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Abstract 10 

In this study, the method of inference of macroscale potentials, forces and exchange coefficients for 11 

variably saturated flow is outlined based on the entropy balance. The theoretical basis of the method of 12 

inference is the explicitly calculation of the internal entropy production from microscale flux-force 13 

relationships using e.g. hyper-resolution variably saturated groundwater flow models. Emphasis is placed 14 

on the two-scale nature of the entropy balance equation that allows incorporating simultaneously 15 

movement equations at the micro- and macroscale. The method is demonstrated with simple hydrologic 16 

cross-sections at steady state and cyclic sources/sinks at dynamic equilibrium, and provides a 17 

thermodynamic point of view of upscaling in variably saturated groundwater flow. The current 18 

limitations in the connection with observable variables and predictive capabilities are discussed, and 19 

some perspectives for future research are provided. 20 

 21 

  22 



Introduction 23 

The current earth sciences literature suggests that entropy balance considerations were mainly applied 24 

in the context of optimality and self-organization. This is because theories of optimality and self-25 

organization are appealing when dealing with complex non-linear systems, because of their apparent 26 

usefulness in interpreting interactions of gradients and fluxes and in quantifying (predicting) systems' 27 

states and uncertainties. In this context, the entropy balance received attention, because of its physics-28 

based foundation in non-equilibrium thermodynamics and potential connection with information theory 29 

(e.g., Dewar 2003, Koutsoyiannis 2014). The entropy balance appears to be useful in applications to 30 

hydrologic (e.g., Zehe et al. 2013, Ehret et al. 2014), ecohydrologic (e.g., Dewar 2010, Miedziejko and 31 

Kedziora 2014, del Jesus et al. 2012), and atmospheric sciences (e.g., Paillard and Herbert 2013), and in 32 

general to open complex nonlinear thermodynamic systems (Abe and Okuyama 2011). 33 

The entropy balance states that in an open system, the change in entropy equals the internal production 34 

of entropy minus the divergence of the entropy current. A dynamic equilibrium or steady state is 35 

obtained, when entropy production inside (due to e.g. flow processes of heat and water) equals the 36 

divergence of the entropy current i.e. the entropy exchange with the outside. Note also, dynamic 37 

equilibrium refers to a state of stationarity in the statistical sense. Optimality of the dynamic equilibrium 38 

may be achieved, because the gradient, which drives the flux and, thus the production of entropy, is 39 

reciprocally depleted by the same flux (Kleidon et al. 2013).  40 

In hydrology, the entropy balance has been applied to conceptual problems based on the overarching 41 

rational that entropy production is maximized (maximum entropy production, MEP) in obtaining a state 42 

of dynamic equilibrium by optimizing the fluxes and gradients in competition via an adjustment of some 43 

(non-)linear exchange coefficient. There have been some studies demonstrating, how entropy 44 

production can be optimized as a function of an exchange coefficient to obtain a system's state at which 45 

entropy production is indeed at its maximum. In hydrology, there are quite a few examples of the 46 



application and discussion of the MEP principle (e.g., Ehret et al. 2014, Westhoff et al. 2014, Kleidon and 47 

Schymanski 2008) also in connection with data (e.g., Zehe et al. 2013). However, its validity and 48 

applicability to hydrologic systems is still in question (Westhoff and Zehe 2013). 49 

 50 

Often the entropy balance has been applied at steady state with simple bucket models, which are well-51 

mixed (i.e. without internal gradients). For example, Porada et al. (2011) performed a detailed entropy 52 

production analysis of the land surface hydrologic cycle including the shallow vadose zone assuming 53 

vertical equilibrium of the soil bucket model. Applying linear bucket models without considering internal 54 

gradients, Kleidon and Schymanski (2008) showed that if the natural system possesses enough degrees 55 

of freedom, in case of steady state, the system will tend towards a certain exchange coefficient, when 56 

entropy production is maximized. For similar bucket models, Westhoff et al. (2014) demonstrated the 57 

impact of periodic boundary forcing on entropy production, which may result in more than one 58 

maximum for unique values of the exchange coefficient at dynamic equilibrium. Interestingly, these 59 

studies did not calculate the internal entropy production explicitly; entropy production was estimated 60 

indirectly from the exchange with the outside (i.e. the divergence of the entropy current).  61 

Schymanski et al. (2010) recognized the potential in explicitly estimating the internal entropy production 62 

using a simple microscale Klausmeier model (Klausmeier 1999), which is based on coupled equations of 63 

moisture and biomass and is able to produce vegetation patterns, in order to optimize effective values of 64 

a simple two-box model. This study highlights an interesting aspect of entropy balance considerations 65 

related to the inference of upscaled effective parameters and state variables to represent subgrid scale 66 

variability in coarse scale (macroscale) models. Thus, ultimately, the appeal of the entropy balance 67 

maybe the inference of upscaled or effective exchange coefficients and forces/gradients, which may be 68 

used to quantitatively describe the complex system without the explicit knowledge about microscopic 69 

details (Dewar 2009). In this context, a popular example is gas diffusion, which can be captured by an 70 



inferred, macroscopic diffusion coefficient and gradient instead of honoring the motion and interactions 71 

of individual molecules.  72 

In this study, the method of inference of effective hydrologic exchange coefficients, potentials and forces 73 

is outlined using the entropy balance equation in applications to simple hydrologic cross-sections. The 74 

following sections provide the basic theory with an emphasis on the two-scale nature of the entropy 75 

balance, and the application to the hydrologic cross-sections with ensuing discussion and conclusions. 76 

 77 

Basic theory and the two-scale nature of the entropy balance 78 

The theory outlined in Kondepudi and Prigogine (2015) is applied to the problem of variably saturated 79 

groundwater flow at constant temperature. Based on conservation of energy (and the balance equation 80 

for concentrations, which is not required in this analysis) Kondepudi and Prigogine (2015) write the 81 

entropy balance as follows 82 

𝑠′ + 𝛻 ⋅ 𝐽𝑠 = 𝜎 (1), 83 

where 𝑠′ (ML-1T-3K-1) is the change in the entropy density with time; 𝐽𝑠 (MT-3K-1) is the entropy current per 84 

unit volume; and 𝜎 (ML-1T-3K-1) is the internal entropy production per unit volume, which is always 85 

positive by definition. Thus, the change of entropy density with time of a macroscopic volume depends 86 

on the divergence of the entropy current and the internal entropy production. 87 

In the considered case of variably saturated groundwater flow, 𝐽𝑠 = 𝐽𝑀/𝑇, where J (ML-2T-1) is the mass 88 

flow per unit area, M (L2T-2) is the chemical potential at the macroscale and 𝑇 (K) is the temperature. 89 

Defining q (ML-3T-1) and f (L2T-2) as the fluxes and forces at the microscale per unit volume, the 90 

divergence of the entropy current and the internal entropy production can be expanded as follows 91 

𝑠′ + (𝑀/𝑇)(𝛻 ⋅ 𝐽) + 𝐽 ⋅ �𝛻(𝑀/𝑇)� = ∑𝑞𝑓/𝑇 (2). 92 



Equation (2) exhibits the unique characteristics of incorporating two scales: the entropy density change 93 

with time and divergence of the entropy current at the macroscale (all terms on the left hand side), and 94 

the entropy production at the microscale i.e. the sum of all products of the internal microscopic fluxes 95 

and forces (term on the right hand side). Note, in the following, T (K) is omitted in the equations and 96 

units, because T = constant in the following derivations. 97 

Performing an entropy balance at true steady state leads to 98 

𝑀(𝛻 ⋅ 𝐽) + 𝐽 ⋅ (𝛻𝑀) = 𝜎 (3) 99 

because 𝑠′ = 0. In contrast, performing an entropy balance under the influence of periodic external 100 

forcing requires integration over one full forcing cycle at dynamic equilibrium of equation 2 indicated by 101 

overbars  102 

𝑀(𝛻 ⋅ 𝐽)����������� + 𝐽 ⋅ (𝛻𝑀)����������� = 𝜎� (4). 103 

with 𝑠′� = 0 over one full cycle. Both approaches will be applied in the following section, in order to 104 

arrive at effective variables at the macroscale. 105 

In order to further emphasize the two-scale nature of equations 1 and 2, movement equations are 106 

introduced at the macro- and microscale. At the macroscale, Μ (L2T-2) is defined as the sum of the 107 

macroscopic pressure potential 𝛹 (L2T-2), and gravitational potential gz (L2T-2), leading to 108 

𝑀 = 𝛹 + 𝑔𝑧 (5); 109 

and is, thus, equivalent to the hydraulic head; (𝛻𝑀) symbolizes a macroscopic force F (L2T-2) being the 110 

difference in the macroscopic chemical potentials 111 

(𝛻𝑀) = 𝐹 = 𝑀ℎ𝑖𝑔ℎ − 𝑀𝑙𝑜𝑤 (6); 112 

and, at the moment, 𝐽 is defined as a conductance concept  113 



𝐽 = 𝜆𝐹 (7), 114 

where 𝜆 (ML-4T) is a conductance coefficient (𝜆 = 𝜌𝑟𝑠, with water density 𝜌 (ML-3) and resistance 𝑟𝑠 (TL-1)) 115 

relating the flux with the force at the macroscale.  116 

At the microscale, the chemical potential µ, (L2T-2),  the mass flux q (ML-3T-1) per unit volume and the 117 

force f (L2T-2) are  118 

𝜇 = 𝜓 + 𝑔𝑧 (8), 119 

where 𝜓 (L2T-2) is the microscale pressure potential; 120 

𝑞 = 1
𝛼

 𝜌 𝐾
𝑣
𝑘𝑟(𝜓)�𝜇ℎ𝑖𝑔ℎ − 𝜇𝑙𝑜𝑤� (9), 121 

where 𝜌 (ML-3) is the density; υ (L2T-1) is the kinematic viscosity; K is the permeability (L2), 𝑘𝑟(𝜓) (-) is the 122 

relative permeability, and 𝛼 (L-2) is the unit microscopic flow through area; and the microscale force 123 

𝑓 = �𝜇ℎ𝑖𝑔ℎ − 𝜇𝑙𝑜𝑤� (10). 124 

Technically, ∑𝑞𝑓 is the sum of all fluxes and forces (both always positive, because any flux produces 125 

entropy) between all neighboring cells or elements in a microscale, numerical, variably saturated 126 

groundwater flow model including any Dirichlet and Neumann boundary conditions.  127 

Thus, the two-scale nature of equation 2 allows to apply different flux-force relationships at the different 128 

scales that are the conductance concept at the macroscale (equation 7) and essentially Darcy’s law or 129 

Richards equation (equation 7) at the microscale. In equation 2, the entropy production serves as an 130 

“automatic” spatial and also temporal integrator of the microscale fluctuations. These two 131 

characteristics are remarkable. Note, the calculation (integration) of the entropy balance may be 132 

performed over the global domain of volume 𝑉 (L3) or any subdomain 𝑉𝑖 (L3) thereof. 133 

 134 



Method of Inference 135 

The basis of the method of inference is that the internal, microscopic entropy production σ  and also the 136 

complete entropy balance can be calculated from support scale simulations by implementing the 137 

microscale equations 9 and 10 in combination with a continuity equation over the macroscopic domain. 138 

In obtaining σ explicitly, one is able to estimate effective potentials, forces and conductance coefficients, 139 

at the macroscale (equation 7) from the explicitly resolved fluctuations at the microscale, which are 140 

thermodynamically consistent. In order to illustrate the method of inference of macroscale potentials, 141 

conductances and forces, a number of illustrative examples based on simple hydrologic profiles are 142 

presented applying different boundary conditions and source terms.  143 

 144 

Example 1: 145 

Directed at a heat flow example in Kondepudi and Prigogine (2015), a simple cross-section is considered 146 

(figure 1) with steady-state, variably saturated groundwater flow, 𝐽, from left to right due to Dirichlet 147 

boundary conditions on the left Ml, and right Mr, with Ml > Mr. Because 𝛻 ⋅ 𝐽 = 0, and s’ = 0 at steady 148 

state, integration of the entropy balance over the cross-section leads to 149 

𝑆𝑖′ = ∫ ∫ 𝜎(𝑥, 𝑧)𝑑𝑥𝐿𝑥
0 𝑑𝑧𝐿𝑧

0 = 𝐿𝑧 ∫ 𝐽𝑥(∇𝑥𝑀)𝑑𝑥𝐿𝑥
0  (11a) 150 

𝑆𝑖′ = 𝐿𝑧𝐽𝑥(𝑀𝑙 − 𝑀𝑟) = 𝐿𝑧𝐽𝑥𝐹 (11b), 151 

where 𝐿𝑧 and 𝐿𝑥 (L) are the constant vertical and horizontal extents of the cross-section, respectively;  𝑆𝑖′ 152 

is the total internal entropy production; and 𝐹 = (𝑀𝑙 − 𝑀𝑟) is the macroscopic force. Note, in the 153 

following, the entropy production integral is simply written as 𝑆𝑖′ = ∫𝜎, and 𝐿𝑧 is lumped into the flux  154 

𝐿𝑧𝐽𝑥 = 𝐽 for convenience. 155 



In case of this simple example, applying 𝐽 = 𝜆(𝑀𝑙 −𝑀𝑟) from equation 5, one obtains the expression for 156 

the effective conductance 157 

𝜆 = 𝑆𝑖′(𝑀𝑙 − 𝑀𝑟)−2 = 𝑆𝑖′𝐹−2 (12) 158 

and the effective force 159 

𝐹 = 𝑆𝑖′𝐽−1 (13). 160 

Thus, one may obtain the true, effective conductance for any kind of heterogeneity (i.e. microscale 161 

fluctuations) by explicitly calculating σ  and 𝑆𝑖′ based on equations 6 and 7 and the macroscopic 162 

boundary conditions Ml and Mr. Note, entropy production is simply the sum of the product of the steady 163 

state fluxes and incremental forces over the cross-section 164 

𝑆𝑖′ = ∫𝜎 = ∫(∑𝑞𝑓) = ∫ �∑ 1
𝛼

 𝜌 𝐾
𝑣
𝑘𝑟(𝜓)�𝜇ℎ𝑖𝑔ℎ − 𝜇𝑙𝑜𝑤�

2�, where individual values of 𝑞𝑓 are calculated 165 

with equations 9 and 10 between two adjacent microscale elements in support scale numerical 166 

simulations. 167 

 168 

Example 2: 169 

This example expands example 1 to steady state groundwater flow including recharge represented by 170 

the mass rate Qs 171 

𝑄𝑠 = ∫ (𝛻 ⋅ 𝐽)𝑑𝑥𝐿
0  (14), 172 

and integration leading to 173 

𝑀𝑄𝑠 + 𝐽𝑙𝑀𝑙 − 𝐽𝑟𝑀𝑟 = 𝑆𝑖′ (15). 174 

where M is the macroscopic potential of the cross-section. 175 



The general expression for the macroscopic potential of the cross-section is  176 

𝑀 = 𝑄𝑠−1(𝑆𝑖′ − (𝐽𝑙𝑀𝑙 − 𝐽𝑟𝑀𝑟)) (16). 177 

In this example, three special cases are considered, namely 𝐽𝑙 = 0, 𝐽𝑙 < 0, and 𝐽𝑙 > 0. In case of 𝐽𝑙 = 0 178 

(figure 2), there is a no-flow boundary condition on the left side resulting in 𝐽𝑟 = 𝑄𝑠 and, thus 179 

𝑀 = 𝑆𝑖,𝐽𝑙=0
′ 𝑄𝑠−1 +𝑀𝑟 (17) 180 

𝐹 = (𝑀 − 𝑀𝑟) = 𝑆𝑖,𝐽𝑙=0
′ 𝑄𝑠−1 (18) 181 

where the subscript indicates the respective case for the left boundary flux. 182 

With equation 7 and 𝐽𝑟 = 𝑄𝑠 = 𝐽 follows for the conductance coefficient 183 

𝜆 = 𝑆𝑖,𝐽𝑙=0
′ 𝐹−2 (19). 184 

For 𝐽𝑙 < 0 (figure 3), the symmetric case is considered, where the potentials at the boundaries are equal 185 

(𝑀𝑙 = 𝑀𝑟 = 𝑀𝑏) and 𝑄𝑠 is uniform over the profile (−𝐽𝑙 = 𝐽𝑟 = 𝑄𝑠/2) leading to 186 

𝑀𝑄𝑠 − 1/2𝑄𝑠𝑀𝑙 − 1/2𝑄𝑠𝑀𝑟 = 𝑆𝑖,𝐽𝑙<0
′  (20a). 187 

𝑄𝑠(𝑀 − (𝑀𝑙 + 𝑀𝑟)/2) = 𝑆𝑖,𝐽𝑙<0
′  (20b). 188 

𝑄𝑠(𝑀 − 𝑀𝑏) = 𝑆𝑖,𝐽𝑙<0
′  (20c) 189 

and ultimately for the macroscopic potential 190 

𝑀 = 𝑆𝑖,𝐽𝑙<0
′ 𝑄𝑠−1 + 𝑀𝑏 (21). 191 

𝐹 = (𝑀 − 𝑀𝑏) = 𝑆𝑖,𝐽𝑙<0
′ 𝑄𝑠−1 (22) 192 

and 193 



𝜆 = 𝑆𝑖,𝐽𝑙<0
′ 𝐹−2 (23) 194 

Note, M and F reflect values for each of the two half-spaces separated by a no-flow boundary condition 195 

e.g. 𝐹 = �𝑆𝑖,𝐽𝑙<0
′ /2�(𝑄𝑠/2)−1, which is true for a homogeneous profile only and is equivalent to the case 196 

𝐽𝑙 < 0 above. The entropy production is calculated also with 197 

𝑆𝑖,𝐽𝑙<0
′ = ∫𝜎 = ∫(∑𝑞𝑓) = ∫ �∑ 1

𝛼
 𝜌 𝐾

𝑣
𝑘𝑟(𝜓)�𝜇ℎ𝑖𝑔ℎ − 𝜇𝑙𝑜𝑤�

2�. 198 

For a heterogeneous profile and/or 𝑀𝑙 > 𝑀𝑟 (figure 4) i.e. when there is no symmetry 199 

𝑀𝑄𝑠 − 𝐽𝑙𝑀𝑙 − 𝐽𝑟𝑀𝑟 = 𝑆𝑖,𝐽𝑙<0
′  (24). 200 

Thus, the effective potential of the cross section may be obtained from 201 

𝑀 = 𝑄𝑠−1�𝑆𝑖,𝐽𝑙<0
′ + 𝐽𝑙𝑀𝑙 + 𝐽𝑟𝑀𝑟� (25) 202 

Additionally, expressions can be obtain for the conductance coefficients in the exchange with the left 203 

and right boundary conditions that are 204 

𝜆𝑙 = �𝑀𝑄𝑠 − 𝑆𝑖,𝐽𝑙<0
′ − 𝐽𝑟𝑀𝑟�(𝐹𝑙𝑀𝑙)−1 (26a) 205 

 𝜆𝑟 = �𝑀𝑄𝑠 − 𝑆𝑖,𝐽𝑙<0
′ − 𝐽𝑙𝑀𝑙�(𝐹𝑟𝑀𝑟)−1 (26b). 206 

where the macroscale forces 𝐹𝑟 = 𝑀 −𝑀𝑟 and 𝐹𝑙 = 𝑀 −𝑀𝑙  result from the differences between M and 207 

𝑀𝑙, 𝑀𝑟 with 𝑀 following from equation 25. Again, entropy production is calculated with 208 

 𝑆𝑖,𝐽𝑙<0
′ = ∫𝜎 = ∫(∑𝑞𝑓) = ∫ �∑ 1

𝛼
 𝜌 𝐾

𝑣
𝑘𝑟(𝜓)�𝜇ℎ𝑖𝑔ℎ − 𝜇𝑙𝑜𝑤�

2�. 209 

For 𝐽𝑙 > 0 (figure 5), the entropy balance is 210 

𝑀𝑄𝑠 + 𝐽𝑙𝑀𝑙 − 𝐽𝑟𝑀𝑟 = 𝑆𝑖,𝐽𝑙>0
′  (27) 211 

and the macroscopic potential is 212 



𝑀 = 𝑄𝑠−1�𝑆𝑖,𝐽𝑙>0
′ − 𝐽𝑙𝑀𝑙 + 𝐽𝑟𝑀𝑟� (28) 213 

With 𝑄𝑠 = 𝐽𝑟 − 𝐽𝑙 follows 214 

𝐽𝑙(𝑀𝑙 − 𝑀) + 𝐽𝑟(𝑀 −𝑀𝑟) = 𝑆𝑖,𝐽𝑙>0
′  (29) 215 

Thus, two conductances can be obtained, which are  216 

𝜆𝑙 = �𝑆𝑖,𝐽𝑙>0
′ − 𝐽𝑟(𝑀 −𝑀𝑟)�𝐹𝑙−2 (30) 217 

𝜆𝑟 = �𝑆𝑖,𝐽𝑙>0
′ − 𝐽𝑙(𝑀𝑙 − 𝑀)�𝐹𝑟−2 (31) 218 

with the macroscopic forces 𝐹𝑙 = (𝑀𝑙 − 𝑀) and 𝐹𝑟 = (𝑀 −𝑀𝑟). In this example, two additional 219 

conductances can be obtained for the subdomains separated by the dividing streamline due to recharge 220 

shown in figure 5 that are  221 

𝜆𝑄𝑠 = �𝑆𝑖,𝐽𝑙>0
′ − 𝐽𝑙(𝑀𝑙 − 𝑀𝑟)�𝐹𝑄𝑠

−2 (32) 222 

𝜆𝑙,𝑟 = �𝑆𝑖,𝐽𝑙>0
′ − 𝑄𝑠(𝑀 −𝑀𝑟)� 𝐹𝑙,𝑟−2 (33) 223 

with  𝐽𝑟 = 𝐽𝑙 + 𝑄𝑠 , and the macroscale forces 𝐹𝑄𝑠 = (𝑀 −𝑀𝑟) and 𝐹𝑙.𝑟 = (𝑀𝑙 − 𝑀𝑟). In the domain, the 224 

entropy production is calculated also with  225 

𝑆𝑖,𝐽𝑙>0
′ = ∫𝜎 = ∫(∑𝑞𝑓) = ∫ �∑ 1

𝛼
 𝜌 𝐾

𝑣
𝑘𝑟(𝜓)�𝜇ℎ𝑖𝑔ℎ − 𝜇𝑙𝑜𝑤�

2�. 226 

 227 

Example 3: 228 

In this example, a no-flow boundary condition on the left is considered resembling a hillslope with a no-229 

flow boundary along a hypothetical ridge on the left side, and a Dirichlet boundary condition along a 230 

hypothetical stream on the right side. Now, a source/sink Qs(x,t) varies periodically in space and time 231 



(periodically varying recharge/discharge). In this case, equation 2 needs to be solved for the different 232 

variables and integrated over one complete cycle at dynamic equilibrium.  233 

Note, again ∫ 𝛻 ⋅ 𝐽𝑑𝑥𝐿
0 = 𝑄𝑠, because there is a macroscopic, transient source/sink in the domain, 234 

therefore, after integration along the cross-section, the entropy balance reads 235 

𝑆′ + 𝑀𝑄𝑠 − 𝐽𝑟𝑀𝑟 = 𝑆𝑖′ (34) 236 

where 𝑆′ is the entropy change rate. After time integration over one full cycle at dynamic equilibrium, 237 

𝑄𝑠��� = 0 and 𝑆′� = 0, the effective macroscopic potential of the cross-section due to the periodic varying 238 

source/sink is 239 

𝑀� = (𝑆𝚤′ + 𝐽𝑟𝑀𝑟 − 𝑆′)𝑄𝑠−1�������������������������� (35a) 240 

or 241 

𝑀� = cov(𝑆𝑖′, 𝑄𝑠−1) + 𝑆𝚤′�𝑄𝑠−1����� + 𝑀𝑟�cov(𝐽𝑟, 𝑄𝑠−1) + 𝐽𝑟�𝑄𝑠−1������ + cov(𝑆′, 𝑄𝑠−1) (35b) 242 

Recognizing that 𝐽𝑟 = ∫ (𝑄𝑠 − Θ′)𝑑𝑥𝐿
0 , where Θ′ is the macroscopic mass change rate of the cross-243 

section, one obtains for the effective force 244 

𝐹� = (𝑆𝚤′ − Θ𝑀𝑟 − 𝑆′)𝑄𝑠−1�������������������������� (36a) 245 

or 246 

𝐹� = cov(𝜎, 𝑄𝑠−1) + 𝜎�𝑄𝑠−1����� − 𝑀𝑟cov(Θ′, 𝑄𝑠−1) + cov(𝑠′, 𝑄𝑠−1) (36b) 247 

with Θ� = 0; and for the effective conductance 248 

𝜆̅ = (𝑆𝚤′ − Θ′M − 𝑆′)𝐹2������������������������ (37a) 249 

or 250 



𝜆̅ = cov(𝑆𝑖′, 𝐹2) + 𝑆𝚤′� 𝐹2���� − cov(Θ′M, 𝐹2) + Θ′𝑀������𝐹2���� + cov(𝑆′, 𝐹2) (37b) 251 

with 𝐽𝑟 = 𝜆𝐹 = 𝜆(𝑀 −𝑀𝑟). 252 

Apparently, on the right hand side of equations 35, 36, and 37 all terms may be calculated from the 253 

numerical simulations except 𝑆′ = ∫ 𝑠′ and therefore also cov(𝑆′, 𝑄𝑠−1), because 𝑆′and 𝑀 is not known 254 

in equation 34 (note, 𝑆𝑖′ is calculated explicitly). However, 𝑆′ may actually be calculated from the 255 

microscale variables, which is demonstrated with a discrete example depicted in the schematic in 256 

figure 6.  257 

In this schematic, there are three microscale elements with sources/sinks in each individual element (ql, 258 

qc, qr) and a constant potential boundary condition on the right (µb). For each individual element the 259 

entropy balance is  260 

                     𝑠𝑙′ + 𝑞𝑙𝜇𝑙 − 𝑞𝑙,𝑐𝜇𝑙,𝑐 = ∑𝑞𝑙𝑓𝑙 = 𝑞𝑙,𝑐�𝜇𝑙 − 𝜇𝑙,𝑐� (38a) 261 

𝑠𝑐′ + 𝑞𝑐𝜇𝑐 + 𝑞𝑙,𝑐𝜇𝑙,𝑐 − 𝑞𝑐,𝑟𝜇𝑐,𝑟 = ∑𝑞𝑐𝑓𝑓 = 𝑞𝑙,𝑐�𝜇𝑙,𝑐 − 𝜇𝑐� + 𝑞𝑐,𝑟�𝜇𝑐 − 𝜇𝑐,𝑟� (38b) 262 

   𝑠𝑟′ + 𝑞𝑟𝜇𝑟 + 𝑞𝑐,𝑟𝜇𝑐,𝑟 − 𝑞𝑏𝜇𝑏 = ∑𝑞𝑟𝑓𝑟 = 𝑞𝑐,𝑟�𝜇𝑐,𝑟 − 𝜇𝑟� + 𝑞𝑏(𝜇𝑟 − 𝜇𝑏) (38c) 263 

where the fluxes and potentials with the subscript l,c and c,r  are valid at the element interfaces. The 264 

terms on the right hand side i.e. the entropy production for each element encompass the fluctuations in 265 

the flux-force relationships between the element’s interior and the element boundaries. Summation of 266 

the individual balance equations leads to the total balance 267 

𝑠′ + 𝑞𝑙𝜇𝑙 + 𝑞𝑐𝜇𝑐 + 𝑞𝑟𝜇𝑟 − 𝑞𝑏𝜇𝑏 = 𝜎 = 𝑞𝑙,𝑐(𝜇𝑙 − 𝜇𝑐) + 𝑞𝑐,𝑟(𝜇𝑐 − 𝜇𝑟) + 𝑞𝑏(𝜇𝑟 − 𝜇𝑏) (39). 268 

Note, on the left hand side, all the interface terms disappear and only the source and boundary terms 269 

remain, equivalent to the macroscale balance in equation 34. Equation 38 is the entropy balance 270 

equation for the system depicted in figure 6. 271 



Any changes in the entropy of the system with time are due to transient effects that cancel out at 272 

dynamic equilibrium 𝑠′� = 0. In order to demonstrate this, substitution of 𝑞𝑙,𝑐 = (𝑞𝑙 − θ𝑙′), 𝑞𝑐,𝑟 =273 

(𝑞𝑙 − θ𝑙′) + (𝑞𝑐 − θ𝑐′ ), and 𝑞𝑏 = (𝑞𝑙 − θ𝑙′) + (𝑞𝑐 − θ𝑐′ ) + (𝑞𝑟 − θ𝑟′ ) for the interface fluxes on the right 274 

hand side in equation 38 leads to 275 

𝑠′ + 𝑞𝑙𝜇𝑙 + 𝑞𝑐𝜇𝑐 + 𝑞𝑟𝜇𝑟 − 𝑞𝑏𝜇𝑏 = 

(𝑞𝑙 − θ𝑙′)𝜇𝑙 + (𝑞𝑐 − θ𝑐′ )𝜇𝑐 + (𝑞𝑟 − θ𝑟′ )𝜇𝑟 − 𝑞𝑏𝜇𝑏 (40) 276 

which demonstrates continuity in case of true steady state θ𝑙′ = θ𝑐′ = θ𝑟′ = 0, and shows that any e.g. 277 

positive mass storage change 𝜃′ over the microscopic volume leads to negative change in entropy and 278 

vice versa. Note, the entropy production is still always positive. Thus, 𝑆′ and can be evaluated by 279 

applying equation 39 to microscale simulations.  280 

A special case may be considered, in which the system depicted in figure 6 is also closed on the right side 281 

resulting in a sole exchange with the surroundings via the periodic source/sink 𝑄𝑠(𝑡). This would be 282 

equivalent to a profile with a discharge area in the center and the assumption of symmetry shown in the 283 

schematic in figure 7. The requirement again is that 𝑄𝑠��� = 0 over one full cycle at dynamic equilibrium. 284 

Then e.g. equation 35 simplifies to  285 

𝑀� = (𝑆𝚤′ − 𝑆′)𝑄𝑠−1����������������� (41a) 286 

or 287 

𝑀� = cov(∆𝑆′, 𝑄𝑠−1) + 𝑆𝚤′�𝑄𝑠−1����� (41a) 288 

with ∆𝑆′ = 𝑆𝑖′ − 𝑆′. 289 

 290 

 291 



Discussion 292 

The major advantage of the proposed inference theory is the estimation of macroscopic variables that 293 

are thermodynamically consistent with the microscale fluctuations. This is discussed in the context of the 294 

simple example 1 interpreting the entropy current 𝐽𝑠 = 𝐽𝑀 as an advective potential flux. Because 𝐽 is 295 

constant and 𝑀𝑙 > 𝑀𝑟, the entropy current leaving the domain on the right side is smaller than the 296 

entropy current entering the domain on the left side. This is due to dissipation in the interior of the 297 

domain resulting into the production of entropy 𝑆𝑖′. In hydrology, the dissipation is simulated using 298 

Darcy’s law and Richards equation at the support (here microscopic) scale, where all dissipative 299 

processes are lumped in the hydraulic conductivity representing the flow resistance. Thus, at the 300 

macroscale the derived conductance 𝜆 is thermodynamically consistent if one accepts e.g., Darcy’s law as 301 

a valid parameterization of the internal dissipative processes.  302 

Equations 12 and 13 have not been applied before in the context of hydrology. While the equations 303 

illustrate the basic idea for the simplest case of a Darcy experiment, one may argue that the insight 304 

gained from this example is rather limited, because 𝜆 could have been obtained from the known flux-305 

force relationship and the conductance equation (one unknown 𝜆 with one equation 7). Examples 2 and 306 

3, on the other hand, clearly illustrate the advantage, because the macroscale potential 𝑀 (and 307 

therefore 𝐹),which are needed to obtain 𝜆 are not known in these examples. Thus, one is left with two 308 

unknowns 𝜆 and 𝐹, and only one equation (the conductance equation 7). In the proposed theory, the 309 

entropy balance provides the second equation to solve for the two unknowns at the cost of explicitly 310 

calculating the internal entropy production 𝑆𝑖′ = ∫𝜎 = ∫(∑𝑞𝑓) = ∫ �∑ 1
𝛼

 𝜌 𝐾
𝑣
𝑘𝑟(𝜓)�𝜇ℎ𝑖𝑔ℎ − 𝜇𝑙𝑜𝑤�

2�, 311 

and at the benefit of thermodynamic consistency. This is the central message of the proposed method of 312 

inference, which utilizes 𝑆𝑖′ as a spatial and also temporal integrator. 313 



It is important to emphasize that one can also obtain, in an ad hoc fashion, the forces and conductance 314 

coefficients for any sub-domain 𝑉𝑖 of the global domain with volume 𝑉. For example, in order to obtain 315 

the macroscale potential in the center of the profile of example 1, one arrives at 316 

𝑀𝑐 = 𝑀𝑙 − 𝐽−1 ∫ 𝜎𝑑𝑉𝑖𝑉𝑖
 (42). 317 

Thus, from ∫ 𝜎𝑑𝑉𝑖𝑉𝑖
 estimates, one is able to obtain macroscale variables over a hierarchy of scales for 318 

different hydrologic configurations similar to the simple examples provided above.  319 

Under purely saturated groundwater flow conditions, the estimates of macroscale variables can be used 320 

directly for predictions, because 𝜆 is constant for the same flow geometries, which is trivial, but 321 

important to realize. In case of variably saturated flow and transient conditions (when the flow geometry 322 

changes), 𝜆 is of course not constant and 𝑆𝑖′ will depend in an unknown, non-linearly fashion on the flux J 323 

and its variability (example 3), which apparently limits the usefulness of the proposed approach. 324 

However, universal relationships of 𝑆𝑖′(𝐽) and cov(𝑆𝑖′, 𝐽−1) can perhaps be obtained from a series of 325 

numerical experiments under characteristic hydrologic configurations. 326 

This also brings up the question, whether one is able to establish a connection of the proposed theory 327 

with observations of real-world systems. Obviously, 𝑆𝑖′ and 𝑆′ can not be measured directly in the field 328 

utilizing independent experiments, which could, in turn, be used to derive macroscopic forces from flux 329 

observations that are more readily available. Thus, utilizing the entropy balance for estimating 330 

macroscopic field variables and ensuing predictions appears limited at this point. Yet, this study suggests 331 

to explore relationships of measurable field variables and 𝑆𝑖′ utilizing numerical experiments, in future. In 332 

turn, under certain conditions, estimates of 𝑆𝑖′ from measurable quantities may be possible. With the 333 

help of the extended example 1, this is discussed below. 334 



Assuming a time varying force i.e. Dirichlet boundary conditions, temporal integration of equation 11 335 

over one full cycle at dynamic equilibrium yields  336 

𝑆𝚤′� = 𝐽𝐹��� (43) 337 

Inserting the conductance equation into equation 43 under saturated, linear groundwater flow 338 

conditions with the assumption of only small changes in the flow geometry (𝜆 is constant) leads to  339 

𝑆𝚤′� = 𝜆−1𝐽2� = 𝜆−1[var(𝐽) + 𝐽2̅] (44). 340 

Thus, entropy production is related inversely to 𝜆, linearly with 𝐽, and power two with  𝐽.̅ If an estimate 341 

of 𝜆 is available, 𝑆𝚤′�  can be calculated from observations of 𝐽. In the more realistic case of variably 342 

saturated groundwater flow and/or varying flow geometry, equation 44 changes to  343 

𝑆𝚤′� = 𝜆−1𝐽2������� = cov(𝜆−1, 𝐽2) + 𝜆−1�����𝐽2̅ (45). 344 

illustrating the same dependence of 𝑆𝚤′�  on 𝜆̅ and 𝐽 ̅as before. The unknown covariance cov(𝜆−1, 𝐽2) may 345 

potentially be estimated from numerical experiments. 346 

 347 

Summary and conclusions 348 

In this study, the method of inference based on the entropy balance equation was introduced. The 349 

theoretical basis is the explicit calculation of the internal microscale entropy production, which is used in 350 

the balance equation to solve for macroscale potentials, forces and fluxes. The proposed method was 351 

illustrated with simple hydrologic cross-sections of stead-state, variably saturated groundwater flow and 352 

a periodic source/sink at dynamic equilibrium. 353 

The entropy balance equation is remarkable, because the equation unifies the macro- and microscale in 354 

one equation allowing the simultaneous application of two different movement equations that are the 355 



conductance equation at the macroscale and Darcy’s law/Richards equation at the microscale, in this 356 

study. The derivations lead to expressions for macroscale variables that are a function of the entropy 357 

production (i.e. the internal fluctuations of the microscale flux-force relationships) and are, thus, 358 

thermodynamically consistent. Therefore, the derivation provides a different theoretical point of view of 359 

variably saturated groundwater flow and new approaches for obtaining effective macroscale variables. 360 

The discussion suggests that these may be derived consistently for a hierarchy of scales. With the advent 361 

of high-performance computing in hydrology, there is strong potential for additional insight from hyper-362 

resolution numerical experiments to explicitly calculate the internal entropy production. For example, 363 

existing and new averaging and uspcaling laws may be tested and derived using series of numerical 364 

experiments with e.g. varying subsurface heterogeneity configurations, and boundary conditions. These 365 

experiments may also be useful in deriving new movement equations at the macroscale replacing 366 

empirical, calibrated parameterizations and regionalization approaches.   367 

Thus, the appeal of the proposed method is mainly theoretical at this point, providing a thermodynamics 368 

perspective of inference in hydrology. The connection to real-world observations needs to be established 369 

in future, also with the help of numerical simulations. In the provided theoretical setting, the usefulness 370 

of the method for predictions is evident from the simple examples provide here, however, for real-world 371 

predictions this remains to be demonstrated. 372 

 373 
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Figures 422 

 423 

 424 

Figure 1. Schematic of a simple profile with Dirichlet boundary conditions on the right and left (𝑀𝑟,𝑀𝑟) 425 

and steady state variably saturated flow. In the theory, the vertical and horizontal extents of the cross-426 

section are assumed to be constant. 427 

 428 

 429 

 430 

Figure 2. Schematic of a simple profile with a Dirichlet boundary condition on the right (𝑀𝑟), a no-flow 431 

boundary condition on the left, a constant source (𝑄𝑠), and steady state variably saturated groundwater 432 

flow. In the theory, the vertical and horizontal extents of the cross-section are assumed to be constant. 433 
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 435 

 436 

Figure 3. Schematic of a simple profile with Dirichlet boundary conditions on the right and left(𝑀𝑟,𝑀𝑟) a 437 

constant source (𝑄𝑠), and steady state variably saturated groundwater flow. In this symmetric case, 438 

there exist a water divide in the center of the domain. In the theory, the vertical and horizontal extents 439 

of the cross-section are assumed to be constant. 440 

 441 

 442 

Figure 4. Schematic of a simple profile with Dirichlet boundary conditions on the right and left(𝑀𝑟,𝑀𝑟) a 443 

constant source (𝑄𝑠), and steady state variably saturated flow. In this case there exist a water divide in 444 

the domain. In the theory, the vertical and horizontal extent of the cross-section is assumed to be 445 

constant. 446 
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 448 

Figure 5. Schematic of a simple profile with Dirichlet boundary conditions on the right and left(𝑀𝑟,𝑀𝑟), a 449 

constant source (𝑄𝑠), and steady state variably saturated groundwater flow. Note the dividing streamline 450 

in this example. In the theory, the vertical and horizontal extents of the cross-section are assumed to be 451 

constant. 452 

 453 

 454 

 455 

 456 

Figure 6. Schematic of the discrete example consisting of three microscale elements with a Dirichlet 457 

boundary condition on the right side (µb) and a source/sink in each element (ql, qc, qr).    458 
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 460 

 461 

Figure 7. Schematic of a simple profile with a no-flow boundary condition on the left and right (based on 462 

symmetry) and transient, spatially varying sources/sinks 𝑄𝑠(𝑥, 𝑡) resulting in a recharge and discharge 463 

area. In the theory, the vertical and horizontal extent of the cross-section is assumed to be constant. 464 
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