

Supplement of

Integrated water system simulation by considering hydrological and biogeochemical processes: model development, parameter sensitivity and autocalibration

Y. Y. Zhang et al.

Correspondence to: Y. Y. Zhang (zhangyy003@igsnrr.ac.cn)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

1 Supplementary material

2 1. Soil P cycle simulation (Neitsch *et al.*, 2011)

- 3 *Mineralization*: The mineralized P is added to solution P pool. The amount of active
- 4 and stable organic P are calculated as

$$5 \begin{cases} orgP_{act} = orgP_{hum} \cdot orgN_{act} / (orgN_{act} + orgN_{sta}) \\ orgP_{sta} = orgP_{hum} \cdot orgN_{sta} / (orgN_{act} + orgN_{sta}) \end{cases}$$
(S1)

- 6 where $orgP_{act}$ and $orgP_{sta}$ are the amounts (kg/ha) of P in active organic pool and
- stable organic pool, respectively; $orgP_{hum}$ is the humic organic P in the layer (kg/ha);
- 8 orgNact and orgNsta are the amounts of N in active organic pool and stable organic
- 9 pool (kg/ha), respectively, which are simulated by DNDC.
- 10 The mineralized rate of humus active organic P pool (*RHP*) is calculated by

11
$$RHP = 1.4 \cdot \beta_{\min} \cdot (\gamma_{tmp} \cdot \gamma_{SW})^{1/2}$$
 (S2)

- 12 where β_{\min} is the mineralization rate of humus active organic P; γ_{tmp} and γ_{SW} are 13 reduction factors of soil temperature and moisture.
- 14 The mineralized of the residue fresh organic P pool (*RRP*) is calculated as

15
$$\begin{cases} RRP = 0.8 \cdot \delta_P \\ \delta_P = \beta_{rsd} \cdot \gamma_P \cdot (\gamma_{tmp} \cdot \gamma_{SW})^{1/2} \end{cases}$$
(S3)

- 16 where δ_P and β_{rsd} are the residue decay rate and the mineralization rate of residue
- 17 fresh organic P. γ_P is the P cycling residue composition factor.
- 18 Decomposition: The decomposition rate of the residue fresh organic P pool (DRP) is

$$19 \quad DRP = 0.2 \cdot \delta_P \tag{S4}$$

- 20 Sorption: The P movement between soluble and active mineral pools ($P_{sol|act}$, kg/ha)
- and between active and stable mineral pools ($P_{act|sta}$, kg/ha) are

22
$$P_{sol|act} = \begin{cases} P_{sol} - \min P_{act} \cdot pai/(1 - pai) & \text{if} \quad P_{sol} > \min P_{act} \cdot pai/(1 - pai) \\ 0.1 \cdot [P_{sol} - \min P_{act} \cdot pai/(1 - pai)] \text{if} \quad P_{sol} < \min P_{act} \cdot pai/(1 - pai) \end{cases}$$
(S5)

23 and

$$1 \qquad P_{act|sta} = \begin{cases} 0.0006 \cdot (4 \cdot \min P_{act} - \min P_{sta}) & \text{if} & \min P_{sta} < 4 \cdot \min P_{act} \\ 0.00006 \cdot \beta_{eqP} \cdot (4 \cdot \min P_{act} - \min P_{sta}) & \text{if} & \min P_{sta} > 4 \cdot \min P_{act} \end{cases}$$
(S6)

2 respectively, where P_{sol} , $minP_{act}$ and $minP_{sta}$ are soluble, mineral active and stable P 3 (kg/ha), respectively; *pai* is P availability index.

4

5 2. Crop growth module

6 **2.1 Crop yield (Williams** *et al.*, **1989)**

7 The crop growth process depends on the accumulation of daily heat (Sharpley and

- 8 Williams, 1990). The accumulated heat $(HU, ^{\circ}C)$ during a day and heat unit index
- 9 (*HUI*) is calculated as:

10
$$\begin{cases} HU_{K} = (T_{mx,K} + T_{mn,K})/2 - T_{b,j} \\ HUI_{i} = \sum_{K=1}^{i} HU_{K} / PHU_{j} \end{cases}$$
(S7)

11 where $T_{mx,K}$ and $T_{mn,K}$ are the maximum and minimum temperatures (°C) on the kth 12 day, respectively; $T_{b,j}$ is the base temperature of the jth crop (°C). *PHU_j* is the potential 13 heat unit required for the jth crop maturity (°C). The range of *HUI* is from 0.0 at the 14 seeding time to 1.0 at the physiological maturity. *i* is the total days of crop growth. 15 The potential increased biomass for a day is estimated as follow: $\Delta B_{p,i} = 0.001 \cdot BE_i \cdot PAR_i \cdot [1 + \Delta HRLT_i]^3$ (CO)

$$= 0.001 \cdot BE_i \cdot PAR_i \cdot [1 + \Delta HRLI_i]$$

$$= 0.0005 \cdot BE_i \cdot RA_i \cdot [1 - \exp(-0.65 \cdot LAI)] \cdot [1 + \Delta HRLT_i]^3$$
(S8)

17 where ΔB_p is daily potential increased biomass (t/ha); *BE* is crop parameter for

18 converting energy to biomass (kg ha m²/MJ); *HRLT* and
$$\Delta HRLT$$
 are length of a day

22 From emergence to the start of leaf decline, *LAI* is estimated with the equation:

$$LAI_{i} = LAI_{i-1} + \Delta LAI$$

$$= LAI_{i-1} + (\Delta HUF)(LAI_{mx})(1 - \exp(5 \cdot (LAI_{i-1} - LAI_{mx}))) \cdot \sqrt{REG_{i}}$$
(S9)

1 From the start of leaf decline to the end of the growing season,

2
$$LAI_i = LAI_0 \cdot (1 - HUI_i/1 - HUI_0)^{ad_j}$$
 (S10)

3 where *HUF* is heat unit factor. *REG* is minimum crop stress factor. *Ad* is a parameter

4 controlled LAI decline rate for crop j and HUI_0 is HUI value when LAI begins to

5 decline.

6 But the biomass growth is constrained by water, temperature, nutrient and aeration.

$$\Delta B = \Delta B_p \cdot REG = \Delta B_p \cdot \min(WS, TS, SN, SP, AS)$$
(S11)

8 where *REG* is the crop growth regulating factor.

9 The water stress:
$$WS_i = \sum_{l=1}^{M} u_{i,l} / E_{P,i}$$
 (S12)

10 The temperature stress:
$$TS_i = \sin[\pi \cdot (T_{g,i} - T_{b,j})/2(T_{o,j} - T_{b,j})] \quad 0 \le TS_i \le 1$$
 (S13)

11 The nitrogen stress:
$$\begin{cases} SN_{S,i} = 2[1 - \sum_{K=1}^{i} UN_{K} / (c_{NB,i} \cdot B_{i})] \\ SN_{i} = 1 - SN_{S,i} / [SN_{S,i} + \exp(3.39 - 10.93SN_{S,i})] \end{cases}$$
(S14)

12 The phosphorus stress:
$$\begin{cases} SP_{S,i} = 2[1 - \sum_{K=1}^{i} UP_{K} / (c_{NP,i} \cdot B_{i})] \\ SP_{i} = 1 - SP_{S,i} / [SP_{S,i} + \exp(3.39 - 10.93SP_{S,i})] \end{cases}$$
(S15)

13 The aeration stress:
$$\begin{cases} SAT = SW1/PO1 - CAF_j \\ AS_{S,i} = 1 - SAT/[SAT + \exp(-1.291 - 56.1 \cdot SAT)] & SAT > 0.0 \end{cases}$$

14 **(S16)**

15 where T_g and T_0 are average daily soil surface temperature and the optimal

- temperature (°C) for crop *j*, respectively; *SAT* is saturation factor; *SW1* and *PO1* are
- 17 water moisture and porosity of the top 1m of soil (mm), respectively; CAF is critical
- 18 aeration factor for crop j; AS is aeration stress factor.
- 19 The crop yield is estimated using the harvest index, viz.:

$$YLD_{j} = HI_{j} \cdot B_{AG}$$
(S17)

21 where *YLD* is total amount yield harvested from the field (t/ha), and *HI* is harvest

22 index; BAG is the above-ground biomass (t/ha). For non-stressed conditions, harvest

index increases nonlinearly from zero at seedling to *HI* at maturity. Affected by water
stress, the harvest index is calculated as following.

3
$$HIA_{i} = HIA_{i-1} - HI_{j} \cdot WSYF_{j} \cdot FHU_{i} \cdot (0.9 - WS_{i})/[1 + WSYF_{j} \cdot FHU_{i} \cdot (0.9 - WS_{i})]$$
(S12)

- where HI_j is normal harvest index of crop *j*; *HIA* is adjusted harvest index; *WSYF_j* is sensitivity parameter of harvest index to draught for crop *j*; *FHU* is a function of crop
- 6 growth stage. The crop growth stage function is calculated as

7
$$FHU_{i} = \begin{cases} \sin[\pi \cdot (HUI_{i} - 0.3)/0.6] & 0.3 \le HUI_{i} \le 0.90 \\ 0. & HUI_{i} < 0.3, HUI_{i} > 0.9 \end{cases}$$
(S18)

8 2.2 Water use

9 The potential water use from surface soil to any root depth is calculated as

10
$$U_{p,i} = E_{p,i} \cdot [1 - \exp(-\Lambda \cdot Z/RZ)]/[1 - \exp(-\Lambda)]$$
 (S19)

- 11 The potential water use $(U_{p,l}, \text{mm/day})$ in layer *l* is calculated by taking the
- 12 difference between $U_{p,i}$ values at the layer boundaries, viz.,

13
$$U_{p,l} = E_{p,i} \cdot \left[\exp(-\Lambda \cdot Z_{l-1}/RZ) - \exp(-\Lambda \cdot Z_l/RZ) \right] / [1 - \exp(-\Lambda)]$$
 (S20)

- 14 where UP is the total water used to depth Z m on day i (mm); RZ is the root zone
- 15 depth (m); Λ is a water use distribution parameter.
- 16 Restricted by soil water content, the potential water use $(U_l, \text{mm/day})$ in layer l is
- 17 calculated with the following equations when soil water content is less than 25% of
- 18 plant available soil water (Jones and Kiniry, 1986).

19
$$U_{l} = \begin{cases} U_{p,l} \cdot \exp\left[20 \cdot (SW_{l,i} - WP_{l})/(FC_{l} - WP_{l}) - 1\right] & \text{if } SW_{l,i} < (FC_{l} - WP)_{l}/4 + WP_{l} \\ U_{p,l} & \text{if } SW_{l} \ge (FC_{l} - WP_{l})/4 + WP_{l} \end{cases}$$
(S21)

20 2.3 Nutrient uptake

- 21 The daily crop nutrient uptake (*N* and *P*) is the difference between crop nutrient
- 22 demand and ideal nutrient content for day *i*.

$$\begin{cases} UND_i = c_{NB,i} \cdot B_i - \sum_{K=1}^i UN_K \\ UPD_i = c_{PB,i} \cdot B_i - \sum_{K=1}^i UP_K \end{cases}$$
(S22)

1

where *UND* and *UNP* are *N* and *P* uptake amounts, rescpetively (kg/ha); *UN* and *UP*are the actual uptakes of *N* and *P*, rescpetively (kg/ha); *c_{NB}* and *c_{NP}* are the optimal *N*and *P* concentrations of the crop, rescpetively (kg/t); *B* is the accumulated biomass
for day *i* (t/ha).

- 6 The soluble N (NO₃-N and NH₄-N) mass flow to the roots is used to distribute
- 7 potential *N* uptake among soil layers.

$$8 \begin{cases} UN_{l,i} = u_{l,i} \cdot (WN_l / SW_l)_i \\ UNS_i = \sum_{K=1}^M UN_{l,i} \end{cases}$$
(S23)

- 9 where WN is NO₃-N or NH₄-N amount in the soil (kg/ha). The total N available for
- 10 uptake by mass flow *UNS* is estimated by summing *UN* of all layers.
- 11 The total *P* available for uptake is calculated using the equation.

12
$$\begin{cases} UPS_{i} = 1.50 \cdot UPD_{i} \cdot \sum_{l=1}^{M} LF_{u,l} \cdot (RW_{l}/RWT_{i}) \\ LF_{u,l} = 0.1 + 0.9 \cdot c_{LP,l} / [c_{LP,l} + 117 \cdot \exp(-0.283 \cdot c_{LP,l})] \end{cases}$$
(S24)

where *UPS* is the amount of *P* supplied by soil (kg/ha); *RW* and *RWT* are the root weights in layer *l* and in total, rescpetively (kg/ha); LF_u is the labile *P* factor for uptake (g/t).

16 A portion of uptake *N* will be fixed by legumes, viz.,

17
$$\begin{cases} WFX_i = FXR_i \cdot UND_i & WFX \le 6.0 \\ FXR = \min(1.0, FXW, FXN) \cdot FXG \end{cases}$$
(S25)

18 where FXG is the growth stage factor; FXW and FXN are the factors of soil water and

19 NO₃-N, respectively. All of these factors are calculated using the follow equations.

$$20 FXG_i = \begin{cases} 0.0 HUI_i \le 0.15, HUI_i \ge 0.75 \\ 6.67HUI_i - 1.0 0.15 < HUI_i \le 0.3 \\ 1.0 0.3 < HUI_i \le 0.55 \\ 3.75 - 5.0HUI_i 0.55 < HUI_i < 0.75 \end{cases}$$
(S26)

1
$$FXW_i = (SW_{0.3,i} - WP_{0.3})/0.85 \cdot (FC_{0.3} - WP_{0.3})$$
 $SW_{0.3} < 0.85(FC_{0.3} - WP_{0.3}) + WP_{0.3}$ (S27)
2 $FXN_i = \begin{cases} 0.0 & WNO_3 > 300kg \cdot ha^{-1} \cdot m^{-1} \\ 1.5 - 0.005 \cdot WNO_3/RD & 100 < WNO_3 \le 300 \\ 1.0 & WNO_3 \le 100 \end{cases}$ (S28)

where SW_{0.3}, WP_{0.3} and FC_{0.3} are the water contents in the top 0.3 m soil, at wilting
point and field capacity (mm), respectively.

6 **3. Soil erosion module (Onstad and Foster, 1975)**

7 The soil erosion by precipitation is estimated using the improved USLE equation

8 (Onstad and Foster, 1975), viz.,

9
$$Y = \begin{cases} (0.646EI + 0.45Q \cdot q_p^{-0.333}) \cdot K \cdot CE \cdot PE \cdot LS & Q > 0. \\ 0 & Q = 0. \end{cases}$$
 (S29)

10 where *Y* is the sediment yield (t/ha); *Q* is runoff volume (mm); q_p is peak runoff rate

11 (mm/hr); *K* is soil erodibility factor determined by the soil type; *PE* is erosion control

- 12 practice factor.
- 13 *LS* is the factor of slope length and steepness:

14
$$\begin{cases} LS = (\lambda/22.1)^{\xi} (65.41S^2 + 4.56S + 0.065) \\ \xi = 0.6 \cdot [1 - \exp(-35.835S)] \end{cases}$$
 (S30)

15 *CE* is the crop management factor:

16
$$CE = (0.8 - CE_{mn,j})\exp(-0.00115CV) + CE_{mn,j}$$
 (S31)

17 *EI* is the rainfall energy factor:

18
$$EI = R \cdot [12.1 + 8.9 \cdot (\log r_p - 0.434) \cdot r_{0.5}]/1000$$
 (S32)

19 where *S* and λ are the land surface slope (m/m) and slope length (m), both of which 20 are obtained during the procedure of preparing the spatial simulation units; ξ is a

- 21 parameter dependent upon slop; $CE_{mn,j}$ is the minimum crop management factor of
- crop j; CV is soil cover (above ground biomass and residue) (kg/ha). R is daily rainfall
- amount (mm) and r_p , $r_{0.5}$ is the peak rainfall rate and maximum 0.5 h rainfall intensity
- (mm/hr). The value of r_p is obtained according to the exponential rainfall distribution.

1

2 **4. Overland water quality module**

3 4.1 Nutrient loss in urban and rural area

Generally, the inhabitant and industrial sewage in the urban area are collected, treated and discharged into river network from urban wastewater discharge outlets. Thus, this amount of nutrient flux is the input to the model directly as the point source pollutant load. The nonpoint source nutrient loss in urban area takes place along the overland flow and is estimated using the export coefficient model (Johnes, 1996).

9
$$V_{ur} = 100 \cdot c_{ur} \cdot Area_{urban}$$
(S33)

10 where V_{ur_N} , c_{ur_N} and $Area_{urban}$ are the amount of nutrient loss in urban area 11 (kg); the export coefficient (kg/ha/year) and urban area (km²), respectively.

12 The farm manure of rural living and livestock farming is also considered as one of

13 important nonpoint source of nutrient due to the deficiency of sewage treatment

14 facilities in the rural area. The total loss is estimated using the following equations.

15
$$\begin{cases} V_{liv_N} = c_{liv_N} \cdot Pop_{rural} \\ V_{lst_N} = c_{lst_N} \cdot Pop_{stock} \end{cases}$$
(S34)

where V_{liv_N} and V_{lst_N} are the amount of nutrient loss from living and livestock farming in the rural area, respectively (kg/year). c_{liv_N} and c_{lst_N} are the export coefficient of living (kg/day/person) and livestock (kg/day/animal), respectively; *Pop*_{rural} and *Pop*_{stock} are the population and the animal stock, respectively.

20 4.2 Nutrient loss of soil layer

The loss of soluble nutrient is considered to happen in both upper and lower layer of soil. The loss weight of NO_3 -N, NH_4 -N and soluble P are calculated using the equation (Williams *et al.*, 1989), respectively.

$$\begin{cases} V_{N_{up}} = W_{N_{up}} \cdot [1 - \exp(-\frac{R_s + R_{ss}}{UL})] \\ V_{N_{low}} = W_{N_{low}} \cdot [1 - \exp(-\frac{R_g}{UL})] \end{cases}$$
(S35)

where $W_{N_{-}up}$ and $W_{N_{-}low}$ are the soluble nutrient weight in the upper and lower soil layer, respectively (kg/ha); *UL* is maximum soil water content (mm); $V_{N_{-}up}$ and $V_{N_{-}low}$ is soluble nutrient loss in the upper and lower soil layer, respectively (kg/ha); *Rs* and *Rss* are surface runoff, and interflow (mm), respectively, which are obtained from the hydrological cycle module. The amount of insoluble nutrients migrated with the sediment is estimated using the equation (Neitsch *et al.*, 2011)

$$_{9} \quad Y_{ON} = 0.001 \cdot Y \cdot c_{ON} \cdot ER \tag{S36}$$

where Y_{ON} is loss of organic *N* or *P* (kg/ha); c_{ON} is insoluble nutrient concentration in the soil layer (g/m³); *ER* is enrich ratio.

12 **4.3 Overland migration (Neitsch** *et al.*, **2011)**

13
$$N_{overl} = (N_{overl} + N_{stor,i-1}) \cdot \left[1 - \exp(-T_{retain}/T_{route})\right]$$
(S37)

14 where N_{overl} is the overland pollutant discharged into main channel including

15 sediment (tons), soluble and insoluble nutrient (kg); N_{overl} and $N_{stor,i-1}$ are pollutant

16 load generated in the subbasin, pollutant retained from the previous day (tons for

17 sediment, kg for nutrient), respectively. T_{retain} and T_{route} are the retain time and

18 routing time of flow(days), respectively.

19

1

20 **5. Water quality module of water bodies**

21 The basic equation of in-stream water quality module (Brown and Barnwell 1987) is

22
$$dC/dt = -(R_d + R_{set}) \cdot C + \sum S_{out}$$
(S38)

- 1 where C is the pollutant concentration (mg/L); K_d and K_{set} are degradation and
- settling coefficient of pollutant (day⁻¹), respectively; and $\sum S_{out}$ is the external source
- 3 items (mg/L/day).
- 4 The equation of water quality module of water impounding is as follow.

5
$$\begin{cases} dh/dt = [Q_{in} - Q_{out}]/A + P - E \\ dC_L/dt = [C_{in}Q_{in} - C_LQ_{out}]/Ah - K_{set}C_L - K_dC_L + K_{scu}C_s \cdot d/h \\ dC_s/dt = h/d \cdot K_{set}C_L - K_{scu}C_s - K_{bur}C_s \end{cases}$$
 (S39)

- 6 where h and d are water and sediment depth (m), respectively; Q_{in} and Q_{out} are inflow
- and outflow (m^3/s), respectively; C_{in} and C_{out} are pollutant concentration into and out
- 8 of the water body (mg/L); P and E are precipitation and evapotranspiration (m/s); C_L
- 9 and C_s are constituent concentration in the water body and the sediment (mg/L); K_{scu}
- and K_{bur} are resuspension and decay coefficient of pollutant in the sediment (day⁻¹),
- 11 respectively; A is water surface area (km^2) .
- 12

ID	Variables	Definition	Unit	Affected
ID	v artables		Omt	components
Subba	isin paramete	rs		
1	W_m	Minimum water content of soil	none	flow
2	Ww	Wilting water content of soil	none	flow
3	W_{fc}	Field capacity of soil	none	flow
4	W _{sat,u}	Saturated moisture capacity of upper soil layer	none	flow
5	W _{sat,l}	Saturated moisture capacity of lower soil layer	none	flow
6	<i>g</i> ₁	Basic surface runoff coefficient	none	flow
7	<i>g</i> ₂	Influence coefficient of soil moisture	none	flow
8	K _{ET}	Adjustment factor of evapotranspiration	none	flow
9	K _r	Interflow yield coefficient	none	flow
10	T_g	Delay time for aquifer recharge	day	flow
11	K_g	Baseflow yield coefficient	none	flow
12	Ksat	Steady state infiltration rate of soil	mm/hr	flow
13	<i>kf_{mx}</i>	Ratio of state infiltration rate to maximum rate in soil	none	flow
14	DtoW	Ratio of width to depth of channel	none	flow
15	rch_k	Infiltration rate of channel	mm/hr	sediment
16	ch_cov	Channel cover factor	none	sediment
17	ch_erod	Channel erodibility factor	cm/hr/Pa	sediment
18	<i>R_{set}</i> (algae)	Algae settling rate at 20 °C	mg/day	algae
19	$R_{set}(solP)$	Soluble P settling rate at 20 °C	mg/m²/day	Р
20	R _{set} (NH ₄)	Settling rate of NH ₄ -N at 20 ^o C in channel	mg/m²/day	N
21	<i>R_{set}</i> (orgN)	Settling rate of organic N at 20 °C in channel	day-1	N
22	<i>R_{set}</i> (orgP)	Settling rate of organic P at 20 ^o C in channel	day-1	Р
23	$R_d(\text{COD})$	COD deoxygenation rate at 20 °C in channel	day-1	COD
24	Rch_k_1	Reaeration coefficients at 20 °C in channel	day-1	DO
25	$R_{set}(\text{COD})$	COD settling rate at 20 °C in channel	day-1	COD
26	Rch_k_2	DO adsorption rate of sediment at 20 °C in channel	day-1	DO
27	$R_d(\mathrm{NH}_4)$	Bio-oxidation rate of NH ₄ -N at 20 ⁰ C in channel	day-1	N
28	$R_d(NO_2)$	Oxidation rate of NO ₂ -N to NO ₃ -N at 20 ⁰ C in channel	day-1	Ν
29	$R_d(\text{orgN})$	Hydrolysis rate of organic N to NH ₄ -N at 20 ⁰ C in channel	day-1	Ν
30	$R_d(\text{orgP})$	Hydrolysis rate of organic P to soluble P at 20 ^o C in channel	day-1	N
31	CtoB	Relationship between COD and BOD	none	COD
32	res_k	Infiltration rate in reservoir or sluice	mm/hr	flow
33	K _{set} (COD)	Settling rate of COD at 20 °C in reservoir or sluice	m/year	COD
34	K _{set} (NH ₄)	Settling rate of NH ₄ -N at 20 ^o C in reservoir or sluice	m/year	N
35	$K_{set}(NO_2)$	Settling rate of NO ₂ -N at 20 ^o C in reservoir or sluice	m/year	N
36	$K_{set}(NO_3)$	Settling rate of NO ₃ -N at 20 ^o C in reservoir or sluice	m/year	N
37	K _{set} (orgN)	Settling rate of organic N at 20 ^o C in reservoir or sluice	m/year	N
38	$K_{set}(\text{orgP})$	Settling rate of organic P at 20 ^o C in reservoir or sluice	m/year	Р

Table S1. All the parameters in the extended model

1

39	$K_{set}(solP)$	Settling rate of soluble P at 20 °C in reservoir or sluice	m/year	Р
40	K_{set} (DO)	Settling rate of DO at 20 °C in reservoir or sluice	m/year	DO
41	K _{set} (algae)	Settling rate of algae at 20 °C in reservoir or sluice	m/year	algae
42	$K_{set}(TN)$	Settling rate of TN at 20 °C in reservoir or sluice	m/year	N
43	$K_{set}(\mathrm{TP})$	Settling rate of TP at 20 0C in reservoir or sluice	m/year	Р
44	<i>K</i> _d (COD)	COD deoxygenation rate in reservoirs at 20 °C	day-1	COD
45	res_k1	Reaeration coefficients at 20 °C in reservoir or sluice	day-1	DO
46	$K_d(NH_4)$	Bio-oxidation rate of NH ₄ -N in reservoir at 20 °C	day-1	N
47	$K_d(NO_2)$	Oxidation rate of NO ₂ -N to NO ₃ -N at 20 ⁰ C in reservoir or sluice	day-1	N
48	<i>K</i> _d (orgN)	Hydrolysis rate of organic N to NH ₄ -N at 20 ⁰ C in reservoir or sluice	day-1	N
49	<i>K</i> _d (orgP)	Hydrolysis rate of organic P to soluble P at 20 °C in reservoir or sluice	day-1	Р
50	$K_{scu}(\text{COD})$	Resuspension rate of COD at 20 °C in reservoir or sluice	m/year	COD
51	$K_{scu}(NH_4)$	Resuspension rate of NH4-N at 20 °C in reservoir or sluice	m/year	Ν
52	$K_{scu}(NO_2)$	Resuspension rate of NO ₂ -N at 20 ⁰ C in reservoir or sluice	m/year	Ν
53	$K_{scu}(NO_3)$	Resuspension rate of NO ₃ -N at 20 ⁰ C in reservoir or sluice	m/year	N
54	$K_{scu}(orgN)$	Resuspension rate of organic N at 20 °C in reservoir or sluice	m/year	N
55	<i>K_{scu}</i> (orgP)	Resuspension rate of organic P at 20 °C in reservoir or sluice	m/year	Р
56	$K_{scu}(solP)$	Resuspension rate of soluble P at 20 °C in reservoir or sluice	m/year	Р
57	$K_{scu}(DO)$	Resuspension rate of DO at 20 °C in reservoir or sluice	m/year	DO
58	<i>K_{scu}</i> (algae)	Resuspension rate of algae at 20 °C in reservoir or sluice	m/year	algae
59	$K_{scu}(TN)$	Resuspension rate of TN at 20 °C in reservoir or sluice	m/year	N
60	$K_{scu}(\mathrm{TP})$	Resuspension rate of TP at 20 °C in reservoir or sluice	m/year	Р
61	<i>K</i> _{bur} (COD)	Decay rate of COD at 20 °C in reservoir or sluice	m/year	COD
62	$K_{bur}(\mathrm{NH}_4)$	Decay rate of NH ₄ -N at 20 ^o C in reservoir or sluice	m/year	N
63	$K_{bur}(NO_2)$	Decay rate of NO ₂ -N at 20 °C in reservoir or sluice	m/year	N
64	$K_{bur}(NO_3)$	Decay rate of NO ₃ -N at 20 ⁰ C in reservoir or sluice	m/year	Ν
65	<i>K</i> _{bur} (orgN)	Decay rate of organic N at 20 °C in reservoir or sluice	m/year	Ν
66	<i>K</i> _{bur} (orgP)	Decay rate of organic P at 20 °C in reservoir or sluice	m/year	Р
67	$K_{bur}(solP)$	Decay rate of soluble P at 20 °C in reservoir or sluice	m/year	Р
68	$K_{bur}(DO)$	Decay rate of DO at 20 °C in reservoir or sluice	m/year	DO
69	<i>K</i> _{bur} (algae)	Decay rate of algae at 20 °C in reservoir or sluice	m/year	algae
70	<i>K</i> _{bur} (TN)	Decay rate of TN at 20 °C in reservoir or sluice	m/year	Ν
71	K_{bur} (TP)	Decay rate of TP at 20 °C in reservoir or sluice	m/year	Р
72	usle_k	Soil erodibility factor of USLE equation	none	sediment
73	usle_p	Erosion control practice factor of USLE equation	none	sediment
74	MicrIn	Microbe index	none	C, N
75	K_{l}	Decomposition rate of labile organic C	day-1	С
76	μ_{CLAY}	Reduction factor of clay content on organic matter decomposition	none	С
77	μ_t	Reduction factor of soil temperature on growth of denitrifier or nitrifier	none	N
78	S	Labile fraction of organic C compounds	none	С
79	<i>kr</i> _{cvl}	Decomposition rate of very labile organic C in residue pool	day-1	С
80	<i>kr</i> _{cl}	Decomposition rate of labile organic C in residue pool	day-1	С
81	<i>kr</i> _{cr}	Decomposition rate of stable organic C in residue pool	day-1	С

82	km _{sc}	Decomposition rate of stable organic C in microbial biomass pool	day-1	С
83	<i>km</i> _{cl}	Decomposition rate of labile organic C in microbial biomass pool	day-1	С
84	<i>km</i> _h	Decomposition rate of microbial biomass to humands	day-1	С
85	K _C	Half velocity constant of organic C on denitrifier biomass growth	none	N
86	K _{NxOy}	Half velocity constant of NO ₃ -N, NO ₂ -N, NO and N ₂ O on denitrifier biomass growth	none	N
87	U _{NO3}	Maximum growth rate of NO ₃ -N denitrifier	day ⁻¹	N
88	u _{NO2}	Maximum growth rate of NO ₂ -N denitrifier	day ⁻¹	N
89	u _{NO}	Maximum growth rate of NO denitrifier	day-1	N
90	<i>u</i> _{N2O}	Maximum growth rate of N ₂ O denitrifier	day ⁻¹	N
91	M _C	Maintenance coefficient of C	hr ⁻¹	С
92	Y _C	Maximum growth yield of soluble C	kg/ha/hr	C
93	M _{NO3}	Maintenance coefficient of NO ₃ -N	hr ⁻¹	N
94	Y _{NO3}	Maximum growth yield of NO ₃ -N	kg/ha/hr	N
95	CDR _{D:N}	C:N ratio in bacteria	none	N
96	M _{NO2}	Maintenance coefficient of NO ₂ -N	hr ⁻¹	N
97	Y _{NO2}	Maximum growth yield of NO ₂ -N	kg/ha/hr	N
98	M_{NO2}	Maintenance coefficient of NO	hr ⁻¹	N
99	Y _{NO}	Maximum growth yield of NO	kg/ha/hr	N
100	M_{N2O}	Maintenance coefficient of N_2O	hr ⁻¹	N
100	Y _{N20}	Maximum growth yield of N ₂ O	kg/ha/hr	N
101	$\mu_{SW,n}$	Soil water content adjusted factor for denitrification	none	C, N
102	β_{min}	Mineralization rate of humus active organic P	day ⁻¹	P
103	β_{rsd}	Mineralization rate of residue fresh organic P	day ⁻¹	P
	shed paramet	-	uuy	
105	$C_{ur}(\text{COD})$	Export coefficient of COD load in urban area	kg/ha/year	COD
105	$C_{ur}(\text{NH}_4)$	Export coefficient of NH ₄ -N load in urban area	kg/ha/year	N
107	$C_{ur}(TN)$	Export coefficient of TN load in urban area	kg/ha/year	N
108	$C_{ur}(\mathrm{TP})$	Export coefficient of TP load in urban area	kg/ha/year	P
109	$C_{ur}(\text{COD})$	Export coefficient of COD load in unused area	kg/ha/year	COD
110	$C_{ur}(\mathrm{NH}_4)$	Export coefficient of NH ₄ -N load in unused area	kg/ha/year	N
111	$C_{ur}(TN)$	Export coefficient of TN load in unused area	kg/ha/year	N
112	$C_{ur}(\mathrm{TP})$	Export coefficient of TP load in unused area	kg/ha/year	P
113	R_{ur}	Loss rate of non-point source load from soil layer	none	pollutant load
114	$C_{liv}(\text{COD})$	Export coefficient of COD load from living in rural area	kg/year	COD
115	$C_{liv}(\text{NH}_4)$	Export coefficient of NH ₄ -N load from living in rural area	kg/year	N
116	$C_{liv}(TN)$	Export coefficient of TN load from living in rural area	kg/year	N
117	$C_{liv}(TP)$	Export coefficient of TP load from living in rural area	kg/year	P
118	$C_{llv}(\Pi)$	Export coefficient of TT load from livestock in rural area	kg/year	COD
	$C_{lst}(\text{NH}_4)$	Export coefficient of NH ₄ -N load from livestock in rural area	kg/year	N
119				- '
119 120		Export coefficient of TN load from livestock in rural area	kg/year	N
119 120 121	$\frac{C_{lst}(TN)}{C_{lst}(TP)}$	Export coefficient of TN load from livestock in rural areaExport coefficient of TP load from livestock in rural area	kg/year kg/year	N P

123	R _{lst}	Loss rate of non-point source load from livestock	none	pollutant load
124	$C_{pcp}(\text{COD})$	COD concentration in precipitation	mg/L	COD
125	$C_{pcp}(\mathrm{NH}_4)$	NH ₄ -N concentration in precipitation	mg/L	N
126	$C_{pcp}(TN)$	TN concentration in precipitation	mg/L	N
127	$C_{pcp}(\text{TP})$	TP concentration in precipitation	mg/L	Р
128	SF_{tmp}	Snowfall temperature	⁰ C	flow
129	SM_{tmp}	Snow melt base temperature	⁰ C	flow
130	SMF_{mx}	Melt factor for snow on June 21	mm/day	flow
131	SMF_{mn}	Melt factor for snow on December 21	mm/day	flow
132	TIMP	Snow pack temperature lag factor	none	flow
133	Coefrad	Factor of maximum possible radiation to net radiation	none	flow
134	SC _{max}	Minimum snow water content that corresponds to 100% snow cover	mm	flow
135	SC50	Fraction of snow volume represented by SCMX that corresponds to 50% snow cover	none	flow
136	SC_1	Coefficients that define shape of snow curve 95% coverage at 100% snow cover	none	flow
137	SC_2	Coefficients that define shape of snow curve 50% coverage at 100% snow cover	none	flow
138	Surlag	Surface runoff lag time	day	flow
139	n_ch	Roughness of Channel	none	flow
140	msk_x	Weighting factor in Muskingum equation	none	flow
141	msk_k	Storage time constant of channel in Muskingum equation	day	flow
142	AI_1	Fraction of algal biomass that is N	none	N
143	AI_2	Fraction of algal biomass that is P	none	Р
144	AI_3	Adjusted rate of oxygen production per unit of algal photolysis	none	DO
145	AI_4	Adjusted rate of oxygen uptake per unit of algal respiration	none	DO
146	AI_5	Adjusted rate of oxygen uptake per unit of NH4-N oxidation	none	Ν
147	AI_6	Adjusted rate of oxygen uptake per unit of NO ₂ -N oxidation	none	Ν
148	AI ₇	Adjusted rate of NH ₄ -N oxidation to NO ₂ -N	none	Ν
149	<i>g</i> _{max}	Maximum specific algal growth rate at 20 ^o C	day-1	algae
150	RHOQ	Algal respiration rate at 20 ^o C	day-1	algae
151	TFACT	Fraction of solar radiation computed in temperature heat balance	none	algae
152	K_1	Half-saturation coefficient for light	kJ/m ²	algae
153	K_N	Michaelis-Menton half-saturation constant for N	mg/L	algae
154	K_P	Michaelis-Menton half-saturation constant for P	mg/L	algae
155	Lec	Non-algal portion of light extinction coefficient	m ⁻¹	algae
156	Lec ₁	Linear algal self-shading coefficient	m ^{-1.} (µg/L) ⁻¹	algae
157	Lec ₂	Nonlinear algal self-shading coefficient	$m^{-1}(\mu g /L)^{-2/3})$	algae
158	<i>P_N</i>	Algal preference factor for ammonia	none	N
159	PRF	Peak rate adjustment factor for sediment routing in channel	none	sediment
160	SP _{con}	Linear parameter for calculating maximum transport capacity of sediment in channel	none	sediment

161	SPexp	Exponent parameter for calculating maximum transport capacity of sediment in channel	none	sediment
162	f_Ph	Flood PH value	none	C, N
163	rcn _{rvl}	Ratio of C/N of very labile litter	none	C, N
164	<i>rcn_{rl}</i>	Ratio of C/N of labile litter	none	C, N
165	rcn _{rr}	Ratio of C/N of resistant litter	none	C, N
166	rcn _b	Ratio of C/N of labile biomass	none	C, N
167	<i>rcn</i> _h	Ratio of C/N of labile humus	none	C, N
168	rcn _m	Ratio of C/N of humads	none	C, N
169	pavi	P availability index	none	C, N
170	TtoC	Relationship between TOC and COD	none	COD
171- 182	<i>rpnt</i> ₀₁ ~ ₁₂	Ratio of point pollutant source from Jan. to Dec.	none	pollutant load

1