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Abstract 18 

Integrated water system modeling is a feasible approach to understanding severe 19 

water crises faced in the world and promoting the implementation of integrated river 20 

basin management. In this study, a classic hydrological model (the time variant gain 21 

model: TVGM) is extended to an integrated water system model by coupling multiple 22 

water-related processes in hydrology, biogeochemistry, water quality and ecology, and 23 

considering the interference of human activities. A parameter analysis tool, which 24 

includes sensitivity analysis, autocalibration and model performance evaluation, is 25 

developed to improve modelling efficiency. To demonstrate the model performances, 26 

the Shaying River Catchment, which is the largest, highly regulated and heavily 27 

polluted tributary of the Huai River Basin in China, is selected as the case study area. 28 
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The model performances are evaluated on the key water-related components including 1 

runoff, water quality, diffuse pollution load (or nonpoint source) and crop yield. 2 

Results show that our proposed model simulates most components reasonably well. In 3 

particular, the simulated daily runoff series at most regulated and less-regulated 4 

stations match well with the observations. The average correlation coefficient and 5 

coefficient of efficiency between the simulated and observed runoffs are 0.85 and 0.70, 6 

respectively. Both the simulated low and high flow events at most stations are 7 

improved when the dam regulation is considered. The daily ammonium-nitrogen 8 

(NH4-N) concentration, which is used as a key index in the water quality evaluation, 9 

is also well captured with the average correlation coefficient of 0.67. Furthermore, the 10 

diffuse source load of NH4-N and the corn yield are reasonably simulated for each 11 

administrative region. This integrated water system model is expected to improve the 12 

simulation performances with extension to more model functionalities, and to provide 13 

a scientific basis for the implementation in integrated river basin managements. 14 

 15 

1. Introduction 16 

Severe water crises are global issues that have emerged as a consequence of the rapid 17 

development of social economy, and include flooding, water shortages, water 18 

pollution and ecological degradation. These crises have hindered the equitable 19 

development of regions by compromising the sustainability of vital water resources 20 

and ecosystems. It is impossible to address these crises within a single scientific 21 

discipline (e.g., hydrology, hydraulics, water quality or aquatic ecology) because of 22 

the complicated interactions among physical, chemical and ecological components of 23 

an aquatic ecosystem (Kindler, 2000; Paola et al., 2006). The paradigm of integrated 24 

river basin management may be a sensible solution at basin scale by focusing on the 25 

coordinated management of water resources in term of social-economy, water quality 26 

and ecosystems. Integrated water system models have been popular since last decade 27 

due to the rapid development of water-related sciences, computer science, earth 28 

observation technologies and the availability of open data. 29 

Hydrological cycle has been known as a critical linkage among other water-related 30 

processes (e.g., physical, biogeochemical and ecological processes) and energy fluxes 31 

at the basin scale (Burt and Pinay 2005). For examples, physiological and ecological 32 
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physiological and ecological processes of vegetation, and the vertical movements of 1 

nutrients and water in soil layers at the field or experimental catchment scales. 2 

However, these models lack accurate hydrological features (Deng et al., 2011) and are 3 

hard to simulate the movements of water, nutrients and their losses along flow 4 

pathways in the basin. Some biogeochemistry models are SOILN (Johnsson et al., 5 

1987), EPIC (Sharpley and Williams, 1990), DNDC (Li et al., 1992), Daisy 6 

(Abrahamsen and Hansen, 2000), and ICECREAM (Tattari et al., 2001). Overall, 7 

most models usually achieve good performances on their oriented processes and only 8 

approximate the results for other processes outside of the model’s focus in the 9 

integrated river basin management.  10 

Unlike the above-mentioned models, SWAT is an integrated water system model that 11 

can simulate most water-related processes over a long period at large scales (Arnold et 12 

al., 1998). However, not all water-related processes can be well captured in practice 13 

because of the inaccurate descriptions of some processes, such as daily simulations of 14 

extreme flow events (Borah and Bera, 2004), soil nitrogen and carbon (Gassman et al., 15 

2007) and regulation rules of dams or sluices in regulated basins (Zhang et al., 2012). 16 

Particularly, the simulation methods of surface runoff yield in SWAT have been 17 

questioned, e.g., the general applicability of the curve number (Rallison and Miller 18 

1981), and the scale limitations of the Green-Ampt infiltration model (King et al., 19 

1999). Furthermore, SWAT has difficulties in accurately capturing the complicated 20 

dynamic processes of soil nitrogen and carbon by comparing with other biochemistry 21 

models (Gassman et al., 2007). Several modified versions have been developed, such 22 

as SWIM (Krysanova et al., 1998), and SWAT-N (Polhert et al. 2006, 2007). 23 

In this study, we tend to develop an integrated water system model based on a 24 

hydrological model. The time variant gain model (TVGM) proposed by Xia (1991) is 25 

a lumped hydrological model based on the hydrological data from many basins with 26 

different scales all over the world. In TVGM, the rainfall-runoff relationship is 27 

considered to be nonlinear because the surface runoff coefficient varies over time and 28 

is significantly affected by antecedent soil moisture. TVGM has strong mathematical 29 

basis because this nonlinear relationship is transformed into a complex Volterra 30 

nonlinear formulation. Wang et al. (2002) extended TVGM to the distributed time 31 

variant gain model (DTVGM) by taking the advantages of better computing facilities 32 

and available data sources. DTVGM is currently used in many basins with different 33 
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scales and climate zones to investigate the effect of human activities and climate 1 

change on runoff, and shows good simulation performances (Xia et al., 2005; Wang et 2 

al., 2009).  3 

In the model development, we would like to produce reasonable simulations 4 

simultaneously in both hydrological and water quality processes, and to include more 5 

water-related processes such as soil biogeochemistry and crop growth for better 6 

understandings of the complicated water related processes and their interactions in the 7 

real basins. Our proposed model is built by extending DTVGM through coupling the 8 

detailed interactions and linkages among hydrological, water quality, soil 9 

biogeochemical and ecological processes, as well as considering the prevalent 10 

regulations of water projects (dams and sluices) at the basin scale. In order for readers 11 

to use the proposed model easily, a parameter analysis module, which includes 12 

popular objective functions, autocalibration approaches and summary statistics, is also 13 

developed. To demonstrate the model performances, we simulate several key 14 

water-related components, including flow regimes, diffuse source (or nonpoint source) 15 

pools of nutrients, water quality variables in water bodies and crop yield, in a highly 16 

regulated and heavily polluted catchment (Shaying River Catchment) in China. 17 

 18 

2. Methods and material  19 

2.1 Model framework 20 

Our proposed model includes eight major modules, namely the hydrological cycle 21 

module (HCM), soil biochemical module (SBM), crop growth module (CGM), soil 22 

erosion module (SEM), overland water quality module (OQM), water quality module 23 

of water bodies (WQM) and dam regulation module (DRM). The parameter analysis 24 

tool (PAT) is also designed for model calibration. The model structure is shown in 25 

Figure 1. More detailed descriptions of each module and its interactions with other 26 

modules are given in sub-sections 2.1.1 to 2.1.5. The main equations of each process 27 

are deferred to the appendix and supplementary materials for readers who are 28 

interested in the mathematical details. 29 

Our model is based on the hypothesis that the cycles of water and nutrients (N, P and 30 

C) are inseparable and act as the critical linkages among all the modules. It takes full 31 
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advantages of the existing models, i.e., the powerful interconnections of the 1 

hydrological models with other processes at the spatial scale, the elaborative 2 

descriptions of the ecological models on nutrient vertical movement in soil layers, and 3 

the elaborative descriptions of the water quality models on nutrient movements along 4 

river networks. First, several key components simulated by the hydrological cycle 5 

(HCM) module (e.g., evapotranspiration, soil moisture and flow), are treated as 6 

critical linkages in all the modules (Section 2.1.1). Second, the soil biochemical 7 

processes determine the nutrient loads absorbed in the crop growth process (CGM) 8 

and migrated into water bodies as the diffuse pollution source (OQM and WQM). The 9 

accurate descriptions of soil biochemical processes are helpful in improving the 10 

simulation of water quality processes in responding to agricultural management 11 

(Section 2.1.2). Third, the hydrological cycle module (HCM) provides a function for 12 

describing the connections between spatial calculation units to simulate the overland 13 

and in-stream movements of water and nutrients at the basin scale (Sections 2.1.1 and 14 

2.1.3). 15 

2.1.1 Hydrological cycle module (HCM) 16 

Surface runoff yield calculation is the core of hydrological simulation. TVGM is 17 

adopted to calculate the surface runoff yields for different land-use areas, such as 18 

forest, grassland, water body, urban area, unused land, paddy land, and dryland 19 

agriculture. The potential evapotranspiration is calculated using Hargreaves method 20 

(Hargreaves and Samani, 1982) because only the widely available daily maximum 21 

and minimum temperature data are used. The actual plant transpiration is expressed as 22 

a function of potential evapotranspiration and leaf area index, whereas soil 23 

evaporation is expressed as a function of potential evapotranspiration and surface soil 24 

residues (Neitsch et al., 2011). The yields of interflow and baseflow have linear 25 

relationships with the soil moisture in the upper and lower layers, respectively (Wang 26 

et al., 2009). The infiltration from the upper to lower soil layers is calculated using 27 

storage routing method (Neitsch et al., 2011). The Muskingum method or kinetic 28 

wave equation is used for river flow routing. 29 

Figure 2 shows that the shallow soil moisture from the hydrological cycle module is a 30 

major factor that connects the crop growth module (to control crop growth) and the 31 

soil biochemical module (to control the vertical migration and reaction of nutrients in 32 
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the soil layer). Plant transpiration is also linked to the soil biochemical module (to 1 

drive the vertical migration of nutrients in the soil layer). The surface runoff is linked 2 

to the soil erosion module, while the overland flow is connected to the overland water 3 

quality module (to drive the movements of nutrients and sediment along flow 4 

pathways) and the water quality module of water bodies (rivers and lakes) for runoff 5 

routing. Moreover, the hydrological cycle module provides the inflows for individual 6 

dams or sluices in the dam regulation module.  7 

2.1.2 Modules for ecological processes 8 

The ecological processes are described by the soil biochemical module and the crop 9 

growth module. The crop growth and soil biochemical processes directly affect the 10 

soil moisture, evapotranspiration, and nutrient transformation and loss from soil layers. 11 

Therefore, our model incorporates the water cycle, nutrient cycle, crop growth, and 12 

their key linkages.  13 

2.1.2.1 Soil biochemical module (SBM) 14 

The soil biochemical module simulates the key processes of Carbon (C), Nitrogen (N) 15 

and Phosphorus (P) dynamics in the soil layers, including decomposition, 16 

mineralization, immobilization, nitrification, denitrification, leaching and plant uptake. 17 

Different forms of N and P outputted from the soil biochemical module are connected 18 

to the crop growth module as the nutrient constraints of crop growth and to the 19 

overland water quality module as the main diffuse pollution sources to water bodies 20 

(Figure 3a).  21 

Soil C and N cycle. We adopt the sub-models of daily step decomposition and 22 

denitrification in DNDC (Li et al., 1992) to simulate the soil biogeochemical 23 

processes of C and N at the field scale. The decomposition and other oxidation 24 

processes are the dominant microbial processes in the aerobic condition. The three 25 

conceptual organic C pools are the decomposable residue C pool, microbial biomass 26 

C pool and stable C pool. The decomposition of each C pool is treated as the 27 

first-order decay process with the individual decomposition rates constrained by the 28 

soil temperature and moisture, clay content, and C: N ratio. The major simulated 29 

processes of decomposition under aerobic condition are mineralization, 30 

immobilization, ammonia (NH3) volatilization and nitrification. The mineralization 31 
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and immobilization of mineral N (NH4
+ and NO3

-) are determined by the flow rates of 1 

soil organic carbon (SOC) pools. NH3 volatilization is controlled by the NH4
+ 2 

concentration, clay content, pH, soil moisture and temperature. NH4
+ is oxidized to 3 

NO3
--N during nitrification and nitrous oxide (N2O) is emitted into the air during the 4 

nitrification. Denitrification occurs under the anaerobic condition, which is controlled 5 

by soil moisture, temperature, pH, and dissolved soil organic carbon content. The 6 

detailed descriptions are given in Appendix B and Li et al. (1992). 7 

Soil P cycle. The major processes of soil P cycle are simulated based on the study of 8 

Horst et al. (2001). Six P pools are considered, including three organic pools (stable 9 

and active pools for plant uptake, fresh pool associated with plant residue) and three 10 

mineral pools (dissolved mineral, stable and active pools). The involved processes are 11 

the P release, mineralization and decomposition from fertilizer, manure, residue, 12 

microbial biomass, humic substances, and the sorption by plant uptake (Horst et al, 13 

2001; Neitsch et al., 2011).  14 

Soil profile is divided into three layers, namely, surface (0-10 cm), and user defined 15 

upper and lower layers, all of which are consistent with the soil layers of hydrological 16 

cycle module to smoothly exchange the values through the linkages (e.g., soil 17 

moisture) among different modules.   18 

2.1.2.2 Crop growth module (CGM) 19 

The crop growth module is developed based on EPIC crop growth model (Hamrick, 20 

1992). It simulates total dry matter, leaf area index, root depth and density distribution, 21 

harvest index, and nutrient uptake, etc. (Williams et al., 1989; Sharpley and Williams, 22 

1990). The crop respiration and photosynthesis drive the vertical movements of water 23 

and nutrients. The output of leaf area index is a main factor connecting the 24 

hydrological cycle module (to control the transpiration) and the crop residue left in the 25 

fields is a main source of organic nutrients (C, N and P) connecting to the soil 26 

biochemical module for soil biochemical processes, to the overland water quality 27 

module, and to the soil erosion module as one of the five constraint factors (Figure 28 

3b). 29 
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2.1.3 Modules for water quality processes  1 

The water quality processes focus on the migration and transformation of water 2 

quality variables (e.g., sediment, different forms of nutrients, biochemical oxygen 3 

demand: BOD, and chemical oxygen demand: COD) along the flow pathways in the 4 

land surface and river system. The main modules are the soil erosion module for the 5 

sediment yield, the overland water quality module for the migration of overland 6 

diffuse source to water bodies, and the water quality module for the migration and 7 

transformation of point and diffuse sources of pollutants in water bodies.  8 

2.1.3.1 Soil erosion module (SEM) 9 

The soil erosion by precipitation is estimated using the improved USLE equation 10 

(Onstad and Foster 1975) based on runoff yields outputted from the hydrological 11 

cycle module and crop management factor outputted from the crop growth module. 12 

The soil erosion module simulates sediment load for the overland water quality 13 

module to provide the carrier for the migration of insoluble organic matters along 14 

overland transport paths and water bodies (Figure 4a).  15 

2.1.3.2 Overland water quality module (OQM) 16 

This module simulates the overland loss and migration load of diffuse source 17 

pollutants (e.g., sediment, insoluble and dissolved nutrients, BOD and COD) (Figure 18 

4b). The main diffuse sources include the nutrient loss from the soil layers and urban 19 

areas, the farm manure from livestock in rural areas. The nutrient loss from the soil 20 

layers, as the primary diffuse source in most catchments, is determined by the 21 

overland flow and sediment yield (Williams et al., 1989) and the other sources are 22 

estimated using the export coefficient method (Johnes, 1996). The overland migration 23 

processes contain the dissolved pollutant migration with overland flow and the 24 

insoluble pollutant migration with sediment. All the processes occur along the 25 

overland transport paths. 26 

2.1.3.3 Water quality module of water bodies (WQM) 27 

This module simulates the transformation and migration of water quality variables in 28 

different types of water bodies (in-stream, water impounding) (Figure 4c). The 29 
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simulated variables include water temperature, dissolved oxygen (DO), sediment, 1 

different forms of nutrients (N and P), BOD and COD. Point sources of pollutant are 2 

also considered. Point sources are directly added to the surface water in the model 3 

according to their geographic positions. Common point sources are urban water 4 

treatment plants and industrial plants. 5 

Two modules are designed for the different types of water bodies, i.e., the in-stream 6 

water quality module and the water quality module for water impounding (reservoir or 7 

lake). The enhanced stream water quality model (QUAL-2E) (Brown and Barnwell 8 

1987), is adopted to simulate the longitudinal movement and transformation of water 9 

quality variables in the in-streams. The model is solved at the sub-basin scale rather 10 

than at the fine grid scale to maintain spatial consistent with the hydrological cycle 11 

module. The water quality outputs provide the water quality boundary of dams or 12 

sluices in the dam regulation module. The water quality module for water impounding 13 

assumes that water body is at the steady state and focuses on the vertical interaction of 14 

water quality processes. The main processes include water quality degradation and 15 

settlement, sediment resuspension and decay. 16 

2.1.4 Dam regulation module (DRM) 17 

Dams and sluices highly alter flow regimes and associated water quality processes in 18 

most river networks. Thus, the dam and sluice regulation should be considered in the 19 

water system models. The dam regulation module provides the regulated boundaries 20 

(e.g., water storage and outflow) to the hydrological cycle module for flow routing 21 

and to the water quality module of water bodies for pollutant migration.  22 

Given that different types of dams and sluices are likely to show completely different 23 

regulation behaviors, we try to reproduce their common functionalities for either the 24 

flood control or water supply in this module. Three methods are proposed to calculate 25 

the water storage and outflow of dams or sluices, namely, the measured outflow, 26 

controlled outflow with target water storage, and the relationship between outflow and 27 

water storage volume. The first method requires users to provide the measured 28 

outflow series during the simulation period. The second method simplifies the 29 

regulation rules of dams or sluices for long-term analysis based on the assumption that 30 

water is stored according to the usable water level during non-flooding season and the 31 

flood control level during flooding season, and the surplus water is discharged. This 32 
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method requires the characteristic parameters of dams or sluices including water 1 

storage capacities of dead, usable, flood control and maximum flood levels and the 2 

corresponding water surface areas. The third method is based on the relationships 3 

among water level, water surface area, storage volume and outflow according to the 4 

designed dam data, or long-term observed data (Zhang et al., 2013) (Appendix C).  5 

2.1.5 Parameter analysis tool (PAT) 6 

In our model, 66 lumped and 94 distributed parameters involve the hydrological, 7 

ecological and water quality processes. The distributed parameters are divided into 37 8 

overland parameters, 17 stream parameters and 40 parameters of water projects (only 9 

for the sub-basin with reservoir or sluice) according to their spatial distribution. These 10 

parameter values are determined by the properties of overland landscape and soil, 11 

stream patterns, and water projects, respectively. Different spatial calculation units 12 

share many common parameter values if their properties are the same.  13 

Owing to a large number of parameters, it is hard to find optimal parameter values by 14 

manual tuning. Limited number of observed processes causes equifinality in model 15 

calibration. Therefore, the parameter sensitivity analysis and calibration are important 16 

steps to alleviate equifinality in the applications of highly parameterized models, 17 

particularly for integrated water system models (Mantovan and Todini, 2006; 18 

Mantovan et al. 2007; McDonnell et al., 2007). The PAT is designed to help users in 19 

the use of our proposed model. It contains parameter sensitivity analysis, 20 

autocalibration and model performance evaluation (Figure 5). 21 

To evaluate model performance, five traditionally used criteria are included in the PAT, 22 

i.e., bias (bias), relative error (re), root mean square error (RMSE), correlation 23 

coefficient (r) and coefficient of efficiency (NS). The detail definitions of these 24 

criteria are given in Appendix D. Furthermore, flow duration curve and cumulative 25 

distribution function are also provided for capturing multiple signatures of calibrated 26 

processes. More criteria can also be proposed by the users. The objective function(s) 27 

to calibrate the model can be formed by a single or multiple criteria or their function 28 

(such as weighted average). 29 

The parameter analysis algorithms in the PAT include the parameter sensitivity 30 

method (Latin hypercube one factor at a time: LH-OAT) (van Griensven et al., 2006), 31 

the single objective auto-optimization methods such as particle swarm optimization 32 
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(PSO) (Kennedy, 2010), genetic algorithm (GA) (Goldberg 1989) and shuffled 1 

complex evolution (SCE-UA) (Duan et al., 1994), as well as the multi-objective 2 

auto-optimization methods such as weighted sum method and nondominated sorting 3 

genetic algorithm II (NSGA-II) (Deb et al., 2002). The method can be selected by 4 

users on the basis of their specific requirements.  5 

In order to obtain optimal parameter values, the following treatments are adopted in 6 

the PAT. First, the prior ranges of all the parameter values or their prior distributions 7 

(i.e., uniform or normal) are preset by referring the literatures or similar basins. The 8 

constraints on parameters are also considered in both parameter sensitive analysis and 9 

autocalibration. In the hydrological cycle module, the constraints on soil moisture 10 

parameters are “Wm (minimum moisture) < Ww (moisture at permanent wilting point) 11 

< Wfc (field capacity) < Wsat (saturated moisture capacity)”. The basic surface runoff 12 

coefficient (g1) for different land use types are set in ascending order (from water 13 

body, paddy land, urban area, forest, dryland agriculture, unused land to grassland). 14 

The interflow yield coefficient (Kss) is greater than the baseflow coefficient (Kbs). In 15 

the water quality module of water bodies, the settling rates of water quality variables 16 

(Kset) in the water impounding are greater than the resuspension rates (Kscu) and the 17 

settling rates in channels (Rset). Second, the sensitive parameters are determined to 18 

reduce the parameter dimensions by sensitivity analysis. Third, the selected sensitive 19 

parameters are calibrated by auto-optimization method, while the insensitive 20 

parameters remain as their default values which are given based on the best of our 21 

knowledges by referring the literatures (e.g., SWAT, EPIC, and DNDC) or similar 22 

basins. 23 

The PAT connects with other modules through the parameter values which are used to 24 

simulate the processes of other modules and evaluate the objective functions in 25 

sensitivity analysis and autocalibration. Depending on the algorithm used, the 26 

parameter values are (randomly) sampled from the multi-dimensional parameter 27 

spaces to drive our model and the objective function value of each parameter set is 28 

then obtained. For the parameter sensitivity analysis, the sensitivity index of each 29 

parameter set is evaluated by comparing the variation of the objective function value 30 

along with the change of parameter value. For the parameter autocalibration, the good 31 

parameter sets are kept or updated by the auto-optimization method until the 32 

convergence or the maximum number of iterations is achieved. 33 
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 1 

2.2 Model operation 2 

2.2.1 Multi-scale solution 3 

The spatial heterogeneities of basin attributes and the different time scales used in 4 

individual processes cause inconsistent spatial and temporal scales in model 5 

integration (Sivapalan and Kalma, 1995; Singh and Woolhiser, 2002). For the spatial 6 

scale, three levels of spatial calculation units are designed in the model, namely, 7 

sub-basin, land-use and crop from largest to smallest. These units are defined as the 8 

minimum polygons with similar hydrological properties, land-use types and 9 

agriculture crop cultivation patterns, respectively. The sub-basins are defined on the 10 

basis of digital elevation model (DEM), the positions of gauges and water projects, 11 

and are used in the hydrological cycle module (e.g., flow routing in both land and 12 

in-stream), overland water quality module, water quality module of water bodies and 13 

dam regulation module. Seven specific land-use units of each sub-basin are 14 

partitioned by the land-use classification (i.e., forest, grassland, water, urban, unused 15 

land, paddy land and dryland agriculture) and are used in the hydrological cycle 16 

module (e.g., water yield, infiltration, interception and evapotranspiration) and the soil 17 

erosion module. Moreover, several specific land-use units (paddy land and dryland 18 

agriculture, forest, grassland), where agricultural activities usually occur, are divided 19 

further into the crop units for the detailed analysis of the impact of agricultural 20 

management on water and nutrient cycles. In the current version of our model, these 21 

four land-use units are divided into 10 specific categories of crop units as fallow for 22 

all these land-use units, grass for grassland unit, fruit tree and non-economic tree for 23 

forest unit, early rice and late rice for paddy unit, spring wheat, winter wheat, corn, 24 

and mixed dry crop for dryland agriculture unit. The crop unit category of a specific 25 

land-use pattern varies depending on crop cultivation structure and timing. The related 26 

modules are the soil biochemical module and the crop growth module. All of the 27 

outputs of the crop unit are summarized at the land-use unit scale, or sub-basin scale 28 

based on the percentages of area in different crop units. 29 

For the temporal scale, it is practical to use a daily time-step as this is consistent with 30 

the underlying rainfall-runoff module and the data availability. The sub-daily scale 31 
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may improve the performance in some modules (e.g., SEM, WQM). However, most 1 

observations (e.g., climate data sets, soil nutrient availability, and water quality 2 

concentrations) are at the daily scale, leading to potential uncertainties or instabilities 3 

to disaggregate the observations into a sub-daily scale. Linear or nonlinear 4 

aggregation functions are used to transform different time scales to daily scale 5 

(Vinogradov et al., 2011), such as exponential functions for flow infiltration and 6 

overland flow routing processes in the hydrological cycle module, for soil erosion 7 

processes in the soil erosion module (equations A5, A6 and S32 in the Appendices), 8 

and accumulation functions for the crop growth process in the crop growth module 9 

(equation S7 in the supplementary material). 10 

2.2.2 Basic datasets and spatial delineation 11 

The indispensable datasets for model setup are GIS data, daily meteorological data 12 

series, social and economic data series, and dam attribute data. Several monitoring 13 

data series are needed for model calibration, such as runoff and water quality series in 14 

river sections, soil moisture and crop yield at the field scale. Table 1 shows all of the 15 

detailed datasets and their usages. 16 

The hydrological toolset of Arc GIS platform is used to delineate all the spatial 17 

calculation units and rivers based on DEM, land-use data. The sub-basin attributes 18 

(e.g., location, evaluation, area, land surface slope and slope length, land-use areas) 19 

and flow routing relationship between sub-basins are obtained during this procedure. 20 

 21 

2.3 Study area and model testing 22 

In this study, our model is applied to a highly regulated and heavily polluted 23 

catchment (the Shaying River Catchment) in China. The simulated water-related 24 

components contains daily runoff and water quality concentrations at river 25 

cross-sections, spatial patterns of diffuse source pollutant load and crop yield at 26 

sub-basin scale.  27 

2.3.1 Study area 28 

The Shaying River Catchment (112°45′~113°15′E, 34°20′~34°34′N), which is the 29 

largest sub-basin of the Huai River Basin in China, is selected as the study area 30 
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(Figure 6a). The drainage area is 36,651 km2 with a mainstream of 620 km. The 1 

average annual population (2003-2008) (Figure 6b) is 32.42 million, with rural 2 

population of 23.70 million. The average annual stocks are 8.30 million (big animals: 3 

cattle, pigs and sheep) and 178.42 million (poultries) (Figure 6c). The average annual 4 

use of chemical fertilizer is 1.55 million ton (N: 38%-51%, P: 16%-25% and others: 5 

23%-47%) (Figure 6d). The catchement is located in the typical warm temperate, and 6 

semi-humid continental climate zone. The annual average temperature and rainfall are 7 

14-16oC and 769.5 mm, respectively. The Shaying River is the most seriously polluted 8 

tributary with a pollutant load contribution of over 40% in the whole Huai River and 9 

is usually known as the water environment barometer of the Huai River mainstream. 10 

To reduce flood or drought disasters, 24 reservoirs and 13 sluices, whose regulation 11 

capacities are over 50% of the total annual runoff, have been constructed and 12 

fragmented the river into several impounding pools.  13 

2.3.2 Model setup 14 

All data sets for model setup and calibration are collected from the government 15 

bureaus, official books or scientific references. The detailed descriptions were 16 

presented in Tables S2 and S3 of the supplementary material. The Shaying River 17 

Catchment are divided into 46 sub-basins. According to the land-use classification 18 

standard of China (CNS,2007), the main land use types are dryland agriculture 19 

(84.04%), forest (7.66%), urban (3.27%), grassland (2.68%), water (1.43%), paddy 20 

land (0.91%), and unused land (0.01%).The soil input parameters (the contents of 21 

sand, clay and organic matters) are calculated based on the percentage of soil types in 22 

each sub-basin. The main crops are early rice and late rice in the paddy land, and 23 

winter wheat and corn in the dryland agriculture. The main agricultural management 24 

schemes (fertilize, plant, harvest and kill) are summarized by field investigation in the 25 

studies of Wang et al., (2008) and Zhai et al. (2014) (Table S3). Crop rotation and its 26 

management scheme are considered in the model by setting the start time, the duration 27 

of management and the fertilizer amounts. Two fertilizations (base and additional 28 

fertilization) are considered in the model during the complete growth cycle of a 29 

certain crop. The areas of sub-basin, land-use and crop units ranged from 46.48 km2 to 30 

3771.15 km2, from 0.04 km2 to 2762.5 km2, and from 3.73 km2 to 2762.5 km2, 31 

respectively. 32 
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The daily precipitation series from 2003 to 2008 at 65 stations are interpolated to each 1 

sub-basin using the inverse distance weighting method, while the daily temperature 2 

series at six stations are interpolated using the nearest-neighbor interpolation method. 3 

The social and economic data (e.g., population and livestock in the rural area, 4 

chemical fertilizer amounts) are calculated for each sub-basin based on the area 5 

percentage.  6 

Moreover, 5 reservoirs, 12 sluices and over 200 wastewater discharge outlets are 7 

considered in the model according to their geographical positions. The farm manure 8 

from rural living and livestock farming are considered in the model as diffuse source 9 

owing to their scattered characteristics and the deficient sewage treatment facilities in 10 

the rural areas.  11 

2.3.3 Model evaluation 12 

The observation series of daily runoff and NH4-N concentration are used to calibrate 13 

the model parameters. There are five regulated stations (Luohe, Zhoukou, Huaidian, 14 

Fuyang and Yingshang) and one less-regulated station (Shenqiu) which is the 15 

downstream station situated far from water projects. Moreover, given that the 16 

observed yields of diffuse pollutant loads and crops are hard to collect for the whole 17 

catchment, only the statistical results from official reports or statistical yearbooks 18 

(Wang, 2011; Henan Statistical Yearbook, 2003, 2004 and 2005) are collected to 19 

validate the model performances. 20 

We select LH-OAT for parameter sensitivity analysis and SCE-UA for parameter 21 

calibration in the PAT. To reduce the dimensions of the calibration problem, we 22 

restrict SCE-UA to calibrate only the sensitive parameters defined by LH-OAT, 23 

whereas the rest parameters remain constants. The selected evaluation indices of 24 

model performance are bias, r and NS. However, NS is sensitive to extreme value, 25 

outlier and number of the data points, and is not commonly used in environmental 26 

sciences (Ritter and Muñoz-Carpena, 2013). Thus NS is not used to evaluate the 27 

NH4-N concentration simulation.  28 

The model calibration is conducted by the following steps. Hydrological parameters 29 

are calibrated first against the observed runoff series at each station from upstream to 30 

downstream, and then water quality parameters against the observed NH4-N 31 

concentration series. The calibration and validation periods are from 2003 to 2005 and 32 
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from 2006 to 2008, respectively. The weighted sum method is usually used to 1 

comprehensively handle multi-objectives (Efstratiadis and Koutsoyiannis, 2010). In 2 

this study, single objective functions are formed by equally weighting the evaluation 3 

indices as (frunoff and fNH4-N)  4 
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runoff
                                    (1) 5 

because the case study is only a demonstration of the model performance. 6 

Moreover, the effect of dam regulation is considered because of the high regulation in 7 

most rivers. The dam and sluice regulation usually alters the intra-annual distribution 8 

of flow events, such as flattening high flow and increasing low flow. The simulation 9 

performances of high and low flow are separately evaluated, and the effectiveness of 10 

the DRM is tested by comparing the simulation with and without the consideration of 11 

dam regulation. The high and low flows are determined by the cumulative distribution 12 

function (CDF). A threshold of 50% is used for easy presentation, i.e., the flow is 13 

treated as high flow (or low flow) if its percentile is greater than (or smaller than) the 14 

threshold.  15 

 16 

3. Results 17 

3.1 Parameter sensitivity analysis 18 

Nine sensitive parameters are detected for runoff simulation by LH-OAT (Table 2), 19 

including soil related parameters Wfc (field capacity), Wsat (saturated moisture 20 

capacity), Kr (interflow yield coefficient) and Ksat (steady state infiltration rate); 21 

TVGM parameters g1 (basic surface runoff coefficient) and g2 (influence coefficient of 22 

soil moisture); baseflow parameters Kg (baseflow yield coefficient) and Tg (delay time 23 

for aquifer recharge); and evapotranspiration parameter KET (adjusted factor of actual 24 

evapotranspiration). All of these parameters control the main hydrological processes, 25 

in which soil water and evapotranspiration processes are distinctly important and 26 

explain 54.3% and 23.2% of the runoff variation, respectively.  27 

For NH4-N concentration simulation, over 90% of observed NH4-N concentration 28 

variations are explained by 14 sensitive parameters which are categorized into 29 
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hydrological (59.28% of variation), NH4-N (20.65% of variation) and COD (12.34% 1 

of variation) related parameters. The main explanation is that hydrological processes 2 

provide the hydrological boundaries that affect the diffuse source load into rivers and 3 

the degradation and settlement processes of NH4-N in water bodies (van Griensven et 4 

al., 2002). NH4-N concentration is further influenced by the settling and biological 5 

oxidation processes. Moreover, it is a competitive relationship between COD and 6 

NH4-N to consume DO of water bodies in a certain limited level (Brown and 7 

Barnwell, 1987). 8 

3.2 Hydrological simulation 9 

The runoff simulations fit the observations well at all the stations (Figure 7 and Table 10 

3). The biases are very close to 0.0 at all the regulated stations except Zhoukou with 11 

an underestimation (bias: 0.24 for calibration and 0.41 for validation) and Luohe with 12 

an overestimation (bias: -0.52 for validation). The obvious biases are caused by the 13 

average objective function of all three evaluation rather than the bias only. The r 14 

values range from 0.75 (Luohe for validation) to 0.92 (Yingshang for calibration) with 15 

the average value of 0.85, whereas the NS values ranged from 0.51 (Luohe for 16 

validation) to 0.84 (Yingshang for calibration) with the average value of 0.70. The 17 

results of the regulated stations are a little worse than those of the less-regulated 18 

station (Shenqiu) owing to the regulation. 19 

By comparing the simulations with the observations from 2003 to 2008, we can see 20 

that the high and low flows are usually overestimated at all stations if the model did 21 

not consider the regulations (Figure 8). Except the high flows at Zhoukou, both high 22 

and low flows at all the stations are simulated well when the dam and sluice 23 

regulation is considered (Table 4). The best fitting is at Fuyang, particularly for the 24 

high flow simulation (bias=0.10, r=0.89 and NS=0.78). From unregulation to 25 

regulation settings, the improvements measured by frunoff range from -0.08 (Zhoukou) 26 

to -0.29 (Huaidian) for high flow simulation, from -0.05 (Zhoukou) to -0.31 (Huaidian) 27 

for average flow simulation, and from -1.97 (Fuyang) to -3.91 (Yingshang) for low 28 

flow simulation except Zhoukou (1.28). The improvements in the low flow 29 

simulations are very obvious. However, their performances still need to be improved 30 

further, particularly for the underestimation at Zhoukou and Huaidian. The possible 31 

reasons are as follows. On one hand, the applied evaluation indices (r and NS) are 32 
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known to emphasize the high flow simulation rather than the low flow simulation 1 

(Pushpalatha et al., 2012) and the objective of autocalibration is to obtain the optimal 2 

solution for the average of three evaluation indices rather than the bias only. The 3 

slight sacrifice of bias improves the overall simulation performance evaluated by all 4 

three indices. One the other hand, the dam regulation module still could not fully 5 

capture the low flows.  6 

Furthermore, the model performances on monthly flows are even better, particularly 7 

for r and NS. The r values range from 0.87 (Luohe for both calibration and validation) 8 

to 0.95 (Fuyang for calibration) with the average value of 0.92, whereas the NS values 9 

range from 0.67 (Luohe for validation) to 0.94 (Shenqiu for validation) with the 10 

average value of 0.80. Compared with the existing results at the same stations by 11 

SWAT (Zhang et al., 2013), the flow simulations at the downstream stations are 12 

improved although they become a little worse at the upstream stations (Luohe and 13 

Zhoukou for calibration). In particular, the total water volume and agreements with 14 

the observations (i.e., bias and NS) are well captured. 15 

3.3 Water quality simulation 16 

The simulated concentrations of NH4-N match well with the observations according to 17 

the evaluation standard recommend by Moriasi et al. (2007) (Figure 9 and Table 5). 18 

The r values are over 0.60 for all the stations except Zhoukou (0.56 for validation), 19 

Yingshang (0.49 for validation) and Shenqiu (0.41 for validation) and the average 20 

value is 0.67. The bias are considered as “acceptable” with a range from -0.27 21 

(Fuyang for validation) to 0.29 (Zhoukou for calibration). The best simulation are at 22 

Luohe Station. The obvious discrepancies between the simulations and observations 23 

often appear in the period from January to May because of the poor simulation 24 

performance on the low flows. Although the biases change markedly from calibration 25 

to validation at Fuyang and Yingshang stations, the model performances are still 26 

acceptable. The possible explanation is that the biases for corresponding runoff 27 

simulations at these two stations also change.  28 

Compared with the results without the consideration of regulation, the simulation 29 

results are obviously improved when the regulation is considered except for the 30 

calibration at Fuyang Station. The decreases in fNH4-N value range from 0.10 (Huaidian 31 

for calibration) to 0.49 (Zhoukou for validation) although there is a slight increase at 32 



 

 20

Fuyang for the calibration (0.02). Therefore, it is concluded that the consideration of 1 

dam and sluice regulation plays an important role in the water quality simulation. In 2 

the upper stream of Shaying River, the flow is small and the NH4-N concentration 3 

decrease obviously because of the degradation and settlement of large water storage. 4 

In the downstream of Shaying River, the NH4-N concentration increases because of 5 

the pollutant accumulation and the decreasing flow from dams and sluices owing to 6 

the regulation (Zhang et al., 2010). Therefore, the simulated concentrations without 7 

regulation are usually overestimated or are higher than the simulation with regulation 8 

at the upstream stations (Luohe and Zhoukou). However, the concentrations are 9 

underestimated at the downstream stations (Huaidian, Fuyang and Yingshang). The 10 

largest difference between the simulations with and without the consideration of 11 

regulation appears at Zhoukou.  12 

The spatial pattern of average annual load of diffuse source NH4-N is shown in Figure 13 

10a. The estimated annual yield rates range from 0.048 t km-2 year-1 to 11.00 t km-2 14 

year-1 with the average value of 0.73 t km-2 year-1. The yield in each administrative 15 

region is summarized from the results of each sub-basin according to the area 16 

percentage of sub-basin in each administrative region. Compared with the statistical 17 

load of each administrative region based on the soil erosion, land use and fertilizer 18 

amount in the official report (Wang, 2011), the bias of simulated diffuse source load 19 

in the whole region is 21.31% when the two regions with the biggest biases (Fuyang 20 

and Pingdingshan) are excluded as outliers. The high load regions are in the middle of 21 

Pingdingshan, Xuchang, Zhengzhou, Fuyang and Zhoukou regions. The spatial 22 

pattern is significantly correlated with the distribution of paddy area (r=0.506, 23 

p<0.001) and rice yield (r=0.799, p<0.001) (Figures 10 b and c). The fertilizer losses 24 

in the paddy areas might be the primary contributor to the diffuse source NH4-N load, 25 

because the average nitrogen loss coefficient in China is just 30%-70% in the paddy 26 

areas, which is higher than that in the dryland agriculture (20%-50%) (Zhu, 2000; 27 

Xing and Zhu, 2000).  28 

Summarized from the collected data for model input, the observed average load of 29 

point source NH4-N into rivers is approximately 4.70×104 t year-1 in the Shaying 30 

River Catchment. The diffuse source contributes 38.57% of the overall NH4-N load on 31 

average from 2003 to 2005, and this value is slightly higher than the statistical results 32 

(29.37%) given in the official report (Wang, 2011). Moreover, the diffuse source 33 
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contributions at the stations range from 31.72% (Huaidian) to 47.13% (Shenqiu). 1 

Compared with the diffuse source loads in the individual administrative regions in 2 

2000, the simulated loads tend to increase from 2003 to 2005 except in Kaifeng region. 3 

The yields in Fuyang and Pingdingshan regions increase at highest rates. The primary 4 

pollution source in the Shaying River Catchment is still the point source, but the 5 

diffuse pollution is also an important concern. In term of spatial variation, the 6 

contribution of diffuse source to the pollutant load is high in the upstream and is low 7 

in the middle and downstream because the point source emission is usually 8 

concentrated in the middle and downstream. Therefore, compared with the results in 9 

Zhang et al. (2013), the overall simulation performance of NH4-N concentration is 10 

also improved remarkably by considering the detailed processes of nutrient in the soil 11 

layers in our model. 12 

3.4 Crop yield simulation 13 

The simulated corn yield and its spatial pattern are shown in Figure 11. The average 14 

annual yields are summarized at sub-basin scale and range from 0.08 to 326.95 t km-2 15 

year-1 with the average value of 76.84 t km-2 year-1. The yield of each administrative 16 

region is further summarized and compared with the data from statistical yearbooks 17 

from 2003 to 2005 (Henan Statistical Yearbook, 2003, 2004 and 2005). The high-yield 18 

regions are Luohe, Fuyang and Zhoukou in the middle and downstream where the 19 

primary land use is the dryland agriculture (93.12%, 95.87% and 93.18%, 20 

respectively). The crop yields in Luohe, Nanyang, Kaifeng regions are well simulated. 21 

The total yield is underestimated in the whole basin with a bias of 19.93%. The 22 

discrepancies might be caused by the boundary mismatch between the administrative 23 

region and sub-basin, spatial heterogeneities of human agricultural activities and 24 

inaccurate cropping pattern used in such huge regions. A high-resolution remote 25 

sensing image and field investigation might be helpful to improve the model 26 

performance.  27 

 28 

4. Discussion 29 
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4.1 Comparison with other models 1 

It is a natural tendency that models grow in complexity in order to capture more 2 

interactions of complex water-related processes in the real basins (Beven, 2006). Our 3 

proposed model is developed in this direction and tends to benefit integrated river 4 

basin management. Therefore, in comparison with most existing models, our proposed 5 

model considers all the water-related processes as an integrated system rather than 6 

isolated systems for individual processes.    7 

Our model provides competitive simulation results in the Huai River Basin (Figures 8 

7-9; Tables 3-5). Several typical models have also been applied in this basin, such as  9 

SWAT for the monthly runoff and water quality simulation at the regulated stations 10 

(Zhang et al., 2012), SWAT and Xinganjiang models for the daily runoff simulation at 11 

the unregulated upstream stations (Shi et al., 2013) and DTVGM for daily runoff 12 

simulation (Ma et al., 2014). Different models have generally comparable 13 

performances on the runoff or water quality simulations. For SWAT, the frunoff values 14 

are from 0.11 to 0.20 with the average of 0.16 at the daily scale at the unregulated 15 

stations (Shi et al., 2013), and from 0.09 to 0.75 with the average of 0.32 at the 16 

monthly scale at the regulated stations (Zhang et al., 2012). The fNH4-N values range 17 

from 0.18 to 0.86 with the average of 0.47 (Zhang et al., 2012). For Xinganjiang 18 

model, the frunoff values are from 0.13 to 0.21 with the average of 0.16 at the daily 19 

scale at the unregulated stations (Shi et al., 2013). For DTVGM, the frunoff values are 20 

0.14 and 0.21 at the daily scale in the calibration and verification periods, respectively 21 

at Bengbu station. Our model performs better than SWAT, especially for the regulated 22 

runoff and water quality simulations. Moreover, both the Xinanjiang model and 23 

DTVGM can only simulate the flow series at the unregulated or less-regulated 24 

stations because they do not consider the dam regulation in their model frameworks.  25 

 26 

4.2 Equifinality 27 

Until now, our understandings of water-related processes are still ambiguous and it is 28 

hard to describe all these processes in the real-word systems from strong physical 29 

foundations (Beven and Freer, 2001; Beven, 2006; Hrachowitz et al., 2014). 30 

Empirical equations are usually adopted to approximate the physical processes with 31 

numerous unknown parameters, especially in the large scale models. A single output 32 
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variable of models is associated with multiple processes and many parameters. For 1 

examples, in our model, nine and 14 sensitive parameters are detected for runoff and 2 

NH4-N simulation, respectively (Table 2). SWAT contains over 200 parameters 3 

(Arnold et al., 1998) and DNDC has nearly 100 parameters (Li et al., 1992). Pohlert 4 

et al., (2006) reported that six hydrological and 12 N-cycle sensitive parameters were 5 

detected in SWAT-N for the simulation of water flow and N leaching. Therefore, due 6 

to the large numbers of model parameters and limited observations, most existing 7 

models are subject to equifinality, which is more serious if more water-related 8 

processes are considered, or more sub-basins are delineated for the distributed models. 9 

Several strategies would be helpful to alleviate the equifinality, such as field 10 

experiments on the physical parameters (Kirchner, 2006), the utilization of more 11 

observed processes, multiple evaluation measures for a single predicted component 12 

(Her and Chaubey, 2015), parameter regularization and process constraints (Tonkin 13 

and Doherty, 2005; Pokhrel et al., 2008; Euser et al., 2013). Moreover, some attempts 14 

are made to move away from traditional curve fitting towards more process 15 

consistency and efficient model selection techniques (Hrachowitz et al., 2014; Fovet 16 

et al., 2015).  17 

For our model, all the independent calibration and validation data sets are specified in 18 

Table 1 and most widely-used measures of model performances are also provided in 19 

the PAT. In the case study, we also employ several observation sources (e.g., runoff 20 

and water quality observations at different stations, the diffuse pollution load and crop 21 

yield data), and use three measures to evaluate model performance for the individual 22 

components (e.g., bias, r and NS). To make full use of the existing data in practice, 23 

parameter sensitivity analysis would be an effective way to reduce dimensionality in 24 

model calibration, and then focus only on the critical processes and parameters that 25 

are sensitive to model outputs (van Griensven et al., 2006). Model autocalibration 26 

would be efficient to obtain the optimal simulations from numerous samples in 27 

multi-dimensional parameter spaces.    28 

 29 

4.3 Model limitations 30 

It should be noted that our extended model still has several limitations: 31 
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(1). The mathematical descriptions of groundwater, crop growth processes and 1 

agriculture management practices are still inaccurate. The current version focuses on 2 

the detailed descriptions of hydrological and nutrient cycle in the soil layers and water 3 

bodies and the consideration of dam regulation. Satisfactory performances on water 4 

quantity and quality simulation are achieved in our case study. However, the 5 

simulations for groundwater, diffuse pollution, crop yield in the agriculture regions 6 

could be improved further. The stratification of water impounding in the water quality 7 

module should be considered if the high resolution bathymetric data of dams or lakes 8 

are available.  9 

(2). High parameterization is an inevitable issue because of its all-inclusive 10 

framework. Our model considers the main water-related processes in the hydrological, 11 

ecology and water quality subsystems but numerous processes are still controlled by 12 

unmeasurable parameters because of their empirical and/or scale dependent nature 13 

(Her and Chaubey, 2015). Although the parameter sensitivity analysis and calibration 14 

are widely used to handle the high parameterization issue, the equifinality and 15 

parameter uncertainty are still inevitable because of the insufficient observations and 16 

the complex interactions among different subsystems.  17 

 18 

5. Conclusions 19 

In this study, TVGM hydrological model is extended primarily to an integrated water 20 

system model to address the complex water issues emerging in the basins. The model 21 

performance is demonstrated in the Shaying River Catchment, China. The model 22 

provides a reasonable tool for the effective water governance by simultaneously 23 

simulating several indicative components of water-related processes including the 24 

hydrological components (e.g., runoff, soil moisture, evaporation and plant 25 

transpiration, water storage in the dams and sluices), water quality components (e.g., 26 

diffuse pollution load, water quality concentrations in water bodies), and ecological 27 

components (e.g., crop yield) which could be calibrated if observations are available. 28 

The case study shows that the simulated runoffs at most stations fit the observations 29 

well in the highly regulated Shaying River Catchment. All the evaluation criteria are 30 

acceptable for both the daily and monthly simulations at most stations. This model 31 



 

 25

well simulates the discontinuous daily NH4-N concentration and properly captures the 1 

spatial patterns of diffuse pollution load and corn yield.  2 

Owing to the heterogeneity of spatial data in large basins and insufficient observations 3 

of individual subsystems, not all the results are acceptable and several processes are 4 

still not well calibrated (such as low flow events, diffuse pollution load, and crop 5 

yield). The model would be improved by further considering more accurate human 6 

activities in the agricultural management, calibrating multiple components by 7 

multi-objective optimization and model uncertainty analysis because of the 8 

interactions and tradeoffs among different processes. The over-parameterization and 9 

the reasonable prior parameter conditions should also be treated carefully in 10 

applications. Advanced analysis technologies would benefit the future model 11 

development, such as model selection techniques, parameter regularization. 12 

 13 

Appendix A: Hydrological cycle module 14 

The basic water balance equation is  15 

iiiiiiii InRbsRssEaRsSWSWP  1                         (A1) 16 

where P is the precipitation (mm); SW is the soil moisture (mm); Ea is the actual 17 

evapotranspiration (mm) including soil evaporation (Es, mm) and plant transpiration 18 

(Ep, mm); Rs, Rss and Rbs are the surface runoff, interflow and baseflow (mm), 19 

respectively; In is the vegetation interception (mm) and i is the time step (day). 20 

Es and Ep are determined by the potential evapotranspiration (E0, mm), leaf area index 21 

(LAI, m2/m2) and surface soil residues (rsd, t/ha) (Ritchie, 1972) as 22 
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where E0 is calculated by Hargreaves method (Hargreaves and Samani, 1982). 24 

The surface runoff (Rs, mm) yield equation (TVGM; Xia et al., 2005) is given as  25 
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where SWu and Wsat are the surface soil moisture and saturation moisture (mm), 1 

respectively; g1 and g2 are the basic coefficient of surface runoff, the influence 2 

coefficient of soil moisture, respectively. 3 

The interflow (Rss, mm) and baseflow (Rbs, mm) have linear relationships with the 4 

soil moistures in the upper and lower layers, respectively (Wang et al., 2009) as 5 
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where kss and kbs are the yield coefficients of interflow and baseflow, respectively; 7 

SWl is the soil moisture in the lower layer (mm). 8 

The infiltration from the upper to lower soil layers is calculated using storage routing 9 

method (Neitsch et al., 2011) as 10 
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where Winf is the water infiltration amount on a given day (mm); Wfc is the soil field 12 

capacity (mm); Tinf  is the travel time for infiltration (hours), respectively; and Ksat is 13 

the saturated hydraulic conductivity (mm/hour). 14 

The calculation of overland flow routing is adopted from Neitsch et al. (2011) as 15 
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                    (A6) 16 

where Qoverl is the overland flow discharged into main channel (mm); Q’overl is the 17 

lateral flow amount generated in the sub-basin (mm), Qstor,i-1 is the lateral flow in the 18 

previous day (mm); Tretain is the retain time of flow (days); Troute, Toverl and Trch are the 19 

routing times of the total flow, overland flow and river flow, respectively (days); Loverl 20 

and Lrch are the lengths of sub-basin slope and river, respectively (km); slpoverl and 21 

slprch are the slopes of sub-basin and river, respectively (m/m); noverl and nrch are the 22 

Manning's roughness coefficients for sub-basin and river, respectively (m/m); and A is 23 

the sub-basin area (km2). 24 

 25 

Appendix B: Soil biochemical module 26 
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B.1 Soil temperature (Williams et al., 1984): 1 

)/exp()),0(]365)200(2[cos2(),( DDZtTTGtAMTtZT      (B1) 2 

where Z is the soil depth (mm); t is the time step (days); T  and TG are the average 3 

annual temperature and surface temperature (oC), respectively; AM is the annual 4 

variation amplitude of daily temperature; DD is the damping depth (mm) of soil 5 

temperature given as 6 

 





















1

2

800)8001(2)()1(

])144.0356.0[(

)]63.5exp(686[25001000

)]1()1[()500(ln(exp

IDAmxmnmxIDA

M

TGABRATRATTABTG

ZBDSW

BDBDBDDP

DPDPDD





   (B2) 7 

where DP is the maximum damping depth of soil temperature (mm); BD is the soil 8 

bulk density (t/m3); ζ is a scale parameter; IDA is the day of the year; AB is the 9 

surface albedo; RA is the daily solar radiation (ly). 10 

B.2 C and N cycle (Li et al., 1992):  11 

Decomposition: The decomposition of resistant and labile C is described by the first 12 

order kinetic equation, viz.  13 

])1([C 21,: kSkSdtd ntNCCLAY                              (B3) 14 

where μCLAY, μC:N and μt,n are the reduction factors of clay content, C: N ratio and 15 

temperature for nitrification, respectively; S is the labile fraction of organic C 16 

compounds; k1 and k2 are the specific decomposition rates of labile faction and 17 

resistant fraction, respectively (day-1).  18 

The NH4 amount (FIXNH4, kg/ha) absorbed by clay and organic matters is estimated 19 

by 20 

)/()]log(47.041.0[ max44
CLAYCLAYNHFIX NH                      (B4) 21 

where NH4 is the NH4
+ concentration in the soil liquid (g/kg). CLAY and CLAYmax are 22 

the clay content and the maximum clay content, respectively. 23 
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where KNH4 and KH2O are the dissociation constants for NH4
+:NH3 equilibrium, H+: 2 

OH- equilibrium, respectively; NH4m and NH3m are the NH4
+ and NH3 concentrations 3 

(mol/L) in the liquid phase, respectively; AM and D are the accumulated NH3 loss 4 

(mol/cm2) and diffusion coefficients (cm2/d2), respectively. 5 

The nitrification rate (dNNO, kg/ha/day) is a function of the available NH4
+, soil 6 

temperature and moisture; N2O emission is a function of soil temperature and soil 7 

NH4
+ concentration, and are given as 8 
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where K35 is the nitrification rate at 35 oC (mg/kg/ha); μsw,n is the soil moisture 10 

adjusted factor for nitrification. 11 

Denitrification: The growth rate of denitrifier ((dB/dt)g, kg/ha/day) is proportional to 12 

their respective biomass and is calculated by double Monod kinetics equation as 13 
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where B is the denitrifier biomass (kg); μDN is the relative growth rate of the 15 

denitrifiers; uNxOy and uNxOy,max are the relative and maximum growth rates of NO2
-, 16 

NO3
- and N2O denitrifiers, respectively. KC,1/2 and KNxOy,1/2 are the half velocity 17 

constants of C and NxOy, respectively; μPH,NxOy and μt,dn are the reduction factors of 18 

soil pH and temperature, respectively. The mathematical expressions are given as 19 
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The death rate of denitrifier ((dB/dt)d, kg/ha/hr) is proportional to denitrifier biomass 1 

and is given as 2 

)()B( tBYMdtd CCd                                             (B9) 3 

where MC and YC are the maintenance coefficient of C (1/hr), maximum growth yield 4 

of dissolved C (kg/ha/hr), respectively.       5 

The consumption rates of dissolved C and CO2 production are calculated as 6 
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where μsw,d is the soil moisture adjusted factor for denitrification. 8 

The NO3
-, NO2

- , NO and N2O consumption are calculated as 9 

dntOPHNyxONONONyx yxyxyxyx
tBNONMYudtOd ,)()//(N            (B11) 10 

where MNxOy and YNxOy are the maintenance coefficient (1/hr), maximum growth yield 11 

on NO3-, NO2-,NO or N2O (kg/ha/hr), respectively.  12 

N assimilation is calculated on the basis of the growth rates of denitrifiers and the C: 13 

N ratio (CNRD:N ) in the bacteria, viz. 14 

 )/1()()( :NDgass CNRdtdBdtdN                                    (B12) 15 

The emission rates are the functions of adsorption coefficients of the gases in soils 16 

and to the air filled porosity of the soil and are given as.  17 
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where P(N2), P(NO) and P(N2O) are the emission rates of N2, NO, N2O, respectively, 19 

during a day; PA and AD are the air-filled fraction of the total porosity and adsorption 20 

factor depending on clay content in the soil, respectively.  21 

Nitrate leaching: The NO3
- leaching rate is a function of clay content, organic C 22 

content and water infiltration in the soil layer and is given as 23 

socCLAYNO WLeach   inf3                                          (B14) 24 
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where LeachNO3 is the NO3
- leaching rate; μCLAY and μsoc are the influence coefficients 1 

of clay content and soil organic C, respectively.  2 

B.3 P cycle  3 

The descriptions of P mineralization, decomposition and sorption are adopted from 4 

Neitsch et al. (2011) and are provided in the supplementary material. 5 

 6 

Appendix C: Dam regulation module (Zhang et al., 2013) 7 

The water balance model of dam or sluice is considered the inflow, outflow, 8 

precipitation, evapotranspiration, seepage and water withdraw. The equation is: 9 

withdseepevappcpflowoutflowin VVVVVVV                           (C1) 10 

where ΔV, Vflowin and Vflowout are the water storage variation, water volumes of 11 

entering and flowing out, respectively (m3), and are calculated by HCM; Vpcp, Vevap 12 

and Vseep are the volumes of precipitation, evaporation and seepage, respectively (m3), 13 

and are the functions of surface water area and water storage. Vwithd is the water 14 

withdraw volume (m3) by human and is given as a model input.  15 

According to the design data of dam and sluice in China, there is a particular 16 

relationship among water level, storage and outflow. The outflow is determined by 17 

the water level or water storage volume. The relationships are described by equations.  18 
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where V and H are the water storage volume (m3) and water level (m) during a day, 20 

respectively; f ’() and f”() are the functions which could be determined by statistical 21 

analysis methods (e.g., correlation analysis, linear or non-linear regression analysis, 22 

polynomial regression analysis and least squares fitting ).  23 

 24 

Appendix D: Evaluation indices of model performance 25 
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Relative error: %100
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Root mean square error: 
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Correlation coefficient: 
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Coefficient of efficiency: 
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where Oi and Si are the ith observed and simulated values, respectively; O  and 5 

S are the average observed and simulated values, respectively. N is the length of 6 

series.  7 
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Table 1.  The data sets and their categories used in the model  1 

Category Data Objectives Controlled processes 

GIS 

DEM 

Elevation, area, longitude 
and latitude, slopes and 

lengths of each sub-basin  
and channel 

Hydrology and water 
quality 

Land use map 
Land use types and their 

corresponding areas in each 
sub-basin  

Hydrology, water 
quality and ecology 

Soil map 

Soil physical properties of 
each sub-basin such as bulk 

density, saturated 
conductivity 

Weather 

Daily precipitation 
Daily precipitation of each 

sub-basin 
Hydrology 

Daily maximum and minimum 
temperature 

Daily maximum and 
minimum temperature of 

each sub-basin 

Hydrology 
Observed runoff or other 

hydrological components, etc. 
Hydrological parameter 

calibration 
Hydrology 

Water quality 

Urban wastewater discharge 
outlets and discharge load  

Model input of point source 
pollutant load 

Water quality 
Water quality observations 
(concentration or load), etc. 

Water quality parameter 
calibration 

Ecology Crop yield, leaf area index, etc. 
Ecological parameter 

calibration 
Ecology 

Economy 
Basic economic statistical 

indictors 

Populations, breeding stock 
of large animals and 

livestock, water withdrawal 
in each sub-basin  

Hydrology and water 
quality 

Water 
projects 

Design data attribute 
parameters 

Regulation rules of dams or 
sluices 

Hydrology 

Agricultural 
management 

Fertilization and irrigation 
types, timing and amount, time 

of seeding and harvest, and 
crop types  

Agricultural management 
rules of each sub-basin  

Water quality and 
ecology 
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Table 2 Sensitive parameters, their value ranges and relative importance for runoff 1 

and NH4-N simulations 2 

Variables Range Definition 
Relative 

importance for 
runoff (%) 

Relative importance 
for NH4-N (%) 

Wfc 0.20 to 0.45 Field capacity of soil 32.73  11.10  
Wsat 0.45 to 0.75 Saturated moisture capacity of soil 11.68  11.83  
g1 0 to 3 Basic surface runoff coefficient 7.30  10.34  
g2 0 to 3 Influence coefficient of soil moisture 10.54  12.11  
KET 0 to 3 Adjustment factor of evapotranspiration  23.21  10.71  
Kss 0 to 1 Interflow yield coefficient 9.55  3.20  
Tg 1 to 100 Delay time for aquifer recharge 1.74  - 
Kbs 0 to 1 Baseflow yield coefficient 2.91  - 
Ksat 0 to 120 Steady state infiltration rate 0.33  - 
Rd(BOD) 0.02 to 3.4 BOD deoxygenation rate at 20 °C - 6.62  
Rset(BOD) -0.36 to 0.36 BOD settling rate at 20 °C - 3.60  
Rd(NH4) 0.1 to 1 Bio-oxidation rate of NH4-N at 20 °C - 1.97  
Kset(NH4) 0 to 100 Settling rate of NH4-N in the reservoirs - 14.17  
Kd(BOD) 0.02 to 3.4 BOD deoxygenation rate in the reservoirs at 

20°C 
- 2.12  

Kd(NH4) 0.1 to 1.0 Bio-oxidation rate of NH4-N in the 
reservoirs at 20 °C 

- 4.51  

Total relative importance 100.00 92.27 

 3 

4 
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Table 3 Runoff simulation results for regulated and less-regulated stations 1 

Stations Periods Daily flow   Monthly flow  
  bias r NS f bias r NS f 
Regulated stations         

Luohe Calibration 0.00 0.84 0.70 0.15 0.00 0.87 0.71 0.14 
Validation -0.52 0.75 0.51 0.42 -0.52 0.87 0.67 0.33 

Zhoukou Calibration 0.24 0.87 0.73 0.21 0.24) 0.90 0.76 0.19 
Validation 0.41 0.79 0.55 0.36 0.41 0.91 0.70 0.26 

Huaidian Calibration 0.03 0.88 0.77 0.13 0.03 0.91 0.81 0.10 
Validation 0.12 0.76 0.54 0.27 0.12 0.87 0.70 0.18 

Fuyang Calibration 0.00 0.90 0.81 0.10 0.00 0.95 0.89 0.05 
Validation 0.14 0.88 0.76 0.17 0.14 0.94 0.86 0.11 

Yingshang Calibration -0.13 0.92 0.84 0.12 -0.13 0.92 0.84 0.12 
Validation 0.16 0.87 0.74 0.18 0.16 0.93 0.82 0.13 

Less–regulated stations        
Shenqiu Calibration 0.00 0.91 0.82 0.09 0.00 0.94 0.88 0.06 

Validation -0.13 0.83 0.67 0.21 -0.13 0.98 0.94 0.08 

 2 
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Table 4. The runoff simulation results at regulated stations with and without the dam 1 

regulation considered. Range means the difference of objective function value 2 

between regulations considered and not considered. If the range value is less than 0.0, 3 

then the simulation with regulation is better than that without regulation. Otherwise, 4 

the simulation without regulation is better. 5 

Stations Regulated 
capacity (%) 

Flow 
event 

Regulation considered Regulation not considered Range 
bias r NS f bias r NS f 

Luohe 0.26 High -0.16  0.97  0.92  0.09  -0.62  0.97  0.80  0.29  -0.20  
Low -0.02  0.98  0.69  0.12  -1.46  0.99  -5.53  2.67  -2.55  
Average -0.15  0.97  0.93  0.08  -0.68  0.96  0.82  0.30  -0.22  

Zhoukou 1.31 High 0.21  0.98  0.93  0.10  -0.38  0.98  0.87  0.18  -0.08  
Low 1.00  0.00  -2.57  1.86  -0.64  0.99  -0.08  0.58  1.28  
Average 0.30  0.99  0.93  0.13  -0.41  0.98  0.89  0.18  -0.05  

Huaidian 1.37 High 0.02  0.98  0.95  0.03  -0.64  0.98  0.68  0.32  -0.29  
Low 0.36  0.97  0.43  0.32  -1.51  0.98  -5.88  2.80  -2.48  
Average 0.06  0.98  0.96  0.04  -0.74  0.98  0.72  0.35  -0.31  

Fuyang 2.21 High 0.04  0.98  0.96  0.03  -0.39  0.99  0.86  0.18  -0.15  
Low 0.17  0.99  0.87  0.10  -1.43  0.99  -3.78  2.07  -1.97  
Average 0.05  0.99  0.97  0.03  -0.50  0.99  0.88  0.21  -0.18  

Yingshang 1.76 High 0.03  0.98  0.95  0.03  -0.44  0.99  0.86  0.20  -0.17  
Low 0.18  0.99  0.82  0.12  -1.77  0.95  -9.26  4.03  -3.91  
Average 0.05  0.99  0.96  0.03  -0.60  0.98  0.86  0.25  -0.22  
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Table 5. The comparison of NH4-N simulation results between with and without dam 1 

regulation considered. 2 

Stations Periods 
Regulated Unregulated Range Ratio of diffuse 

source load (%) bias r f bias r f 
Regulated stations         

Luohe Calibration -0.02 0.93 0.05 -0.67 0.60 0.54 -0.49 46.10 
Validation - - - - - -  

Zhoukou Calibration 0.29 0.61 0.34 -0.56 0.38 0.59 -0.25 44.54 
Validation 0.27 0.56 0.36 -1.35 0.66 0.85 -0.49 

Huaidian Calibration 0.22 0.73 0.25 0.49 0.80 0.35 -0.10 31.72 
Validation 0.02 0.67 0.18 0.22 0.51 0.36 -0.18 

Fuyang Calibration 0.28 0.78 0.25 0.26 0.80 0.23 0.02 33.12 
Validation -0.27 0.76 0.26 -0.38 0.56 0.41 -0.15 

Yingshang Calibration 0.24 0.79 0.23 0.25 0.58 0.34 -0.11 33.26 
Validation -0.24 0.49 0.38 -0.76 0.62 0.57 -0.19 

Less-regulated stations         
Shenqiu Calibration 0.13 0.62 0.26 - - - - 47.13 

Validation 0.16 0.41 0.37 - - - - 

 3 
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List of Figure Captions 1 

 2 

Figure 1. The model structure and the interactions among the major modules (1: 3 

hydrological part; 2: water quality part; 3: ecological part; 4: dam regulation part; 5: 4 

PAT). 5 

Figure 2. The flowchart of HCM and the interactions with other modules. 6 

Figure 3. The flowchart of SBM (a) and CGM (b) in the ecological part and the 7 

interactions with other modules. 8 

Figure 4. The flowchart of SEM (a), OQM (b) and WQM (c) in the water quality part 9 

and the interactions with other modules. 10 

Figure 5. The flowchart of PAT and its interactions with other modules. 11 

Figure 6. The location of study area (a) and the digital delineation of sub-basin, point 12 

source pollutant outlets, rural population (b), animal stock (c) and fertilization (d). 13 

Figure 7. The daily runoff simulation at all stations. 14 

Figure 8. The cumulative distributions of simulated and observed daily runoff at all 15 

stations  16 

Figure 9. The simulated NH4-N concentration variation at all stations. 17 

Figure 10. The spatial pattern of diffuse source NH4-N load (a) and its relationship 18 

with paddy area (b) and rice yield (c) at the sub-basin and regional scale in the 19 

Shaying River Catchment. 20 

Figure 11. The spatial pattern of corn yield at the sub-basin and regional scale in the 21 

Shaying River Catchment. 22 

 23 
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