 = 𝜆𝐹 (7), 114 

where 𝜆 (ML-4T) is a conductance coefficient (𝜆 = 𝜌𝑟𝑠, with water density 𝜌 (ML-3) and resistance 𝑟𝑠 (TL-1)) 115 

relating the flux with the force at the macroscale.  116 

At the microscale, the chemical potential µ, (L2T-2),  the mass flux q (ML-3T-1) per unit volume and the 117 

force f (L2T-2) are  118 

𝜇 = 𝜓 + 𝑔𝑧 (8), 119 

where 𝜓 (L2T-2) is the microscale pressure potential; 120 

𝑞 = 1
𝛼

 𝜌 𝐾
𝑣
𝑘𝑟(𝜓)�𝜇ℎ𝑖𝑔ℎ − 𝜇𝑙𝑜𝑤� (9), 121 

where 𝜌 (ML-3) is the density; υ (L2T-1) is the kinematic viscosity; K is the permeability (L2), 𝑘𝑟(𝜓) (-) is the 122 

relative permeability, and 𝛼 (L-2) is the unit microscopic flow through area; and the microscale force 123 

𝑓 = �𝜇ℎ𝑖𝑔ℎ − 𝜇𝑙𝑜𝑤� (10). 124 

Technically, ∑𝑞𝑓 is the sum of all fluxes and forces (both always positive, because any flux produces 125 

entropy) between all neighboring cells or elements in a microscale, numerical, variably saturated 126 

groundwater flow model including any Dirichlet and Neumann boundary conditions.  127 

Thus, the two-scale nature of equation 2 allows to apply different flux-force relationships at the different 128 

scales that are the conductance concept at the macroscale (equation 7) and essentially Darcy’s law or 129 

Richards equation (equation 7) at the microscale. In equation 2, the entropy production serves as an 130 

“automatic” spatial and also temporal integrator of the microscale fluctuations. These two 131 

characteristics are remarkable. Note, the calculation (integration) of the entropy balance may be 132 

performed over the global domain of volume 𝑉 (L3) or any subdomain 𝑉𝑖 (L3) thereof. 133 

 134 



Method of Inference 135 

The basis of the method of inference is that the internal, microscopic entropy production σ  and also the 136 

complete entropy balance can be calculated from support scale simulations by implementing the 137 

microscale equations 9 and 10 in combination with a continuity equation over the macroscopic domain. 138 

In obtaining σ explicitly, one is able to estimate effective potentials, forces and conductance coefficients, 139 

at the macroscale (equation 7) from the explicitly resolved fluctuations at the microscale, which are 140 

thermodynamically consistent. In order to illustrate the method of inference of macroscale potentials, 141 

conductances and forces, a number of illustrative examples based on simple hydrologic profiles are 142 

presented applying different boundary conditions and source terms.  143 

 144 

Example 1: 145 

Directed at a heat flow example in Kondepudi and Prigogine (2015), a simple cross-section is considered 146 

(figure 1) with steady-state, variably saturated groundwater flow, 𝐽, from left to right due to Dirichlet 147 

boundary conditions on the left Ml, and right Mr, with Ml > Mr. Because 𝛻 ⋅ 𝐽 = 0, and s’ = 0 at steady 148 

state, integration of the entropy balance over the cross-section leads to 149 

𝑆𝑖′ = ∫ ∫ 𝜎(𝑥, 𝑧)𝑑𝑥𝐿𝑥
0 𝑑𝑧𝐿𝑧

0 = 𝐿𝑧 ∫ 𝐽𝑥(∇𝑥𝑀)𝑑𝑥𝐿𝑥
0  (11a) 150 

𝑆𝑖′ = 𝐿𝑧𝐽𝑥(𝑀𝑙 −𝑀𝑟) = 𝐿𝑧𝐽𝑥𝐹 (11b), 151 

where 𝐿𝑧 and 𝐿𝑥 (L) are the constant vertical and horizontal extents of the cross-section, respectively;  𝑆𝑖′ 152 

is the total internal entropy production; and 𝐹 = (𝑀𝑙 −𝑀𝑟) is the macroscopic force. Note, in the 153 

following, the entropy production integral is simply written as 𝑆𝑖′ = ∫𝜎, and 𝐿𝑧 is lumped into the flux  154 

𝐿𝑧𝐽𝑥 = 𝐽 for convenience. 155 



In case of this simple example, applying 𝐽 = 𝜆(𝑀𝑙 −𝑀𝑟) from equation 5, one obtains the expression for 156 

the effective conductance 157 

𝜆 = 𝑆𝑖′(𝑀𝑙 −𝑀𝑟)−2 = 𝑆𝑖′𝐹−2 (12) 158 

and the effective force 159 

𝐹 = 𝑆𝑖′𝐽−1 (13). 160 

Thus, one may obtain the true, effective conductance for any kind of heterogeneity (i.e. microscale 161 

fluctuations) by explicitly calculating σ  and 𝑆𝑖′ based on equations 6 and 7 and the macroscopic 162 

boundary conditions Ml and Mr. Note, entropy production is simply the sum of the product of the steady 163 

state fluxes and incremental forces over the cross-section 164 

𝑆𝑖′ = ∫𝜎 = ∫(∑𝑞𝑓) = ∫ �∑ 1
𝛼

 𝜌 𝐾
𝑣
𝑘𝑟(𝜓)�𝜇ℎ𝑖𝑔ℎ − 𝜇𝑙𝑜𝑤�

2�, where individual values of 𝑞𝑓 are calculated 165 

with equations 9 and 10 between two adjacent microscale elements in support scale numerical 166 

simulations. 167 

 168 

Example 2: 169 

This example expands example 1 to steady state groundwater flow including recharge represented by 170 

the mass rate Qs 171 

𝑄𝑠 = ∫ (𝛻 ⋅ 𝐽)𝑑𝑥𝐿
0  (14), 172 

and integration leading to 173 

𝑀𝑄𝑠 + 𝐽𝑙𝑀𝑙 − 𝐽𝑟𝑀𝑟 = 𝑆𝑖′ (15). 174 

where M is the macroscopic potential of the cross-section. 175 



The general expression for the macroscopic potential of the cross-section is  176 

𝑀 = 𝑄𝑠−1(𝑆𝑖′ − (𝐽𝑙𝑀𝑙 − 𝐽𝑟𝑀𝑟)) (16). 177 

In this example, three special cases are considered, namely 𝐽𝑙 = 0, 𝐽𝑙 < 0, and 𝐽𝑙 > 0. In case of 𝐽𝑙 = 0 178 

(figure 2), there is a no-flow boundary condition on the left side resulting in 𝐽𝑟 = 𝑄𝑠 and, thus 179 

𝑀 = 𝑆𝑖,𝐽𝑙=0
′ 𝑄𝑠−1 +𝑀𝑟 (17) 180 

𝐹 = (𝑀 −  𝑀𝑟) = 𝑆𝑖,𝐽𝑙=0
′ 𝑄𝑠−1 (18) 181 

where the subscript indicates the respective case for the left boundary flux. 182 

With equation 7 and 𝐽𝑟 = 𝑄𝑠 = 𝐽 follows for the conductance coefficient 183 

𝜆 = 𝑆𝑖,𝐽𝑙=0
′ 𝐹−2 (19). 184 

For 𝐽𝑙 < 0 (figure 3), the symmetric case is considered, where the potentials at the boundaries are equal 185 

(𝑀𝑙 = 𝑀𝑟 = 𝑀𝑏) and 𝑄𝑠 is uniform over the profile (−𝐽𝑙 = 𝐽𝑟 = 𝑄𝑠/2) leading to 186 

𝑀𝑄𝑠 − 1/2𝑄𝑠𝑀𝑙 − 1/2𝑄𝑠𝑀𝑟 = 𝑆𝑖,𝐽𝑙<0
′  (20a). 187 

𝑄𝑠(𝑀−  (𝑀𝑙 + 𝑀𝑟)/2) = 𝑆𝑖,𝐽𝑙<0
′  (20b). 188 

𝑄𝑠(𝑀−  𝑀𝑏) = 𝑆𝑖,𝐽𝑙<0
′  (20c) 189 

and ultimately for the macroscopic potential 190 

𝑀 = 𝑆𝑖,𝐽𝑙<0
′ 𝑄𝑠−1 + 𝑀𝑏 (21). 191 

𝐹 = (𝑀 −  𝑀𝑏) = 𝑆𝑖,𝐽𝑙<0
′ 𝑄𝑠−1 (22) 192 

and 193 



𝜆 = 𝑆𝑖,𝐽𝑙<0
′ 𝐹−2 (23) 194 

Note, M and F reflect values for each of the two half-spaces separated by a no-flow boundary condition 195 

e.g. 𝐹 = �𝑆𝑖,𝐽𝑙<0
′ /2�(𝑄𝑠/2)−1, which is true for a homogeneous profile only and is equivalent to the case 196 

𝐽𝑙 < 0 above. The entropy production is calculated also with 197 

𝑆𝑖,𝐽𝑙<0
′ = ∫𝜎 = ∫(∑𝑞𝑓) = ∫ �∑ 1

𝛼
 𝜌 𝐾

𝑣
𝑘𝑟(𝜓)�𝜇ℎ𝑖𝑔ℎ − 𝜇𝑙𝑜𝑤�

2�. 198 

For a heterogeneous profile and/or 𝑀𝑙 > 𝑀𝑟 (figure 4) i.e. when there is no symmetry 199 

𝑀𝑄𝑠 − 𝐽𝑙𝑀𝑙 − 𝐽𝑟𝑀𝑟 = 𝑆𝑖,𝐽𝑙<0
′  (24). 200 

Thus, the effective potential of the cross section may be obtained from 201 

𝑀 = 𝑄𝑠−1�𝑆𝑖,𝐽𝑙<0
′ + 𝐽𝑙𝑀𝑙 + 𝐽𝑟𝑀𝑟� (25) 202 

Additionally, expressions can be obtain for the conductance coefficients in the exchange with the left 203 

and right boundary conditions that are 204 

𝜆𝑙 = �𝑀𝑄𝑠 − 𝑆𝑖,𝐽𝑙<0
′ − 𝐽𝑟𝑀𝑟�(𝐹𝑙𝑀𝑙)−1 (26a) 205 

 𝜆𝑟 = �𝑀𝑄𝑠 − 𝑆𝑖,𝐽𝑙<0
′ − 𝐽𝑙𝑀𝑙�(𝐹𝑟𝑀𝑟)−1 (26b). 206 

where the macroscale forces 𝐹𝑟 = 𝑀−𝑀𝑟 and 𝐹𝑙 = 𝑀−𝑀𝑙  result from the differences between M and 207 

𝑀𝑙, 𝑀𝑟 with 𝑀 following from equation 25. Again, entropy production is calculated with 208 

 𝑆𝑖,𝐽𝑙<0
′ = ∫𝜎 = ∫(∑𝑞𝑓) = ∫ �∑ 1

𝛼
 𝜌 𝐾

𝑣
𝑘𝑟(𝜓)�𝜇ℎ𝑖𝑔ℎ − 𝜇𝑙𝑜𝑤�

2�. 209 

For 𝐽𝑙 > 0 (figure 5), the entropy balance is 210 

𝑀𝑄𝑠 + 𝐽𝑙𝑀𝑙 − 𝐽𝑟𝑀𝑟 = 𝑆𝑖,𝐽𝑙>0
′  (27) 211 

and the macroscopic potential is 212 



𝑀 = 𝑄𝑠−1�𝑆𝑖,𝐽𝑙>0
′ − 𝐽𝑙𝑀𝑙 + 𝐽𝑟𝑀𝑟� (28) 213 

With 𝑄𝑠 = 𝐽𝑟 − 𝐽𝑙 follows 214 

𝐽𝑙(𝑀𝑙 −𝑀) + 𝐽𝑟(𝑀 −𝑀𝑟) = 𝑆𝑖,𝐽𝑙>0
′  (29) 215 

Thus, two conductances can be obtained, which are  216 

𝜆𝑙 = �𝑆𝑖,𝐽𝑙>0
′ − 𝐽𝑟(𝑀 −𝑀𝑟)�𝐹𝑙−2 (30) 217 

𝜆𝑟 = �𝑆𝑖,𝐽𝑙>0
′ − 𝐽𝑙(𝑀𝑙 −𝑀)�𝐹𝑟−2 (31) 218 

with the macroscopic forces 𝐹𝑙 = (𝑀𝑙 −𝑀) and 𝐹𝑟 = (𝑀−𝑀𝑟). In this example, two additional 219 

conductances can be obtained for the subdomains separated by the dividing streamline due to recharge 220 

shown in figure 5 that are  221 

𝜆𝑄𝑠 = �𝑆𝑖,𝐽𝑙>0
′ − 𝐽𝑙(𝑀𝑙 −𝑀𝑟)�𝐹𝑄𝑠

−2 (32) 222 

𝜆𝑙,𝑟 = �𝑆𝑖,𝐽𝑙>0
′ − 𝑄𝑠(𝑀 −𝑀𝑟)� 𝐹𝑙,𝑟−2 (33) 223 

with  𝐽𝑟 = 𝐽𝑙 + 𝑄𝑠 , and the macroscale forces 𝐹𝑄𝑠 = (𝑀 −𝑀𝑟) and 𝐹𝑙.𝑟 = (𝑀𝑙 −𝑀𝑟). In the domain, the 224 

entropy production is calculated also with  225 

𝑆𝑖,𝐽𝑙>0
′ = ∫𝜎 = ∫(∑𝑞𝑓) = ∫ �∑ 1

𝛼
 𝜌 𝐾

𝑣
𝑘𝑟(𝜓)�𝜇ℎ𝑖𝑔ℎ − 𝜇𝑙𝑜𝑤�

2�. 226 

 227 

Example 3: 228 

In this example, a no-flow boundary condition on the left is considered resembling a hillslope with a no-229 

flow boundary along a hypothetical ridge on the left side, and a Dirichlet boundary condition along a 230 

hypothetical stream on the right side. Now, a source/sink Qs(x,t) varies periodically in space and time 231 



(periodically varying recharge/discharge). In this case, equation 2 needs to be solved for the different 232 

variables and integrated over one complete cycle at dynamic equilibrium.  233 

Note, again ∫ 𝛻 ⋅ 𝐽𝑑𝑥𝐿
0 = 𝑄𝑠, because there is a macroscopic, transient source/sink in the domain, 234 

therefore, after integration along the cross-section, the entropy balance reads 235 

𝑆′ + 𝑀𝑄𝑠 − 𝐽𝑟𝑀𝑟 = 𝑆𝑖′ (34) 236 

where 𝑆′ is the entropy change rate. After time integration over one full cycle at dynamic equilibrium, 237 

𝑄𝑠��� = 0 and 𝑆′� = 0, the effective macroscopic potential of the cross-section due to the periodic varying 238 

source/sink is 239 

𝑀� = (𝑆𝚤′ + 𝐽𝑟𝑀𝑟 − 𝑆′)𝑄𝑠−1�������������������������� (35a) 240 

or 241 

𝑀� = cov(𝑆𝑖′,𝑄𝑠−1) + 𝑆𝚤′�𝑄𝑠−1����� + 𝑀𝑟�cov(𝐽𝑟,𝑄𝑠−1) + 𝐽𝑟�𝑄𝑠−1������+ cov(𝑆′,𝑄𝑠−1) (35b) 242 

Recognizing that 𝐽𝑟 = ∫ (𝑄𝑠 − Θ′)𝑑𝑥𝐿
0 , where Θ′ is the macroscopic mass change rate of the cross-243 

section, one obtains for the effective force 244 

𝐹� = (𝑆𝚤′ − Θ𝑀𝑟 − 𝑆′)𝑄𝑠−1�������������������������� (36a) 245 

or 246 

𝐹� = cov(𝜎,𝑄𝑠−1) + 𝜎�𝑄𝑠−1����� − 𝑀𝑟cov(Θ′,𝑄𝑠−1) + cov(𝑠′,𝑄𝑠−1) (36b) 247 

with Θ� = 0; and for the effective conductance 248 

�̅� = (𝑆𝚤′ − Θ′M − 𝑆′)𝐹2������������������������ (37a) 249 

or 250 



�̅� = cov(𝑆𝑖′,𝐹2) + 𝑆𝚤′� 𝐹2���� − cov(Θ′M,𝐹2) + Θ′𝑀������𝐹2���� + cov(𝑆′,𝐹2) (37b) 251 

with 𝐽𝑟 = 𝜆𝐹 = 𝜆(𝑀 −𝑀𝑟). 252 

Apparently, on the right hand side of equations 35, 36, and 37 all terms may be calculated from the 253 

numerical simulations except 𝑆′ = ∫ 𝑠′ and therefore also cov(𝑆′,𝑄𝑠−1), because 𝑆′and 𝑀 is not known 254 

in equation 34 (note, 𝑆𝑖′ is calculated explicitly). However, 𝑆′ may actually be calculated from the 255 

microscale variables, which is demonstrated with a discrete example depicted in the schematic in 256 

figure 6.  257 

In this schematic, there are three microscale elements with sources/sinks in each individual element (ql, 258 

qc, qr) and a constant potential boundary condition on the right (µb). For each individual element the 259 

entropy balance is  260 

                     𝑠𝑙′ + 𝑞𝑙𝜇𝑙 − 𝑞𝑙,𝑐𝜇𝑙,𝑐 = ∑𝑞𝑙𝑓𝑙 = 𝑞𝑙,𝑐�𝜇𝑙 − 𝜇𝑙,𝑐� (38a) 261 

𝑠𝑐′ + 𝑞𝑐𝜇𝑐 + 𝑞𝑙,𝑐𝜇𝑙,𝑐 − 𝑞𝑐,𝑟𝜇𝑐,𝑟 = ∑𝑞𝑐𝑓𝑓 = 𝑞𝑙,𝑐�𝜇𝑙,𝑐 − 𝜇𝑐� + 𝑞𝑐,𝑟�𝜇𝑐 − 𝜇𝑐,𝑟� (38b) 262 

   𝑠𝑟′ + 𝑞𝑟𝜇𝑟 + 𝑞𝑐,𝑟𝜇𝑐,𝑟 − 𝑞𝑏𝜇𝑏 = ∑𝑞𝑟𝑓𝑟 = 𝑞𝑐,𝑟�𝜇𝑐,𝑟 − 𝜇𝑟� + 𝑞𝑏(𝜇𝑟 − 𝜇𝑏) (38c) 263 

where the fluxes and potentials with the subscript l,c and c,r  are valid at the element interfaces. The 264 

terms on the right hand side i.e. the entropy production for each element encompass the fluctuations in 265 

the flux-force relationships between the element’s interior and the element boundaries. Summation of 266 

the individual balance equations leads to the total balance 267 

𝑠′ + 𝑞𝑙𝜇𝑙 + 𝑞𝑐𝜇𝑐 + 𝑞𝑟𝜇𝑟 − 𝑞𝑏𝜇𝑏 = 𝜎 = 𝑞𝑙,𝑐(𝜇𝑙 − 𝜇𝑐) + 𝑞𝑐,𝑟(𝜇𝑐 − 𝜇𝑟) + 𝑞𝑏(𝜇𝑟 − 𝜇𝑏) (39). 268 

Note, on the left hand side, all the interface terms disappear and only the source and boundary terms 269 

remain, equivalent to the macroscale balance in equation 34. Equation 38 is the entropy balance 270 

equation for the system depicted in figure 6. 271 



Any changes in the entropy of the system with time are due to transient effects that cancel out at 272 

dynamic equilibrium 𝑠′� = 0. In order to demonstrate this, substitution of 𝑞𝑙,𝑐 = (𝑞𝑙 − θ𝑙′), 𝑞𝑐,𝑟 =273 

(𝑞𝑙 − θ𝑙′) + (𝑞𝑐 − θ𝑐′ ), and 𝑞𝑏 = (𝑞𝑙 − θ𝑙′) + (𝑞𝑐 − θ𝑐′ ) + (𝑞𝑟 − θ𝑟′ ) for the interface fluxes on the right 274 

hand side in equation 38 leads to 275 

𝑠′ + 𝑞𝑙𝜇𝑙 + 𝑞𝑐𝜇𝑐 + 𝑞𝑟𝜇𝑟 − 𝑞𝑏𝜇𝑏 = 

(𝑞𝑙 − θ𝑙′)𝜇𝑙 + (𝑞𝑐 − θ𝑐′ )𝜇𝑐 + (𝑞𝑟 − θ𝑟′ )𝜇𝑟 − 𝑞𝑏𝜇𝑏 (40) 276 

which demonstrates continuity in case of true steady state θ𝑙′ = θ𝑐′ = θ𝑟′ = 0, and shows that any e.g. 277 

positive mass storage change 𝜃′ over the microscopic volume leads to negative change in entropy and 278 

vice versa. Note, the entropy production is still always positive. Thus, 𝑆′ and can be evaluated by 279 

applying equation 39 to microscale simulations.  280 

A special case may be considered, in which the system depicted in figure 6 is also closed on the right side 281 

resulting in a sole exchange with the surroundings via the periodic source/sink 𝑄𝑠(𝑡). This would be 282 

equivalent to a profile with a discharge area in the center and the assumption of symmetry shown in the 283 

schematic in figure 7. The requirement again is that 𝑄𝑠��� = 0 over one full cycle at dynamic equilibrium. 284 

Then e.g. equation 35 simplifies to  285 

𝑀� = (𝑆𝚤′ − 𝑆′)𝑄𝑠−1����������������� (41a) 286 

or 287 

𝑀� = cov(∆𝑆′,𝑄𝑠−1) + 𝑆𝚤′�𝑄𝑠−1����� (41a) 288 

with ∆𝑆′ = 𝑆𝑖′ − 𝑆′. 289 

 290 

 291 



Discussion 292 

The major advantage of the proposed inference theory is the estimation of macroscopic variables that 293 

are thermodynamically consistent with the microscale fluctuations. This is discussed in the context of the 294 

simple example 1 interpreting the entropy current 𝐽𝑠 = 𝐽𝑀 as an advective potential flux. Because 𝐽 is 295 

constant and 𝑀𝑙 > 𝑀𝑟, the entropy current leaving the domain on the right side is smaller than the 296 

entropy current entering the domain on the left side. This is due to dissipation in the interior of the 297 

domain resulting into the production of entropy 𝑆𝑖′. In hydrology, the dissipation is simulated using 298 

Darcy’s law and Richards equation at the support (here microscopic) scale, where all dissipative 299 

processes are lumped in the hydraulic conductivity representing the flow resistance. Thus, at the 300 

macroscale the derived conductance 𝜆 is thermodynamically consistent if one accepts e.g., Darcy’s law as 301 

a valid parameterization of the internal dissipative processes.  302 

Equations 12 and 13 have not been applied before in the context of hydrology. While the equations 303 

illustrate the basic idea for the simplest case of a Darcy experiment, one may argue that the insight 304 

gained from this example is rather limited, because 𝜆 could have been obtained from the known flux-305 

force relationship and the conductance equation (one unknown 𝜆 with one equation 7). Examples 2 and 306 

3, on the other hand, clearly illustrate the advantage, because the macroscale potential 𝑀 (and 307 

therefore 𝐹),which are needed to obtain 𝜆 are not known in these examples. Thus, one is left with two 308 

unknowns 𝜆 and 𝐹, and only one equation (the conductance equation 7). In the proposed theory, the 309 

entropy balance provides the second equation to solve for the two unknowns at the cost of explicitly 310 

calculating the internal entropy production 𝑆𝑖′ = ∫𝜎 = ∫(∑𝑞𝑓) = ∫ �∑ 1
𝛼

 𝜌 𝐾
𝑣
𝑘𝑟(𝜓)�𝜇ℎ𝑖𝑔ℎ − 𝜇𝑙𝑜𝑤�

2�, 311 

and at the benefit of thermodynamic consistency. This is the central message of the proposed method of 312 

inference, which utilizes 𝑆𝑖′ as a spatial and also temporal integrator. 313 



It is important to emphasize that one can also obtain, in an ad hoc fashion, the forces and conductance 314 

coefficients for any sub-domain 𝑉𝑖 of the global domain with volume 𝑉. For example, in order to obtain 315 

the macroscale potential in the center of the profile of example 1, one arrives at 316 

𝑀𝑐 = 𝑀𝑙 − 𝐽−1 ∫ 𝜎𝑑𝑉𝑖𝑉𝑖
 (42). 317 

Thus, from ∫ 𝜎𝑑𝑉𝑖𝑉𝑖
 estimates, one is able to obtain macroscale variables over a hierarchy of scales for 318 

different hydrologic configurations similar to the simple examples provided above.  319 

Under purely saturated groundwater flow conditions, the estimates of macroscale variables can be used 320 

directly for predictions, because 𝜆 is constant for the same flow geometries, which is trivial, but 321 

important to realize. In case of variably saturated flow and transient conditions (when the flow geometry 322 

changes), 𝜆 is of course not constant and 𝑆𝑖′ will depend in an unknown, non-linearly fashion on the flux J 323 

and its variability (example 3), which apparently limits the usefulness of the proposed approach. 324 

However, universal relationships of 𝑆𝑖′(𝐽) and cov(𝑆𝑖′, 𝐽−1) can perhaps be obtained from a series of 325 

numerical experiments under characteristic hydrologic configurations. 326 

This also brings up the question, whether one is able to establish a connection of the proposed theory 327 

with observations of real-world systems. Obviously, 𝑆𝑖′ and 𝑆′ can not be measured directly in the field 328 

utilizing independent experiments, which could, in turn, be used to derive macroscopic forces from flux 329 

observations that are more readily available. Thus, utilizing the entropy balance for estimating 330 

macroscopic field variables and ensuing predictions appears limited at this point. Yet, this study suggests 331 

to explore relationships of measurable field variables and 𝑆𝑖′ utilizing numerical experiments, in future. In 332 

turn, under certain conditions, estimates of 𝑆𝑖′ from measurable quantities may be possible. With the 333 

help of the extended example 1, this is discussed below. 334 



Assuming a time varying force i.e. Dirichlet boundary conditions, temporal integration of equation 11 335 

over one full cycle at dynamic equilibrium yields  336 

𝑆𝚤′� = 𝐽𝐹��� (43) 337 

Inserting the conductance equation into equation 43 under saturated, linear groundwater flow 338 

conditions with the assumption of only small changes in the flow geometry (𝜆 is constant) leads to  339 

𝑆𝚤′� = 𝜆−1𝐽2� = 𝜆−1[var(𝐽) + 𝐽2̅] (44). 340 

Thus, entropy production is related inversely to 𝜆, linearly with 𝐽, and power two with  𝐽.̅ If an estimate 341 

of 𝜆 is available, 𝑆𝚤′�  can be calculated from observations of 𝐽. In the more realistic case of variably 342 

saturated groundwater flow and/or varying flow geometry, equation 44 changes to  343 

𝑆𝚤′� = 𝜆−1𝐽2������� = cov(𝜆−1, 𝐽2) + 𝜆−1�����𝐽2̅ (45). 344 

illustrating the same dependence of 𝑆𝚤′�  on �̅� and 𝐽 ̅as before. The unknown covariance cov(𝜆−1, 𝐽2) may 345 

potentially be estimated from numerical experiments. 346 

 347 

Summary and conclusions 348 

In this study, the method of inference based on the entropy balance equation was introduced. The 349 

theoretical basis is the explicit calculation of the internal microscale entropy production, which is used in 350 

the balance equation to solve for macroscale potentials, forces and fluxes. The proposed method was 351 

illustrated with simple hydrologic cross-sections of stead-state, variably saturated groundwater flow and 352 

a periodic source/sink at dynamic equilibrium. 353 

The entropy balance equation is remarkable, because the equation unifies the macro- and microscale in 354 

one equation allowing the simultaneous application of two different movement equations that are the 355 



conductance equation at the macroscale and Darcy’s law/Richards equation at the microscale, in this 356 

study. The derivations lead to expressions for macroscale variables that are a function of the entropy 357 

production (i.e. the internal fluctuations of the microscale flux-force relationships) and are, thus, 358 

thermodynamically consistent. Therefore, the derivation provides a different theoretical point of view of 359 

variably saturated groundwater flow and new approaches for obtaining effective macroscale variables. 360 

The discussion suggests that these may be derived consistently for a hierarchy of scales. With the advent 361 

of high-performance computing in hydrology, there is strong potential for additional insight from hyper-362 

resolution numerical experiments to explicitly calculate the internal entropy production. For example, 363 

existing and new averaging and uspcaling laws may be tested and derived using series of numerical 364 

experiments with e.g. varying subsurface heterogeneity configurations, and boundary conditions. These 365 

experiments may also be useful in deriving new movement equations at the macroscale replacing 366 

empirical, calibrated parameterizations and regionalization approaches.   367 

Thus, the appeal of the proposed method is mainly theoretical at this point, providing a thermodynamics 368 

perspective of inference in hydrology. The connection to real-world observations needs to be established 369 

in future, also with the help of numerical simulations. In the provided theoretical setting, the usefulness 370 

of the method for predictions is evident from the simple examples provide here, however, for real-world 371 

predictions this remains to be demonstrated. 372 

 373 
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Figures 422 

 423 

 424 

Figure 1. Schematic of a simple profile with Dirichlet boundary conditions on the right and left (𝑀𝑟,𝑀𝑟) 425 

and steady state variably saturated flow. In the theory, the vertical and horizontal extents of the cross-426 

section are assumed to be constant. 427 

 428 

 429 

 430 

Figure 2. Schematic of a simple profile with a Dirichlet boundary condition on the right (𝑀𝑟), a no-flow 431 

boundary condition on the left, a constant source (𝑄𝑠), and steady state variably saturated groundwater 432 

flow. In the theory, the vertical and horizontal extents of the cross-section are assumed to be constant. 433 
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 435 

 436 

Figure 3. Schematic of a simple profile with Dirichlet boundary conditions on the right and left(𝑀𝑟,𝑀𝑟) a 437 

constant source (𝑄𝑠), and steady state variably saturated groundwater flow. In this symmetric case, 438 

there exist a water divide in the center of the domain. In the theory, the vertical and horizontal extents 439 

of the cross-section are assumed to be constant. 440 

 441 

 442 

Figure 4. Schematic of a simple profile with Dirichlet boundary conditions on the right and left(𝑀𝑟,𝑀𝑟) a 443 

constant source (𝑄𝑠), and steady state variably saturated flow. In this case there exist a water divide in 444 

the domain. In the theory, the vertical and horizontal extent of the cross-section is assumed to be 445 

constant. 446 
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 448 

Figure 5. Schematic of a simple profile with Dirichlet boundary conditions on the right and left(𝑀𝑟,𝑀𝑟), a 449 

constant source (𝑄𝑠), and steady state variably saturated groundwater flow. Note the dividing streamline 450 

in this example. In the theory, the vertical and horizontal extents of the cross-section are assumed to be 451 

constant. 452 
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 455 

 456 

Figure 6. Schematic of the discrete example consisting of three microscale elements with a Dirichlet 457 

boundary condition on the right side (µb) and a source/sink in each element (ql, qc, qr).    458 
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 460 

 461 

Figure 7. Schematic of a simple profile with a no-flow boundary condition on the left and right (based on 462 

symmetry) and transient, spatially varying sources/sinks 𝑄𝑠(𝑥, 𝑡) resulting in a recharge and discharge 463 

area. In the theory, the vertical and horizontal extent of the cross-section is assumed to be constant. 464 
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