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Interactive comments on “Rainfall erosivity estimation based on rainfall 1 

data collected over a range of temporal resolutions” by S. Yin et al. 2 

 3 

Anonymous Referee #2 4 

 5 

Key issues: 6 

- Introduction: this section is now very long and not well structured. The authors are simply 7 

describing all kinds of efforts that have taken place to estimate erosivity. However, a clear red 8 

line linking these efforts is missing. Just as an example, P4L28, P5L2, P5L11, P5L22 all start 9 

by stating that “other” models or efforts exist. However, particularly at the first sentence of 10 

each paragraph the authors should make clear topic sentences, i.e. put the real new issue 11 

discussed in this paragraph upfront in the sentence. Please restructure introduction to create a 12 

better flow of argument. 13 

Response:  We agree regarding the Introduction.  We cut it down to 8 paragraphs 14 

without loss of information necessary to understand the current work. 15 

The main reason why the Introduction became so long is that the previous reviews 16 

asked for two things added: 1.  More discussion linking this work to international 17 

(non-China) work (“While the research seems well-embedded in existing erosivity 18 

estimation efforts in China, in my view the authors could make a better link with other 19 

ongoing efforts in other areas…”) and 2. A discussion of Kinetic Energy (“However, 20 

they fail to discuss properly the kinetic energy component of this indicator, and the 21 

issues of measuring/estimating it.”).   22 

We overdid it a bit.  Now we have greatly condensed the discussions of kinetic 23 

energy and the previous work on estimating erosivity from daily/monthly data. It 24 

flows much better now.   25 

- I miss a clear conclusion section now, although section 3.5 contains part of the key 26 

conclusions of the paper. 27 

Response: Yes, we removed the conclusions section and put the main conclusions 28 

into section 3.5.  We tried re-writing the conclusions section, but it was largely 29 



2 
 

repetitive of the previous section and abstract.  1 

- The title of Section 3.5 suggests that the authors discuss applications of the equations, i.e. 2 

how should erosivity results be used. The authors have not well replied to my previous 3 

comment (3) in this regard, i.e. to the fact that users are not merely interested in erosivity 4 

estimates, but rather erosion estimates. In my opinion, this requires integration of erosivity 5 

and vegetation attributes at shorter time intervals (rather than average annual 6 

erosivity/vegetation measures: see also Vrieling et al, 2014). Hence I still find that the authors 7 

could discuss more on how to embed the erosivity estimates into mapping/monitoring 8 

frameworks. 9 

Response: Yes, We added a paragraph in Section 3.5 as follows: 10 

“Much attention has been given to monitoring the erosion process and its controlling 11 

factors at various spatio-temporal scales (Poesen et al., 2003).  Characteristics of 12 

topography and soils are usually relatively constant in the time scales of interest, whereas 13 

rainfall erosivity and vegetation vary greatly.  Therefore, soil erosion monitoring work is 14 

often mainly focused on the dynamics of rainfall erosivity and vegetation rather than soil and 15 

topography (Vrieling et al, 2014).  Different time scales of erosivity are required in areas 16 

with different resolutions of rainfall data availability.  Models provided in this study have 17 

potential to play important roles in the soil erosion monitoring framework in terms of 18 

quantifying the temporal dynamics and changes in rainfall erosivity.” 19 

 20 

Other specific comments: 21 

DONE - Try to consistently use high-/low- resolution OR fine-/coarse- resolution when 22 

discussing temporal rainfall data. Now the terms are used in a mixed way, which may create 23 

confusion.  -  24 

DONE - P1L24-26 seems to repeat P1L23-24. Also “best results” should be made more 25 

specific. Please rephrase. In addition, I would suggest to add a final more general concluding 26 

sentence to the abstract on the usefulness/applicability/implications of the paper’s results. 27 

DONE - P2L8-9: “for example” is repetitive from past sentence. Rephrase as: “The Chinese 28 

adaptation of the USLE, i.e. the Chinese Soil Loss Equation (CSLE) was applied…” Remove 29 

also “successfully” ? unclear to what success this refers. 30 
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DONE - P2L13: Remove “as”. 1 

DONE - P2L21: Add “relatively” before “dry and wet periods”, because what is wet/dry 2 

differs per location. 3 

DONE - P2L23: “although it requires a temporally detailed rainfall record for a storm”. The 4 

authors should quantify better what they mean with “temporally detailed”. 5 

DONE - P3L18: Remove this uninformative phrase, and make a better link between Foster’s 6 

RUSLE2 equation for erosivity and van Dijk’s, which are the same in form, but with different 7 

coefficients. 8 

Yes, we removed most of this as unnecessary. - P3L23-P4L2: In my view the authors 9 

should explain this in terms of generic rainfall data, and not specify or mention “breakpoint 10 

data”. The key is to explain why Salles power law KE-I relationships were not used. If the 11 

key reason is the difficulty of classifying storms in a rainfall time series as 12 

convective/stratiform, then the authors should explain this in simpler terms. 13 

Removed - P3L3: This is the introduction section, so the authors should not refer yet to their 14 

data analysis. I would suggest incorporating (and showing!) this as part of methods/results. 15 

Yes, one sentence was added in the beginning of the paragraph - P4L22-27: Could the 16 

authors draw some general conclusions here about the findings of those studies, which would 17 

help putting their study in perspective? 18 

DONE - P5L1: TRMM = Tropical Rainfall Measurement Mission. What is written here is 19 

TMPA. 20 

Removed - P5L2: What is “this problem”? 21 

DONE - P5L7: specify the “empirical relationship”? between what and what? Also avoid the 22 

use of “breakpoint data” here. I guess that the authors refer to fine temporal-resolution 23 

rainfall observations. 24 

Yes, several sentences were added to describe more specifically - P18L1-2: This sentence 25 

cannot be understood without reading the article. Also I do not like single sentences as 26 

paragraphs. Please revise to clearly express what is meant.  27 

 28 

 29 
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 9 

Abstract 10 

Rainfall erosivity is the power of rainfall to cause soil erosion by water.  The rainfall 11 

erosivity index for a rainfall event, EI30, is calculated from the total kinetic energy and 12 

maximum 30 minute intensity of individual events.  However, these data are often 13 

unavailable in many areas of the world.  The purpose of this study was to develop models 14 

based on commonly available rainfall data resolutions, such as daily or monthly totals, to 15 

calculate rainfall erosivity.  Eleven stations with one-minute temporal resolution rainfall 16 

data collected from 1961 through 2000 in the eastern half of China were used to develop and 17 

calibrate 21 models.  Seven independent stations, also with one-minute data, were utilized to 18 

validate those models, together with 20 previously published equations.  The models in this 19 

study performed better or similar to models from previous research to estimate rainfall 20 

erosivity for these data.  Using symmetric mean absolute percentage errors and 21 

Nash-Sutcliffe model efficiency coefficients, we can recommend 17 of the new models that 22 

had with model efficiencies ≥0.59.  The best Pprediction capabilities resulted from were 23 

generally better using the finesthigher resolution rainfall data as inputs at a given erosivity 24 

time scale and by .  Also, using equations with the finest data resolution possible, and 25 

aggregating or summing results from equations for finer erosivity time scales, where possible. 26 

gave the best results. Results from this study provide a number of options for developing 27 
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erosivity maps using coarse resolution rainfall data. 1 

1. Introduction 2 

Soil erosion prediction models are effective tools for helping to guide and inform soil 3 

conservation planning and practice.  The most widely used soil erosion models used for 4 

conservation planning are derived from the Universal Soil Loss Equation (USLE) 5 

(Wischmeier and Smith, 1965, 1978).  These models include the USLE, the Revised USLE 6 

(RUSLE) (Renard et al., 1997), and RUSLE2 (Foster, 2004).  Adaptations of the USLE have 7 

also been developed for use in other parts of the world, including, for example, Germany 8 

(Schwertmann et al., 1990), Russia (Larionov, 1993), and China (Liu et al., 2002).  For 9 

example, the Chinese Soil Loss Equation (CSLE) was successfully utilizedused in the first 10 

national water erosion sample survey in China (Liu et al., 2013). 11 

These models have in common a rainfall erosivity factor (R), which reflects the potential 12 

capability of rainfall to cause soil loss from hillslopes, and which is one of the most important 13 

basic factors for estimating soil erosion.  In its simplest form, the R factor is as an average 14 

annual value, calculated as a summation of event-based energy-intensity values, EI30, for a 15 

location divided by the number of years over which the data was collected.  EI30 is defined 16 

as the product of kinetic energy of rainfall and the maximum contiguous 30-min rainfall 17 

intensity during the rainfall event.  It is the basic rainfall erosivity index that was developed 18 

by Wischmeier (1958) originally for the USLE, and is still widely used in other erosion 19 

prediction models (e.g., RUSLE, RUSLE2), with some modifications and improvements.  20 

Wischmeier (1976) suggested that more than 20 years’ rainfall data are needed to calculate 21 

average annual erosivity to include relatively dry and wet periods.  22 

Determination of the maximum contiguous 30-min rainfall intensity during the rainfall 23 

event is a relatively straightforward process, although it requires a temporally detailed rainfall 24 

record (e.g., 5 minute) for a storm. Determination of the kinetic energy of a storm is more 25 

complex.   26 

Kinetic energy (KE) is generally suggested to indicate the ability of a raindrop to detach 27 

soil particles from a soil mass (e.g., Nearing and Bradford, 1985). Since the direct 28 
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measurement of KE requires sophisticated and costly instruments, several different 1 

estimating methods have been developed that estimate KE based on rainfall intensity (I) 2 

using logarithmic, exponential, or power functions.  The original 1978 release of the USLE 3 

utilized a logarithmic function (Wischmeier and Smith, 1978) that was based on rainfall 4 

energy data published by Laws and Parsons (1943).  Brown and Foster (1987) re-evaluated 5 

this relationship and recommended the use of an exponential relationship, which was 6 

subsequently used in RUSLE (Renard et al., 1997).  For RUSLE2 7 

McGregor et al. (1995) compared the KE equations used in the USLE and RUSLE with 8 

the results from the equation and data of McGregor and Mutchler (1976), which was 9 

developed based on 29 standard recording rain gauges in the Goodwin Creek Watershed in 10 

northern Mississippi, USA.  The results showed that the annual erosivities predicted by the 11 

equation of McGregor and Mutchler (1976) and the USLE were almost identical, whereas the 12 

RUSLE predicted values that were about 8% lower. McGregor et al. (1995) suggested that the 13 

equation of Brown and Foster (1987) be modified, changing the value of the exponential 14 

function to -0.082 rather than -0.05 that was used in RUSLE.  Foster (2004) used the 15 

exponent value of -0.082 value , rather than the -0.05 value used in RUSLE2, as follows:  16 

)]082.0exp(72.01[29.0er ri                       (1) 17 

where er is the estimated unit rainfall kinetic energy (MJ ha
-1

 mm
-1

) and ir is the rainfall 18 

intensity (mm h
-1

) at any given time within a rainfall event (usually taken as one minute for 19 

computational purposes, with average intensity representative of the time increment).  This 20 

was based largely on work of McGregor and Mutchler (1976) and McGregor et al. (1995), 21 

who found that the RUSLE equation gave values that were too low.  The energy term used 22 

in RUSLE2 gives results on the order of those from the original USLE method.   23 

 24 

Other work has been done to evaluate the relationships between rainfall intensity and KE.  25 

After reviewing more than 20 exponential KE vs. I relationships based on natural rainfall data 26 

observed in a variety of climate classifications, van Dijk et al. (2002) derived: 27 
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)]042.0exp(52.01[283.0er ri                     (2) 1 

Salles et al. (2002) suggested using a power law KEtime vs. I expression wherein the 2 

constants of the power law were different for convective rain and stratiform rain types. It is, 3 

however, often difficult to define if a storm should be classified as convective or stratiform 4 

based on the breakpoint data alone. (Breakpoint data is fine resolution information on time 5 

during a rainfall event with associated cumulative rainfall depth. The term breakpoint refers 6 

to times when there are detectible changes in rainfall intensity as shown by a change in the 7 

slope of the cumulative rainfall curve.  It originates from the time that rainfall records were 8 

read from recording pen charts.)   9 

Preliminary analysis (not shown) of our data from China indicated that the van Dijk 10 

equation resulted on average in similar R values to those from RUSLE2, slightly lower R 11 

values compared to USLE, and much greater R values than given by RUSLE.  The Salles et 12 

al. (2002) equations produced on average much greater values of erosivity than did all of the 13 

other equations.  In general, the RUSLE2 value produced results in the mid-range of all of 14 

these equations. 15 

The temporal resolution of rainfall data available across the world does not always allow 16 

for a direct computation of rainfall kinetic energyvaries greatly (Sadeghi et al., 2011; Sadeghi 17 

and Tavangar, 2015; Oliveira et al., 2012; Panagos et al., 2015; Zhang and Fu, 2003), even 18 

within countries with extensive rainfall monitoring programs.  In the United States, for 19 

example, intra-storm, temporally detailed data (historically taken on pen recording charts, 20 

now taken as one-minute digital data) are only available at limited stations, whereas daily 21 

data are common (Nicks and Lane, 1995; Flanagan et al., 2001). Yet Tthere is a need for 22 

developing models for application in all areas of the world in order to produce erosivity maps 23 

that can be used for evaluating soil erosion rates (e.g., Sadeghi et al., 2011, Sadeghi and 24 

Tavangar, 2015; Oliveira et al., 2012; Panagos et al., 2015; Zhang and Fu, 2003 ).  For that 25 

reason many efforts have been undertaken to estimate rainfall erosivity by using daily 26 

(Richardson et al., 1983; Yu, 1998; Capolongo et al., 2008; Yin et al., 2007; Zhang et al., 27 

2002a; Xie et al., 2001; Zhang et al., 2002b; Xie et al., 2015), monthly (Arnoldus, 1977; 28 
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Renard and Freimund, 1994; Yu and Rosewell, 1996; Ferro et al., 1999; Wu, 1994; Zhou et 1 

al., 1995), or annual rainfall data (Lo et al., 1985; Renard and Freimund, 1994; Yu and 2 

Rosewell, 1996; Bonilla and Vidal, 2011; Zhang and Fu, 2003; Wang, 1987; Sun, 1990).  3 

Generally the technique has been to develop a simple empirical relationship between 4 

erosivity and coarse resolution rainfall based on limited finer resolution data and then to 5 

extend the analyses to wider areas and longer periods with coarser temporal resolution 6 

rainfall data (Angulo-Martinez and Begueria, 2012; Ma et al., 2014; Ramos and Duran, 2014; 7 

Sanchez-Moreno et al., 2014). 8 

 9 

Several studies evaluated different time scales of erosivity using different temporal 10 

resolutions of rainfall data.  In Europe, Panagos et al. (2015) undertook the task to develop 11 

an erosivity map for Europe based on data from 1541 precipitation stations with temporal 12 

resolutions of 5 to 60 min.  To use data that had been reported at the different time 13 

resolutions they had to apply adjustment factors to the data, which they reported to have 14 

introduced some uncertainty into the estimations.  Sadeghi and Tavangar (2015) evaluated 15 

various erosivity estimation indices, including Fournier (Fournier, 1960), modified Fournier 16 

(Arnoldus, 1977), Roose (1977) and Lo (Lo et al., 1985), using data from 14 stations in Iran.  17 

They evaluated annual, seasonal and monthly information.  Similarly, the work in Brazil 18 

summarized by Oliveira et al. (2012) highlighted several studies that used various estimations 19 

of erosivity based on various types of data and interpolations.   20 

Other innovative ways have been advanced to produce better mappings of erosivity, including 21 

the use of daily (Fan et al., 2013) or 3 hour (Vrieling et al., 2010 and 2014) data from the 22 

TRMM Multi-satellite Precipitation Analysis (TMPATRMM) precipitation data.  23 

Other efforts to address this problem have been made by developing simpler methods to 24 

estimate rainfall erosivity by using daily (Richardson et al., 1983; Yu, 1998; Capolongo et al., 25 

2008), monthly (Arnoldus, 1977; Renard and Freimund, 1994; Yu and Rosewell, 1996; Ferro 26 

et al., 1999), or annual rainfall data (Lo et al., 1985; Renard and Freimund, 1994; Yu and 27 

Rosewell, 1996; Bonilla and Vidal, 2011).  Generally the technique has been to develop a 28 

simple empirical relationship using limited breakpoint data and then to extend the analyses to 29 
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wider areas and longer periods with coarser temporal resolution rainfall data 1 

(Angulo-Martinez and Begueria, 2012; Ma et al., 2014; Ramos and Duran, 2014; 2 

Sanchez-Moreno et al., 2014).  3 

Several simpler models for estimating rainfall erosivity from coarse resolution data have 4 

also been developed in China in specific areas, including the Loess Plateau (Wang, 1987; Sun, 5 

1990), Fujian Province (Huang et al., 1992; Zhou et al., 1995) and Anhui Province (Wu, 6 

1994).  Wang et al. (1995) developed a series of simplified equations at several time scales 7 

by utilizing stations located in different areas of China.  In China the specifications for 8 

surface meteorological observations by the China Meteorological Administration (China 9 

Meteorological Administration, 2003) have required since the 1950s that the maximum 60 10 

and 10 minute rainfall amounts, (P60)day and (P10)day be compiled, hence these data are readily 11 

available in China. The measurements were made using siphon-method, self-recording rain 12 

gauges.  Because of this, there is an interest in China to utilize the maximum daily 10 and 60 13 

minute rainfall intensities, (I10)day and (I60)day, to calculate erosivity.   14 

There have been several other research efforts to estimate erosivity based on Chinese 15 

data, many of which are published only in Chinese.  These include an daily or sub-daily 16 

models (Yin et al., 2007; Zhang et al., 2002a; Xie et al., 2001; Zhang et al., 2002b) and 17 

monthly or annual models (Zhang and Fu, 2003).  Zhang and Fu (2003) compared five 18 

models for estimating annual average rainfall erosivity, including one model using daily 19 

rainfall (Zhang et al., 2002b) and four models using monthly or annual rainfall (Zhang and Fu, 20 

2003).  They demonstrated that the model using daily rainfall performed best and that there 21 

were no significant differences among the other four models.  Xie et al. (2015) found that 22 

the daily erosivity model with information on (I60)day improved the daily EI30 index 23 

estimation significantly when compared with that using only daily rainfall totals.     24 

Renard and Freimund (1994) developed two power law models for the continental 25 

United States using average annual rainfall and a Modified Fournier Index reflecting seasonal 26 

variation in precipitation.  Using data from 29 sites in southeastern Australia, Yu and 27 

Rosewell (1996) calibrated the two models developed by Renard and Freimund (1994) and 28 

recommended the model using average annual rainfall as input for the estimation of average 29 
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annual erosivity because of similar model efficiency as compared with the model using the 1 

Modified Fournier Index and the ready availability of annual rainfall data.  2 

The objectives of this study were three-fold: (1) calibrate methods of estimating erosivity 3 

for time scales ranging from daily to average annual based on different temporal resolutions 4 

of rainfall data from 11 calibration stations with one-minute resolution data; (2) compare 5 

models in this study with those published in previous research, based on seven independent 6 

validation stations using the same data types; and (3) determine the most accurate methods, 7 

based on these data, for calculating different time scales of erosivity when different temporal 8 

resolutions of rainfall data are available.  Note that, in this paper, we use the term “time 9 

scales” when discussing the erosivity values (equation outputs) and “resolution” (equation 10 

inputs) when referring to the rainfall input data, for clarity.  Although several studies have 11 

been conducted on this topic in the past, no study used as comprehensive a data set collected 12 

over this wide geographic area of China to evaluate the wide range of erosivity time scales 13 

needed for erosion work, and utilizing such a wide range of temporal resolution rainfall data 14 

as the independent variable.    15 

2. Data and Methods 16 

2.1 Data  17 

Data collected at 18 stations by the Meteorological Bureaus of Heilongjiang, Shanxi, 18 

Shaanxi, Sichuan, Hubei, Fujian, and Yunnan provinces and the municipality of Beijing were 19 

used (Fig.1, Table 1).  These stations were distributed over the eastern half of China.  20 

One-minute resolution rainfall data (Data M) were obtained by using a siphon, self-recording 21 

rain gauge.  The data collection period began in 1971 for Wuzhai (53663) and Yangcheng 22 

(53975) in Shanxi Province and from 1961 for the remaining 16 stations.  The data records 23 

ended in 2000 for all stations.  Quality control of Data M was done to select the best 24 

observation years using the more complete data sets of daily rainfall totals, Data D, which 25 

were observed by simple rain gauges at the same stations.  Data M was compared with Data 26 

D on a day-by-day basis, and those days with deviation exceeding a certain criterion were 27 

marked as questionable and were not used in this analysis (Wang et al., 2004).  The criterion 28 

used was that the data were considered good when the absolute deviation between Data M 29 
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and Data D was less than 0.5 mm when the daily rainfall amount was less than 5 mm and no 1 

more than 10% when the daily rainfall amount was greater than or equal to 5 mm.  Data M 2 

in the earlier years of record tended to have more days with missing or suspicious 3 

observations.  These totals of Data M and Data D were compared year-by-year to determine 4 

which years could be designated as “common” years for use in this study, with an effective 5 

year having a relative deviation for yearly rainfall amount of no more than 15%.  There 6 

were at least 29 common years for all 18 stations, and seven stations had common years of at 7 

least 38 years (Table 1).  Note that though there were missing data in the information used, 8 

Data D was only used for quality control purposes and the data used in the analysis, Data M, 9 

were internally consistent in that only the data from common years were used in all 10 

comparisons and evaluations reported.  11 

Data M were used to calculate the event-based EI30 values as a function of the calculated 12 

kinetic energy and maximum 30 minute rainfall intensity (Foster, 2004).  These were treated 13 

as observed values and summed to obtain the erosivity factors, R, for daily, month (individual 14 

month totals), year (individual year totals), average monthly (one value for each month at 15 

each station), and average annual (one value for each station) time scales.  Total rainfall 16 

event depth values were also compiled into the other temporal resolutions of rainfall data, 17 

including correspondent daily, month, year, average monthly, and average annual resolutions.  18 

For the eight stations in the northern part of China (including stations in Heilongjiang, Shanxi, 19 

Shaanxi provinces and Beijing municipality), only the periods from May through September 20 

were used because the siphon, self-recording rain gauges were not utilized in the winter to 21 

avoid freeze damage.  Percentages of precipitation during May through September to total 22 

annual precipitation varied from 75.6 to 89.2% for these eight northern stations.  Data M for 23 

the full 12 month year were used from the remaining ten stations located in the southern parts 24 

of China. 25 

Eleven stations, including Nenjiang, Wuzhai, Suide, Yan’an, Guangxiangtai, Chengdu, 26 

Suining, Neijiang, Fangxian, Kunming, and Fuzhou, marked with dots in Fig. 1, were used to 27 

calibrate the models (Table 1).  The other seven stations, including Tonghe, Yangcheng, 28 

Miyun, Xichang, Huangshi, Tengchong, and Changting, marked with triangles in Fig. 1, were 29 
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used to validate the models.    1 

2.2 Calculation of the R factor at different time scales 2 

    Different time scales for RUSLE2 erosivity, R, including event, daily, month, year, 3 

average monthly, and average annual, were calculated based on the one-minute resolution 4 

data (Data M).  Recall that “month” and “year” refer to individual months and years, and not 5 

averages.  EI30 (MJ mm ha
-1

 h
-1

) is the rainfall erosivity index for a rainfall event, where E is 6 

the total rainfall kinetic energy during an event and I30 is the maximum contiguous 30-min 7 

intensity during an event (Wischmeier and Smith, 1978).  An individual rainfall event was 8 

defined as a period of rainfall with at least six preceding and six succeeding non-precipitation 9 

hours (Wischmeier and Smith, 1978).  An erosive rainfall event was defined as one with 10 

rainfall amounts greater than or equal to 12 mm, following Xie et al. (2002).  We used the 11 

equation recommended by Foster (2004) for RUSLE2 to calculate the kinetic energy of the 12 

storms, which used Eq. 1 combined with:  
 

13 

 



n

1r

rr PeE                                   (3) 14 

where er is the estimated unit rainfall kinetic energy (from Eq. 1) for the r
th

 minute (MJ ha
-1

 15 

mm
-1

); Pr is the one-minute rainfall amount for the r
th

 minute (mm); r=1, 2,…, n represents 16 

each 1-min interval in the storm; and ir is the rainfall intensity for the r
th

 minute (mm h
-1

).  17 

The Foster (2004) equations were chosen because they are currently used for erosion 18 

assessment for RUSLE2 in the United States and for the CSLE in China, and it appears to 19 

give results similar to the original USLE and in the mid-range of other equations that have 20 

been developed, as was discussed in the Introduction. 21 

Our evaluation included 4 models for events and one for daily erosivities.  Event 22 

models were simply models to predict individual event erosivities, regardless of whether they 23 

occurred in one or more days, and regardless of whether more than one event occurred in a 24 

day.  For the daily model, rainfall erosivity for each day, Rday, was calculated following the 25 

method by Xie et al. (2015).  When a day had only one erosive event and this event began 26 

and finished during the same day, then   27 
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                                          (4)
 1 

When more than one full rainfall event happened during one day, then 2 

event_i30

n

1i

event_iday )(IER 


                        (5) 
 3 

where n is the number of rainfall events during the day, and Eevent_i and (I30)event_i are the total 4 

rainfall energy and the maximum contiguous 30-min intensity, respectively, for the i
th

 event.  5 

When only one part of a rainfall event occurred during one day, then  6 

event30day_dday )(IER 
                          (6)  

 7 

where Eday_d is the rainfall energy generated by the part of rainfall occurred during the d
th

 day 8 

and (I30)event is the maximum contiguous 30-min intensity for the entire event.  The 9 

remaining situations were calculated by combining Eqs. (5) and (6). 10 

Month, year, average monthly, and average annual R values were summed from the 11 

event EI30 index by erosive storms that occurred during the corresponding period.  They 12 

were calculated by using Eqs. (7)-(10). 13 





J

0j

j m, y,30m y, month, )(EIR

                          (7) 

14 





Y

1y

m y, month,m ave_month, R
Y

1
R

                       
(8)

 15 





12

1m

m y, month,y year, RR

                           (9) 

16 





Y

1y

y year,ave_annual RR              

       (10) 

17 

where Y is the number of years of record, (EI30)y, m, j is the EI30 value for the j
th

 event in 18 

the m
th

 month of the y
th

 year; Rmonth, y, m is the R value for the m
th

 month of the y
th

 year; 19 

Rave_month, m is the average R value for the m
th

 month over the years of record; Ryear, y is R 20 

value in the y
th

 year; and Rave_annual represents average annual erosivity, correspondent to 21 
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the annual average R-factor in USLE-type models (MJ mm ha
-1

 h
-1

 a
-1

).   1 

2.3 Model calibration using different resolutions of rainfall data 2 

A total of 21 models were calibrated for different time scales of R, based on varying 3 

resolutions of rainfall data (Table 2).  Event amount Pevent and peak intensity indices were 4 

derived based on the one-minute resolution data, including I10, I30, and I60, which were the 5 

maximum contiguous 10-min, 30-min, and 60-min intensities, respectively, within an event.  6 

I10 and I60 were used because of their close correlation with the daily (I10)day and (I60)day 7 

values commonly reported by the Chinese Meteorological Administration (2003).  Four 8 

event-based models were developed relating measured EI30 to estimated EI30 (Table 2).  9 

Similar models for the other time scales were also calibrated (Table 2).  Data was organized 10 

in various ways.  Pday, Pmonth, Pyear, Pave_month, and Pannual were the daily, (individual) month, 11 

(individual) year, average monthly, and average annual rainfall amounts, respectively, for a 12 

given station.  (P60)month and (P60)year represented maximum contiguous 60-min rainfall 13 

amount observed within a specific month or year, respectively.  (P60)month_max represented the 14 

maximum of (P60)month values for each month of the year over the entire period of record.  15 

The average of (P60)month values was
monthP )( 60

.  Each station had 12 values of (P60)month_max 16 

and 
monthP )( 60

, one for each month of the year.  (P60)year_max was the maximum value of 17 

(P60)year and 
annualP )( 60

was the average of (P60)year values.  Each station had only one value 18 

for these two parameters.  P1440 was daily rainfall amount and its related index, including 19 

(P1440)month, (P1440)year, (P1440) month_max, monthP )( 1440
, (P1440)year_max, and 

annualP )( 1440
, which 20 

were defined in an analogous way as were correspondent values for P60.  21 

The parameters were obtained station-by-station for calibration stations first and 22 

parameters for linear relationships were compared to determine if data from all stations could 23 

be pooled together to conduct the regressions (Snedecor and Cochran, 1989).  Parameters 24 

for power-law models, including Month I, Year I, Average Monthly I, and Annual I (Table 2), 25 

were obtained by using the Levenberg-Marquardt algorithm (Seber and Wild, 2003). Note 26 

that models coded as “Annual” refer to annual averages. 27 
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2.4 Models published in previous research for comparison 1 

In addition to the 21 new models presented here, 20 representative models developed 2 

using data from China in previous research were also compared (Table 3).  For these models 3 

other variables were needed.  Pd12 was average daily erosive rainfall total and Py12 was 4 

average annual erosive rainfall total.  P5-10 represented the rainy season rainfall amount from 5 

May through October for a specific year.  
yearP 10

was the summation of daily rainfall no less 6 

than 10 mm in a year and annualP 10  was the annual average for 
yearP 10

. 7 

Models by Wang (1987) and Wang et al. (1995) utilized (m t cm ha
-1

 h
-1 

a
-1

) as the units 8 

of R for comparison.  A conversion factor of 10.2 was multiplied to convert R to (MJ mm 9 

ha
-1

 h
-1

 a
-1

).  Later, models by Wu (1994) and Zhou et al. (1995) utilized (J cm m
-2

 h
-1

 a
-1

).  10 

Their conversion factor, 10, was multiplied to convert (J cm m
-2

 h
-1

 a
-1

) to (MJ mm ha
-1

 h
-1

 11 

a
-1

).  12 

2.5 Assessment of the models 13 

After the 21 models in Table 2 were calibrated with the data from the 11 calibration 14 

stations, the performance for these models was assessed and compared with the performance 15 

of the previously published models listed in Table 3 using data from the seven validation 16 

stations.  Symmetric mean absolute percentage error (MAPEsym) and the Nash-Sutcliffe 17 

model efficiency coefficient (ME) were utilized to reflect the deviation of the calculated 18 

values from the observation data.  MAPEsym is considered to be superior to MAPE, since it 19 

corrects the problem of MAPE’s asymmetry and the possible influence by outliers 20 

(Makridakis and Hibon, 1995).  MAPEsym was calculated as follows (Armstrong, 1985): 21 


 




m

1k obssim

obssim
sym

(k))/2R(k)(R

(k)R(k)R

m

100
MAPE                     (11) 22 

where Robs is the measured rainfall erosivity for the k
th

 period of time, such as month, year, or 23 

annual, based on one-minute resolution rainfall data.  Rsim is the estimated value for the 24 

same period using equations in Tables 2 or 3.  25 

ME was calculated as follows (Nash and Sutcliffe, 1970): 26 
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








m

k

2

obsobs

m

k

2

obssim

(k)]R(k)[R

(k)]R(k)[R

1ME
                        (12) 1 

ME compares the measured values to a perfect fit (1:1 line).  Hence, ME is a combined 2 

measure of linearity, bias, and relative differences between the measured and predicted values.  3 

The maximum possible value for ME is 1.  The greaterhigher the value the better the model 4 

fit.  An efficiency of ME < 0 indicates the single value (the mean) for the measured data’s 5 

mean is a better predictor of the data than the model.   6 

    MAPEsym and ME were calculated based on all the data for the seven validation stations.  7 

Individual values for all stations were also determined.     8 

3. Results and discussion 9 

3.1 Basic data results 10 

Average annual rainfall ranged from 449.7 to 1728.1 mm, and average annual erosivity 11 

varied from 781.9 to 8258.5 MJ mm ha
-1

 h
-1

 yr
-1 

(Table 1).  A total of 11,801 erosive events 12 

were used in the study.  The eleven stations had 6,376 erosive events, which were used to 13 

calibrate the models, and the seven validation stations had 5,425 erosive events.    14 

3.2 Validation and calibration for the new models  15 

Parameters, MAPEsym, ME, and coefficients of determination, R
2
, for calibration models 16 

are shown in Table 4.  The model Event IV, with a combination of event rainfall amount 17 

Pevent and I30, when I30 was divided into two categories, with a threshold of 15 mm h
-1

, 18 

performed slightly better in terms of the MAPEsym value than did Event II, which used the 19 

same variables but did not separate the rainfall events by intensity.  The performance of 20 

Daily I with daily rainfall amount and (I10)daily was similar with that for Event I with event 21 

rainfall amount and I10.  22 

Using only total rainfall amount as input, the models for month, year, and average 23 

monthly scales were statistically significant, with determination coefficients R
2
 greater than 24 

0.66 (Table 4 and Fig. 2).  However, their capabilities in predicting erosivity were limited 25 
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based on the ME values (Table 4).  Data from Tengchong and Xichang, located in the 1 

southwestern part of China, were in part responsible for these low ME values. Table 5 shows 2 

the individual values of MAPEsym and ME for the seven validation stations, with average of 3 

each using all the stations and using only the five without Tengchong and Xichang.  Results 4 

were much better without those two stations.  The model Annual I, which use only average 5 

annual precipitation values, performed reasonably well, considering that the only input 6 

required was annual average precipitation (Table 4).  If other information is available, other 7 

models performed better, but Annual I may be used if only average annual precipitation is 8 

available at a location.    9 

In general, we found that the finer the temporal resolution of the rainfall input data, the 10 

better the models performed for a given erosivity time scale. Models that used some 11 

expression of maximum daily rainfall amount (Month III, Year III, Average Monthly III, 12 

Average Monthly V, Annual III, and Annual Model V) predicted the R factor better than those 13 

models with only total rainfall amount as input (Table 4), for a specific time scale.  Models 14 

based on rainfall amount and maximum contiguous 60-min rainfall amounts (Month II, Year 15 

II, Average Monthly II, Average Monthly IV, Annual II, and Annual IV) generally performed 16 

better than corresponding models with rainfall amount and maximum daily rainfall amount 17 

(Month III, Year III, Average Monthly III, Average Monthly V, Annual III), except for Annual 18 

Model V, which performed well.  The reason for that may be due to the fact that maximum 19 

contiguous 60-min rainfall amounts may have been more highly correlated with maximum 20 

contiguous 30-min intensity in an event as compared to just the maximum daily rainfall 21 

amount.  The only annual average model that did not perform well was Annual III, which 22 

utilized (P1440)year_max, the maximum of (P1440)year values for each year over the entire period 23 

of record.   24 

Tables 3 and 4 show the models only evaluated for the erosivity temporal scale that 25 

corresponds to the input data resolution.  For example, the event-based models are only 26 

evaluated on the basis of events modelled.  We also evaluated the models at the aggregate 27 

scale.  For example, EI30 estimated from event-based models were summed up to month and 28 

year values, in order to evaluate if fine-scalefine temporal resolution data improves also the 29 
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accuracy of aggregate erosivity measures (Table 6).  Two important facts emerge.  First, 1 

when the models are applied at the aggregated scale their predictions get better. Secondly, the 2 

models that use finer resolution of input data predict better for the same erosivity time scale 3 

compared to models using coarser resolution input data.  This has important implications for 4 

model applications. 5 

3.3 Seasonal variations of erosivity 6 

Taking Tonghe and Tengchong as examples, it was found that Month II generated better 7 

results than Month III, which performed better than Month I, in estimating seasonal and 8 

yearly variations (Figs. 3a, b and Figs. 4a, b).  Correspondingly, seasonal variations by 9 

Average Monthly II were closer to observations as compared to those by Average Monthly III 10 

and Average Monthly I (Figs. 3c and d).  Year II and Year III produced better simulations of 11 

yearly variations compared with Year I, especially for the Tengchong station (Figs. 4c, d).  12 

Seasonal variations by monthly and average monthly models (Fig. 3) and yearly 13 

variations by month and year models (Fig. 4) were demonstrated using Tonghe and 14 

Tengchong stations.  Month I and Average Monthly I captured the general seasonal pattern 15 

for the Tonghe station (Figs. 3a and c), but the simulated peak value of monthly R was in July 16 

for the Tengchong station, which was not consistent with observation.  Month I and Year I 17 

captured the general year-to-year pattern for the Tonghe station (Figs. 4a and c), but they 18 

overestimated yearly erosivity for the Tengchong station (Figs. 4b and d).  Month I and Year 19 

I also overestimated the yearly erosivity for the Xichang station.  The reason for the 20 

overestimation for the Tengchong and Xichang stations was mainly due to two aspects: (1) 21 

the percentages of erosive rainfall amount to total rainfall at those stations were lower (71.9% 22 

and 76.9%, respectively), suggesting that more events occurred with small amount totals that 23 

do not generate soil loss (Table 5); and (2) the ratio for event EI30 to event rainfall amount P 24 

was lower (3.6 and 4.1, respectively), inferring that rainfall intensity and erosivity generated 25 

by per amount of rainfall were both less than that of the other stations (Table 5).  This result 26 

was consistent with that of Nel et al. (2013), which demonstrated that two models using 27 

annual average rainfall and average monthly rainfall substantially overestimated annual 28 
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erosivity in the west coast and the Central Plateau of Mauritius, which also have a large 1 

amount of non-erosive rainfall.  Rainfall erosivity reflected a combined effect of rainfall 2 

amount and rainfall intensity.  Therefore, it was reasonable that rainfall amount only 3 

explained part of rainfall erosivity variation at these stations. 4 

3.4 Evaluation of models from previous research with current models 5 

Generally speaking, the finermore accurate the resolution of input data for models, the 6 

better was the performance of the model for estimating at the same temporal erosivity scale.  7 

For example, the models with daily rainfall amount and daily maximum 60-min or 10-min 8 

amount as inputs performed better than models with only daily rainfall amount as input.  9 

Similarly, results from models with maximum 60-min rainfall amount (Month II, Year II, 10 

Average Monthly IV, and Annual IV) were generally better than those with maximum daily 11 

rainfall amount (Month III, Year III, Average Monthly V, and Annual V, Fig. 5). 12 

Wang et al. (1995) used a combination of event rainfall amount Pevent and I10 for event 13 

scale models.  The model using the I10 data was divided into two categories, with a threshold 14 

of 10 mm h
-1

, performed best among the four models compared (Table 3).  That model had 15 

similar performance with Event IV in this study (Table 4), which also divided the data by a 16 

rainfall intensity threshold. 17 

There were three kinds of daily scale models, according to the number and type of inputs 18 

required.  Two models used daily rainfall amount (Zhang et al., 2002b and Xie et al., 2015), 19 

two models used daily rainfall amount and daily maximum 10-min intensity (Xie et al., 2001 20 

and Daily I), and one model used daily rainfall amount and daily maximum 60-min intensity 21 

(Xie et al., 2015).  The model with daily rainfall amount as input in Xie et al. (2015) 22 

performed better than that of Zhang et al., (2002b) (Table 3).  Daily I, which used daily 23 

rainfall amount and daily maximum 10-min intensity as inputs in this study, performed better 24 

than the model in Xie et al., (2001).  Models with an additional daily 10-min or 60-min 25 

intensity index performed better than those with only a total rainfall amount (Table 3 and 26 

Table 4).   27 

There were generally four groups of models for month, year, average monthly, and 28 
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annual scale models.  The first group used linear regression (Sun et al., 1990; Wu, 1994; 1 

Zhou et al., 1995) or a power law function (Zhang and Fu, 2003; Month I, Year I, Average 2 

Monthly I, and Annual I) with only rainfall amount as input, so that the data required were 3 

relatively easy to collect.  Models by Sun et al., (1990), Wu (1994) and Zhou et al. (1995), 4 

when they were used to estimate the monthly scale of R, had MAPEsym values of 86.7, 60.2 5 

and 67.3% and ME of -0.63, 0.57 and 0.35, respectively (Table 3).  When they were used to 6 

estimate annual scale of R, there was a tendency of underestimation, especially for the 7 

stations with larger erosivity (Figs. 5a, b).  Four models by Zhang and Fu (2003) 8 

overestimated the R factor, with MAPEsym varying between 34.6 and 60.8% and ME varying 9 

between -2.11 to 0.10 (Table 3, Fig. 5), which suggested the models’ abilities were limited.  10 

Two models by Zhang and Fu (2003) using the Modified Fournier Index generated poorer 11 

results than the model by Zhang and Fu (2003) using average annual rainfall as input (Table 12 

3), which was consistent with the findings of Yu and Rosewell (1996).  The power law 13 

models in this study, including Month I, Year I, Average Monthly I, and Annual I, tended to 14 

overestimate the R factor for the stations with larger erosivity (Fig. 5).   15 

The second group of models (Wang et al., 1995, Month II, Year II, Average Monthly IV, 16 

Annual IV) used linear regression with rainfall amount (total rainfall or total rainfall with 17 

daily rainfall no less than 10 mm) and maximum 60-min rainfall as inputs.  All these seven 18 

models generated statistically significant results, with MAPEsym for R with time scale 19 

intended for the model ranging from 11.5 to 36.0% and ME from 0.80 to 0.94 (Table 3 and 20 

Table 4; Fig. 5).   21 

The third group used linear regression with rainfall amount and maximum daily rainfall 22 

as inputs (Month III, Year III, Average Monthly V, Annual V), which generated reasonable 23 

results (Table 4) and a slightly overestimated annual R (Fig. 5).  Overall they did not 24 

perform as well as did the models in the second group (Table 4).   25 

The fourth group (Wang et al., 1995) used a combination of three indices, including 26 

rainfall amount, maximum 60-min rainfall amount, and maximum daily rainfall amount as 27 

inputs and generated good simulation results, however, there was no improvement compared 28 

with the two models by Wang et al., (1995) in the second group (Table 3).    29 
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3.5 Applications and recommendations 1 

The results of this study provide a multitude of options for dealing with the problem of 2 

variations in available temporal resolutions of rainfall data from across the world for 3 

developing erosivity maps and databases.  We present a series of 21 potential equations for 4 

use in estimating erosivity at time scales from event to average annual using input data 5 

resolution ranging from maximum ten minute rainfall intensity to average annual rainfall 6 

amount.  Of the 21 equations we can recommend the use of 17.  Equations Month I, Year I, 7 

and Average Monthly I, which use only total rainfall amounts for the respective time scales, 8 

all had low ME values and poor prediction capability (Table 4).  Annual III, which is a 9 

linear function of average annual rainfall and the maximum daily precipitation over the 10 

recording period, performed very poorly, with a negative ME value (Table 4).  11 

We found that using finer resolution data input produced better predictions of erosivity at 12 

a given output time scale.  An exception was for the event-based models, where using I30 13 

gave slightly better results than using I60 or I10.  However, we also found that using 14 

equations with the finest data resolution possible, and aggregating or summing results for 15 

finer erosivity time scales, gave the best results (Table 6).  In other words, if one were 16 

interested in average annual erosivity, but had rainfall data available for using the Daily I 17 

model, then results are better using the Daily I model and summing results over the period of 18 

data record rather than using Annual I-V models.  It is also evident that predictions of 19 

erosivity using Daily I improve as the time scale increases.  In other words, the predictions 20 

of average annual erosivity calculated by summing the daily values from Daily I give a 21 

higher level of fit than when using Daily I to estimate daily erosivity (Table 6).     22 

Models in this study performed better or similar to models from previous research given 23 

the same rainfall data inputs based on these independent validation data (Table 4 and Table 5). 24 

Models from previous research had higher symmetric mean absolute percentage errors, 25 

MAPEsym, and lower Nash-Sutcliffe model efficiencies, ME, with the exception of models 26 

for event, year and average annual time scales by Wang et al. (1995), which had similar 27 

MAPEsym and ME compared to the models in this study.  28 
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Much attention has been given to monitoring the erosion process and its controlli1 

ng factors at various spatio-temporal scales (Poesen et al., 2003).  Characteristics of t2 

opography and soils are usually relatively constant in the time scales of interest, wher3 

eas rainfall erosivity and vegetation vary greatly.  Therefore, soil erosion monitoring 4 

work is often mainly focused on the dynamics of rainfall erosivity and vegetation rath5 

er than soil and topography (Vrieling et al, 2014).  Different time scales of erosivity 6 

are required in areas with different resolutions of rainfall data availability.  Models pr7 

ovided in this study have potential to play important roles in the soil erosion monitor8 

ing framework in terms of quantifying the temporal dynamics and changes in rainfall 9 

erosivity. 10 

 11 
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Table 1. Information for the 18 rainfall stations 1 

Province 
Station 

 name 

Lat. 

(°N) 

Long. 

(°E) 

Elevation 

(m) 

Common 

years 

No. of 

erosive 

events 

Annual 

rainfall [3] 

(mm) 

R [4]  

(MJ mm ha-1 

h-1 a-1) 

Heilongjiang[1] Nenjiang 49.17 125.23 243.0 30 343 485.8  1368.7 

Tonghe[2] 45.97 128.73 110.0 38 471 596.2  1632.5 

Shanxi[1] Wuzhai 38.92 111.82 1402.0 30 289 464.0  781.9 

Yangcheng[2] 35.48 112.4 658.8 30 340 605.9  1503.3 

Shaanxi[1] Suide 37.5 110.22 928.5 29 256 449.7  992.8 

Yan’an 36.6 109.5 958.8 39 411 534.6  1233.7 

Beijing[1] Guanxiangtai 39.93 116.28 54.7 40 434 575.0  3188.1 

Miyun[2] 40.38 116.87 73.1 37 476 648.1  3575.0 

Sichuan Chengdu 30.67 104.02 506.1 39 717 891.8  3977.0 

Xichang[2] 27.9 102.27 1590.9 40 998 1007.5  3021.0 

Suining 30.5 105.58 279.5 33 654 932.7  4091.3 

Neijiang 29.58 105.05 352.4 39 826 1034.1  5097.9 

Hubei Fangxian 32.03 110.77 427.1 31 563 829.5  2298.4 

Huangshi[2] 30.25 115.05 20.6 32 898 1438.5  6049.4 

Yunnan Tengchong[2] 25.02 98.5 1648.7 36 1205 1495.7  3648.9 

Kunming 25.02 102.68 1896.8 33 747 1018.8  3479.0 

Fujian Fuzhou 26.08 119.28 84.0 39 1136 1365.4  5871.1 

Changting[2] 25.85 116.37 311.2 31 1037 1728.1  8258.5 

[1] The eight stations in these provinces are located in the northern part of China and had one-minute resolution data collected 2 

from May through September.  The remaining ten stations were based on data collected during the entire year. [2] Seven 3 

validation stations (The other 11 stations were calibration stations.) [3] Based on daily rainfall datasets collected during 4 

1961-2000. [4] R in this case is the average annual erosivity.   5 
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Table 2. New models calibrated 1 

Model codes Models Model codes Models 

Event I 10130 IeventPEI   Average Monthly I 3

_3_


 monthavemonthave PR   

Event II 30230 IeventPEI   Average Monthly II max_60_11_ )( monthmonthavemonthave PPR   

Event III 60330 IeventPEI 
 

Average Monthly III max_1440_12_ )( monthmonthavemonthave PPR   

Event IV 
hmmIIeventPEI

hmmIIeventPEI

/15≥3030530

/153030430







  
Average Monthly IV 

monthmonthavemonthave PPR )( 60_13_   

Daily I dayIdayPdayR )10(6  Average Monthly V monthmonthavemonthave PPR )( 1440_14_   

Month I 
1

1


 monthPmonthR 

 
Annual I[1] 4

4


 annualannual PR   

Month II monthmonthmonth PPR )( 607  Annual II max_6015 )( yearannualannual PPR   

Month III monthmonthmonth PPR )( 14408  
Annual III max_144016 )( yearannualannual PPR   

Year I 2

2
 yearyear PR 

 
Annual IV 

annualannualannual PPR )( 6017  

Year II yearyearyear PPR )( 609  Annual V 
annualannualannual PPR )( 144018  

Year III yearyearyear PPR )( 144010    

[1] Annual refers to Average Annual values of erosivity.    2 



30 
 

Table 3. Models published in previous research and their prediction capabilities determined using 1 

the validation stations-the symmetric mean absolute percentage errors, MAPEsym, and 2 

Nash-Sutcliffe model efficiencies, ME. 3 

Erosivity 

time 

scales 

Models Sources 
MAPEsym (%) 

[1] 
ME[2] 

Event  )17.00247.0(2.10 30  IPR eventevent
 Wang, 1987 30.6  0.97 

 )32.0025.0(2.10 30  IPR eventevent
 Wang, 1987 28.8  0.97 

 
1-

30
30

1-

30

30

 10)523.0
100

35.2(2.10

 10)136.0
100

70.1(2.10

hmmI
IP

R

hmmI
IP

R

event
event

event

event



  
Wang et al., 1995 15.5 0.98 

 101773.0 IPR eventevent   

Zhang et al., 

2002a 
44.7  0.89 

Daily  daydayday IPR )(184.0 10    Xie et al., 2001 44.9 0.91 

 


 dayday PR   

1891.7

1212

586.21  ,
24.45518.144

0.8363  
yd PP

  

Zhang et al., 

2002b 
74.6 0.69 

 
72651

6

7

6
cos54120126860

.

dayday )]P
π

j
π

(.[.R 

 

Xie et al., 2015 63.7 0.71 

 daydayday PPR )(3522.0 60

 

Xie et al., 2015 38.2 0.95 

Month 
6295.1

0125.010 monthmonth PR 
 

Wu, 1994 60.2  0.57 

 )6398.23046.0(10  monthmonth PR
 

Zhou et al., 1995 67.3  0.35 

Year 03.13377.1 105  PRyear  
Sun et al., 1990 86.7  -0.63 

 
205.1

60 )100/)((272.02.10 yearyearyear PPR 
 

Wang et al., 1995 31.8  0.80 

 
953.0

6010 )100/)((67.12.10 yearyearyear PPR   
Wang et al., 1995 18.9  0.87 

 
6548.1

0534.0 yearyear PR 
 

Zhang and Fu, 

2003 
44.4 0.10 
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Average 

Annual 

0.560

1440

1.155

60

564.0

annualannual )(P)(P0.009P2.10 annualannualR   
Wang et al., 1995 17.3  0.83 

 
0.376

1440

1.175

60

551.0

10annualannual )(P)(P0.0244P2.10 annualannualR    
Wang et al., 1995 12.0  0.86 

 
0.919

6010annualannual /100))(P2.135(P2.10 annualR    
Wang et al., 1995 11.5  0.94 

 











N

i

j

ji

j

ji

FFannual

P

P

N
FFR

1
12

1

,

12

1

2

,

9957.1 1
  ,1833.0

 Zhang and Fu, 

2003 
55.9  -1.21 

 annual

j

jmonthaveannual PPFFR /)(  ,3589.0
12

1

2

__

9462.1 


  
Zhang and Fu, 

2003 
60.8  -2.11 

 
6266.1

0668.0 annualannual PR 
 

Zhang and Fu, 

2003 
34.6  -0.03 

[1] MAPEsym (%) is the symmetric mean absolute percentage error values for all the data across validation 1 

stations for R with time scale intended for the model.       2 

[2] ME is the Nash-Sutcliffe model efficiency coefficient for all the data across validation stations for R with time 3 

scale intended for the model.   4 

5 
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Table 4. Models calibrated in this study and their prediction capabilities determined using the 1 

validation stations-the symmetric mean absolute percentage errors, MAPEsym, and Nash-Sutcliffe 2 

model efficiencies, ME. 3 

Model codes Models [1] R2 [2] MAPEsym (%) ME 

Event I 101547.030 IeventPEI   0.92 34.5  0.91  

Event II 302372.030 IeventPEI   0.98 29.3  0.98  

Event III 603320.030 IeventPEI   0.94 35.8  0.96  

Event IV 
hmmIIPR

hmmIIPR

eventevent

eventevent

/15≥2394.0

/151592.0

3030

3030



  
0.97 13.9  0.98  

Daily I dayIdayPdayR )10(1661.0  0.92 38.4  0.91  

Month I 
1.6670

1575.0 monthmonth PR 
 

 

0.66  69.5  0.48  

Month II monthmonthmonth PPR )(1862.0 60
 0.85  36.0  0.88  

Month III monthmonthmonth PPR )(0770.0 1440
 

 

0.65  55.2  0.69  

Year I 
3163.1

5115.0 yearyear PR 
 

 

0.70  38.1  0.48 

Year II yearyearyear PPR )(1101.0 60  0.80  20.9  0.84  

Year III yearyearyear PPR )(0502.0 1440  

 

0.54  28.9  0.59  

Average 

Monthly I 

8430.1

__ 0755.0 monthavemonthave PR   0.89  44.7  0.17 

Average 

Monthly II 

max_60__ )(0877.0 monthmonthavemonthave PPR 

 
0.94  23.5  0.88  

Average 

Monthly III 
max_1440__ )(0410.0 monthmonthavemonthave PPR   0.87  30.1  0.73  

Average 

Monthly IV 
monthmonthavemonthave PPR )(2240.0 60__   0.98  22.9  0.88  

Average 

Monthly V 
monthmonthavemonthave PPR )(1082.0 1440__   0.94  31.4  0.79  

Annual I 
1801.1

2718.1 annualannual PR   0.89  25.6  0.63 

Annual II max_60)(0584.0 yearannualannual PPR   0.92  15.4  0.91 
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Annual III max_1440)(0253.0 yearannualannual PPR   0.92  22.5  -0.44 

Annual IV 
annualannualannual PPR )(1058.0 60  0.94  17.0  0.88 

Annual V 
annualannualannual PPR )(0492.0 1440  0.92  18.2  0.91 

[1] Parameters of models for power law models, including α1, β1, α2, β2, α3, β3, α4, β4, α5, β5,
 were solved by 1 

pooling data from 11 stations together.  Parameters for average annual scale models, including λ15, λ16, λ17, λ18, 2 

were calculated by fitting data from all calibration stations and for the remainder they were the average values 3 

of parameters for the 11 calibration stations. [2] R2 is the coefficient of determination. 4 

  5 
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Table 5. Validation station-averaged symmetric mean absolute percentage errors (MAPEsym) and 1 

Nash-Sutcliffe model efficiency coefficients (ME) for Rmonth by Month I, Ryear by Year I and Rave_month 2 

by Average Monthly I models for seven validation stations and statistics on event rainfall amount 3 

and event EI30.   4 

Station 

name 

Rmonth by Month 

I 

 

Ryear by Year I 

 Rave_month by Average 

Monthly I 

Percent of 

erosive amount 

(%) 

EI30/P 

MAPEsym ME  MAPEsym ME  MAPEsym ME 

  

Tonghe 70.2  0.73   30.9 0.47   29.5 0.93 71.2  4.8  

Yangcheng 65.5  0.31   27.1  0.55  16.4 0.96 81.7  4.2  

Miyun 52.0  0.71   45.1 -0.06  37.6 0.88 82.8  7.8  

Xichang 77.5  0.47   45.4  -0.15   57.2 0.09 76.9  4.1  

Huangshi 70.1  0.65   24.5  0.63   46.1 0.73 86.5  5.7  

Tengchong 83.4  -2.01  66.6 -7.51  68.3 -6.98 71.9  3.6  

Changting 52.0  0.54   20.9 0.26   35.2 0.30 88.4  6.1  

Mean[1]  67.2  0.20   37.2  -0.83  41.5 -0.44 79.9  5.2  

Mean[2] 62.0  0.59   29.7  0.37  38.7 0.60 82.1  5.7  

[1] Averaged value for seven validation stations.   5 

[2] Averaged value for five validation stations except Xichang and Tengchong. 6 

  7 
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Table 6. MAPEsym for the models when used to estimate longer time scales of erosivity.  1 

Model 

codes 

Models  
Event & 

Daily 
Month 

Ave. 

monthly 
Year Annual 

Event I 101547.030 IeventPEI   34.5 29.0 20.4 16.4 12.0 

Event II 302372.030 IeventPEI   29.3 24.2 16.0 11.4 9.1 

Event III 603320.030 IeventPEI   35.8 28.5 15.1 10.8 6.2 

Event IV 
hmmIIPR

hmmIIPR

eventevent

eventevent

/15≥2394.0

/151592.0

3030

3030



  
13.9 11.0 7.0 6.4 4.7 

Daily I dayIdayPdayR )10(1661.0  38.4 29.2 19.6 16.2 11.7 

Month I 
1.6670

1575.0 monthmonth PR 
 

 

 69.5 46.7 39.4 28.7 

Month II monthmonthmonth PPR )(1862.0 60  
 36.0 19.9 18.6 13.1 

Month III monthmonthmonth PPR )(0770.0 1440  
 

 55.2 26.7 24.8 12.3 

Year I 
3163.1

5115.0 yearyear PR 
 

 

   38.1 23.5 

Year II yearyearyear PPR )(1101.0 60     20.9 14.3 

Year III yearyearyear PPR )(0502.0 1440  

 

   28.8 17.3 

 2 

 3 

  4 
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Figures 1 

 2 

Fig. 1. Locations of the 18 stations with one-minute resolution rainfall data.  Eleven stations 3 

marked with dots were used to calibrate 21 models.  The other seven stations marked with triangles 4 

were used to validate models and conduct comparisons with previous research.  5 

  6 
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 1 

Fig. 2. Scatterplots for power law models using rainfall amount: (a) Month I, (b) Year I, (c) Average 2 

Monthly I, and (d) Annual I, based on the 11 calibration stations. 3 
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 1 

Fig. 3. Comparisons of average monthly R values between observation values calculated using 2 

one-minute resolution rainfall data and estimated values using month models (a, b) and average 3 

monthly models (c, d) for the Tonghe and Tengchong stations.  4 
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1 

Fig. 4. Comparison of yearly R values between observation values calculated using one-minute 2 

resolution rainfall data and estimated values using month models (a, b) and year models (c, d) for the 3 

Tonghe and Tengchong stations.  The years without marks were ineffective years. 4 
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 1 

Fig. 5. Comparisons of the estimated R-factor value calculated based on (a) month, (b) year, (c) 2 

average monthly, and (d) average annual models using one-minute resolution data for the seven 3 

independent validation stations.  Month models included models in Wu (1994), Zhou et al. (1995), 4 

and Month I, II, and III from this study.  Year models included models from Sun et al. (1990), 5 

Wang et al. (1995, the one with MAPEsym of 18.9%), Zhang and Fu (2003), and Year I, II, and III 6 

from this study.  Average monthly models included models from Average Monthly I, II, and III 7 

from this study.  Average annual models included models from Wang et al. (1995, the one with 8 

MAPEsym of 11.5%), Zhang and Fu (2003, the one with MAPEsym of 34.6%), and Annual I, II, and 9 

III from this study.  10 
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