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Interactive comments on “Rainfall erosivity estimation based on rainfall data 1 

collected over a range of temporal resolutions” by S. Yin et al. 2 

 3 

Anonymous Referee #1 4 

 5 

The manuscript addresses an important topic, i.e. what temporal resolution is required for making 6 

accurate estimates of rainfall erosivity. This topic is of global interest, given the often non-existent or 7 

difficult-to-acquire quality rainfall datasets at high temporal resolutions. As much as I applaud 8 

therefore this effort, I do have a number of concerns with the current version of the manuscript. 9 

These are: 10 

 11 

1. The authors rightly take the EI30 measure as the reference given its wide-spread use. However, 12 

they fail to discuss properly the kinetic energy component of this indicator, and the issues of 13 

measuring/estimating it. The kinetic energy of rainfall can be measured (e.g. with disdrometers), but 14 

given the non-availability of such measurements for most stations, mostly it is estimated based on 15 

empirical equations. The authors simply present equation (2) but fail to give a rationale for it. Other 16 

studies exist that compare various existing empirical relationships (e.g. van Dijk et al, 2002, Journal of 17 

Hydrology 261, 1-23 and see also Salles et al. 2002, Journal of Hydrology 257, 256-270), and should 18 

at least be discussed here. 19 

 20 

Response:  21 

 22 

We agree with the comment and we added an extensive discussion of kinetic energy of rainfall in 23 

the Introduction of the revised version, including the references suggested, as follows:   24 

“Kinetic energy (KE) is generally suggested to indicate the ability of a raindrop to detach soil 25 

particles from a soil mass (e.g., Nearing and Bradford, 1985). Since the direct measurement of KE 26 

requires sophisticated and costly instruments, several different estimating methods have been 27 

developed that estimate KE based on rainfall intensity (I) using logarithmic, exponential, or power 28 

functions.  The original 1978 release of the USLE utilized a logarithmic function (Wischmeier and 29 

Smith, 1978) that was based on rainfall energy data published by Laws and Parsons (1943).  Brown 30 

and Foster (1987) re-evaluated this relationship and recommended the use of an exponential 31 

relationship, which was subsequently used in RUSLE (Renard et al., 1997). 32 

McGregor et al. (1995) compared the KE equations used in the USLE and RUSLE with the results 33 

from the equation and data of McGregor and Mutchler (1976), which was developed based on 29 34 

standard recording rain gauges in the Goodwin Creek Watershed in northern Mississippi, USA.  The 35 

results showed that the annual erosivities predicted by the equation of McGregor and Mutchler (1976) 36 

and the USLE were almost identical, whereas the RUSLE predicted values that were about 8% lower. 37 

McGregor et al. (1995) suggested that the equation of Brown and Foster (1987) be modified, 38 

changing the value of the exponential function to -0.082 rather than -0.05 that was used in RUSLE. 39 

Foster (2004) used the 0.082 value in RUSLE2, as follows:   40 

                 )]082.0exp(72.01[29.0er ri                            (1) 41 
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where er is the estimated unit rainfall kinetic energy (MJ ha-1 mm-1) and ir is the rainfall intensity (mm 1 

h-1) at any given time within a rainfall event (usually taken as one minute for computational purposes, 2 

with average intensity representative of the time increment).  3 

Other work has been done to evaluate the relationships between rainfall intensity and KE.  After 4 

reviewing more than 20 exponential KE vs. I relationships based on natural rainfall data observed in a 5 

variety of climate classifications, van Dijk et al. (2002) derived: 6 

)]042.0exp(52.01[283.0er ri                       (2) 7 

Salles et al. (2002) suggested using a power law KEtime vs. I expression wherein the constants of the 8 

power law were different for convective rain and stratiform rain types. It is, however, often difficult to 9 

define if a storm should be classified as convective or stratiform based on the breakpoint data alone. 10 

Breakpoint data is fine resolution information on time during a rainfall event with associated 11 

cumulative rainfall depth. The term breakpoint refers to times when there are detectible changes in 12 

rainfall intensity as shown by a change in the slope of the cumulative rainfall curve.  It originates 13 

from the time that rainfall records were read from recording pen charts.   14 

Preliminary analysis (not shown) of our data from China indicated that the van Dijk equation 15 

resulted on average in similar R values to those from RUSLE2, slightly lower R values compared to 16 

USLE, and much greater R values than given by RUSLE.  The Salles et al. (2002) equations produced 17 

on average much greater values of erosivity than did all of the other equations.  In general, the 18 

RUSLE2 value produced results in the mid-range of all of these equations.” 19 

 20 

2. It is not always very clear which erosivity values are taken as input for estimating the modelling 21 

error. E.g. if the authors refer to monthly, is this always “average monthly”?  If so, why, and would it 22 

not be more useful to look at erosivity values for individual months? This would relate better to the 23 

ongoing discussion on ways forward for erosion monitoring (e.g. Vrieling et al, 2014 Global and 24 

Planetary Change 115, 33-43).       25 

Response:  26 

It was confusing.  Instead of “monthly” and “yearly” when referring to individual months and years, 27 

we should have used “month” and “year”, which we did in the revision.  We revised, for example, to 28 

read: “These were treated as observed values and summed to obtain the erosivity factors, R, for daily, 29 

month (individual month totals), year (individual year totals), average monthly, and average annual 30 

time scales.”  Note that the mathematical definitions are presented in (for example for months) in 31 

(the original) equations 6 and 7 (equation numbers changed in the revision.) 32 
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 34 

where (EI30)y, m, j is the EI30 value for the jth event in the mth month of the yth year; Rmonth, y, m is the R 35 

value for the mth month of the yth year; Rave_month, m is the average R value for the mth month over the 36 

years of record.

 

37 

We will clarify the definitions in the revision and add more discussion on Vrieling et al, 2014 Global 38 

and Planetary Change 115, 33-43.    39 
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 1 

 3. In relation to the last point, I would encourage the authors to contribute to this discussion and 2 

(based on their results) give more concrete recommendations for ways forward. Currently the 3 

authors refer in a very general way to “users” in their conclusions. In my view, end-users are never 4 

those that want just to make an estimate of erosivity, but rather they need erosion estimates and 5 

possibly a monitoring framework, e.g. for planning purposes and impact evaluations. Adding a 6 

clearer opinion on how to move forward with erosivity analysis, including its embedding in 7 

mapping/monitoring frameworks, would be a welcome addition to this manuscript.       8 

Response:  9 

Absolutely correct!  We have added a new section 3.5 Recommendations and applications: 10 

“The results of this study provide a multitude of options for dealing with the problem of variations in 11 

available temporal resolutions of rainfall data from across the world for developing erosivity maps 12 

and databases.  We present a series of 21 potential equations for use in estimating erosivity at time 13 

scales from event to average annual using input data resolution ranging from maximum ten minute 14 

rainfall intensity to average annual rainfall amount.  Of the 21 equations we can recommend the 15 

use of 17.  Equations Month I, Year I, and Average Monthly I, which use only total rainfall amounts 16 

for the respective time scales, all had low ME values and poor prediction capability (Table 4).  17 

Annual III, which is a linear function of average annual rainfall and the maximum daily precipitation 18 

over the recording period, performed very poorly, with a negative ME value (Table 4).  19 

We found that using finer resolution data input produced better predictions of erosivity at a given 20 

output time scale.  An exception was for the event-based models, where using I30 gave slightly 21 

better results than using I60 or I10. However, we also found that that using equations with the finest 22 

data resolution possible, and aggregating or summing results for finer erosivity time scales, gave the 23 

best results (Table 6).  In other words, If one were interested in average annual erosivity, but had 24 

daily rainfall data available for using the Daily I model, then results are better using the Daily I model 25 

and summing results over the period of data record rather than using Average Monthly I-IV or Annual 26 

I-V models. It is also evident that predictions of erosivity using Daily I improve as the time scale 27 

increases.  In other words, the predictions of average annual erosivity calculated by summing the 28 

daily values from Daily I give a higher level of fit than when using Daily I to estimate daily erosivity 29 

(Table 6).     30 

Models in this study performed better or similar to models from previous research based on these 31 

independent validation data.” 32 

 33 

 4. While the research seems well-embedded in existing erosivity estimation efforts in China, in my 34 

view the authors could make a better link with other ongoing efforts in other areas that look at 35 

different temporal resolutions of rainfall data. I am thinking for example about Panagos et al (2015, 36 

Science of Total Environment 511, 801-814) who normalize R-factor estimates for Europe based on 37 

recording intervals. Although the authors focus on rainfall station data, another line of research (i.e. 38 

application of satellite  rainfall estimates) should be acknowledged, i.e. work by Vrieling et al (2010 39 

in Journal  of Hydrology, and 2014 cited above), but also for China (Fan et al, 2013, Journal of  40 

Mountain Science 10(6): 1008-1017). This is especially relevant for end-users that require 41 

spatially-consistent information on soil erosion. In fact, a performance evaluation for the stations in 42 

the manuscript of erosivity estimated from satellite rainfall products could be a nice follow-up study 43 

for the authors (but probably not for this paper).         44 
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Response: We expanded and improved the Introduction to include discussion relative to: 1 

Fan et al, 2013, Journal of  Mountain Science 10(6): 1008-1017 2 

Vrieling et al 2010 in Journal  of Hydrology 3 

Vrieling et al, 2014 Global and Planetary Change 115, 33-43 4 

Panagos et al, 2015, Science of Total Environment 511, 801-814 5 

Sadeghi, S. H. R., M. Moatamednia, and M. Behzadfar. 2011. Spatial and Temporal Variations in the 6 

Rainfall Erosivity Factor in Iran. J. Agr. Sci. Tech. (2011) Vol. 13: 451-464. 7 

Sadeghi, S.H.R., and S. Tavangar. 2015. Development of stational models for estimation of rainfall 8 

erosivity factor in different timescales. Nat Hazards 77:429–443 DOI 10.1007/s11069-015-1608-y. 9 

Oliveira, P.T.S., E. Wendland, and M.A. Nearing. 2012. Rainfall erosivity in Brazil: A review,  10 

Catena 100:139–147.  http://dx.doi.org/10.1016/j.catena.2012.08. 11 

 12 

 5. Perhaps I misunderstood something in the paper, but it seems to me that the models are only 13 

evaluated for the temporal scale to which they are applied. In Tables 3 and 4, the event-based 14 

models are only evaluated on the basis of events modelled. While there is nothing wrong with that, I 15 

would also expect the models to be evaluated at the aggregate scale. I mean that EI30 estimated 16 

from event-based models should also be added up to monthly and yearly values, to evaluate if 17 

fine-scale temporal resolution data improves also the accuracy of aggregate erosivity measures.       18 

Response:  This is an extremely important comment!!  It points out something that we forgot to 19 

address in our study.  See the new Table 6. In fact the reviewer is entirely correct.  Two important 20 

facts emerge: 1. When the models are applied at the aggregated scale their predictions get better.    21 

And 2. The models that use finer resolution of input data predict better for the same erosivity time 22 

scale compared to models using coarser resolution input data.  Thank you! 23 

Other comments:  24 

- P4967L11: delete first “as” 25 

Done 26 

- P4967L19 and L28: it is unclear what authors mean with “breakpoint data” 27 

“breakpoint data” defined and discussed in the revision as: “Breakpoint data is fine resolution 28 

information on time during a rainfall event with associated cumulative rainfall depth. The term 29 

breakpoint refers to times when there are detectible changes in rainfall intensity as shown by a 30 

change in the slope of the cumulative rainfall curve.  It originates from the time that rainfall records 31 

were read from recording pen charts.” 32 

- P4967L22: change “to develop” into “by developing”   33 

done 34 

- P4968L14: “course” should read “coarse” 35 

done 36 

- P4968L23-24: strange sentence. This can be deleted as it is obvious that these intensities are “easy 37 

to calculate”. 38 

done 39 
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- P4970L10-11: “the eastern water erosion region of China”: it is unclear what is meant with this. 1 

changed to “eastern half” 2 

- P4976L9-11: see also general point (2) above. The authors could also use all annual values for the 3 

stations (i.e. for all years) rather than just the average annual erosivity. 4 

see response to #2 above 5 

- P4982L7: “Predication” should read “prediction”. However, the sentence is also un-clear. Rather 6 

state "Erosivity could not be predicted accurately in southwest China using rainfall amount as input." 7 

Even if rephrased in this way: what rainfall amount? Hourly? Daily, monthly, yearly? 8 

corrected and clarified 9 

Anonymous Referee #2 10 

“I fully agree with the first Reviewer.  The results of such an interesting topic should be explored 11 

and compared with the recent scientific advancements in Erurope (Panagos et al., 2015) and in Africa 12 

(Vrieling et al., 2015).” 13 

Response:  Agreed: We added this to the manuscript Introduction. Dsicussions of 14 

Recommendations and applications.  Includes discussions relative to: 15 

Fan et al, 2013, Journal of  Mountain Science 10(6): 1008-1017 16 

Vrieling et al 2010 in Journal  of Hydrology 17 

Vrieling et al, 2014 Global and Planetary Change 115, 33-43 18 

Panagos et al (2015, Science of Total Environment 511, 801-814) 19 

Sadeghi, S. H. R., M. Moatamednia, and M. Behzadfar. 2011. Spatial and Temporal Variations in the 20 

Rainfall Erosivity Factor in Iran. J. Agr. Sci. Tech. (2011) Vol. 13: 451-464. 21 

Sadeghi, S.H.R., and S. Tavangar. 2015. Development of stational models for estimation of rainfall 22 

erosivity factor in different timescales. Nat Hazards 77:429–443 DOI 10.1007/s11069-015-1608-y. 23 

Oliveira, P.T.S., E. Wendland, and M.A. Nearing. 2012. Rainfall erosivity in Brazil: A review,  24 

Catena 100:139–147.  http://dx.doi.org/10.1016/j.catena.2012.08. 25 

 26 

 Anonymous Referee #3 27 

 28 

#1 The manuscript was reviewed. It was a very tough work to work on such huge quantity of 29 

data. It has tried to calibrate different models to estimate erosivity index with the help of rainfall 30 

data with different time scales for 18 stations mainly distributed in eastern China. However, it 31 

has no particular novelty. Considering all comments and suggestions annotated in the 32 

manuscript, it is subjected to major revision for acceptance. 33 

 34 

Response: We think that this work is important and new.  We note in the Introduction: 35 

“Although several studies have been conducted on this topic in the past, no study used as 36 

comprehensive a data set collected over this wide geographic area of China to evaluate the wide 37 

range of erosivity time scales needed for erosion work, and utilizing such a wide range of temporal 38 

resolution rainfall data as the independent variable.”  39 

 40 
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#2 In fact the research has no particular novelty but it contains a quite bit of energy and time 1 

which makes it investigatable.  2 

 3 

Response: see immediately above 4 

 5 

#3 Some quantitive results are missed from the abstract. 6 

 7 

Response: Yes, it is difficult to summarize because there are just so many numbers.  We tried 8 

to be a bit more quantitative as we could in the Abstract revision.   9 

 10 

#4 Not adequately documented in reputed journals. 11 

 12 

Response:   Yes, unfortunately true.  We de-emphasized the model in the revision.  But 13 

nonetheless the model is very important in China.  The model has been widely used in the 14 

application of soil conservation planning in China. There are some related publications in 15 

Chinese. It is a pity that the model has not been published in a reputable English Journal. 16 

Realizing it is not good for international communication, recently, Liu et al. are preparing an 17 

English manuscript about CSLE. 18 

 19 

#5 This is not widely used model!! 20 

 21 

Response: See #4 response 22 

 23 

#6 I advise respected author to consult and clearly cite the following papers in different parts of 24 

the manuscript: 25 

1)Sadeghi, S.H.R. and Hazbavi, Z., 2015. Trend analysis of the rainfall erosivity index at different 26 

time scales in Iran, Natural Hazards, 77: 383-404. 27 

2)Sadeghi, S.H.R. and Tavangar, Sh., 2015. Development of stational models for estimation of 28 

rainfall erosivity factor in different timescales, Natural Hazards, 77:429-443. 29 

 30 

Response: Agreed: We added discussions relative to: 31 

Fan et al, 2013, Journal of  Mountain Science 10(6): 1008-1017 32 

Vrieling et al 2010 in Journal  of Hydrology 33 

Vrieling et al, 2014 Global and Planetary Change 115, 33-43 34 

Panagos et al (2015, Science of Total Environment 511, 801-814) 35 

Sadeghi, S. H. R., M. Moatamednia, and M. Behzadfar. 2011. Spatial and Temporal Variations in 36 

the Rainfall Erosivity Factor in Iran. J. Agr. Sci. Tech. (2011) Vol. 13: 451-464. 37 

Sadeghi, S.H.R., and S. Tavangar. 2015. Development of stational models for estimation of 38 

rainfall erosivity factor in different timescales. Nat Hazards 77:429–443 DOI 39 

10.1007/s11069-015-1608-y. 40 

Oliveira, P.T.S., E. Wendland, and M.A. Nearing. 2012. Rainfall erosivity in Brazil: A review,  41 

Catena 100:139–147.  http://dx.doi.org/10.1016/j.catena.2012.08. 42 

 43 

#7 This is better to address international literatures instead of focusing Chinese ones mainly. 44 
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 1 

Response: Agreed.  We will add discussions regarding the above papers, and we also discuss 2 

the work of Renard and Freidmund (USA), Bofu Yu (Australia), and some of the other climate 3 

change and erosion work.  4 

 5 

#8 The necessity of applying different time scales has to be well explained, since neither such 6 

high resolution data are not available to be easily used for calculation of erosivity index nor 7 

these data are being used for erosion models universally used for soil erosion estimation. 8 

 9 

Response:  Yes.  Both the Introduction and the Applications sections have added 10 

clarification regarding the need for different time scales of erosivity.  11 

 12 

#9 It was mentioned 11 earlier!!! 13 

 14 

Response: Yes, 11 calibration stations, 7 validation stations, 18 total stations. 15 

 16 

#10 This is often called "common years"!! 17 

 18 

Response: changed 19 

 20 

#11 How accurate this criterion is?? 21 

 22 

Response: Although there were missing data in the information used, Data M were internally 23 

consistent in all comparisons reported. Therefore, it was believed 15% is acceptable. 24 

 25 

#12 So, how did you incorporate the precipitation of this period??? 26 

 27 

Response: The data simply is not available for the months indicated in the northern areas. 28 

These are not considered to be erosive months in those locations. 29 

 30 

#13 How it worked for China?? 31 

 32 

Response: We suppose here the reviewer means if the KE equation by Foster (2004) is suitable 33 

for China. If I understood right, I think the query is the same with the first comment raised by 34 

Reviewer 1. See response above. 35 

 36 

#14 It has to be logically the average value of annual EI30. Rewrite it please. Though 37 

mathematically there may not be any difference between results.  38 

 39 

Response: You are correct that there is no difference. We changed it to read per your 40 

suggestion.  41 

 42 

#15 Hard to follow!!! 43 

 44 
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Response: Agreed.  We rewrote and clarified the entire section.  There is a lot of information 1 

here, and many, many variables.  We tried to be meticulous in the revision to be sure that each 2 

variable is clearly explained.  Nonetheless, it will take a careful read to get all the nuance, but 3 

we think that now it is all there.  4 

 5 

#16 Why these models were selected?? 6 

 7 

Response: Basically we were trying to examine the Chinese models with the Chinese data, since 8 

those models were also based on smaller sets of Chinese data.  9 

 10 

#17 Use similar acronyms throughout the manuscript. 11 

 12 

Response: Agreed and corrected. 13 

 14 

#18 Such subtitles are not common!! This is usually discussed in discussion. 15 

 16 

Response: True. Subtitles are modified in the revision. 17 

 18 

#19 They need to be finished. It means the equations have to be written in nice manner to be read 19 

and recognized easily. 20 

 21 

Response:  Yes, there are many equations in these tables.  We are assuming that we will work 22 

with the journal for ensuring that the equations are properly displayed in the tables, as is normal.  23 

 24 

#20 It does not look nice!! It has to be written capital as well. 25 

 26 

Response:  Changed.  27 

 28 

#21 What about this area??? The entire stations are distributed in high receiving precipitation areas!! 29 

 30 

Response: All the stations are located in the water erosion area in China. The northwestern part of 31 

China is mainly influenced by wind erosion. 32 

 33 

#22 Bar charts are logically more acceptable for discrete data presentation. 34 

 35 

Response: changed. 36 

  37 
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S. Yin
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, B. Liu
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3
 3 
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[3]{USDA-ARS Southwest Watershed Research Center, Tucson 85719, U.S.A.} 7 

Correspondence to: S. Yin (yinshuiqing@bnu.edu.cn) 8 

 9 

Abstract 10 

Rainfall erosivity is the power of rainfall to cause soil erosion by water.  The rainfall 11 

erosivity index for a rainfall event, EI30, is calculated from the total kinetic energy and 12 

maximum 30 minute intensity of individual events.  However, these data are often 13 

unavailable in many areas of the world.  The purpose of this study was to develop models 14 

that relatebased on more commonly available rainfall data resolutions, such as daily or 15 

monthly totals, to rainfall erosivity.  Eleven stations with one-minute temporal resolution 16 

rainfall data collected from 1961 through 2000 in the eastern water-erosion areaseastern half 17 

of China were used to develop and calibrate 21 models.  Seven independent stations, also 18 

with one-minute data, were utilized to validate those models, together with 20 previously 19 

published equations.  Results showed that The models in this study performed better or 20 

similar to models from previous research to estimate rainfall erosivity for these data.  21 

Prediction capabilities, as determined uUsing symmetric mean absolute percentage errors and 22 

Nash-Sutcliffe model efficiency coefficients, were demonstrated for the 41 models including 23 

those for estimating erosivity at event, daily, monthly, yearly, average monthly and average 24 

annual time scaleswe can recommend 17 of the new models that had with model efficiencies 25 

≥0.59.  Prediction capabilities were generally generally better using higher resolution 26 

rainfall data as inputs at a given erosivity time scale. .  Also, using equations with the finest 27 
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data resolution possible, and aggregating or summing results for finer erosivity time scales, 1 

gave the best results. For example, models with rainfall amount and maximum 60-min 2 

rainfall amount as inputs performed better than models with rainfall amount and maximum 3 

daily rainfall amount, which performed better than those with only rainfall amount.  4 

Recommendations are made for choosing the appropriate estimation equation, which depend 5 

on objectives and data availability.  6 

 7 

1. Introduction 8 

Soil erosion leads to land degradation and water pollution and also delivers sediment to 9 

streams and rivers, which increases the risks for flooding.  Great efforts have been made in 10 

many parts of the world to reduce soil erosion by implementing biological, engineering, and 11 

tillage conservation practices.  Soil erosion prediction models are effective tools for helping 12 

to guide and inform soil conservation planning and practice.  The most widely used soil 13 

erosion models used for conservation planning are derived from the Universal Soil Loss 14 

Equation (USLE) (Wischmeier and Smith, 1965, 1978).  These These models include the 15 

USLE, the Revised USLE (RUSLE) (Renard et al., 1997), and RUSLE2 (Foster, 2004) and 16 

the Chinese Soil Loss Equation (CSLE) (Liu et al., 2007).  RUSLE is the official tool used 17 

by government conservation planners in the United States.  Adaptations of the USLE have 18 

also been developed for use in other parts of the world, including, for example, Germany 19 

(Schwertmann et al., 1990), Russia (Larionov, 1993), and China (Liu et al., 2002).  The For 20 

example, the Chinese Soil Loss Equation (CSLE) was successfully utilized in the first 21 

national water erosion sample survey in China (Liu et al., 2013). . 22 

These models have in common the a rainfall erosivity factor (R), which reflects the 23 

potential capability of rainfall to cause soil loss from hillslopes, and which is one of the most 24 

important basic factors for the above mentioned modelsestimating soil erosion.  In its 25 

simplest form, the R factor is as an average annual value, calculated as a summation of 26 

event-based energy-intensity values, EI30, for a location divided by the number of years over 27 

which the data was collected.  EI30 is defined as the product of kinetic energy of rainfall and 28 

the maximum contiguous 30-min rainfall intensity during the rainfall event.  It is the basic 29 
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rainfall erosivity index that was developed by Wischmeier (1958) originally for the USLE, 1 

and is still widely used in other erosion prediction models (e.g., RUSLE, RUSLE2 and 2 

CSLE), with some modifications and improvements.  Wischmeier (1976) suggested that 3 

more than 20 years’ rainfall data are needed to calculate average annual erosivity to include 4 

dry and wet periods.  5 

Determination of the maximum contiguous 30-min rainfall intensity during the rainfall 6 

event is a relatively straightforward process, although it requires a temporally detailed rainfall 7 

record for a storm. Determination of the kinetic energy of a storm is more complex.   8 

Kinetic energy (KE) is generally suggested to indicate the ability of a raindrop to detach 9 

soil particles from a soil mass (e.g., Nearing and Bradford, 1985). Since the direct 10 

measurement of KE requires sophisticated and costly instruments, several different 11 

estimating methods have been developed that estimate KE based on rainfall intensity (I) 12 

using logarithmic, exponential, or power functions.  The original 1978 release of the USLE 13 

utilized a logarithmic function (Wischmeier and Smith, 1978) that was based on rainfall 14 

energy data published by Laws and Parsons (1943).  Brown and Foster (1987) re-evaluated 15 

this relationship and recommended the use of an exponential relationship, which was 16 

subsequently used in RUSLE (Renard et al., 1997). 17 

McGregor et al. (1995) compared the KE equations used in the USLE and RUSLE with 18 

the results from the equation and data of McGregor and Mutchler (1976), which was 19 

developed based on 29 standard recording rain gauges in the Goodwin Creek Watershed in 20 

northern Mississippi, USA.  The results showed that the annual erosivities predicted by the 21 

equation of McGregor and Mutchler (1976) and the USLE were almost identical, whereas the 22 

RUSLE predicted values that were about 8% lower. McGregor et al. (1995) suggested that the 23 

equation of Brown and Foster (1987) be modified, changing the value of the exponential 24 

function to -0.082 rather than -0.05 that was used in RUSLE. Foster (2004) used the -0.082 25 

value in RUSLE2, as follows:  26 

)]082.0exp(72.01[29.0er ri                      (1) 27 

where er is the estimated unit rainfall kinetic energy (MJ ha
-1

 mm
-1

) and ir is the rainfall 28 
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intensity (mm h
-1

) at any given time within a rainfall event (usually taken as one minute for 1 

computational purposes, with average intensity representative of the time increment).  2 

Other work has been done to evaluate the relationships between rainfall intensity and KE.  3 

After reviewing more than 20 exponential KE vs. I relationships based on natural rainfall data 4 

observed in a variety of climate classifications, van Dijk et al. (2002) derived: 5 

)]042.0exp(52.01[283.0er ri                  (2) 6 

Salles et al. (2002) suggested using a power law KEtime vs. I expression wherein the 7 

constants of the power law were different for convective rain and stratiform rain types. It is, 8 

however, often difficult to define if a storm should be classified as convective or stratiform 9 

based on the breakpoint data alone. (Breakpoint data is fine resolution information on time 10 

during a rainfall event with associated cumulative rainfall depth. The term breakpoint refers 11 

to times when there are detectible changes in rainfall intensity as shown by a change in the 12 

slope of the cumulative rainfall curve.  It originates from the time that rainfall records were 13 

read from recording pen charts.)   14 

Preliminary analysis (not shown) of our data from China indicated that the van Dijk 15 

equation resulted on average in similar R values to those from RUSLE2, slightly lower R 16 

values compared to USLE, and much greater R values than given by RUSLE.  The Salles et 17 

al. (2002) equations produced on average much greater values of erosivity than did all of the 18 

other equations.  In general, the RUSLE2 value produced results in the mid-range of all of 19 

these equations. 20 

The temporal resolution of rainfall data across the world varies greatly (Sadeghi et al., 21 

2011; Sadeghi and Tavangar, 2015; Oliveira et al., 2012; Panagos et al., 2015), even within 22 

countries with extensive rainfall monitoring programs.  In the United States, for example, 23 

intra-storm, temporally detailed data (historically taken on pen recording charts, now taken as 24 

one-minute digital data) are only available at limited stations, whereas daily data are common 25 

(Nicks and Lane, 1995; Flanagan et al., 2001). There is a need for developing models for 26 

application in all areas of the world in order to produce erosivity maps that can be used for 27 

evaluating soil erosion rates (e.g., Sadeghi et al., 2011, Sadeghi and Tavangar, 2015; Oliveira 28 
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et al., 2012; Panagos et al., 2015). 1 

In Europe, Panagos et al. (2015) undertook the task to develop an erosivity map for 2 

Europe based on data from 1541 precipitation stations with temporal resolutions of 5 to 60 3 

min.  To use data that had been reported at the different time resolutions they had to apply 4 

adjustment factors to the data, which they reported to have introduced some uncertainty into 5 

the estimations.  Sadeghi and Tavangar (2015) evaluated various erosivity estimation indices, 6 

including Fournier (Fournier, 1960), modified Fournier (Arnoldus, 1977), Roose (1977) and 7 

Lo (Lo et al., 1985), using data from 14 stations in Iran.  They evaluated annual, seasonal 8 

and monthly information.  Similarly, the work in Brazil summarized by Oliveira et al. (2012) 9 

highlighted several studies that used various estimations of erosivity based on various types 10 

of data and interpolations. 11 

Other innovative ways have been advanced to produce better mappings of erosivity, 12 

including the use of daily (Fan et al., 2013) or 3 hour (Vrieling et al., 2010 and 2014) data 13 

from the TRMM Multi-satellite Precipitation Analysis (TRMM).  14 

The calculation of EI30 requires high-temporal resolution rainfall data, typically 15 

breakpoint data, which are often unavailable in many regions of the world where rainfall is 16 

recorded only at a daily resolution.  EOther efforts to address this problem have been made 17 

by developingto develop simpler methods to estimate rainfall erosivity by using daily 18 

(Richardson et al., 1983; Yu, 1998; Capolongo et al., 2008), monthly (Arnoldus, 1977; 19 

Renard and Freimund, 1994; Yu and Rosewell, 1996; Ferro et al., 1999), or annual rainfall 20 

data (Lo et al., 1985; Renard and Freimund, 1994; Yu and Rosewell, 1996; Bonilla and Vidal, 21 

2011).  In general, more rainfall data with longer periods of record are available at these 22 

time scales than at sub-event temporal resolution.  Generally the technique has been to 23 

develop a simple empirical relationship using limited breakpoint data and then to extend the 24 

analysis analyses to wider areas and longer periods with coarser temporal resolution rainfall 25 

data ((Angulo-Martinez and Begueria, 2012; Ma et al., 2014; Ramos and Duran, 2014; 26 

Sanchez-Moreno et al., 2014).  27 

Potential future rainfall erosivity due to climate change has also been studied (Zhang et 28 

al., 2010; Shiono et al., 2013; Plangoen and Babel, 2014; Segura et al., 2014).  Climate 29 
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change models (Global Circulation Models) do not predict the rainfall for daily, hourly, or 1 

sub-hourly time-scales that would be necessary to directly calculate erosivity.  Some studies 2 

(Nearing, 2001; Zhang et al., 2010; Shiono et al., 2013; Plangoen and Babel, 2014; Segura et 3 

al., 2014), therefore, developed simpler methods based on lower temporal resolution rainfall 4 

data and then utilized climate model rainfall data as input to these models to conduct studies 5 

concerning climate change on rainfall erosivity and soil erosion.  There are also studies 6 

reporting trends for rainfall erosivity based on longer series of observed breakpoint data in 7 

Europe (Verstraeten et al., 2006; Fiener et al., 2013) and the United States (Angel et al., 8 

2005).  9 

Several simpler models for estimating rainfall erosivity from course coarse resolution 10 

data have also been developed in China in specific areas, including the Loess Plateau (Wang, 11 

1987; Sun, 1990), Fujian Province (Huang et al., 1992; Zhou et al., 1995) and Anhui Province 12 

(Wu, 1994).  Wang et al. (1995) first developed a series of simplified equations at several 13 

time scales by utilizing several stations located in different areas of China.  In China, 14 

specifically, the specifications for surface meteorological observations by the China 15 

Meteorological Administration (China MMeteorological AdministrationA, 2003) have 16 

required since the 1950s that the maximum 60 and 10 minute rainfall amounts, (P60)day and 17 

(P10)day be compiled, hence these data are readily available in China. The measurements were 18 

made using siphon-method, self-recording rain gauges.  Maximum Because of this, there is 19 

an interest in China to utilize the maximum daily 10 and 60 minute rainfall intensities, (I10)day 20 

and (I60)day , to calculate erosivityare easy to calculate from the (P60)day and (P10)day, also.   21 

There have been several other research efforts to estimate erosivity based on Chinese 22 

data, many of which are published only in Chinese.  These include Other researchers then 23 

used data from more stations with longer series of rainfall records to develop erosivity 24 

estimation models with event rainfall and the maximum, contiguous 10-min intensity, I10, in 25 

an event daily or sub-daily models (Yin et al., 2007; Zhang et al., 2002a), daily rainfall and 26 

(I10)day (; Xie et al., 2001), daily rainfall (; Zhang et al., 2002b) and , monthly or annual 27 

rainfall models (Zhang and Fu, 2003) and hourly rainfall (Yin et al., 2007).  Zhang and Fu 28 

(2003) compared five models for estimating annual average rainfall erosivity, including one 29 
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model using daily rainfall (Zhang et al., 2002b) and four models using monthly or annual 1 

rainfall (Zhang and Fu, 2003).  They demonstrated that the model using daily rainfall 2 

performed best and that there were no significant differences among the other four models.  3 

Xie et al. (2015) found that the daily erosivity model with information on (I60)day improved 4 

the daily EI30 index estimation significantly when compared with that using only daily 5 

rainfall totals.  The multiplication of daily rainfall and maximum (I10)day is used often in 6 

place of EI30, due to the difficulty in obtaining the breakpoint data (Zhang et al., 2002b, 7 

Zhang and Fu, 2003), but availability of the maximum 10-min intensity data.   8 

Renard and Freimund (1994) developed two power law models for the continental 9 

United States using average annual rainfall and a Modified Fournier Index reflecting seasonal 10 

variation in precipitation.  Using data from 29 sites in southeastern Australia, Yu and 11 

Rosewell (1996) calibrated the two models developed by Renard and Freimund (1994) and 12 

recommended the model using average annual rainfall as input for the estimation of average 13 

annual erosivity because of similar model efficiency as compared with the model using the 14 

Modified Fournier Index and the ready availability of annual rainfall data.  15 

Other temporal resolutions of erosivity are often required for soil erosion work in 16 

addition to average annual erosivity.  For example, in the USLE (Wischmeier and Smith, 17 

1965, 1978) and RUSLE (Renard et al., 1997), both average annual erosivity and its seasonal 18 

distribution, represented as half-monthly averages, are used.  Event or daily erosivity can 19 

also be important in soil loss recurrence analyses and non-point source pollution assessment 20 

(Kinnell, 2000; Sun et al., 2009).  21 

The objectives of this study were three-fold: (1) calibrate methods of estimating erosivity 22 

for time scales ranging from daily to average annual based on different temporal resolutions 23 

of rainfall data from 11 calibration stations with one-minute resolution data; (2) compare 24 

models in this study with those published in previous research, based on seven independent 25 

validation stations using the same data types; and (3) determine the most accurate methods, 26 

based on these data, for calculating different time scales of erosivity when different temporal 27 

resolutions of rainfall data are available.  Note that, in this paper, we use the term “time 28 

scales” when discussing the erosivity values (equation outputs) and “resolution” (equation 29 
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inputs) when referring to the rainfall input data, for clarity.  Although several studies have 1 

been conducted on this topic in the past, no study used as comprehensive a data set collected 2 

over this wide geographic area of China to evaluate the wide range of erosivity time scales 3 

needed for erosion work, and utilizing such a wide range of temporal resolution rainfall data 4 

as the independent variable.    5 

2. Data and Methods 6 

2.1 Data  7 

Data collected at 18 stations by the Meteorological Bureaus of Heilongjiang, Shanxi, 8 

Shaanxi, Sichuan, Hubei, Fujian, and Yunnan provinces and the municipality of Beijing were 9 

used (Fig.1, Table 1).  These stations were distributed over the eastern water-erosion 10 

regionhalf of China.  One-minute resolution rainfall data (Data M) were obtained by using a 11 

siphon, self-recording rain gauge to collect self-recording rain gauge observations.  The data 12 

collection period began in 1971 for Wuzhai (53663) and Yangcheng (53975) in Shanxi 13 

Province and from 1961 for the remaining 16 stations.  The data records ended in 2000 for 14 

all stations.  Quality control of Data M was done to select the best observation years using 15 

the more complete data sets of daily rainfall totals, Data D, which were observed by simple 16 

rain gauges at the same stations.  Data M was compared with Data D on a day-by-day basis, 17 

and those days with deviation exceeding a certain criterion were marked as questionable and 18 

were not used in this analysis (Wang et al., 2004).  The criterion used was that the data were 19 

considered good when the absolute deviation between Data M and Data D was less than 0.5 20 

mm when the daily rainfall amount was less than 5 mm and no more than 10% when the daily 21 

rainfall amount was greater than or equal to 5 mm.  Data M in the earlier years of record 22 

tended to have more days with missing or suspicious observations.  These totals of Data M 23 

and Data D were compared year-by-year to determine which years could be designated as 24 

“common” years for use in this study, with an effective year having a relative deviation for 25 

yearly rainfall amount of no more than 15%.  There were at least 29 common years for all 26 

18 stations, and seven stations had common years of at least 38 years (Table 1).  Note that 27 

though there were missing data in the information used, Data D was only used for quality 28 

control purposes and the data used in the analysis, Data M, were internally consistent in that 29 

only the data from common years were used in all comparisons and evaluations reported.  30 
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Data M were used to calculate the actual event-based EI30 values as a function of the 1 

calculated kinetic energy and maximum 30 minute rainfall intensity (Foster, 2004).  These 2 

were treated as observed values and summed to obtain the erosivity factors, R, for daily, 3 

monthly (individual month totals), yearly (individual year totals), average monthly (one value 4 

for each month at each station), and average annual (one value for each station) time scales.  5 

Total rainfall event depth values were also compiled into the other temporal resolutions of 6 

rainfall data, including correspondent daily, monthly, yearly, average monthly, and average 7 

annual resolutions.  For the eight stations in the northern part of China (including stations in 8 

Heilongjiang, Shanxi, Shaanxi provinces and Beijing municipality), only the periods from 9 

May through September were used because the siphon, self-recording rain gauges were not 10 

utilized in the winter to avoid freeze damage.  Percentages of precipitation during May 11 

through September to total annual precipitation varied from 75.6 to 89.2% for these eight 12 

northern stations.  Data M for the full 12 month year were used from the remaining ten 13 

stations located in the southern parts of China. 14 

Eleven stations, including Nenjiang, Wuzhai, Suide, Yan’an, Guangxiangtai, Chengdu, 15 

Suining, Neijiang, Fangxian, Kunming, and Fuzhou, marked with dots in Fig. 1, were used to 16 

calibrate the models (Table 1).  The other seven stations, including Tonghe, Yangcheng, 17 

Miyun, Xichang, Huangshi, Tengchong, and Changting, marked with triangles in Fig. 1, were 18 

used to validate the models.    19 

2.2 Calculation of the R factor at different time scales 20 

    Different time scales for RUSLE2 erosivity, R, including event, daily, monthly, yearly, 21 

average monthly, and average annual, were calculated based on the one-minute resolution 22 

data (Data M).  Recall that “month” and “year” refer to individual months and years, and not 23 

averages.  EI30 (MJ mm ha
-1

 h
-1

) is the rainfall erosivity index for a rainfall event, where E is 24 

the total rainfall kinetic energy during an event and I30 is the maximum contiguous 30-min 25 

intensity during an event (Wischmeier and Smith, 1978).  An individual rainfall event was 26 

defined as a period of rainfall with at least six preceding and six succeeding non-precipitation 27 

hours (Wischmeier and Smith, 1978).  An erosive rainfall event was defined as one with 28 
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rainfall amounts greater than or equal to 12 mm, following Xie et al. (20122002).  We used 1 

the equation Using the equation recommended by Foster (2004) for RUSLE2 to calculate the 2 

kinetic energy of the storms, which used Eq. 1 combined with: , 
 

3 

 



n

1r

rr PeE                                   (3) 4 

where er is the estimated unit rainfall kinetic energy (from Eq. 1) for the r
th

 minute (MJ ha
-1

 5 

mm
-1

); Pr is the one-minute rainfall amount for the r
th

 minute (mm); r=1, 2,…, n represents 6 

each 1-min interval in the storm; and ir is the rainfall intensity for the r
th

 minute (mm h
-1

).  7 

The Foster (2004) equations were chosen because they are currently used for erosion 8 

assessment for RUSLE2 in the United States and for the CSLE in China, and it appears to 9 

give results similar to the original USLE and in the mid-range of other equations that have 10 

been developed, as was discussed in the Introduction. 11 

Our evaluation included 4 models for events and one for daily erosivities.  Event 12 

models were simply models to predict individual event erosivities, regardless of whether they 13 

occurred in one or more days, and regardless of whether more than one event occurred in a 14 

day.  For the daily model, rainfall storm energies were calculated as:
 

15 
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er is the estimated unit rainfall kinetic energy for the r
th

 minute (MJ ha
-1

 mm
-1

); Pr is the 18 

one-minute rainfall amount for the r
th

 minute (mm); r=1, 2,…, n represents each 1-min 19 

interval in the storm; and ir is the rainfall intensity for the r
th

 minute, (mm h
-1

).  20 

Rrainfall erosivity for each day, Rday, was calculated following the method by Xie et al. 21 

(2015).  When a day had only one erosive event and this event began and finished during the 22 

same day, then   23 

                                          (34)
 24 

When more than one full rainfall event happened during one day, then 25 
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event_i30

n

1i

event_iday )(IER 


                        (4(5) 
 1 

where n is the number of rainfall events during the day, and Eevent_i and (I30)event_i are the total 2 

rainfall energy and the maximum contiguous 30-min intensity, respectively, for the i
th

 event.  3 

When only one part of a rainfall event occurred during one day, then  4 

event30day_dday )(IER 
                          (56)  

 5 

where Eday_d is the rainfall energy generated by the part of rainfall occurred during the d
th

 day 6 

and (I30)event is the maximum contiguous 30-min intensity for the entire event.  The 7 

remaining situations were calculated by combining Eqs. (45) and (56). 8 

Monthly, yearlyyear, average monthly, and average annual R values were summed 9 

from the event EI30 index by erosive storms that occurred during the corresponding 10 

period.  They were calculated by using Eqs. (67)-(910). 11 
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15 

where Y is the number of years of record, (EI30)y, m, j is the EI30 value for the j
th

 event in 16 

the m
th

 month of the y
th

 year; Rmonth, y, m is the R value for the m
th

 month of the y
th

 year; 17 

Rave_month, m is the average R value for the m
th

 month over the years of record; Ryear, y is R 18 

value in the y
th

 year; and Rave_annual represents average annual erosivity, correspondent to 19 

the annual average R-factor in the USLE-type modelsUSLE (MJ mm ha
-1

 h
-1

 a
-1

).   20 
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2.3 Model calibration using different resolutions for of rainfall data 1 

A total of 21 models were calibrated for different time scales of R, based on different 2 

varying resolutions of rainfall data (Table 2).  Event amount Pevent and peak intensity indices 3 

were derived based on the one-minute resolution data, including I10, I30, and I60, which were 4 

the maximum contiguous 10-min, 30-min, and 60-min intensities, respectively, within an 5 

event.  I10 and I60 were used because of their close correlation with the daily (I10)day and 6 

(I60)day values commonly reported by the Chinese Meteorological Administration (2003).  7 

Four event-based models were developed relating measured EI30 to estimated EI30 (Table 2).  8 

Similar models for the other time scales were also calibrated (Table 2).  Data was organized 9 

in various ways.  Pday, Pmonth, Pyear, Pave_month, and Pannual were the daily, (individual) monthly, 10 

(individual) yearly, average monthly, and average annual rainfall amounts, respectively, for a 11 

given station.  (P60)month and (P60)year representeded maximum contiguous 60-min rainfall 12 

amount observed within a specific month or year, respectively.  (P60)month_max represented the 13 

maximum of all (P60)month values for each month of the year, or the single maximum 14 

contiguous 60-min rainfall amount that occurred in a month (from Jan. through Dec.)  over 15 

the entire period of record.  The average of (P60)month values was
monthP )( 60

.  Each station 16 

had 12 values of (P60)month_max and 
monthP )( 60

, one for each month of the year.  (P60)year_max 17 

was the maximum value of (P60)year and 
annualP )( 60

was the average of (P60)year values.  Each 18 

station had only one value for these two parameters.  P1440 was daily rainfall amount and its 19 

related index, including (P1440)month, (P1440)year, (P1440) month_max, monthP )( 1440
, (P1440)year_max, and 20 

annualP )( 1440
, which were defined in a similaran analogous way as were those correspondent 21 

values for P60.  22 

The parameters were obtained station-by-station for calibration stations first and 23 

parameters for linear relationships were compared to determine if data from all stations could 24 

be pooled together to conduct the regressions (Snedecor and Cochran, 1989).  Parameters 25 

for power-law models, including Monthly I, Yearly I, Average Monthlyly I, and Annual I 26 

(Table 2), were obtained by using the Levenberg-Marquardt algorithm (Seber and Wild, 27 
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2003). Note that models coded as “Annual” refer to annual averages. 1 

2.4 Models published in previous research for comparison 2 

A In addition to the 21 new models presented here, total of 20 representative models 3 

developed using data from China in previous research were also compared (Table 3).  For 4 

these models other variables were calculatedneeded.  Pd12 was average daily erosive rainfall 5 

total and Py12 was average annual erosive rainfall total.  P5-10 represented the rainy season 6 

rainfall amount from May through October for a specific year.  
yearP 10

was the summation of 7 

daily rainfall no less than 10 mm in a year and annualP 10  was the annual average for 
yearP 10

. 8 

Models by Wang (1987) and Wang et al. (1995) utilized (m t cm ha
-1

 h
-1 

a
-1

) as the units 9 

of R for comparison.  A conversion factor of 10.2 was multiplied to convert R to (MJ mm 10 

ha
-1

 h
-1

 a
-1

).  Later, models by Wu (1994) and Zhou et al. (1995) utilized (J cm m
-2

 h
-1

 a
-1

).  11 

Their conversion factor, 10, was multiplied to convert (J cm m
-2

 h
-1

 a
-1

) to (MJ mm ha
-1

 h
-1

 12 

a
-1

).  13 

2.5 Assessment of the models 14 

After the 21 models in Table 2 were calibrated with the data from the 11 calibration 15 

stations, the performance for these models was assessed and compared with the performance 16 

of the previously published models listed in Table 3 using data from the seven validation 17 

stations.  Symmetric mean absolute percentage error (MAPEsym) and the Nash-Sutcliffe 18 

model efficiency coefficient (ME) were utilized to reflect the deviation of the calculated 19 

values from the observation data.  MAPEsym is considered to be superior to MAPE, since it 20 

can corrects the problem of MAPE’s asymmetry and the possible influence by outliers 21 

(Makridakis and Hibon, 1995).  MAPEsym was calculated as follows (Armstrong, 1985): 22 
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where Robs is the measured rainfall erosivity for the k
th

 period of time, such as monthly, 24 

yearly, or annual, based on one-minute resolution rainfall data.  Rsim is the estimated value 25 

for the same period using equations in Tables 2 or 3.  26 
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ME was calculated as follows (Nash and Sutcliffe, 1970): 1 










m

k

2

obsobs

m

k

2

obssim

(k)]R(k)[R

(k)]R(k)[R

1ME
                        (1112) 2 

ME compares the measured values on the line asto a perfect fit (1:1 line).  Hence, ME is a 3 

combined measure of linearity, bias, and relative differences between the measured and 4 

predicted values.  The maximum possible value for ME is 1.  The higher the value the 5 

better the model fit.  An efficiency of ME < 0 indicates the single value (the mean) for the 6 

measured data’s mean is a better predictor of the data than the model.   7 

    MAPEsym and ME were calculated  station by stationbased on all the data for the seven 8 

validation stations.  and their meanIndividual values for all stations were also 9 

determinedreported. Robs has only one value for each station for the annual average scale of R 10 

estimation, and hence ME was calculated based on simulations and observations for the seven 11 

stations.    12 

  13 

3. Results and discussions 14 

3.1 Basic data results 15 

Average annual rainfall ranged from 449.7 to 1728.1 mm, and average annual erosivity 16 

varied from 781.9 to 8258.5 MJ mm ha
-1

 h
-1

 yr
-1 

(Table 1).  A total of 11,801 erosive events 17 

were used in the study.  The eleven stations had 6,376 erosive events, which were used to 18 

calibrate the models, and the seven validation stations had 5,425 erosive events.    19 

3.2 Validation and calibration for the new models that use different 20 

resolutions of input data 21 

Parameters, MAPEsym, ME, and coefficients of determination, R
2
, for calibration models 22 

are shown in Table 4.  Statistical tests showed data from all stations could not be pooled.  23 

The r
2
 for all event level models was greater than 0.92 (Table 4).  The model Event IV, 24 
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with a combination of event rainfall amount Pevent and I30, when I30 was divided into two 1 

categories, with a threshold of 15 mm h
-1

, performed slightly  besttter in terms of the 2 

MAPEsym value than did Event II, which used the same variables but did not separate the 3 

rainfall events by intensity (Table 4).  The performance of Daily I with daily rainfall amount 4 

and (I10)daily was similar with that for Event I with event rainfall amount and I10 (Table 4).  5 

Using only total rainfall amount as input, The power lawthe models for monthly, yearly, 6 

and average monthly, and annual scales (Monthly I, Yearly I, Average Monthly I and Annual 7 

I), with only total rainfall amount as input were statistically significant, withhad 8 

determination coefficients R
2
 greater than 0.66, which suggested the models were statistically 9 

significant (Table 4 and Fig. 2).  However, their capabilities in predicting R erosivity with 10 

time scales intended for the models were limited or ineffectivebased on the ME values (Table 11 

4)., with ME being 0.20, -0.83, -0.44 and 0.63 for Monthly I, Yearly I, Average Monthly I and 12 

Annual I, respectively.  Data from Tengchong and Xichang, located in the southwestern part 13 

of China, were mainly in part responsible for these lower ME values. Table 5 shows the 14 

individual values of MAPEsym and ME for the seven validation stations, with average of each 15 

using all the stations and using only the five without Tengchong and Xichang.  Results were 16 

much better without those two stations.  When these two stations were removed, the average 17 

ME for monthly scale of R increased to 0.59 for Monthly I, 0.37 for Yearly I, and 0.60 for 18 

Average Monthly I (Table 5). The model Annual I, which use only average annual 19 

precipitation values, performed reasonably well, considering that the only input required was 20 

annual average precipitation (Table 4).  If other information is available, other models 21 

performed better, but Annual I may be used if only average annual precipitation is available 22 

at a location.    23 

In general, we found that the finer the temporal resolution of the rainfall input data, the 24 

better the models performed for a given erosivity time scale. Seasonal variations by monthly 25 

and average monthly models (Fig. 3) and yearly variations by monthly and yearly models 26 

(Fig. 4) were demonstrated using Tonghe and Tengchong stations.  Monthly I and Average 27 

Monthly I captured the general seasonal pattern for the Tonghe station (Figs. 3a and c), but 28 

the simulated peak value of monthly R was in July for the Tengchong station, which was not 29 
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consistent with observation.  Monthly I and Yearly I captured the general year-to-year 1 

pattern for the Tonghe station (Figs. 4a and c), but they overestimated yearly erosivity for the 2 

Tengchong station (Figs. 4b and d).  Monthly I and Yearly I also overestimated the yearly 3 

erosivity for the Xichang station.  The reason for the overestimation for the Tengchong and 4 

Xichang stations was mainly due to two aspects: (1) the percentages of erosive rainfall 5 

amount to total rainfall at those stations were lower (71.9% and 76.9%, respectively), 6 

suggesting that more events occurred with small amount totals that do not generate soil loss 7 

(Table 5); and (2) the ratio for event EI30 to event rainfall amount P was lower (3.6 and 4.1, 8 

respectively), inferring that rainfall intensity and erosivity generated by per amount of rainfall 9 

were both less than that of the other stations (Table 5).  This result was consistent with that 10 

of Nel et al. (2013), which demonstrated that two models using annual average rainfall and 11 

average monthly rainfall substantially overestimated annual erosivity in the west coast and 12 

the Central Plateau of Mauritius, which also have a large amount of non-erosive rainfall.  13 

Rainfall erosivity reflected a combined effect of rainfall amount and rainfall intensity.  14 

Therefore, it was reasonable that rainfall amount could only explain part of rainfall erosivity 15 

variation at these stations.   16 

Models that used some expression of maximum daily rainfall amount (Monthly III, 17 

Yearly III, Average Monthly III, Average Monthly V, Annual III, and Annual Model V) 18 

predicted the R factor better than those models with only total rainfall amount as input (Table 19 

4), for a specific time scale.  Models based on rainfall amount and maximum contiguous 20 

60-min rainfall amounts (Monthly II, Yearly II, Average Monthly II, Average Monthly IV, 21 

Annual II, and Annual IV) generally performed better than corresponding models with 22 

rainfall amount and maximum daily rainfall amount (Monthly III, Yearly III, Average 23 

Monthly III, Average Monthly V, Annual III), except for Annual Model V, which performed 24 

well.  The reason for that may be due to the fact that maximum contiguous 60-min rainfall 25 

amounts may have been more highly correlated with maximum contiguous 30-min intensity 26 

in an event as compared to just the maximum daily rainfall amount.  The only annual 27 

average model that did not perform well was Annual III, which utilized (P1440)year_max, the 28 

maximum of (P1440)year values for each year over the entire period of record.   29 
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Tables 3 and 4 show the models only evaluated for the erosivity temporal scale that 1 

corresponds to the input data resolution.  For example, the event-based models are only 2 

evaluated on the basis of events modelled.  We also evaluated the models at the aggregate 3 

scale.  For example, EI30 estimated from event-based models were summed up to month and 4 

year values, in order to evaluate if fine-scale temporal resolution data improves also the 5 

accuracy of aggregate erosivity measures (Table 6).  Two important facts emerge.  First, 6 

when the models are applied at the aggregated scale their predictions get better. Secondly, the 7 

models that use finer resolution of input data predict better for the same erosivity time scale 8 

compared to models using coarser resolution input data.  This has important implications for 9 

model applications. 10 

3.3 Seasonal variations of erosivity 11 

Taking Tonghe and Tengchong as examples, it was demonstrated found that Monthly II 12 

generated better results than Monthly III, which performed better than Monthly I, in 13 

estimating seasonal and yearly variations (Figs. 3a, b and Figs. 4a, b).  Correspondingly, 14 

seasonal variations by Average Monthly II were closer to observations as compared to those 15 

by Average Monthly III and Average Monthly I (Figs. 3c and d).  Yearly II and Yearly III 16 

improved theproduced better simulations of yearly variations compared with Yearly I, 17 

especially for the Tengchong station (Figs. 4c, d).  18 

Seasonal variations by monthly and average monthly models (Fig. 3) and yearly 19 

variations by monthly and yearly  models (Fig. 4) were demonstrated using Tonghe and 20 

Tengchong stations.  Monthly I and Average Monthly I captured the general seasonal pattern 21 

for the Tonghe station (Figs. 3a and c), but the simulated peak value of monthly R was in July 22 

for the Tengchong station, which was not consistent with observation.  Monthly I and Yearly 23 

I captured the general year-to-year pattern for the Tonghe station (Figs. 4a and c), but they 24 

overestimated yearly erosivity for the Tengchong station (Figs. 4b and d).  Monthly I and 25 

Yearly I also overestimated the yearly erosivity for the Xichang station.  The reason for the 26 

overestimation for the Tengchong and Xichang stations was mainly due to two aspects: (1) 27 

the percentages of erosive rainfall amount to total rainfall at those stations were lower (71.9% 28 
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and 76.9%, respectively), suggesting that more events occurred with small amount totals that 1 

do not generate soil loss (Table 5); and (2) the ratio for event EI30 to event rainfall amount P 2 

was lower (3.6 and 4.1, respectively), inferring that rainfall intensity and erosivity generated 3 

by per amount of rainfall were both less than that of the other stations (Table 5).  This result 4 

was consistent with that of Nel et al. (2013), which demonstrated that two models using 5 

annual average rainfall and average monthly rainfall substantially overestimated annual 6 

erosivity in the west coast and the Central Plateau of Mauritius, which also have a large 7 

amount of non-erosive rainfall.  Rainfall erosivity reflected a combined effect of rainfall 8 

amount and rainfall intensity.  Therefore, it was reasonable that rainfall amount could only 9 

explained part of rainfall erosivity variation at these stations. 10 

 11 

3.33.4 Comparisons withEvaluation of models from previous research with 12 

current models 13 

Generally speaking, the more accurate the resolution of input data for models, the better 14 

was the performance of the model for estimating at the same temporal erosivity scale.  For 15 

example, the models with daily rainfall amount and daily maximum 60-min or 10-min 16 

amount as inputs performed better than models with only daily rainfall amount as input.  17 

Similarly, results from models with maximum 60-min rainfall amount (Month II, Year II, 18 

Average Monthly IV, and Annual IV) were generally better than those with maximum daily 19 

rainfall amount (Month III, Year III, Average Monthly V, and Annual V, Fig. 5). 20 

Wang et al. (1995) used a combination of event rainfall amount Pevent and I10 for event 21 

scale models.  The model using the I10 data was divided into two categories, with a threshold 22 

of 10 mm h
-1

, performed best among the four models compared (Table 3).  That model had 23 

similar performance with Event IV in this study (Table 4), which also divided the data by a 24 

rainfall intensity threshold. 25 

There are were three kinds of daily scale models, according to the number and type of 26 

inputs required.  Two models used daily rainfall amount (Zhang et al., 2002b and Xie et al., 27 

2015), two models used daily rainfall amount and daily maximum 10-min intensity (Xie et al., 28 
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2001 and Daily I), and one model used daily rainfall amount and daily maximum 60-min 1 

intensity (Xie et al., 2015).  The model with daily rainfall amount as input in Xie et al. (2015) 2 

performed better than that of Zhang et al., (2002b) (Table 3).  Daily I, which used daily 3 

rainfall amount and daily maximum 10-min intensity as inputs in this study, performed better 4 

than the model in Xie et al., (2001).  Models with an additional daily 10-min or 60-min 5 

intensity index performed better than those with only a total rainfall amount index (Table 3 6 

and Table 4).   7 

There are were generally four groups of models for monthly, yearly, average monthly, 8 

and annual scale models.  The first group used linear regression (Sun et al., 1990; Wu, 1994; 9 

Zhou et al., 1995) or a power law function (Zhang and Fu, 2003; Monthly I, Yearly I, Average 10 

Monthly I, and Annual I) with only rainfall amount as input, so that the data required were 11 

relatively easy to collect.  Models by Sun et al., (1990), Wu (1994) and Zhou et al. (1995), 12 

when they were used to estimate the monthly scale of R, had MAPEsym values of 886.73, 60.9 13 

2 and 67.83% and ME of -01.6396, 0.53 57 and 0.358, respectively (Table 3).  When they 14 

were used to estimate annual scale of R, there was a tendency of underestimation, especially 15 

for the stations with larger erosivity (Figs. 5a, b).  Four models by Zhang and Fu (2003) 16 

overestimated the R factor, with MAPEsym varying between 34.6 and 60.8% and ME varying 17 

between -2.41 11 to -0.0130 (Table 3, Fig. 5), which suggested the models’ abilities were 18 

limited.  Two models by Zhang and Fu (2003) using the Modified Fournier Index generated 19 

worse poorer results compared tothan the model by Zhang and Fu (2003) using average 20 

annual rainfall as input (Table 3), which was consistent with the result findings of of Yu and 21 

Rosewell (1996).  The power law models in this study, including Monthly I, Yearly I, 22 

Average Monthly I, and Annual I, tended to overestimate the R factor for the stations with 23 

larger erosivity (Fig. 5).   24 

The second group of models (Wang et al., 1995, Monthly II, Yearly II, Average Monthly 25 

IV, Annual IV) used linear regression with rainfall amount (total rainfall or total rainfall with 26 

daily rainfall no less than 10 mm) and maximum 60-min rainfall as inputs.  All these seven 27 

models generated statistically significantgood results, with MAPEsym for R with time scale 28 

intended for the model ranging from 11.54 to 365.06% and ME from 0.8042 to 0.94 (Table 3 29 
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and Table 4; Fig. 5).  When these models were used to estimate annual R, the measured and 1 

predicted values were near the 1:1 line (Fig. 5).  2 

The third group used linear regression with rainfall amount and maximum daily rainfall 3 

as inputs (Monthly III, Yearly III, Average Monthly V, Annual V), which generated 4 

reasonable results (Table 4) and a slightly overestimated annual R (Fig. 5).  Overall they did 5 

not perform as well as did the models in the second group (Table 4).   6 

The fourth group (Wang et al., 1995) used a combination of three indices, including rainfall 7 

amount, maximum 60-min rainfall amount, and maximum daily rainfall amount as inputs and 8 

generated good simulation results, however, there was no improvement compared with the 9 

two models by Wang et al., (1995) in the second group (Table 3). was the performance of the 10 

model.  For example, the models with daily rainfall amount and daily maximum 60-min or 11 

10-min amount as inputs performed better than models with daily rainfall amount as input.  12 

Results from models with maximum 60-min rainfall amount (Monthly II, Yearly II, Average 13 

Monthly IV, and Annual IV) were generally better than those with maximum daily rainfall 14 

amount (Monthly III, Yearly III, Average Monthly V, and Annual V, Fig. 5).   15 

If monthly rainfall data are available, there are several models from which to choose.  16 

For example, if only monthly rainfall amounts are available, Monthly I, Yearly I, Average 17 

Monthly I, and Annual I can be selected.  Yearly, average monthly, and annual rainfall 18 

amounts can be first derived from monthly rainfall amount data and then used in the 19 

corresponding models to estimate the R factor.   The prediction capabilities for seven 20 

validation stations for the four models; Monthly I, Yearly I, Average Monthly I, and Annual I, 21 

were very similar to each other (Table 5, Fig. 5).  Similar results can be found among four 22 

models with maximum 60-min amount, including Monthly II, Yearly II, Average Monthly IV, 23 

and Annual IV, as well as the four models with maximum daily rainfall amount, including 24 

Monthly III, Yearly III, Average Monthly V, and Annual Model V.  Therefore, users have the 25 

option to choose the simplest method for estimating the R factor.  However, if seasonal 26 

variations are required, monthly and average monthly models may be utilized; whereas, 27 

yearly and annual models cannot satisfy the requirements.  If yearly variations are required, 28 

monthly and yearly models may be utilized; whereas, average monthly, and annual models 29 
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cannot satisfy the requirements.  1 

3.5 Applications and recommendations 2 

The results of this study provide a multitude of options for dealing with the problem of 3 

variations in available temporal resolutions of rainfall data from across the world for 4 

developing erosivity maps and databases.  We present a series of 21 potential equations for 5 

use in estimating erosivity at time scales from event to average annual using input data 6 

resolution ranging from maximum ten minute rainfall intensity to average annual rainfall 7 

amount.  Of the 21 equations we can recommend the use of 17.  Equations Month I, Year I, 8 

and Average Monthly I, which use only total rainfall amounts for the respective time scales, 9 

all had low ME values and poor prediction capability (Table 4).  Annual III, which is a 10 

linear function of average annual rainfall and the maximum daily precipitation over the 11 

recording period, performed very poorly, with a negative ME value (Table 4).  12 

We found that using finer resolution data input produced better predictions of erosivity at 13 

a given output time scale.  An exception was for the event-based models, where using I30 14 

gave slightly better results than using I60 or I10.  However, we also found that that using 15 

equations with the finest data resolution possible, and aggregating or summing results for 16 

finer erosivity time scales, gave the best results (Table 6).  In other words, Iif one were 17 

interested in average annual erosivity, but had rainfall data available for using the Daily I 18 

model, then results are better using the Daily I model and summing results over the period of 19 

data record rather than using Annual I-V models.  It is also evident that predictions of 20 

erosivity using Daily I improve as the time scale increases.  In other words, the predictions 21 

of average annual erosivity calculated by summing the daily values from Daily I give a 22 

higher level of fit than when using Daily I to estimate daily erosivity (Table 6).     23 

Models in this study performed better or similar to models from previous research based 24 

on these independent validation data. 25 

 26 

If monthly rainfall data are available, there are several models from which to choose.  27 
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For example, if only monthly rainfall amounts are available, Monthly I, Yearly I, Average 1 

Monthly I, and Annual I can be selected.  Yearly, average monthly, and annual rainfall 2 

amounts can be first derived from monthly rainfall amount data and then used in the 3 

corresponding models to estimate the R factor.   The prediction capabilities for seven 4 

validation stations for the four models; Monthly I, Yearly I, Average Monthly I, and Annual I, 5 

were very similar to each other (Table 5, Fig. 5).  Similar results can be found among four 6 

models with maximum 60-min amount, including Monthly II, Yearly II, Average Monthly IV, 7 

and Annual IV, as well as the four models with maximum daily rainfall amount, including 8 

Monthly III, Yearly III, Average Monthly V, and Annual Model V.  Therefore, users have the 9 

option to choose the simplest method for estimating the R factor.  However, if seasonal 10 

variations are required, monthly and average monthly models may be utilized; whereas, 11 

yearly and annual models cannot satisfy the requirements.  If yearly variations are required, 12 

monthly and yearly models may be utilized; whereas, average monthly, and annual models 13 

cannot satisfy the requirements. 14 

4. Conclusions 15 

Rainfall erosivity is needed for using USLE-type soil erosion models.  Considering the 16 

difficulties in obtaining breakpoint data to calculate the erosivity index, a series of 21 simpler 17 

methods using different resolutions of often readily available rainfall data were calibrated, 18 

based on 6,376 erosive events derived from one-minute resolution data from 11 stations.  19 

These models, plus 20 models from previous research, were evaluated by using 5,425 erosive 20 

events from the seven validation stations.  The following conclusions are presented:  21 

(1) Symmetric mean absolute percentage error (MAPEsym) and the Nash-Sutcliffe model 22 

efficiency coefficient (ME) were presented for 41 models to reflect deviation of the 23 

simulation from the observation when different time scales for the R factor were 24 

estimated, including event/daily, monthly, yearly, average monthly, and annual scales.  25 

Models in this study performed better or similar with models from previous research.  26 

(2) Predication capabilities for models with rainfall amount as inputs were limited in the 27 

geographic region of southwestern China, where the percent of erosive amount was lower 28 

and the ratio for event EI30 to event rainfall amount P was lower. 29 
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(3) Models with higher temporal resolution of input generally performed better.  Models 1 

with rainfall amount and maximum 60-min rainfall amount as inputs performed better 2 

than models with rainfall amount and maximum daily rainfall amount, which performed 3 

better than those with only rainfall amount.  Users can select different models to 4 

calculate rainfall erosivity, based on their available rainfall data and objectives.  For 5 

example, if the user wants to estimate event scale EI30, then they must choose an event 6 

model.  However, if the objective is estimating average annual R, then there are many 7 

choices of models that use various resolutions of input rainfall data. 8 

In summary, from the view of prediction accuracy, the event EI30 as originally calculated 9 

is considered the best indicator of rainfall erosivity for either erosivity distribution analysis or 10 

annual erosivity calculation.  However, in the absence of breakpoint rainfall data users can 11 

select from the different methods presented here to calculate rainfall erosivity, based on 12 

availability of rainfall data and accuracy requirements.  13 
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Tables 1 

Table 1. Information for the 18 rainfall stations 2 

Province 
Station 

 name 

Lat. 

(°N) 

Long. 

(°E) 

Elevation 

(m) 

Common 

years 

No. of 

erosive 

events 

Annual 

rainfall [3] 

(mm) 

R [4]  

(MJ mm ha-1 

h-1 a-1) 

Heilongjiang[1] Nenjiang 49.17 125.23 243.0 30 343 485.8  1368.7 

Tonghe[2] 45.97 128.73 110.0 38 471 596.2  1632.5 

Shanxi[1] Wuzhai 38.92 111.82 1402.0 30 289 464.0  781.9 

Yangcheng[2] 35.48 112.4 658.8 30 340 605.9  1503.3 

Shaanxi[1] Suide 37.5 110.22 928.5 29 256 449.7  992.8 

Yan’an 36.6 109.5 958.8 39 411 534.6  1233.7 

Beijing[1] Guanxiangtai 39.93 116.28 54.7 40 434 575.0  3188.1 

Miyun[2] 40.38 116.87 73.1 37 476 648.1  3575.0 

Sichuan Chengdu 30.67 104.02 506.1 39 717 891.8  3977.0 

Xichang[2] 27.9 102.27 1590.9 40 998 1007.5  3021.0 

Suining 30.5 105.58 279.5 33 654 932.7  4091.3 

Neijiang 29.58 105.05 352.4 39 826 1034.1  5097.9 

Hubei Fangxian 32.03 110.77 427.1 31 563 829.5  2298.4 

Huangshi[2] 30.25 115.05 20.6 32 898 1438.5  6049.4 

Yunnan Tengchong[2] 25.02 98.5 1648.7 36 1205 1495.7  3648.9 

Kunming 25.02 102.68 1896.8 33 747 1018.8  3479.0 

Fujian Fuzhou 26.08 119.28 84.0 39 1136 1365.4  5871.1 

Changting[2] 25.85 116.37 311.2 31 1037 1728.1  8258.5 

[1] The eight stations in these provinces are located in the northern part of China and had one-minute resolution data collected 3 

from May through September.  The remaining ten stations were based on data collected during the entire year.  4 
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[2] Seven validation stations (The other 11 stations were calibration stations.)  1 
[3] Based on daily rainfall datasets collected during 1961-2000.  2 
[4] R in this case is the average annual erosivity.  3 

  4 
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Table 2. New Mmodels calibrated 1 

Model codes Models Model codes Models 

Event I 10130 IeventPEI   Average Monthly I 3

_3_


 monthavemonthave PR   

Event II 30230 IeventPEI   Average Monthly II max_60_11_ )( monthmonthavemonthave PPR   

Event III 60330 IeventPEI 
 

Average Monthly III max_1440_12_ )( monthmonthavemonthave PPR   

Event IV 
hmmIIeventPEI

hmmIIeventPEI

/15≥3030530

/153030430







  
Average Monthly IV 

monthmonthavemonthave PPR )( 60_13_   

Daily I dayIdayPdayR )10(6  Average Monthly V monthmonthavemonthave PPR )( 1440_14_   

Monthly I 
1

1


 monthPmonthR 

 
Annual I[1] 4

4


 annualannual PR   

Monthly II monthmonthmonth PPR )( 607  Annual II max_6015 )( yearannualannual PPR   

Monthly III monthmonthmonth PPR )( 14408  
Annual III max_144016 )( yearannualannual PPR   

Yearly I 2

2
 yearyear PR 

 
Annual IV 

annualannualannual PPR )( 6017  

Yearly II yearyearyear PPR )( 609  Annual V 
annualannualannual PPR )( 144018  

Yearly III yearyearyear PPR )( 144010    

[1] Annual refers to Average Annual values of erosivity.    2 
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Table 3. Models published in previous research and their prediction capabilities determined using 1 

the validation stations-the symmetric mean absolute percentage errors, MAPEsym, and 2 

Nash-Sutcliffe model efficiencies, ME. 3 

Erosivity 

time 

scales 

Models Sources 
MAPEsym (%) 

[1] 
ME[2] 

Event  )17.00247.0(2.10 30  IPR eventevent
 Wang, 1987 30.6  0.97 

 )32.0025.0(2.10 30  IPR eventevent
 Wang, 1987 28.8  0.97 

 
1-

30
30

1-

30

30

 10)523.0
100

35.2(2.10

 10)136.0
100

70.1(2.10

hmmI
IP

R

hmmI
IP

R

event
event

event

event



  
Wang et al., 1995 15.5 0.98 

 101773.0 IPR eventevent   
Zhang et al., 

2002a 
44.7  0.89 

Daily  daydayday IPR )(184.0 10    Xie et al., 2001 44.9 0.91 

 


 dayday PR   

1891.7

1212

586.21  ,
24.45518.144

0.8363  
yd PP

  

Zhang et al., 

2002b 
74.6 0.69 

 
72651

6

7

6
cos54120126860

.

dayday )]P
π

j
π

(.[.R 

 

Xie et al., 2015 63.7 0.71 

 daydayday PPR )(3522.0 60

 

Xie et al., 2015 38.2 0.95 

Month 
6295.1

0125.010 monthmonth PR 
 

Wu, 1994 60.2  0.57 

 )6398.23046.0(10  monthmonth PR
 

Zhou et al., 1995 67.3  0.35 

Year 03.13377.1 105  PRyear  
Sun et al., 1990 86.7  -0.63 

 
205.1

60 )100/)((272.02.10 yearyearyear PPR 
 

Wang et al., 1995 31.8  0.80 

 
953.0

6010 )100/)((67.12.10 yearyearyear PPR   
Wang et al., 1995 18.9  0.87 
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6548.1

0534.0 yearyear PR 
 

Zhang and Fu, 

2003 
44.4 0.10 

Average 

Annual 

0.560

1440

1.155

60

564.0

annualannual )(P)(P0.009P2.10 annualannualR   
Wang et al., 1995 17.3  0.83 

 
0.376

1440

1.175

60

551.0

10annualannual )(P)(P0.0244P2.10 annualannualR    
Wang et al., 1995 12.0  0.86 

 
0.919

6010annualannual /100))(P2.135(P2.10 annualR    
Wang et al., 1995 11.5  0.94 

 











N

i

j

ji

j

ji

FFannual

P

P

N
FFR

1
12

1

,

12

1

2

,

9957.1 1
  ,1833.0

 Zhang and Fu, 

2003 
55.9  -1.21 

 annual

j

jmonthaveannual PPFFR /)(  ,3589.0
12

1

2

__

9462.1 


  
Zhang and Fu, 

2003 
60.8  -2.11 

 
6266.1

0668.0 annualannual PR   

Zhang and Fu, 

2003 
34.6  -0.03 

[1] MAPEsym (%) is the symmetric mean absolute percentage error values for all the data across validation 1 

stations for R with time scale intended for the model.       2 

[2] ME is the Nash-Sutcliffe model efficiency coefficient for all the data across validation stations for R with time 3 

scale intended for the model.   4 

5 
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Table 4. Models calibrated in this study and their prediction capabilities determined using the 1 

validation stations-the symmetric mean absolute percentage errors, MAPEsym, and Nash-Sutcliffe 2 

model efficiencies, ME. 3 

Model codes Models [1] R2 [2] MAPEsym (%) ME 

Event I 101547.030 IeventPEI   0.92 34.5  0.91  

Event II 302372.030 IeventPEI   
0.98  

 
29.3  0.98  

Event III 603320.030 IeventPEI   
0.94  

 
35.8  0.96  

Event IV 
hmmIIPR

hmmIIPR

eventevent

eventevent

/15≥2394.0

/151592.0

3030

3030



  0.97  

 
13.9  0.98  

Daily I dayIdayPdayR )10(1661.0  
0.92  

 
38.4  0.91  

Month I 
1.6670

1575.0 monthmonth PR 
 

 

0.66  69.5  0.48  

Month II monthmonthmonth PPR )(1862.0 60
 0.85  36.0  0.88  

Month III monthmonthmonth PPR )(0770.0 1440
 

 

0.65  55.2  0.69  

Year I 
3163.1

5115.0 yearyear PR 
 

 

0.70  38.1  0.48 

Year II yearyearyear PPR )(1101.0 60  0.80  20.9  0.84  

Year III yearyearyear PPR )(0502.0 1440  

 

0.54  28.9  0.59  

Average 

Monthly I 

8430.1

__ 0755.0 monthavemonthave PR   0.89  44.7  0.17 

Average 

Monthly II 

max_60__ )(0877.0 monthmonthavemonthave PPR 

 

0.94  23.5  0.88  

Average 

Monthly III 
max_1440__ )(0410.0 monthmonthavemonthave PPR   0.87  30.1  0.73  

Average 

Monthly IV 
monthmonthavemonthave PPR )(2240.0 60__   0.98  22.9  0.88  

Average 

Monthly V 
monthmonthavemonthave PPR )(1082.0 1440__   0.94  31.4  0.79  

Annual I 
1801.1

2718.1 annualannual PR   0.89  25.6  0.63 

Annual II max_60)(0584.0 yearannualannual PPR   0.92  15.4  0.91 
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Annual III max_1440)(0253.0 yearannualannual PPR   0.92  22.5  -0.44 

Annual IV annualannualannual PPR )(1058.0 60  0.94  17.0  0.88 

Annual V annualannualannual PPR )(0492.0 1440  0.92  18.2  0.91 

[1] Parameters of models for power law models, including α1, β1, α2, β2, α3, β3, α4, β4, α5, β5,
 were solved by 1 

pooling data from 11 stations together.  Parameters for average annual scale models, including λ15, λ16, λ17, λ18, 2 

were calculated by fitting data from all calibration stations and for the remainder they were the average values 3 

of parameters for the 11 calibration stations. [2] R2 is the coefficient of determination. 4 

[2] ME is the Nash-Sutcliffe model efficiency coefficient for R with time scale intended for the model.  ME was 5 

calculated based on simulations and observations for seven stations for the annual average scale of R estimation 6 

and was averaged for all seven stations for the other scales.  7 

  8 
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Table 4. Models calibrated in this study and their prediction capabilities determined using 1 

symmetric mean absolute percentage errors and Nash-Sutcliffe model efficiency coefficients.of 2 

parameters for the 11 calibration stations.  3 

[2] r2 is the coefficient of determination.   4 
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Table 5. Validation s tation-averaged Ssymmetric mean absolute percentage errors (MAPEsym) and 1 

Nash-Sutcliffe model efficiency coefficients (ME) for Rmonth by Monthly I, Ryear by Yearly I and 2 

Rave_month by Average Monthly I models for seven validation stations and statistics on event rainfall 3 

amount and event EI30.   4 

Station 

name 

Rmonth by Month 

I 

 

Ryear by Year I 

 Rave_month by Average 

Monthly I 

Percent of 

erosive amount 

(%) 

EI30/P 

MAPEsym ME  MAPEsym ME  MAPEsym ME 

  

Tonghe 70.2  0.73   30.9 0.47   29.5 0.93 71.2  4.8  

Yangcheng 65.5  0.31   27.1  0.55  16.4 0.96 81.7  4.2  

Miyun 52.0  0.71   45.1 -0.06  37.6 0.88 82.8  7.8  

Xichang 77.5  0.47   45.4  -0.15   57.2 0.09 76.9  4.1  

Huangshi 70.1  0.65   24.5  0.63   46.1 0.73 86.5  5.7  

Tengchong 83.4  -2.01  66.6 -7.51  68.3 -6.98 71.9  3.6  

Changting 52.0  0.54   20.9 0.26   35.2 0.30 88.4  6.1  

Mean[1]  67.2  0.20   37.2  -0.83  41.5 -0.44 79.9  5.2  

Mean[2] 62.0  0.59   29.7  0.37  38.7 0.60 82.1  5.7  

[1] Averaged value for seven validation stations.   5 

[2] Averaged value for five validation stations except Xichang and Tengchong. 6 

  7 
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Table 6. MAPEsym for the models when used to estimate longer time scales of erosivity.  1 

Model 

codes 

Models  
Event & 

Daily 
Month 

Ave. 

monthly 
Year Annual 

Event I 101547.030 IeventPEI   34.5 29.0 20.4 16.4 12.0 

Event II 302372.030 IeventPEI   29.3 24.2 16.0 11.4 9.1 

Event III 603320.030 IeventPEI   35.8 28.5 15.1 10.8 6.2 

Event IV hmmIIPR

hmmIIPR

eventevent

eventevent

/15≥2394.0

/151592.0

3030

3030



  
13.9 11.0 7.0 6.4 4.7 

Daily I dayIdayPdayR )10(1661.0  38.4 29.2 19.6 16.2 11.7 

Month I 
1.6670

1575.0 monthmonth PR 
 

 

 69.5 46.7 39.4 28.7 

Month II monthmonthmonth PPR )(1862.0 60
 

 36.0 19.9 18.6 13.1 

Month III monthmonthmonth PPR )(0770.0 1440
 

 

 55.2 26.7 24.8 12.3 

Year I 
3163.1

5115.0 yearyear PR 
 

 

   38.1 23.5 

Year II yearyearyear PPR )(1101.0 60     20.9 14.3 

Year III yearyearyear PPR )(0502.0 1440  

 

   28.8 17.3 

 2 

 3 

  4 
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Figures 1 

 2 

Fig. 1. Distribution Locations of the 18 stations with one-minute resolution rainfall data.  Eleven 3 

stations marked with dots were used to calibrate 21 models.  The other seven stations marked with 4 

triangles were used to validate models and conduct comparisons with previous research.  5 

  6 
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 1 

Fig. 2. Scatterplots for power law models using rainfall amount: (a) Monthly I, (b) Yearly I, (c) 2 

Average Monthly I, and (d) Annual I, based on the 11 calibration stations. 3 
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 1 

Fig. 3. Comparisons of average monthly R values between observation values calculated using 2 

one-minute resolution rainfall data and estimated values using month models (a, b) and average 3 

monthly models (c, d) for the Tonghe and Tengchong stations.  4 
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Fig. 3. Comparisons of average monthly R values between observation values calculated using 2 

one-minute resolution rainfall data and estimated values using monthly models (a, b) and average 3 

monthly models (c, d) for the Tonghe and Tengchong stations.  4 
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1 

Fig. 4. Comparison of yearly R values between observation values calculated using one-minute 2 

resolution rainfall data and estimated values using monthly models (a, b) and yearly models (c, d) for 3 

the Tonghe and Tengchong stations.  The years without marks were ineffective years. 4 
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Fig. 5. Comparisons of the estimated R-factor value calculated based on (a) monthly, (b) yearly, (c) 2 

average monthly, and (d) average annual models using one-minute resolution data for the seven 3 

independent validation stations.  Monthly models included models in Wu (1994), Zhou et al. (1995), 4 

and Monthly I, II, and III from this study.  Yearly models included models from Sun et al. (1990), 5 

Wang et al. (1995, the one with MAPEsym of 18.9%), Zhang and Fu (2003), and Yearly I, II, and III 6 

from this study.  Average monthly models included models from Average Monthly I, II, and III 7 

from this study.  Average annual models included models from Wang et al. (1995, the one with 8 

MAPEsym of 11.5%), Zhang and Fu (2003, the one with MAPEsym of 34.6%), and Annual I, II, and 9 

III from this study.  10 
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