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Abstract

In this study, the method of inference of macroscale potentials, forces and exchange coefficients for
variably saturated flow is outlined based on the entropy balance. The theoretical basis of the method of
inference is the explicitly calculation of the internal entropy production from microscale flux-force
relationships using e.g. hyper-resolution variably saturated groundwater flow models. Emphasis is placed
on the two-scale nature of the entropy balance equation that allows incorporating simultaneously
movement equations at the micro- and macroscale. The method is demonstrated with simple hydrologic
cross-sections at steady state and cyclic sources/sinks at dynamic equilibrium, and provides a
thermodynamic point of view of upscaling in variably saturated groundwater flow. The current
limitations in the connection with observable variables and predictive capabilities are discussed, and

some perspectives for future research are provided.
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Introduction

The current earth sciences literature suggests that entropy balance considerations were mainly applied
in the context of optimality and self-organization. This is because theories of optimality and self-
organization are appealing when dealing with complex non-linear systems, because of their apparent
usefulness in interpreting interactions of gradients and fluxes and in quantifying (predicting) systems'
states and uncertainties. In this context, the entropy balance received attention, because of its physics-
based foundation in non-equilibrium thermodynamics and potential connection with information theory
(e.g., Dewar 2003, Koutsoyiannis 2014). The entropy balance appears to be useful in applications to
hydrologic (e.g., Zehe et al. 2013, Ehret et al. 2014), ecohydrologic (e.g., Dewar 2010, Miedziejko and
Kedziora 2014, del Jesus et al. 2012), and atmospheric sciences (e.g., Paillard and Herbert 2013), and in

general to open complex nonlinear thermodynamic systems (Abe and Okuyama 2011).

The entropy balance states that in an open system, the change in entropy equals the internal production
of entropy minus the divergence of the entropy current. A dynamic equilibrium or steady state is
obtained, when entropy production inside (due to e.g. flow processes of heat and water) equals the
divergence of the entropy current i.e. the entropy exchange with the outside. Note also, dynamic
equilibrium refers to a state of stationarity in the statistical sense. Optimality of the dynamic equilibrium
may be achieved, because the gradient, which drives the flux and, thus the production of entropy, is

reciprocally depleted by the same flux (Kleidon et al. 2013).

In hydrology, the entropy balance has been applied to conceptual problems based on the overarching
rational that entropy production is maximized (maximum entropy production, MEP) in obtaining a state
of dynamic equilibrium by optimizing the fluxes and gradients in competition via an adjustment of some
(non-)linear exchange coefficient. There have been some studies demonstrating, how entropy
production can be optimized as a function of an exchange coefficient to obtain a system's state at which

entropy production is indeed at its maximum. In hydrology, there are quite a few examples of the
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application and discussion of the MEP principle (e.g., Ehret et al. 2014, Westhoff et al. 2014, Kleidon and
Schymanski 2008) also in connection with data (e.g., Zehe et al. 2013). However, its validity and

applicability to hydrologic systems is still in question (Westhoff and Zehe 2013).

Often the entropy balance has been applied at steady state with simple bucket models, which are well-
mixed (i.e. without internal gradients). For example, Porada et al. (2011) performed a detailed entropy
production analysis of the land surface hydrologic cycle including the shallow vadose zone assuming
vertical equilibrium of the soil bucket model. Applying linear bucket models without considering internal
gradients, Kleidon and Schymanski (2008) showed that if the natural system possesses enough degrees
of freedom, in case of steady state, the system will tend towards a certain exchange coefficient, when
entropy production is maximized. For similar bucket models, Westhoff et al. (2014) demonstrated the
impact of periodic boundary forcing on entropy production, which may result in more than one
maximum for unique values of the exchange coefficient at dynamic equilibrium. Interestingly, these
studies did not calculate the internal entropy production explicitly; entropy production was estimated

indirectly from the exchange with the outside (i.e. the divergence of the entropy current).

Schymanski et al. (2010) recognized the potential in explicitly estimating the internal entropy production
using a simple microscale Klausmeier model (Klausmeier 1999), which is based on coupled equations of
moisture and biomass and is able to produce vegetation patterns, in order to optimize effective values of
a simple two-box model. This study highlights an interesting aspect of entropy balance considerations
related to the inference of upscaled effective parameters and state variables to represent subgrid scale
variability in coarse scale (macroscale) models. Thus, ultimately, the appeal of the entropy balance
maybe the inference of upscaled or effective exchange coefficients and forces/gradients, which may be
used to quantitatively describe the complex system without the explicit knowledge about microscopic

details (Dewar 2009). In this context, a popular example is gas diffusion, which can be captured by an
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inferred, macroscopic diffusion coefficient and gradient instead of honoring the motion and interactions

of individual molecules.

In this study, the method of inference of effective hydrologic exchange coefficients, potentials and forces
is outlined using the entropy balance equation in applications to simple hydrologic cross-sections. The
following sections provide the basic theory with an emphasis on the two-scale nature of the entropy

balance, and the application to the hydrologic cross-sections with ensuing discussion and conclusions.

Basic theory and the two-scale nature of the entropy balance

The theory outlined in Kondepudi and Prigogine (2015) is applied to the problem of variably saturated
groundwater flow at constant temperature. Based on conservation of energy (and the balance equation
for concentrations, which is not required in this analysis) Kondepudi and Prigogine (2015) write the

entropy balance as follows
s'+V-js=0 (1),

where s’ (ML™T3K) is the change in the entropy density with time; J; (MT>K) is the entropy current per
unit volume; and o (ML™T3K™) is the internal entropy production per unit volume, which is always
positive by definition. Thus, the change of entropy density with time of a macroscopic volume depends

on the divergence of the entropy current and the internal entropy production.

In the considered case of variably saturated groundwater flow, J¢ = JM /T, where /(ML"ZT"l) is the mass
flow per unit area, M (L*T?) is the chemical potential at the macroscale and T (K) is the temperature.
Defining ¢ (MLT™) and £(L’T?) as the fluxes and forces at the microscale per unit volume, the

divergence of the entropy current and the internal entropy production can be expanded as follows

s+ M/TYV-D+]-(V(M/T)) =X qf /T (2).
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Equation (2) exhibits the unique characteristics of incorporating two scales: the entropy density change
with time and divergence of the entropy current at the macroscale (all terms on the left hand side), and
the entropy production at the microscale i.e. the sum of all products of the internal microscopic fluxes
and forces (term on the right hand side). Note, in the following, 7'(K) is omitted in the equations and

units, because 7= constant in the following derivations.

Performing an entropy balance at true steady state leads to

MW-D)+]-(VM) =0 (3)

because s’ = 0. In contrast, performing an entropy balance under the influence of periodic external
forcing requires integration over one full forcing cycle at dynamic equilibrium of equation 2 indicated by

overbars

MW-)+]-(VM) =a (4).

with s’ = 0 over one full cycle. Both approaches will be applied in the following section, in order to

arrive at effective variables at the macroscale.

In order to further emphasize the two-scale nature of equations 1 and 2, movement equations are
introduced at the macro- and microscale. At the macroscale, M (L*T?) is defined as the sum of the

macroscopic pressure potential ¥ (L’T"%), and gravitational potential gz (L’T?), leading to
M=Y¥+gz (5)

and is, thus, equivalent to the hydraulic head; (VM) symbolizes a macroscopic force F(L°T?) being the

difference in the macroscopic chemical potentials
(VM) = F = Mpign, — Myow (6);

and, at the moment, J is defined as a conductance concept
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] =AF (7),

where A (ML™T) is a conductance coefficient (1 = pr;, with water density p (ML®) and resistance 7, (TL™))

relating the flux with the force at the macroscale.

At the microscale, the chemical potential 4, (L>T?), the mass flux g (ML™T™) per unit volume and the

force £(L’T?) are

U=y +gz (8),

where ¥ (L*T”) is the microscale pressure potential;

q= % pgkr(lp)(ﬂhigh - :ulow) (9),

where p (ML?®) is the density; v (L’T™) is the kinematic viscosity; Kis the permeability (L%), k,-(¥) (-) is the

relative permeability, and a (L) is the unit microscopic flow through area; and the microscale force

f= (.uhigh - lllow) (10).

Technically, Y, gf is the sum of all fluxes and forces (both always positive, because any flux produces
entropy) between all neighboring cells or elements in a microscale, numerical, variably saturated

groundwater flow model including any Dirichlet and Neumann boundary conditions.

Thus, the two-scale nature of equation 2 allows to apply different flux-force relationships at the different
scales that are the conductance concept at the macroscale (equation 7) and essentially Darcy’s law or
Richards equation (equation 7) at the microscale. In equation 2, the entropy production serves as an
“automatic” spatial and also temporal integrator of the microscale fluctuations. These two
characteristics are remarkable. Note, the calculation (integration) of the entropy balance may be

performed over the global domain of volume V (L*) or any subdomain V; (L*) thereof.
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Method of Inference

The basis of the method of inference is that the internal, microscopic entropy production ¢ and also the
complete entropy balance can be calculated from support scale simulations by implementing the
microscale equations 9 and 10 in combination with a continuity equation over the macroscopic domain.
In obtaining o explicitly, one is able to estimate effective potentials, forces and conductance coefficients,
at the macroscale (equation 7) from the explicitly resolved fluctuations at the microscale, which are
thermodynamically consistent. In order to illustrate the method of inference of macroscale potentials,
conductances and forces, a number of illustrative examples based on simple hydrologic profiles are

presented applying different boundary conditions and source terms.

Example 1:

Directed at a heat flow example in Kondepudi and Prigogine (2015), a simple cross-section is considered
(figure 1) with steady-state, variably saturated groundwater flow, J, from left to right due to Dirichlet
boundary conditions on the left M, and right M,, with M;> M,. Because V - | = 0, and s’= 0 at steady

state, integration of the entropy balance over the cross-section leads to

’ Ly Ly L,
Si=1J," ) olx,2)dxdz = L, [,* Jx(VxM)dx (11a)
Si’ = LJ,(My — M,.) = L,JF (11b),

where L, and L, (L) are the constant vertical and horizontal extents of the cross-section, respectively; S;
is the total internal entropy production; and F = (M; — M,.) is the macroscopic force. Note, in the
following, the entropy production integral is simply written as S| = fa, and L, is lumped into the flux

L,J, = ] for convenience.
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In case of this simple example, applying ] = A(M; — M,.) from equation 5, one obtains the expression for

the effective conductance

A=S/(M,— M,)? = S[F (12)
and the effective force

F=S§/]1 (13).

Thus, one may obtain the true, effective conductance for any kind of heterogeneity (i.e. microscale
fluctuations) by explicitly calculating o and S; based on equations 6 and 7 and the macroscopic
boundary conditions M;and M,. Note, entropy production is simply the sum of the product of the steady

state fluxes and incremental forces over the cross-section

Si=fo=Cqf) = f(Zi p%kr(yb)(,uhigh - Ilzow)z), where individual values of gf are calculated

with equations 9 and 10 between two adjacent microscale elements in support scale numerical

simulations.

Example 2:

This example expands example 1 to steady state groundwater flow including recharge represented by

the mass rate Qs

Qs = [;(V - Ddx (14),
and integration leading to
MQs + M, — | M, = Si’ (15).

where Mis the macroscopic potential of the cross-section.



176  The general expression for the macroscopic potential of the cross-section is
177 M = Q" (S{ — UM, — ]:M,)) (16).

178  In this example, three special cases are considered, namely /;, = 0, J; < 0,and J; > 0.Incaseof J; = 0

179  (figure 2), there is a no-flow boundary condition on the left side resulting in J,, = Q and, thus
180 M =S/;_,Q " +M, (17)

181 F=(M— M) =5;,_0" (18)

182 where the subscript indicates the respective case for the left boundary flux.

183  With equation 7 and J,, = Q5 = ] follows for the conductance coefficient

184  A=S8; oF? (19).

185 For J; < 0O (figure 3), the symmetric case is considered, where the potentials at the boundaries are equal

186 (M; = M, = M) and Q; is uniform over the profile (—J; = J, = Q;/2) leading to

187 MQs — 1/2Q:M; — 1/2Q:M, = i’,]l<0 (20a).
188 Qs(M — (M +M;)/2) =S; ;0 (20b).
189 Qs(M — My) = Si;,<0 (20c)

190  and ultimately for the macroscopic potential
191 M =S];0Qs "+ M, (22).
192 F=(M— M) =5/;,¢00s " (22)

193 and
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A=S],<oF? (23)

Note, Mand Freflect values for each of the two half-spaces separated by a no-flow boundary condition
eg F = (Si’_]l<0/2)(Qs/2)_1, which is true for a homogeneous profile only and is equivalent to the case

Ji < 0 above. The entropy production is calculated also with

Siyco =J0=[Eaf) = (23 o ke @) (tnigh — tiow)” )

For a heterogeneous profile and/or M; > M, (figure 4) i.e. when there is no symmetry
MQs —iM; — J-My = S ;<o (24).
Thus, the effective potential of the cross section may be obtained from

M = Qs (Si),<0 + iM; + ]-M,.) (25)

Additionally, expressions can be obtain for the conductance coefficients in the exchange with the left

and right boundary conditions that are
A= (MQs - Si’,]l<0 _]er)(Fle)_l (26a)
A = (MQS - Si’,]l<0 _]lMl)(Fer)_l (26b).

where the macroscale forces F. = M — M,. and F; = M — M, result from the differences between Mand

M;, M,. with M following from equation 25. Again, entropy production is calculated with

/ 1 K 2
Sipco =T =[Eaf) = (2% o= ke W) (inign — tiow) ).
For J; > 0 (figure 5), the entropy balance is
MQs + M, — | M, = Si,,]l>o (27)

and the macroscopic potential is



213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

M = Qs (S!)50 — JiM; + ] M,.) (28)
With Q5 = J, — J; follows
Ji(My = M) + J,(M — M) =5 ;50 (29)

Thus, two conductances can be obtained, which are
A= (St 50 = Jr(M = M) Fr 2 (30)

A = (S{ )50 = J(My — M)) F. 72 (31)

with the macroscopic forces F; = (M; — M) and F. = (M — M,.). In this example, two additional
conductances can be obtained for the subdomains separated by the dividing streamline due to recharge

shown in figure 5 that are
AQS = (Si’,]l>0 = Li(M; — Mr)) FQS_Z (32)

Lir = (Siym0 = Qs (M = M) Fyp 2 (33)

with J. = J; + Qs , and the macroscale forces Fp_ = (M — M,.) and F;,, = (M; — M,.). In the domain, the

entropy production is calculated also with

Styso=Jo=1Ear = (22 ke (Bnigh — tiow))

Example 3:

In this example, a no-flow boundary condition on the left is considered resembling a hillslope with a no-
flow boundary along a hypothetical ridge on the left side, and a Dirichlet boundary condition along a

hypothetical stream on the right side. Now, a source/sink Qs(x;¢) varies periodically in space and time
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(periodically varying recharge/discharge). In this case, equation 2 needs to be solved for the different

variables and integrated over one complete cycle at dynamic equilibrium.

Note, again fo V- Jdx = Q,, because there is a macroscopic, transient source/sink in the domain,

therefore, after integration along the cross-section, the entropy balance reads
S'"+MQs —J-My =S (34)

where S’ is the entropy change rate. After time integration over one full cycle at dynamic equilibrium,

Qs =0and §" = 0, the effective macroscopic potential of the cross-section due to the periodic varying

source/sink is

M= (S + )M, —5)Q;5 " (35a)
or
M = cov(S{, Q51 + 5/Q5 T + My (cov(y, Q51 + /05 1) + cov(S', Q5°1) (35b)

Recognizing that J, = fOL(QS — 0')dx, where @' is the macroscopic mass change rate of the cross-

section, one obtains for the effective force

F=(S —0M,—S5)Q;* (36a)
or
F = cov(o, Q1) + 5051 — M,cov(@’, Q5 1) + cov(s’, Q5 1) (36b)

with @ = 0; and for the effective conductance

A= (S —0'M—S")F? (37a)

or
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A = cov(S],F?) + §/F% — cov(®'M, F2) + @' MF2 + cov(S’, F?) (37b)
with ], = AF = A(M — M.).

Apparently, on the right hand side of equations 35, 36, and 37 all terms may be calculated from the
numerical simulations except S’ = [ s’ and therefore also cov(S’, Q; 1), because S’and M is not known
in equation 34 (note, S; is calculated explicitly). However, S" may actually be calculated from the
microscale variables, which is demonstrated with a discrete example depicted in the schematic in

figure 6.

In this schematic, there are three microscale elements with sources/sinks in each individual element (g,
g gr) and a constant potential boundary condition on the right (z). For each individual element the

entropy balance is
St Qi — Quettne = 2 qufi = que( — ) (38a)
Sé +qclhc + Qucllic — erbler = ) qcff ={qic (ﬂl,c - l"c) +4qcr (ﬂc - :uc,r) (38b)

57" + ity + Gerlcr — Qpip = Z qrfr =dqcr (#c,r - llr) +qp (ﬂr - llb) (38c)

where the fluxes and potentials with the subscript /,cand ¢r are valid at the element interfaces. The
terms on the right hand side i.e. the entropy production for each element encompass the fluctuations in
the flux-force relationships between the element’s interior and the element boundaries. Summation of

the individual balance equations leads to the total balance

s"+qu + qebie + Qrtty — Qpity = 0 = qQue(u — He) + qor (e — 1) + qp (U — pp) - (39).

Note, on the left hand side, all the interface terms disappear and only the source and boundary terms
remain, equivalent to the macroscale balance in equation 34. Equation 38 is the entropy balance

equation for the system depicted in figure 6.
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Any changes in the entropy of the system with time are due to transient effects that cancel out at
dynamic equilibrium s’ = 0. In order to demonstrate this, substitution of Qe =(q—0)),qcr =
(g —0) + (g, —87), and q,, = (q; — 6;) + (q. — 0) + (g, — 6;) for the interface fluxes on the right

hand side in equation 38 leads to

s"+qu + Qe + Gty — Qpltp =
(@ — 6w + (qc — 6 e + (qr — 021 — qpip (40)

which demonstrates continuity in case of true steady state 8; = 6, = 0;. = 0, and shows that any e.g.
positive mass storage change 0’ over the microscopic volume leads to negative change in entropy and
vice versa. Note, the entropy production is still always positive. Thus, S’ and can be evaluated by

applying equation 39 to microscale simulations.

A special case may be considered, in which the system depicted in figure 6 is also closed on the right side
resulting in a sole exchange with the surroundings via the periodic source/sink Q¢(t). This would be
equivalent to a profile with a discharge area in the center and the assumption of symmetry shown in the
schematic in figure 7. The requirement again is that Q; = 0 over one full cycle at dynamic equilibrium.

Then e.g. equation 35 simplifies to

M= (S| —5)Q;1! (41a)
or
M = cov(AS’,Q;1) + 5/05 T (41a)

with AS’ = 5/ — §'.
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Discussion

The major advantage of the proposed inference theory is the estimation of macroscopic variables that
are thermodynamically consistent with the microscale fluctuations. This is discussed in the context of the
simple example 1 interpreting the entropy current J; = JM as an advective potential flux. Because J is
constant and M; > M,., the entropy current leaving the domain on the right side is smaller than the
entropy current entering the domain on the left side. This is due to dissipation in the interior of the
domain resulting into the production of entropy S;. In hydrology, the dissipation is simulated using
Darcy’s law and Richards equation at the support (here microscopic) scale, where all dissipative
processes are lumped in the hydraulic conductivity representing the flow resistance. Thus, at the
macroscale the derived conductance A is thermodynamically consistent if one accepts e.g., Darcy’s law as

a valid parameterization of the internal dissipative processes.

Equations 12 and 13 have not been applied before in the context of hydrology. While the equations
illustrate the basic idea for the simplest case of a Darcy experiment, one may argue that the insight
gained from this example is rather limited, because A could have been obtained from the known flux-
force relationship and the conductance equation (one unknown A with one equation 7). Examples 2 and
3, on the other hand, clearly illustrate the advantage, because the macroscale potential M (and
therefore F),which are needed to obtain A are not known in these examples. Thus, one is left with two
unknowns A and F, and only one equation (the conductance equation 7). In the proposed theory, the

entropy balance provides the second equation to solve for the two unknowns at the cost of explicitly

calculating the internal entropy production S} = [0 = [(X qf) = f(Zi p%kr(v’b)(,uhigh - ,ulow)z),
and at the benefit of thermodynamic consistency. This is the central message of the proposed method of

inference, which utilizes S; as a spatial and also temporal integrator.
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It is important to emphasize that one can also obtain, in an ad hoc fashion, the forces and conductance
coefficients for any sub-domain V; of the global domain with volume V. For example, in order to obtain

the macroscale potential in the center of the profile of example 1, one arrives at
M,=M,—] 1 fV_ odV; (42).
L

Thus, from fv- odV; estimates, one is able to obtain macroscale variables over a hierarchy of scales for
L

different hydrologic configurations similar to the simple examples provided above.

Under purely saturated groundwater flow conditions, the estimates of macroscale variables can be used
directly for predictions, because A is constant for the same flow geometries, which is trivial, but
important to realize. In case of variably saturated flow and transient conditions (when the flow geometry
changes), 1 is of course not constant and S; will depend in an unknown, non-linearly fashion on the flux /
and its variability (example 3), which apparently limits the usefulness of the proposed approach.
However, universal relationships of S/ (J) and cov(S;},J~1) can perhaps be obtained from a series of

numerical experiments under characteristic hydrologic configurations.

This also brings up the question, whether one is able to establish a connection of the proposed theory
with observations of real-world systems. Obviously, S; and S’ can not be measured directly in the field
utilizing independent experiments, which could, in turn, be used to derive macroscopic forces from flux
observations that are more readily available. Thus, utilizing the entropy balance for estimating
macroscopic field variables and ensuing predictions appears limited at this point. Yet, this study suggests
to explore relationships of measurable field variables and S; utilizing numerical experiments, in future. In
turn, under certain conditions, estimates of S; from measurable quantities may be possible. With the

help of the extended example 1, this is discussed below.
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Assuming a time varying force i.e. Dirichlet boundary conditions, temporal integration of equation 11
over one full cycle at dynamic equilibrium yields

S, =JF (43)

Inserting the conductance equation into equation 43 under saturated, linear groundwater flow
conditions with the assumption of only small changes in the flow geometry (A is constant) leads to

S/ =272 = 2 [var()) + J?] (44).

Thus, entropy production is related inversely to A, linearly with J, and power two with J. If an estimate
of A is available, S/ can be calculated from observations of /. In the more realistic case of variably

saturated groundwater flow and/or varying flow geometry, equation 44 changes to

S/ = 21712 = cov(A™L,J?) + 112 (45).

illustrating the same dependence ofSTL’ on A and J as before. The unknown covariance cov(1~1, /%) may

potentially be estimated from numerical experiments.

Summary and conclusions

In this study, the method of inference based on the entropy balance equation was introduced. The
theoretical basis is the explicit calculation of the internal microscale entropy production, which is used in
the balance equation to solve for macroscale potentials, forces and fluxes. The proposed method was
illustrated with simple hydrologic cross-sections of stead-state, variably saturated groundwater flow and

a periodic source/sink at dynamic equilibrium.

The entropy balance equation is remarkable, because the equation unifies the macro- and microscale in

one equation allowing the simultaneous application of two different movement equations that are the
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conductance equation at the macroscale and Darcy’s law/Richards equation at the microscale, in this
study. The derivations lead to expressions for macroscale variables that are a function of the entropy
production (i.e. the internal fluctuations of the microscale flux-force relationships) and are, thus,
thermodynamically consistent. Therefore, the derivation provides a different theoretical point of view of
variably saturated groundwater flow and new approaches for obtaining effective macroscale variables.
The discussion suggests that these may be derived consistently for a hierarchy of scales. With the advent
of high-performance computing in hydrology, there is strong potential for additional insight from hyper-
resolution numerical experiments to explicitly calculate the internal entropy production. For example,
existing and new averaging and uspcaling laws may be tested and derived using series of numerical
experiments with e.g. varying subsurface heterogeneity configurations, and boundary conditions. These
experiments may also be useful in deriving new movement equations at the macroscale replacing

empirical, calibrated parameterizations and regionalization approaches.

Thus, the appeal of the proposed method is mainly theoretical at this point, providing a thermodynamics
perspective of inference in hydrology. The connection to real-world observations needs to be established
in future, also with the help of numerical simulations. In the provided theoretical setting, the usefulness

of the method for predictions is evident from the simple examples provide here, however, for real-world

predictions this remains to be demonstrated.

References

Dewar, R. (2003) Information theory explanation of the fluctuation theorem, maximum entropy
production and self-organized criticality in non-equilibrium stationary states. Journal of Physics a-

Mathematical and General 36(3), 631-641.

Koutsoyiannis, D. (2014) Entropy: From Thermodynamics to Hydrology. Entropy 16(3), 1287-1314.



379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

Zehe, E., Ehret, U., Blume, T., Kleidon, A., Scherer, U. and Westhoff, M. (2013) A thermodynamic
approach to link self-organization, preferential flow and rainfall-runoff behaviour. Hydrology and Earth

System Sciences 17(11), 4297-4322.

Ehret, U., Gupta, H.V., Sivapalan, M., Weijs, S.V., Schymanski, S.J., Bloschl, G., Gelfan, A.N., Harman, C.,
Kleidon, A., Bogaard, T.A., Wang, D., Wagener, T., Scherer, U., Zehe, E., Bierkens, M.F.P., Di Baldassarre,
G., Parajka, J., van Beek, L.P.H., van Griensven, A., Westhoff, M.C. and Winsemius, H.C. (2014) Advancing
catchment hydrology to deal with predictions under change. Hydrology and Earth System Sciences 18(2),

649-671.

Dewar, R.C. (2010) Maximum entropy production and plant optimization theories. Philosophical

Transactions of the Royal Society B-Biological Sciences 365(1545), 1429-1435.

Miedziejko, E.M. and Kedziora, A. (2014) Impact of plant canopy structure on the transport of ecosystem

entropy. Ecological Modelling 289, 15-25.

del Jesus, M., Foti, R., Rinaldo, A. and Rodriguez-Iturbe, I. (2012) Maximum entropy production, carbon
assimilation, and the spatial organization of vegetation in river basins. Proceedings of the National

Academy of Sciences of the United States of America 109(51), 20837-20841.

Paillard, D. and Herbert, C. (2013) Maximum Entropy Production and Time Varying Problems: The

Seasonal Cycle in a Conceptual Climate Model. Entropy 15(7), 2846-2860.

Abe, S. and Okuyama, S. (2011) Similarity between quantum mechanics and thermodynamics: Entropy,

temperature, and Carnot cycle. Physical Review E 83(2).

Kleidon, A., Zehe, E., Ehret, U. and Scherer, U. (2013) Thermodynamics, maximum power, and the
dynamics of preferential river flow structures at the continental scale. Hydrology and Earth System

Sciences 17(1), 225-251.



401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

Westhoff, M.C., Zehe, E. and Schymanski, S.J. (2014) Importance of temporal variability for hydrological
predictions based on themaximum entropy production principle. Geophysical Research Letters 41(1), 67-

73.

Kleidon, A. and Schymanski, S. (2008) Thermodynamics and optimality of the water budget on land: A

review. Geophysical Research Letters 35(20).

Westhoff, M.C. and Zehe, E. (2013) Maximum entropy production: can it be used to constrain conceptual

hydrological models? Hydrology and Earth System Sciences 17(8), 3141-3157.

Porada, P., Kleidon, A. and Schymanski, S.J. (2011) Entropy production of soil hydrological processes and

its maximisation. Earth System Dynamics 2(2), 179-190.

Schymanski, S.J., Kleidon, A., Stieglitz, M. and Narula, J. (2010) Maximum entropy production allows a
simple representation of heterogeneity in semiarid ecosystems. Philosophical Transactions of the Royal

Society B-Biological Sciences 365(1545), 1449-1455.

Klausmeier, C.A. (1999) Regular and irregular patterns in semiarid vegetation. Science 284(5421), 1826-

1828.

Dewar, R.C. (2009) Maximum Entropy Production as an Inference Algorithm that Translates Physical

Assumptions into Macroscopic Predictions: Don't Shoot the Messenger. Entropy 11(4), 931-944.

Kondepudi, D. and Prigogine, |. (2015) Modern Thermodynamics: From Heat Engines to Dissipative
Structures, 2nd Edition. Modern Thermodynamics: From Heat Engines to Dissipative Structures, 2nd

Edition, 1-523.



422 Figures

423

424 (77777777777777777777777777777777

425 Figure 1. Schematic of a simple profile with Dirichlet boundary conditions on the right and left (M,., M,.)
426 and steady state variably saturated flow. In the theory, the vertical and horizontal extents of the cross-

427 section are assumed to be constant.
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431 Figure 2. Schematic of a simple profile with a Dirichlet boundary condition on the right (M,.), a no-flow
432 boundary condition on the left, a constant source (Q), and steady state variably saturated groundwater

433 flow. In the theory, the vertical and horizontal extents of the cross-section are assumed to be constant.

434
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437 Figure 3. Schematic of a simple profile with Dirichlet boundary conditions on the right and left(M,., M,.) a
438  constant source (Qg), and steady state variably saturated groundwater flow. In this symmetric case,
439  there exist a water divide in the center of the domain. In the theory, the vertical and horizontal extents

440 of the cross-section are assumed to be constant.
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443 Figure 4. Schematic of a simple profile with Dirichlet boundary conditions on the right and left(M,., M,.) a
444  constant source (Q), and steady state variably saturated flow. In this case there exist a water divide in
445 the domain. In the theory, the vertical and horizontal extent of the cross-section is assumed to be

446 constant.

447
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449 Figure 5. Schematic of a simple profile with Dirichlet boundary conditions on the right and left(M,, M,.), a
450  constant source (Qg), and steady state variably saturated groundwater flow. Note the dividing streamline
451 in this example. In the theory, the vertical and horizontal extents of the cross-section are assumed to be

452 constant.
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457 Figure 6. Schematic of the discrete example consisting of three microscale elements with a Dirichlet

458  boundary condition on the right side (1) and a source/sink in each element (g, g5 g»).

459
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462 Figure 7. Schematic of a simple profile with a no-flow boundary condition on the left and right (based on
463 symmetry) and transient, spatially varying sources/sinks Q(x, t) resulting in a recharge and discharge

464 area. In the theory, the vertical and horizontal extent of the cross-section is assumed to be constant.

465



