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Interactive comments on “Rainfall erosivity estimation based on rainfall data

collected over a range of temporal resolutions” by S. Yin et al.

Anonymous Referee #1

The manuscript addresses an important topic, i.e. what temporal resolution is required for making
accurate estimates of rainfall erosivity. This topic is of global interest, given the often non-existent or
difficult-to-acquire quality rainfall datasets at high temporal resolutions. As much as | applaud
therefore this effort, | do have a number of concerns with the current version of the manuscript.
These are:

1. The authors rightly take the EI30 measure as the reference given its wide-spread use. However,
they fail to discuss properly the kinetic energy component of this indicator, and the issues of
measuring/estimating it. The kinetic energy of rainfall can be measured (e.g. with disdrometers), but
given the non-availability of such measurements for most stations, mostly it is estimated based on
empirical equations. The authors simply present equation (2) but fail to give a rationale for it. Other
studies exist that compare various existing empirical relationships (e.g. van Dijk et al, 2002, Journal of
Hydrology 261, 1-23 and see also Salles et al. 2002, Journal of Hydrology 257, 256-270), and should
at least be discussed here.

Response:

We agree with the comment and we added an extensive discussion of kinetic energy of rainfall in
the Introduction of the revised version, including the references suggested, as follows:

“Kinetic energy (KE) is generally suggested to indicate the ability of a raindrop to detach soil
particles from a soil mass (e.g., Nearing and Bradford, 1985). Since the direct measurement of KE
requires sophisticated and costly instruments, several different estimating methods have been
developed that estimate KE based on rainfall intensity (I) using logarithmic, exponential, or power
functions. The original 1978 release of the USLE utilized a logarithmic function (Wischmeier and
Smith, 1978) that was based on rainfall energy data published by Laws and Parsons (1943). Brown
and Foster (1987) re-evaluated this relationship and recommended the use of an exponential
relationship, which was subsequently used in RUSLE (Renard et al., 1997).

MocGregor et al. (1995) compared the KE equations used in the USLE and RUSLE with the results
from the equation and data of McGregor and Mutchler (1976), which was developed based on 29
standard recording rain gauges in the Goodwin Creek Watershed in northern Mississippi, USA. The
results showed that the annual erosivities predicted by the equation of McGregor and Mutchler (1976)
and the USLE were almost identical, whereas the RUSLE predicted values that were about 8% lower.
McGregor et al. (1995) suggested that the equation of Brown and Foster (1987) be modified,
changing the value of the exponential function to -0.082 rather than -0.05 that was used in RUSLE.
Foster (2004) used the 0.082 value in RUSLE2, as follows:

e, =0.29[1—0.72exp(~0.082i,)] (1)
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where e, is the estimated unit rainfall kinetic energy (MJ ha™ mm™) and i, is the rainfall intensity (mm
h?) at any given time within a rainfall event (usually taken as one minute for computational purposes,
with average intensity representative of the time increment).

Other work has been done to evaluate the relationships between rainfall intensity and KE.  After
reviewing more than 20 exponential KE vs. | relationships based on natural rainfall data observed in a
variety of climate classifications, van Dijk et al. (2002) derived:

e, =0.283[1—0.52exp(~0.042i, )] 2)

Salles et al. (2002) suggested using a power law KEn. vs. | expression wherein the constants of the
power law were different for convective rain and stratiform rain types. It is, however, often difficult to
define if a storm should be classified as convective or stratiform based on the breakpoint data alone.
Breakpoint data is fine resolution information on time during a rainfall event with associated
cumulative rainfall depth. The term breakpoint refers to times when there are detectible changes in
rainfall intensity as shown by a change in the slope of the cumulative rainfall curve. It originates
from the time that rainfall records were read from recording pen charts.

Preliminary analysis (not shown) of our data from China indicated that the van Dijk equation
resulted on average in similar R values to those from RUSLE2, slightly lower R values compared to
USLE, and much greater R values than given by RUSLE. The Salles et al. (2002) equations produced
on average much greater values of erosivity than did all of the other equations. In general, the
RUSLE?2 value produced results in the mid-range of all of these equations.”

2. It is not always very clear which erosivity values are taken as input for estimating the modelling
error. E.g. if the authors refer to monthly, is this always “average monthly”? If so, why, and would it
not be more useful to look at erosivity values for individual months? This would relate better to the
ongoing discussion on ways forward for erosion monitoring (e.g. Vrieling et al, 2014 Global and
Planetary Change 115, 33-43).

Response:

It was confusing. Instead of “monthly” and “yearly” when referring to individual months and years,
we should have used “month” and “year”, which we did in the revision. We revised, for example, to
read: “These were treated as observed values and summed to obtain the erosivity factors, R, for daily,
month (individual month totals), year (individual year totals), average monthly, and average annual
time scales.” Note that the mathematical definitions are presented in (for example for months) in
(the original) equations 6 and 7 (equation numbers changed in the revision.)

J

Rmonth,y,m :Z(Elw)y,m,j
i=0 (6)
1 Y
Rav mon = R n m
e_monthm Y ; month,y, (7)

where (Els), m,; is the Elsg value for the j event in the m™ month of the y™ year; Ruontn,y, m is the R
value for the m™ month of the yth year; Rave_month, m IS the average R value for the m'™ month over the
years of record.

We will clarify the definitions in the revision and add more discussion on Vrieling et al, 2014 Global
and Planetary Change 115, 33-43.
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3. In relation to the last point, | would encourage the authors to contribute to this discussion and
(based on their results) give more concrete recommendations for ways forward. Currently the
authors refer in a very general way to “users” in their conclusions. In my view, end-users are never
those that want just to make an estimate of erosivity, but rather they need erosion estimates and
possibly a monitoring framework, e.g. for planning purposes and impact evaluations. Adding a
clearer opinion on how to move forward with erosivity analysis, including its embedding in
mapping/monitoring frameworks, would be a welcome addition to this manuscript.

Response:

Absolutely correct! We have added a new section 3.5 Recommendations and applications:

“The results of this study provide a multitude of options for dealing with the problem of variations in
available temporal resolutions of rainfall data from across the world for developing erosivity maps
and databases. We present a series of 21 potential equations for use in estimating erosivity at time
scales from event to average annual using input data resolution ranging from maximum ten minute
rainfall intensity to average annual rainfall amount. Of the 21 equations we can recommend the
use of 17. Equations Month I, Year I, and Average Monthly I, which use only total rainfall amounts
for the respective time scales, all had low ME values and poor prediction capability (Table 4).
Annual Ill, which is a linear function of average annual rainfall and the maximum daily precipitation
over the recording period, performed very poorly, with a negative ME value (Table 4).

We found that using finer resolution data input produced better predictions of erosivity at a given
output time scale. An exception was for the event-based models, where using 130 gave slightly
better results than using 160 or 110. However, we also found that that using equations with the finest
data resolution possible, and aggregating or summing results for finer erosivity time scales, gave the
best results (Table 6). In other words, If one were interested in average annual erosivity, but had
daily rainfall data available for using the Daily | model, then results are better using the Daily | model
and summing results over the period of data record rather than using Average Monthly I-1V or Annual
I-V models. It is also evident that predictions of erosivity using Daily | improve as the time scale
increases. In other words, the predictions of average annual erosivity calculated by summing the
daily values from Daily | give a higher level of fit than when using Daily | to estimate daily erosivity
(Table 6).

Models in this study performed better or similar to models from previous research based on these
independent validation data.”

4. While the research seems well-embedded in existing erosivity estimation efforts in China, in my
view the authors could make a better link with other ongoing efforts in other areas that look at
different temporal resolutions of rainfall data. | am thinking for example about Panagos et al (2015,
Science of Total Environment 511, 801-814) who normalize R-factor estimates for Europe based on
recording intervals. Although the authors focus on rainfall station data, another line of research (i.e.
application of satellite rainfall estimates) should be acknowledged, i.e. work by Vrieling et al (2010
in Journal of Hydrology, and 2014 cited above), but also for China (Fan et al, 2013, Journal of
Mountain Science 10(6): 1008-1017). This is especially relevant for end-users that require
spatially-consistent information on soil erosion. In fact, a performance evaluation for the stations in
the manuscript of erosivity estimated from satellite rainfall products could be a nice follow-up study
for the authors (but probably not for this paper).
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Response: We expanded and improved the Introduction to include discussion relative to:

Fan et al, 2013, Journal of Mountain Science 10(6): 1008-1017

Vrieling et al 2010 in Journal of Hydrology

Vrieling et al, 2014 Global and Planetary Change 115, 33-43

Panagos et al, 2015, Science of Total Environment 511, 801-814

Sadeghi, S. H. R., M. Moatamednia, and M. Behzadfar. 2011. Spatial and Temporal Variations in the
Rainfall Erosivity Factor in Iran. J. Agr. Sci. Tech. (2011) Vol. 13: 451-464.

Sadeghi, S.H.R., and S. Tavangar. 2015. Development of stational models for estimation of rainfall
erosivity factor in different timescales. Nat Hazards 77:429-443 DOI 10.1007/s11069-015-1608-y.
Oliveira, PT.S., E. Wendland, and M.A. Nearing. 2012. Rainfall erosivity in Brazil: A review,

Catena 100:139-147. http://dx.doi.org/10.1016/j.catena.2012.08.

5. Perhaps | misunderstood something in the paper, but it seems to me that the models are only
evaluated for the temporal scale to which they are applied. In Tables 3 and 4, the event-based
models are only evaluated on the basis of events modelled. While there is nothing wrong with that, |
would also expect the models to be evaluated at the aggregate scale. | mean that EI30 estimated
from event-based models should also be added up to monthly and yearly values, to evaluate if
fine-scale temporal resolution data improves also the accuracy of aggregate erosivity measures.

Response: This is an extremely important comment!! It points out something that we forgot to
address in our study. See the new Table 6. In fact the reviewer is entirely correct. Two important
facts emerge: 1. When the models are applied at the aggregated scale their predictions get better.
And 2. The models that use finer resolution of input data predict better for the same erosivity time
scale compared to models using coarser resolution input data. Thank you!

Other comments:

- P4967L11: delete first “as”
Done

- P4967L19 and L28: it is unclear what authors mean with “breakpoint data”

“breakpoint data” defined and discussed in the revision as: “Breakpoint data is fine resolution
information on time during a rainfall event with associated cumulative rainfall depth. The term
breakpoint refers to times when there are detectible changes in rainfall intensity as shown by a
change in the slope of the cumulative rainfall curve. It originates from the time that rainfall records
were read from recording pen charts.”

- P4967L22: change “to develop” into “by developing”
done

- P4968L14: “course” should read “coarse”

done

- P4968L23-24: strange sentence. This can be deleted as it is obvious that these intensities are “easy
to calculate”.
done
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- P4970L10-11: “the eastern water erosion region of China”: it is unclear what is meant with this.
changed to “eastern half’

- P4976L9-11: see also general point (2) above. The authors could also use all annual values for the
stations (i.e. for all years) rather than just the average annual erosivity.
see response to #2 above

- P4982L7: “Predication” should read “prediction”. However, the sentence is also un-clear. Rather
state "Erosivity could not be predicted accurately in southwest China using rainfall amount as input."
Even if rephrased in this way: what rainfall amount? Hourly? Daily, monthly, yearly?

corrected and clarified

Anonymous Referee #2

“I fully agree with the first Reviewer. The results of such an interesting topic should be explored
and compared with the recent scientific advancements in Erurope (Panagos et al., 2015) and in Africa
(Vrieling et al., 2015).”

Response: Agreed: We added this to the manuscript Introduction. Dsicussions of
Recommendations and applications. Includes discussions relative to:

Fan et al, 2013, Journal of Mountain Science 10(6): 1008-1017

Vrieling et al 2010 in Journal of Hydrology

Vrieling et al, 2014 Global and Planetary Change 115, 33-43

Panagos et al (2015, Science of Total Environment 511, 801-814)

Sadeghi, S. H. R., M. Moatamednia, and M. Behzadfar. 2011. Spatial and Temporal Variations in the
Rainfall Erosivity Factor in Iran. J. Agr. Sci. Tech. (2011) Vol. 13: 451-464.

Sadeghi, S.H.R., and S. Tavangar. 2015. Development of stational models for estimation of rainfall
erosivity factor in different timescales. Nat Hazards 77:429-443 DOI 10.1007/s11069-015-1608-y.
Oliveira, PT.S., E. Wendland, and M.A. Nearing. 2012. Rainfall erosivity in Brazil: A review,

Catena 100:139-147. http://dx.doi.org/10.1016/j.catena.2012.08.

Anonymous Referee #3

#1 The manuscript was reviewed. It was a very tough work to work on such huge quantity of
data. It has tried to calibrate different models to estimate erosivity index with the help of rainfall
data with different time scales for 18 stations mainly distributed in eastern China. However, it
has no particular novelty. Considering all comments and suggestions annotated in the
manuscript, it is subjected to major revision for acceptance.

Response: We think that this work is important and new. We note in the Introduction:
“Although several studies have been conducted on this topic in the past, no study used as
comprehensive a data set collected over this wide geographic area of China to evaluate the wide
range of erosivity time scales needed for erosion work, and utilizing such a wide range of temporal
resolution rainfall data as the independent variable.”
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#2 In fact the research has no particular novelty but it contains a quite bit of energy and time
which makes it investigatable.

Response: see immediately above
#3 Some quantitive results are missed from the abstract.

Response: Yes, it is difficult to summarize because there are just so many numbers. We tried
to be a bit more quantitative as we could in the Abstract revision.

#4 Not adequately documented in reputed journals.

Response:  Yes, unfortunately true. We de-emphasized the model in the revision. But
nonetheless the model is very important in China. The model has been widely used in the
application of soil conservation planning in China. There are some related publications in
Chinese. It is a pity that the model has not been published in a reputable English Journal.
Realizing it is not good for international communication, recently, Liu et al. are preparing an
English manuscript about CSLE.

#5 This is not widely used model!!
Response: See #4 response

#6 I advise respected author to consult and clearly cite the following papers in different parts of
the manuscript:

1)Sadeghi, S.H.R. and Hazbavi, Z., 2015. Trend analysis of the rainfall erosivity index at different
time scales in Iran, Natural Hazards, 77: 383-404.

2)Sadeghi, S.H.R. and Tavangar, Sh., 2015. Development of stational models for estimation of
rainfall erosivity factor in different timescales, Natural Hazards, 77:429-443.

Response: Agreed: We added discussions relative to:

Fan etal, 2013, Journal of Mountain Science 10(6): 1008-1017

Vrieling etal 2010 in Journal of Hydrology

Vrieling et al, 2014 Global and Planetary Change 115, 33-43

Panagos et al (2015, Science of Total Environment 511, 801-814)

Sadeghi, S. H. R,, M. Moatamednia, and M. Behzadfar. 2011. Spatial and Temporal Variations in
the Rainfall Erosivity Factor in Iran. J. Agr. Sci. Tech. (2011) Vol. 13: 451-464.

Sadeghi, S.H.R, and S. Tavangar. 2015. Development of stational models for estimation of
rainfall erosivity factor in different timescales. Nat Hazards 77:429-443 DOI
10.1007/s11069-015-1608-y.

Oliveira, PT.S., E. Wendland, and M.A. Nearing. 2012. Rainfall erosivity in Brazil: A review,
Catena 100:139-147. http://dx.doi.org/10.1016/j.catena.2012.08.

#7 This is better to address international literatures instead of focusing Chinese ones mainly.
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Response: Agreed. We will add discussions regarding the above papers, and we also discuss
the work of Renard and Freidmund (USA), Bofu Yu (Australia), and some of the other climate
change and erosion work.

#8 The necessity of applying different time scales has to be well explained, since neither such
high resolution data are not available to be easily used for calculation of erosivity index nor

these data are being used for erosion models universally used for soil erosion estimation.

Response: Yes. Both the Introduction and the Applications sections have added
clarification regarding the need for different time scales of erosivity.

#9 It was mentioned 11 earlier!!!

Response: Yes, 11 calibration stations, 7 validation stations, 18 total stations.
#10 This is often called "common years"!!

Response: changed

#11 How accurate this criterion is??

Response: Although there were missing data in the information used, Data M were internally
consistent in all comparisons reported. Therefore, it was believed 15% is acceptable.

#12 So, how did you incorporate the precipitation of this period???

Response: The data simply is not available for the months indicated in the northern areas.
These are not considered to be erosive months in those locations.

#13 How it worked for China??
Response: We suppose here the reviewer means if the KE equation by Foster (2004) is suitable
for China. If [ understood right, I think the query is the same with the first comment raised by

Reviewer 1. See response above.

#14 It has to be logically the average value of annual EI30. Rewrite it please. Though
mathematically there may not be any difference between results.

Response: You are correct that there is no difference. We changed it to read per your
suggestion.

#15 Hard to follow!!!
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Response: Agreed. We rewrote and clarified the entire section. There is a lot of information
here, and many, many variables. We tried to be meticulous in the revision to be sure that each
variable is clearly explained. Nonetheless, it will take a careful read to get all the nuance, but
we think that now it is all there.

#16 Why these models were selected??

Response: Basically we were trying to examine the Chinese models with the Chinese data, since
those models were also based on smaller sets of Chinese data.

#17 Use similar acronyms throughout the manuscript.

Response: Agreed and corrected.

#18 Such subtitles are not common!! This is usually discussed in discussion.
Response: True. Subtitles are modified in the revision.

#19 They need to be finished. It means the equations have to be written in nice manner to be read
and recognized easily.

Response: Yes, there are many equations in these tables. We are assuming that we will work
with the journal for ensuring that the equations are properly displayed in the tables, as is normal.

#20 It does not look nice!!l It has to be written capital as well.
Response: Changed.
#21 What about this area??? The entire stations are distributed in high receiving precipitation areas!!

Response: All the stations are located in the water erosion area in China. The northwestern part of
China is mainly influenced by wind erosion.

#22 Bar charts are logically more acceptable for discrete data presentation.

Response: changed.
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Rainfall erosivity estimation based on rainfall data
collected over a range of temporal resolutions
S.Yin® %" Y. Xie*? B. Liu*?and M. A. Nearing®

[1]{State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal

University, Beijing 100875, China}
[2]{School of Geography, Beijing Normal University, Beijing 100875, China}
[3]{USDA-ARS Southwest Watershed Research Center, Tucson 85719, U.S.A.}

Correspondence to: S. Yin (yinshuiging@bnu.edu.cn)

Abstract

Rainfall erosivity is the power of rainfall to cause soil erosion by water. The rainfall
erosivity index for a rainfall event, Els, is calculated from the total kinetic energy and
maximum 30 minute intensity of individual events. However, these data are often
unavailable in many areas of the world. The purpose of this study was to develop models
that-relatebased on mere-commonly available rainfall data resolutions, such as daily or
monthly totals, to rainfall erosivity. Eleven stations with one-minute temporal resolution
rainfall data collected from 1961 through 2000 in the eastern-water-erosion-areaseastern half
of China were used to develop and calibrate 21 models. Seven independent stations, also
with one-minute data, were utilized to validate those models, together with 20 previously
published equations. Resultsshowed-that-The models in this study performed better or

similar to models from previous research to estimate rainfall erosivity for these data.

Prediction-capabihities;as-determined-uUsing symmetric mean absolute percentage errors and
Nash-Sutcliffe model efficiency coefficients, were-demeonstrated-forthe-41-models-including

annual-time-scaleswe can recommend 17 of the new models that had with model efficiencies

>0.59. Prediction capabilities were_generally generaly-better using higher resolution

rainfall data as inputs at a given erosivity time scale--. Also, using equations with the finest

9
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data resolution possible, and aggregating or summing results for finer erosivity time scales,

gave the best results.

1. Introduction

tillage-conservationpractices—Soil erosion prediction models are effective tools for helping

to guide and inform soil conservation planning and practice. The most widely used soil

erosion models used for conservation planning are derived from the Universal Soil Loss
Equation (USLE) (Wischmeier and Smith, 1965, 1978). Fhese-These models include the
USLE, the Revised USLE (RUSLE) (Renard et al., 1997), and RUSLE?2 (Foster, 2004)-anrd-

. i . r L Y ic the official tool
by-government-conservation-plannersin-the-United-States—Adaptations of the USLE have

also been developed for use in other parts of the world, including, for example, Germany

(Schwertmann et al., 1990), Russia (Larionov, 1993), and China (Liu et al., 2002). Fhe-For

example, the Chinese Soil Loss Equation (CSLE) was successfully utilized in the first

national water erosion sample survey in China (Liu et al., 2013)--.

These models have in common the-a rainfall erosivity factor (R), which reflects the
potential capability of rainfall to cause soil loss from hillslopes, and which is one of the most

important basic factors for the-abeve-mentioned-modelsestimating soil erosion. In its

simplest form, the R factor is as an average annual value, calculated as a summation of
event-based energy-intensity values, Els, for a location divided by the number of years over
which the data was collected. Elsg is defined as the product of kinetic energy of rainfall and

the maximum contiguous 30-min rainfall intensity during the rainfall event. It is the basic
10
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rainfall erosivity index that was developed by Wischmeier (1958) originally for the USLE,
and is still widely used in other erosion prediction models (e.g., RUSLE, RUSL E2-and-

CSLE), with some modifications and improvements.  Wischmeier (1976) suggested that

more than 20 years’ rainfall data are needed to calculate average annual erosivity to include

dry and wet periods.

Determination of the maximum contiguous 30-min rainfall intensity during the rainfall

event is a relatively straightforward process, although it requires a temporally detailed rainfall

record for a storm. Determination of the Kinetic energy of a storm is more complex.

Kinetic energy (KE) is generally suggested to indicate the ability of a raindrop to detach

soil particles from a soil mass (e.q., Nearing and Bradford, 1985). Since the direct

measurement of KE requires sophisticated and costly instruments, several different

estimating methods have been developed that estimate KE based on rainfall intensity (1)

using logarithmic, exponential, or power functions. The original 1978 release of the USLE

utilized a logarithmic function (Wischmeier and Smith, 1978) that was based on rainfall

energy data published by Laws and Parsons (1943). Brown and Foster (1987) re-evaluated

this relationship and recommended the use of an exponential relationship, which was

subsequently used in RUSLE (Renard et al., 1997).

McGregor et al. (1995) compared the KE equations used in the USLE and RUSLE with

the results from the equation and data of McGregor and Mutchler (1976), which was

developed based on 29 standard recording rain gauges in the Goodwin Creek Watershed in

northern Mississippi, USA. The results showed that the annual erosivities predicted by the

equation of McGregor and Mutchler (1976) and the USLE were almost identical, whereas the

RUSLE predicted values that were about 8% lower. McGregor et al. (1995) suggested that the

equation of Brown and Foster (1987) be modified, changing the value of the exponential

function to -0.082 rather than -0.05 that was used in RUSLE. Foster (2004) used the -0.082

value in RUSLE2, as follows:

e, =0.29[1—0.72exp(~0.082i, )] &)

where e, is the estimated unit rainfall kinetic energy (MJ ha™ mm™) and i is the rainfall

11
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intensity (mm h™) at any given time within a rainfall event (usually taken as one minute for

computational purposes, with average intensity representative of the time increment).

Other work has been done to evaluate the relationships between rainfall intensity and KE.

After reviewing more than 20 exponential KE vs. | relationships based on natural rainfall data

observed in a variety of climate classifications, van Dijk et al. (2002) derived:
e, =0.283[1-0.52exp(—0.042i, )] )

Salles et al. (2002) suggested using a power law KEme VS. | expression wherein the

constants of the power law were different for convective rain and stratiform rain types. It is,

however, often difficult to define if a storm should be classified as convective or stratiform

based on the breakpoint data alone. (Breakpoint data is fine resolution information on time

during a rainfall event with associated cumulative rainfall depth. The term breakpoint refers

to times when there are detectible changes in rainfall intensity as shown by a change in the

slope of the cumulative rainfall curve. It originates from the time that rainfall records were

read from recording pen charts.)

Preliminary analysis (not shown) of our data from China indicated that the van Dijk

equation resulted on average in similar R values to those from RUSLEZ2, slightly lower R

values compared to USLE, and much greater R values than given by RUSLE. The Salles et

al. (2002) equations produced on average much greater values of erosivity than did all of the

other equations. In general, the RUSLE?2 value produced results in the mid-range of all of

these equations.

The temporal resolution of rainfall data across the world varies greatly (Sadeghi et al.,

2011; Sadeghi and Tavangar, 2015; Oliveira et al., 2012; Panagos et al., 2015), even within

countries with extensive rainfall monitoring programs. _In the United States, for example,

intra-storm, temporally detailed data (historically taken on pen recording charts, now taken as

one-minute digital data) are only available at limited stations, whereas daily data are common

(Nicks and Lane, 1995; Flanagan et al., 2001). There is a need for developing models for

application in all areas of the world in order to produce erosivity maps that can be used for

evaluating soil erosion rates (e.g., Sadeghi et al., 2011, Sadeghi and Tavangar, 2015; Oliveira
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et al., 2012; Panagos et al., 2015).

In Europe, Panagos et al. (2015) undertook the task to develop an erosivity map for

Europe based on data from 1541 precipitation stations with temporal resolutions of 5 to 60

min. To use data that had been reported at the different time resolutions they had to apply

adjustment factors to the data, which they reported to have introduced some uncertainty into

the estimations. Sadeghi and Tavangar (2015) evaluated various erosivity estimation indices,

including Fournier (Fournier, 1960), modified Fournier (Arnoldus, 1977), Roose (1977) and

Lo (Lo et al., 1985), using data from 14 stations in Iran. They evaluated annual, seasonal

and monthly information. _ Similarly, the work in Brazil summarized by Oliveira et al. (2012)

highlighted several studies that used various estimations of erosivity based on various types

of data and interpolations.

Other innovative ways have been advanced to produce better mappings of erosivity,

including the use of daily (Fan et al., 2013) or 3 hour (Vrieling et al., 2010 and 2014) data

from the TRMM Multi-satellite Precipitation Analysis (TRMM).

recorded-onby-ata-daty-resolution—EQOther efforts to address this problem have been made
by developingte-develop simpler methods to estimate rainfall erosivity by using daily
(Richardson et al., 1983; Yu, 1998; Capolongo et al., 2008), monthly (Arnoldus, 1977;
Renard and Freimund, 1994; Yu and Rosewell, 1996; Ferro et al., 1999), or annual rainfall
data (Lo et al., 1985; Renard and Freimund, 1994; Yu and Rosewell, 1996; Bonilla and Vidal,
2011).
time-seales-than-atsub-event-temporal-reselution—Generally the technique has been to

develop a simple empirical relationship using limited breakpoint data and then to extend the

anahysis-analyses to wider areas and longer periods with coarser temporal resolution rainfall

data {(Angulo-Martinez and Begueria, 2012; Ma et al., 2014; Ramos and Duran, 2014;

Sanchez-Moreno et al., 2014).
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Several simpler models for estimating rainfall erosivity from eeurse-coarse resolution

data have also been developed in China in specific areas, including the Loess Plateau (Wang,
1987; Sun, 1990), Fujian Province (Huang et al., 1992; Zhou et al., 1995) and Anhui Province
(Wu, 1994). Wang et al. (1995) first-developed a series of simplified equations at several
time scales by utilizing several-stations located in different areas of China. In Chinar-
specificathy; the specifications for surface meteorological observations by the China

Meteorological Administration (China MMeteorological AdministrationA, 2003) have

required since the 1950s that the maximum 60 and 10 minute rainfall amounts, (Peo)day and
(P10)day be compiled, hence these data are readily available in China. The measurements were

made using siphon-method, self-recording rain gauges. Maximum-Because of this, there is

an interest in China to utilize the maximum daily 10 and 60 minute rainfall intensities, (110)day

and (lgo)day-, to calculate erosivityare-easy-te-caleutatefrom-the-{Pso)aay-aRe-{Piglaaalso.

There have been several other research efforts to estimate erosivity based on Chinese

data, many of which are published only in Chinese. These include Other+researchers-then-

an event-daily or sub-daily models (Yin et al., 2007; Zhang et al., 2002a)-daty—+rainfat-and-

Hio)aay £ Xie et al., 2001)-daity-rainfat{; Zhang et al., 2002b)_and ;-monthly or annual
rainfalb-models (Zhang and Fu, 2003)-and-hourhy-rainfal-(Yinetal;2007).  Zhang and Fu

(2003) compared five models for estimating annual average rainfall erosivity, including one
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model using daily rainfall (Zhang et al., 2002b) and four models using monthly or annual
rainfall (Zhang and Fu, 2003). They demonstrated that the model using daily rainfall
performed best and that there were no significant differences among the other four models.
Xie et al. (2015) found that the daily erosivity model with information on (lgg)day improved

the daily Elso index estimation significantly when compared with that using only daily

rainfall totals.  Fhe-multiphcation-of-dailyrainfall-and-maximuam-tholea As-used-oftenin-

Renard and Freimund (1994) developed two power law models for the continental
United States using average annual rainfall and a Modified Fournier Index reflecting seasonal
variation in precipitation. Using data from 29 sites in southeastern Australia, Yu and
Rosewell (1996) calibrated the two models developed by Renard and Freimund (1994) and
recommended the model using average annual rainfall as input for the estimation of average
annual erosivity because of similar model efficiency as compared with the model using the

Modified Fournier Index and the ready availability of annual rainfall data.

The objectives of this study were three-fold: (1) calibrate methods of estimating erosivity

for time scales ranging from daily to average annual based on different temporal resolutions
of rainfall data from 11 calibration stations with one-minute resolution data; (2) compare
models in this study with those published in previous research, based on seven independent
validation stations using the same data types; and (3) determine the most accurate methods,
based on these data, for calculating different time scales of erosivity when different temporal

resolutions of rainfall data are available. _Note that, in this paper, we use the term “time

scales” when discussing the erosivity values (equation outputs) and “resolution” (equation

15
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inputs) when referring to the rainfall input data, for clarity. Although several studies have

been conducted on this topic in the past, no study used as comprehensive a data set collected
over this wide geographic area of China to evaluate the wide range of erosivity time scales
needed for erosion work, and utilizing such a wide range of temporal resolution rainfall data
as the independent variable.
2. Data and Methods
2.1 Data

Data collected at 18 stations by the Meteorological Bureaus of Heilongjiang, Shanxi,
Shaanxi, Sichuan, Hubei, Fujian, and Yunnan provinces and the municipality of Beijing were
used (Fig.1, Table 1). These stations were distributed over the eastern water-eresion-
regionhalf of China. One-minute resolution rainfall data (Data M) were obtained by using a

siphon, self-recording rain gauge-to-coHect-sel-recording-rain-gauge-observations. The data
collection period began in 1971 for Wuzhai (53663) and Yangcheng (53975) in Shanxi

Province and from 1961 for the remaining 16 stations. The data records ended in 2000 for
all stations.  Quality control of Data M was done to select the best observation years using
the more complete data sets of daily rainfall totals, Data D, which were observed by simple
rain gauges at the same stations. Data M was compared with Data D on a day-by-day basis,
and those days with deviation exceeding a certain criterion were marked as questionable and
were not used in this analysis (Wang et al., 2004). The criterion used was that the data were
considered good when the absolute deviation between Data M and Data D was less than 0.5
mm when the daily rainfall amount was less than 5 mm and no more than 10% when the daily
rainfall amount was greater than or equal to 5 mm. Data M in the earlier years of record
tended to have more days with missing or suspicious observations. These totals of Data M
and Data D were compared year-by-year to determine which years could be designated as
“common” years for use in this study, with an effective year having a relative deviation for
yearly rainfall amount of no more than 15%. There were at least 29 common years for all
18 stations, and seven stations had common years of at least 38 years (Table 1). Note that
though there were missing data in the information used, Data D was only used for quality
control purposes and the data used in the analysis, Data M, were internally consistent in that

only the data from common years were used in all comparisons and evaluations reported.
16
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Data M were used to calculate the aetual-event-based Els values as a function of the
calculated kinetic energy and maximum 30 minute rainfall intensity (Foster, 2004). These
were treated as observed values and summed to obtain the erosivity factors, R, for daily,
monthky (individual month totals), yeardy (individual year totals), average monthly (one value

for each month at each station), and average annual_(one value for each station) time scales.

Total rainfall event depth values were also compiled into the other temporal resolutions of

rainfall data, including correspondent daily, monthly, yearly, average monthly, and average
annual resolutions.  For the eight stations in the northern part of China (including stations in
Heilongjiang, Shanxi, Shaanxi provinces and Beijing municipality), only the periods from
May through September were used because the siphon, self-recording rain gauges were not
utilized in the winter to avoid freeze damage. Percentages of precipitation during May
through September to total annual precipitation varied from 75.6 to 89.2% for these eight
northern stations. Data M for the full 12 month year were used from the remaining ten

stations located in the southern parts of China.

Eleven stations, including Nenjiang, Wuzhai, Suide, Yan’an, Guangxiangtai, Chengdu,
Suining, Neijiang, Fangxian, Kunming, and Fuzhou, marked with dots in Fig. 1, were used to
calibrate the models (Table 1). The other seven stations, including Tonghe, Yangcheng,
Miyun, Xichang, Huangshi, Tengchong, and Changting, marked with triangles in Fig. 1, were

used to validate the models.

2.2 Calculation of the R factor at different time scales

Different time scales for RUSLE2 erosivity, R, including event, daily, monthly, yearly,

average monthly, and average annual, were calculated based on the one-minute resolution

data (Data M).__Recall that “month” and “year” refer to individual months and years, and not
averages. Els (MJ mm ha™ h%) is the rainfall erosivity index for a rainfall event, where E is
the total rainfall kinetic energy during an event and I3 is the maximum contiguous 30-min
intensity during an event (Wischmeier and Smith, 1978).  An individual rainfall event was
defined as a period of rainfall with at least six preceding and six succeeding non-precipitation

hours (Wischmeier and Smith, 1978).  An erosive rainfall event was defined as one with
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rainfall amounts greater than or equal to 12 mm, following Xie et al. (26422002). We used
the equation Using-the-equation-recommended by Foster (2004) for RUSLEZ2 to calculate the

Kinetic energy of the storms, which used Eg. 1 combined with: ;

E=§n:(e,.P,) ()

where e, is the estimated unit rainfall kinetic energy (from Eq. 1) for the r™ minute (MJ ha™*
mm™Y); P, is the one-minute rainfall amount for the r™ minute (mm); r=1, 2,..., n represents
each 1-min interval in the storm; and i, is the rainfall intensity for the r' minute (mm h%).
The Foster (2004) equations were chosen because they are currently used for erosion
assessment for RUSLE? in the United States and for the CSLE in China, and it appears to
give results similar to the original USLE and in the mid-range of other equations that have

been developed, as was discussed in the Introduction.

Our evaluation included 4 models for events and one for daily erosivities. Event

models were simply models to predict individual event erosivities, regardless of whether they

occurred in one or more days, and regardless of whether more than one event occurred in a

day. For the daily model, rainfal-storm-energies-were-caleulated-as:

o (1)
\*+J

e

T : : . T

e . . . . F “ . . F th - Z[ 1 _l—mm_l);—Pp' |
Rrainfall erosivity for each day, Rqay, was calculated following the method by Xie et al.
(2015). When a day had only one erosive event and this event began and finished during the

same day, then

Rday = El3 (34)

When more than one full rainfall event happened during one day, then

18
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Rey=2_E

event_i ~ (|30)event_i (4_(5)

i=1 -

where n is the number of rainfall events during the day, and Eeyent i @nd (I30)event i are the total
rainfall energy and the maximum contiguous 30-min intensity, respectively, for the i event.

When only one part of a rainfall event occurred during one day, then
Rday = Eday,d' (ISO)event (56)

where Egay 4 is the rainfall energy generated by the part of rainfall occurred during the d™ day
and (Iso)event IS the maximum contiguous 30-min intensity for the entire event. The

remaining situations were calculated by combining Egs. (45) and (56).

Monthdy, yearbyyear, average monthly, and average annual R values were summed
from the event Els index by erosive storms that occurred during the corresponding

period. They were calculated by using Eqgs. (67)-(910).

J
R month,y,m = Z(EI 30)y‘m, j
j=0

(67)
1 Y
Ravefmonthm = V ; R month,y,m (lg)
12
Ryear,y = Z Rmonth,y,m
(89)
Y
Ravefannual = Z Ryear,y
(910)

where Y is the number of years of record, (Elso)y, m, j is the Elsg value for the i event in

the m™ month of the y™ year; Rmonth, . m is the R value for the m™ month of the y" year;
Rave_month, m iS the average R value for the m™ month over the years of record; Ryear,y IS R
value in the y" year; and Rave_annual represents average annual erosivity, correspondent to

the annual average R-factor in the-USLE-type modelsUSEE (MJ mm ha* h™ta™).
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2.3 Model calibration using different resolutions fer-of rainfall data

A total of 21 models were calibrated for different time scales of R, based on different
varying resolutions of rainfall data (Table 2). Event amount Peyen: and peak intensity indices
were derived based on the one-minute resolution data, including l1o, I3, and lgo, which were
the maximum contiguous 10-min, 30-min, and 60-min intensities, respectively, within an
event. Iy and lgo Wwere used because of their close correlation with the daily (110)day and
(l60)day Values commonly reported by the Chinese Meteorological Administration_(2003).
Four event-based models were developed relating measured Elsg to estimated Els (Table 2).
Similar models for the other time scales were also calibrated (Table 2). Data was organized
in various ways.  Pgay, Pmonth, Pyear, Pave_month, @1d Pannua Were the daily, (individual) monthiy,
(individual) yearly, average monthly, and average annual rainfall amounts, respectively, for a
given station.  (Pgo)month and (Peo)year representeded maximum contiguous 60-min rainfall
amount observed within a specific month or year, respectively.  (Pso)month_max represented the

maximum of aH-(Pso)montnh Values_for each month of the year-erthe-single-maximum-

the entire period of record. The average of (Pgo)montn Values was (P,.), ... ._Each station

had 12 values of (Pso)month maxand (

Peo)mont . ON€ for each month of the year.  (Peo)year_max

was the maximum value of (Peg)year and (P,,)

annual

was the average of (Peo)year Values.__Each

station had only one value for these two parameters. Pj440 Was daily rainfall amount and its

related index, including (P1440)month, (P1440)year, (P1440) month_max» (P440) month * (P1440)year_max, and

(PL440) annuar» Which were defined in a-similaran analogous way as were these-correspondent

values for Pgo.

The parameters were obtained station-by-station for calibration stations first and
parameters for linear relationships were compared to determine if data from all stations could
be pooled together to conduct the regressions (Snedecor and Cochran, 1989). Parameters
for power-law models, including Monthiy I, Yearky I, Average Monthiyly I, and Annual |
(Table 2), were obtained by using the Levenberg-Marquardt algorithm (Seber and Wild,
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2003). Note that models coded as “Annual” refer to annual averages.

2.4 Models published in previous research for comparison

A-In addition to the 21 new models presented here, total-6£20 representative models

developed using data from China in previous research were also compared (Table 3). For
these models other variables were ealeulatedneeded. Py, was average daily erosive rainfall

total and Py, was average annual erosive rainfall total. ~Ps.1represented the rainy season

rainfall amount from May through October for a specific year. P was the summation of

>10year

daily rainfall no less than 10 mm in a year and P,;,,,,, Was the annual average for P, . .

Models by Wang (1987) and Wang et al. (1995) utilized (m t cm ha™* h™*a™) as the units
of R for comparison. A conversion factor of 10.2 was multiplied to convert R to (MJ mm
ha*h*a™l). Later, models by Wu (1994) and Zhou et al. (1995) utilized (Jcm m?h™*a™).
Their conversion factor, 10, was multiplied to convert (J cm m?h™a™) to (MJ mm ha™ h™

a™h.

2.5 Assessment of the models

After the 21 models in Table 2 were calibrated with the data from the 11 calibration
stations, the performance for these models was assessed and compared with the performance
of the previously published models listed in Table 3 using data from the seven validation
stations. Symmetric mean absolute percentage error (MAPEsm) and the Nash-Sutcliffe
model efficiency coefficient (ME) were utilized to reflect the deviation of the calculated
values from the observation data. MAPEsyy is considered to be superior to MAPE, since it
ean—corrects the problem of MAPE’s asymmetry and the possible influence by outliers

(Makridakis and Hibon, 1995). MAPEm was calculated as follows (Armstrong, 1985):

100 8| Ryn(9 =R () (2011)

MAPEW:?; (R...(K) + R, (K)/2

sim obs

where Rgps is the measured rainfall erosivity for the k™ period of time, such as monthly,
yearly, or annual, based on one-minute resolution rainfall data. Rsin is the estimated value

for the same period using equations in Tables 2 or 3.
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ME was calculated as follows (Nash and Sutcliffe, 1970):

> Ran (9 = Ron (O (1112)
3 Rup() — R (KT

ME =1 -

ME compares the measured values en-the-tne-asto a perfect fit (1:1 line). Hence, ME is a
combined measure of linearity, bias, and relative differences between the measured and
predicted values. The maximum possible value for ME is 1.  The higher the value the
better the model fit. An efficiency of ME < 0 indicates the single value (the mean) for the

measured data’s mean is a better predictor of the data than the model.

MAPE;,m, and ME were calculated_-station-by-statienbased on all the data for the seven

validation stations. and-theimeanindividual values for all stations were also

determinedreperted R, ..-hasenbyenevalue forsach statien-forthe anndalaverage seale of R

3. Results and discussions

3.1 Basic dataresults

Average annual rainfall ranged from 449.7 to 1728.1 mm, and average annual erosivity
varied from 781.9 to 8258.5 MJ mm ha™ h™ yr*(Table 1). A total of 11,801 erosive events
were used in the study. The eleven stations had 6,376 erosive events, which were used to

calibrate the models, and the seven validation stations had 5,425 erosive events.

3.2 Validation and calibration for the new models that—use—different
. ‘ |
Parameters, MAPE,m, ME, and coefficients of determination, R?, for calibration models

are shown in Table 4.  Statistical-tests-showed-data-from-all-stations-could-net-be-pooled—
The-r*for-all-eventlevel-models-wasgreater-than-0.92-(Table-4)—The model Event IV,
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with a combination of event rainfall amount Peyen: and I, when 13, was divided into two

categories, with a threshold of 15 mm h™, performed_slightly —besttter in terms of the

MAPEyn value than did Event 1I, which used the same variables but did not separate the

rainfall events by intensity-(Fable-4}. The performance of Daily | with daily rainfall amount

and (l10)aaity Was similar with that for Event | with event rainfall amount and I-(Fable-4).

Using only total rainfall amount as input, Fhe-pewerlawthe models for monthly, yearly,
and average monthlyand-annual scales (Menthly-+-Yearly-H-Average- Monthly-and-Annual-
Dwith-onhy-total-rainfall-ameunt-as-input-were statistically significant, withhad

determination coefficients R? greater than 0.66-which-suggested-the-models-were statistically-
sighificant(Table 4 and Fig. 2). However, their capabilities in predicting R-erosivity with-

time-scales-intendedfor the-models-were limited orineffectivebased on the ME values (Table

Annualhrespectively:  Data from Tengchong and Xichang, located in the southwestern part

of China, were mairhy-in part responsible for these lower ME values. Table 5 shows the

individual values of MAPEs,, and ME for the seven validation stations, with average of each

using all the stations and using only the five without Tengchong and Xichang. Results were

much better without those two stations. \When-these-two-stations-were-remeved.-the-average

Average-Monthlhy-HTFable 5%-The model Annual I, which use only average annual

precipitation values, performed reasonably well, considering that the only input required was

annual average precipitation (Table 4). If other information is available, other models

performed better, but Annual | may be used if only average annual precipitation is available

at a location.

In general, we found that the finer the temporal resolution of the rainfall input data, the

better the models performed for a given erosivity time scale. Sea
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Models that used some expression of maximum daily rainfall amount (Monthdy 111,

Yearly 111, Average Monthly 111, Average Monthly V, Annual 111, and Annual Model V)
predicted the R factor better than those models with only total rainfall amount as input (Table

4), for a specific time scale. Models based on rainfall amount and maximum contiguous

60-min rainfall amounts (Monthdy I1, Yearky 11, Average Monthly I, Average Monthly 1V,
Annual I, and Annual 1V) generally performed better than corresponding models with
rainfall amount and maximum daily rainfall amount (Monthhy 111, Yearbky 111, Average
Monthly 111, Average Monthly V, Annual I11), except for Annual Model V, which performed
well.  The reason for that may be due to the fact that maximum contiguous 60-min rainfall
amounts may have been more highly correlated with maximum contiguous 30-min intensity
in an event as compared to just the maximum daily rainfall amount. The only annual

average model that did not perform well was Annual I11, which utilized (P1440)year max. the

maximum of (P1440)year Values for each year over the entire period of record.
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Tables 3 and 4 show the models only evaluated for the erosivity temporal scale that

corresponds to the input data resolution.  For example, the event-based models are only

evaluated on the basis of events modelled. We also evaluated the models at the aggregate

scale. For example, Elsy estimated from event-based models were summed up to month and

year values, in order to evaluate if fine-scale temporal resolution data improves also the

accuracy of aggregate erosivity measures (Table 6). Two important facts emerge. First,

when the models are applied at the aggregated scale their predictions get better. Secondly, the

models that use finer resolution of input data predict better for the same erosivity time scale

compared to models using coarser resolution input data.  This has important implications for

model applications.

3.3 Seasonal variations of erosivity

Taking Tonghe and Tengchong as examples, it was demenstrated-found that Monthly I1
generated better results than Monthby 111, which performed better than Monthby 1, in
estimating seasonal and yearly variations (Figs. 3a, b and Figs. 4a, b). Correspondingly,
seasonal variations by Average Monthly Il were closer to observations as compared to those
by Average Monthly 111 and Average Monthly | (Figs. 3c and d).  Yearky 11 and Yearhy 111

improved-theproduced better simulations of yearly variations compared with Yearly I,
especially for the Tengchong station (Figs. 4c, d).

Seasonal variations by monthly and average monthly models (Fig. 3) and yearl

variations by monthly and yearly— models (Fig. 4) were demonstrated using Tonghe and

Tengchong stations. Monthly | and Average Monthly | captured the general seasonal pattern

for the Tonghe station (Figs. 3a and c), but the simulated peak value of monthly R was in July

for the Tengchong station, which was not consistent with observation. Monthly | and Year
| captured the general year-to-year pattern for the Tonghe station (Figs. 4a and c), but the

overestimated yearly erosivity for the Tengchong station (Figs. 4b and d). Monthly | and

Yearly | also overestimated the yearly erosivity for the Xichang station. _The reason for the

overestimation for the Tengchong and Xichang stations was mainly due to two aspects: (1)

the percentages of erosive rainfall amount to total rainfall at those stations were lower (71.9%
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and 76.9%, respectively), suggesting that more events occurred with small amount totals that

do not generate soil loss (Table 5); and (2) the ratio for event Elsg to event rainfall amount P

was lower (3.6 and 4.1, respectively), inferring that rainfall intensity and erosivity generated

by per amount of rainfall were both less than that of the other stations (Table 5).  This result

was consistent with that of Nel et al. (2013), which demonstrated that two models using

annual average rainfall and average monthly rainfall substantially overestimated annual
erosivity in the west coast and the Central Plateau of Mauritius, which also have a large
amount of non-erosive rainfall. Rainfall erosivity reflected a combined effect of rainfall

amount and rainfall intensity. Therefore, it was reasonable that rainfall amount eeuld-only

explained part of rainfall erosivity variation at these stations.

3.33.4 Cowmparisons—withEvaluation of models from previous research_with

current models

Generally speaking, the more accurate the resolution of input data for models, the better

was the performance of the model for estimating at the same temporal erosivity scale. For

example, the models with daily rainfall amount and daily maximum 60-min or 10-min

amount as_inputs performed better than models with only daily rainfall amount as input.

Similarly, results from models with maximum 60-min rainfall amount (Month II, Year ll,

Average Monthly 1V, and Annual V) were generally better than those with maximum daily

rainfall amount (Month 111, Year I11, Average Monthly V, and Annual V, Fig. 5).

Wang et al. (1995) used a combination of event rainfall amount Peyen: and 150 for event
scale models, The model using the I data was divided into two categories, with a threshold
of 10 mm h™, performed best among the four models compared (Table 3). That model had

similar performance with Event IV in this study (Table 4), which also divided the data by a

rainfall intensity threshold.

There are-were three kinds of daily scale models, according to the number and type of
inputs required. Two models used daily rainfall amount (Zhang et al., 2002b and Xie et al.,

2015), two models used daily rainfall amount and daily maximum 10-min intensity (Xie et al.,
26
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2001 and Daily 1), and one model used daily rainfall amount and daily maximum 60-min
intensity (Xie et al., 2015). The model with daily rainfall amount as input in Xie et al. (2015)
performed better than that of Zhang et al., (2002b) (Table 3). Daily I, which used daily
rainfall amount and daily maximum 10-min intensity as inputs in this study, performed better
than the model in Xie et al., (2001). Models with an additional daily 10-min or 60-min
intensity index performed better than those with only a total rainfall amount index-(Table 3

and Table 4).

There are-were generally four groups of models for monthly, yearly, average monthly,
and annual scale models. The first group used linear regression (Sun et al., 1990; Wu, 1994;
Zhou et al., 1995) or a power law function (Zhang and Fu, 2003; Monthly I, Yearly |, Average
Monthly I, and Annual 1) with only rainfall amount as input, so that the data required were
relatively easy to collect. Models by Sun et al., (1990), Wu (1994) and Zhou et al. (1995),
when they were used to estimate the monthly scale of R, had MAPEy, values of 886.73, 60.9
2 and 67.83% and ME of -01.6396, 0.53-57 and 0.358, respectively (Table 3). When they
were used to estimate annual scale of R, there was a tendency of underestimation, especially
for the stations with larger erosivity (Figs. 5a, b). Four models by Zhang and Fu (2003)
overestimated the R factor, with MAPEgy, varying between 34.6 and 60.8% and ME varying
between -2.41-11 to -0.6130 (Table 3, Fig. 5), which suggested the models’ abilities were
limited. Two models by Zhang and Fu (2003) using the Modified Fournier Index generated
worse-poorer results eompared-tothan the model by Zhang and Fu (2003) using average
annual rainfall as input (Table 3), which was consistent with the result-findings of efYu and
Rosewell (1996). The power law models in this study, including Monthly 1, Yearly I,
Average Monthly I, and Annual I, tended to overestimate the R factor for the stations with

larger erosivity (Fig. 5).

The second group of models (Wang et al., 1995, Monthly 11, Yearly Il, Average Monthly
1V, Annual V) used linear regression with rainfall amount (total rainfall or total rainfall with
daily rainfall no less than 10 mm) and maximum 60-min rainfall as inputs.  All these seven

models generated statistically significantgeed results, with MAPEg, for R with time scale

intended for the model ranging from 11.54 to 365.06% and ME from 0.8042 to 0.94 (Table 3
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and Table 4; Fig. 5).

The third group used linear regression with rainfall amount and maximum daily rainfall
as inputs (Monthky 11, Yearly Ill, Average Monthly V, Annual V), which generated
reasonable results (Table 4) and a slightly overestimated annual R (Fig. 5). Overall they did

not perform as well as_did the models in the second group (Table 4).

The fourth group (Wang et al., 1995) used a combination of three indices, including rainfall
amount, maximum 60-min rainfall amount, and maximum daily rainfall amount as inputs and

generated good simulation results, however, there was no improvement compared with the
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3.5 Applications and recommendations

The results of this study provide a multitude of options for dealing with the problem of

variations in available temporal resolutions of rainfall data from across the world for

developing erosivity maps and databases. \We present a series of 21 potential equations for

use in estimating erosivity at time scales from event to average annual using input data

resolution ranging from maximum ten minute rainfall intensity to average annual rainfall

amount. Of the 21 equations we can recommend the use of 17. Equations Month I, Year I,

and Average Monthly I, which use only total rainfall amounts for the respective time scales,

all had low ME values and poor prediction capability (Table 4). Annual 11l, which is a

linear function of average annual rainfall and the maximum daily precipitation over the

recording period, performed very poorly, with a negative ME value (Table 4).

We found that using finer resolution data input produced better predictions of erosivity at

a given output time scale. An exception was for the event-based models, where using lIso_

gave slightly better results than using lgo_or l1o. However, we also found that that-using

equations with the finest data resolution possible, and aggregating or summing results for

finer erosivity time scales, gave the best results (Table 6). In other words, {if one were

interested in average annual erosivity, but had rainfall data available for using the Daily |

model, then results are better using the Daily | model and summing results over the period of

data record rather than using Annual 1-V models. It is also evident that predictions of

erosivity using Daily | improve as the time scale increases. In other words, the predictions

of average annual erosivity calculated by summing the daily values from Daily | give a

higher level of fit than when using Daily | to estimate daily erosivity (Table 6).

Models in this study performed better or similar to models from previous research based

on these independent validation data.
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1 | Fables

2 Table 1. Information for the 18 rainfall stations

No. of Annual R M
Provinge Station Lat. Long.  Elevation ~ Common erasive cainfall @ (MJ mm ha'l

name (N) (E) (m) years events (mm) htad
Heilongjiang'! Nenjiang 49.17 125.23 243.0 30 343 485.8 1368.7
Tonghe? 45.97 128.73 110.0 38 471 596.2 1632.5

Shanxit Wuzhai 38.92 111.82 1402.0 30 289 464.0 781.9
Yangcheng'? 35.48 112.4 658.8 30 340 605.9 1503.3

Shaanxil! Suide 375 110.22 928.5 29 256 449.7 992.8
Yan’an 36.6 109.5 958.8 39 411 534.6 1233.7
Beijing'! Guanxiangtai  39.93 116.28 54.7 40 434 575.0 3188.1
Miyunt? 40.38 116.87 73.1 37 476 648.1 3575.0
Sichuan Chengdu 30.67 104.02 506.1 39 717 891.8 3977.0
Xichang!? 27.9 102.27 1590.9 40 998 1007.5 3021.0
Suining 30.5 105.58 279.5 33 654 932.7 4091.3
Neijiang 29.58 105.05 352.4 39 826 1034.1 5097.9
Hubei Fangxian 32.03 110.77 4271 31 563 829.5 2298.4
Huangshil? 30.25 115.05 20.6 32 898 1438.5 6049.4
Yunnan Tengchong? 25.02 98.5 1648.7 36 1205 1495.7 3648.9
Kunming 25.02 102.68 1896.8 33 747 1018.8 3479.0
Fujian Fuzhou 26.08 119.28 84.0 39 1136 1365.4 5871.1
Changting!? 25.85 116.37 311.2 31 1037 1728.1 8258.5

3 [ The eight stations in these provinces are located in the northern part of China and had one-minute resolution data collected

4 from May through September.  The remaining ten stations were based on data collected during the entire year.
41
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121 seven validation stations (The other 11 stations were calibration stations.)_
I¥I Based on daily rainfall datasets collected during 1961-2000._

B R in this case is the average annual erosivity.
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1 | Table 2. New Mmodels calibrated

Model codes Models Model codes Models

Event | El3g = 4 Pavent'10 Average Monthly | Rave_month = %3 Pavejmmhl’5

Event II Elg = A2Pavent!s0 Average Monthly Il Rave_montn = A11Pave_montn (Poo)month_mex
Event 11 Elag = A3Pavent 60 Average Monthly 1l Raye month = 415Pave_month (Praao) month_mex

Elan = 4R | lnn <15mm/h -
30 ~ "4Tevent 130 30
Event IV Average Monthly IV Rave month — ﬂlBPave month(PGO)month
Elgy =AsPeent'sg  l3p 215mm/h - -

Daily | Riay = 46Pday (110)day Average Monthly V' Rave_nontn = 414Pace_montn (Praso) montn
sl A

Morthiy | Rmonth = %Pmonth Annual 1# Rannual = %aPannual -

Morjthiy 11 Rionth = 47 Prontn(Po) monin Annual 1l Rannuai = j'15Panmm|(Peo)yearJnax

Morithiy 111 Rionth = 2sProntn (Plaao) montn Annual 111 Rannual = A16Pannual( Praao) year_max

Yeal I'y I Ryear = aZ I:)yeﬁlr 2 Annual IV Rannual = 2'17Pannual(P60)annual

Yearly 11 Ryear = /19 Pyear (PBO) year Annual V Ra\nnual = j'18Pannual(Pl440)annua\l

Yealy 111 Ryear = AoPear (Praso) year

2 1 Annual refers to Average Annual values of erosivity.
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Table 3. Models published in previous research and their prediction capabilities determined using

the validation stations-the symmetric mean absolute percentage errors, MAPEgm, and

Nash-Sutcliffe model efficiencies, ME.

Erosivity
. MAPE,n (% 2
bme Models Sources m ME
scales
Event Reent =10.2-(0.0247R, . 15, —0.17) Wang, 1987 30.6 0.97
Ryt =10.2-(0.025P, 1, —0.32) Wang, 1987 28.8 0.97
R -10.2 PevenlISO a1
o =10.2-(L7024% _0136)  1,,<10mmh
Plo? Wang et al., 1995 15.5 0.98
Ry =10.2- (25;5%[030 -0523) I,>10mmh?
Zhang et al.
Revent = 0'1773Pevent IlO 20026 ﬂ u
ail Ryay =0.184P; (110) gay— Xie etal., 2001 44.9 0.91
B
Rday - Pday Zhang et al
2002b | 146 089
B=0.8363+ 18144 A4S . 2158657189
d12 y12
R,,, = 0.2686[1+05412c0s (= j -7 y]p,, "™ Xie et al., 2015 63.7 0.71
day — M- ; E ] ? day . — :
Ryay = 0.3522P,,, (Pso) day Xie et al., 2015 38.2 0.95
Month Ry, =10-0.0125P, "% Wu, 1994 602 0.57
Rontn =10-(0.3046PR, ., — 2.6398) Zhou et al., 1995 67.3 0.35
E(ear Ryear =1.77P, ;, —133.03 Sun et al., 1990 86.7 -0.63
Ryear =10.2:0.272(P,q,. (Pyg) yeqr /100)"2%° Wang et al., 1995 318 0.80
Riyear =10.2-1.67(Plygyear (Pag) year /100)°° Wang et al., 1995 18.9 0.87




Average

Annual

R =0.0534p 1%%

year year

1.155 .560

R | = 10.2- O‘OOQPannuaIO e (Pso)annual . (P1440)annual

annual

1.175 .376

=10.2-0.0244P. e (Pso) annual * (Puaso) annual

=10annual

R

‘annual

Rannuat =10.2- 2.135(P.y g nnua (Pﬁo)annualloo)omg

annual

N

2

R
1.9957 1 = J
Rannuar=0.1833F, , Fe = WZ 12
i=1 F’|,J
1
1.9462 < 2
Rannual = 03589F ’ , F = (z Pavefmomhfj )/ Pannual

=

=0.0668P,, . %

annual

R

annual

Zhang and Fu
2003

Wang et al., 1995

Wang et al., 1995

Wang et al., 1995

Zhang and Fu
2003

Zhang and Fu
2003

Zhang and Fu
2003

17.3

12.0

115

55.9

60.8

34.6

M MAPE,, (%) is the symmetric mean absolute percentage error values for all the data across validation

stations for R with time scale intended for the model.

I ME is the Nash-Sutcliffe model efficiency coefficient for all the data across validation stations for R with time

scale intended for the model.
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Table 4. Models calibrated in this study and their prediction capabilities determined using the

validation stations-the symmetric mean absolute percentage errors, MAPE,,, and Nash-Sutcliffe

model efficiencies, ME.

Model codes Models ™ Rz MAPE,n (%) ME
Event | Elgg = 0.1547Fyyentl10 0.92 345 0.91
Event Il Elgp = 0.2372FRyentl30 098 29.3 0.98
Event 111 Elgg = 0.3320Psentl 60 0.94- 35.8 0.96
Ryent = 0.1592P, . Iy, 15, <15mm/h 0.97—
Event IV Ro =0.2394P, sy 1y, =15mm/h 139 0.98
Daily | Rgay = 0-1661Fyay (110) day 0.92- 38.4 0.91
Month | Ruonn = 0-1575R gy " 0.6 695 0.48
Month 11 Rionth = 0-1862F 1 (Foo)monin 0.85 36.0 0.88
Month 111 Ruontn = 0-0770F, 1, (Pras0) wonen 0.65_ 55.2 0.69
Year | Riar = 0.5115P,, ** 0.70_ 38.1 0.48
Year Il Ryear =0.1101R, (Fyo) year 0.80 20.9 0.84
Year 111 Ryear =0.0502F..; (Ras0) yeor 0.54 28.9 0.59
fﬁ?:lﬁl Ruve_montn = 0.0755P, . o **%° 089 I 017
ﬁﬁﬁﬁgu Rave_month = 0-0877Pyie_ronin (Poo) montn_max " v2s 0.8
ﬁrﬁe— " Rave_montn = 0-0410P, ;1 (Praao) monh_mex 0.87 301 0.73
ﬁrﬂg " Rave_month = 0-2240P, 10 (Po0) montn 0.98 22.9 0.88
ﬁrﬂe—v Rue_nonn = 0-1082P 11y (Pra) o 094 314 0.79
Annual | Rannuar =1 2718P et 089 256 0.63
Annual 1l Rannuat = 0-0584P, 11 1i(Peo) year_max 0.92 154 0.91
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Annual 11 Rannual = 0'0253Pannual(P1440) year_max 0.92 22.5 -0.44

Annual IV RannuaI: 0'1058PannuaI(P60)annual 0.94 170 0.88

Ainnual Vv Rannual = 0'0492PannuaI(P1440)annuaI 0.92 18.2 0.91

M Parameters of models for power law models, including oy, By, 05, By, s, B3, 04, Ba. 05, Ps, Were solved by

pooling data from 11 stations together. Parameters for average annual scale models, including A1s, g, A7, A1s,

were calculated by fitting data from all calibration stations and for the remainder they were the average values
of parameters for the 11 calibration stations.  R? is the coefficient of determination.
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1 | Table5. Validation s-tation-averaged Ssymmetric mean absolute percentage errors (MAPEg,) and

2 Nash-Sutcliffe model efficiency coefficients (ME) for Rmenth by Monthby I, Ryear by Yearly | and

3 Rave_month by Average Monthly I models for seven validation stations and statistics on event rainfall

4 amount and event Elz.

Percent of
Rmonth by Month Rave_montn DY Average  erosive amount
Station Ryear by Year | Elz/P
| Monthly | (%)
name
MAPE,,, ME MAPE,,, ME MAPE, ME
Tonghe 70.2 0.73 30.9 0.47 29.5 0.93 71.2 48
Yangcheng 65.5 0.31 27.1 0.55 16.4 0.96 81.7 4.2
Miyun 52.0 0.71 451  -0.06 37.6 0.88 82.8 7.8
Xichang 775 0.47 454  -0.15 57.2 0.09 76.9 41
Huangshi 70.1 0.65 245 0.63 46.1 0.73 86.5 5.7
Tengchong 834  -201 666  -7.51 68.3 -6.98 71.9 36
Changting 52.0 0.54 20.9 0.26 35.2 0.30 88.4 6.1
Meant! 67.2 0.20 37.2 -0.83 415 -0.44 79.9 5.2
Mean® 62.0 0.59 29.7 0.37 38.7 0.60 82.1 5.7

5 [ Averaged value for seven validation stations.

6 @ Averaged value for five validation stations except Xichang and Tengchong.
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Table 6. MAPE,m for the models when used to estimate longer time scales of erosivity.

Model Event & Ave.
Models - Month Year Annual

codes o Daily monthly

Event | Elgg = 0.1547Pyyanilig 34.5 29.0 204 16.4 12.0
Event Il Elgg = 0.2372Pyentl 30 29.3 24.2 16.0 11.4 9.1
Event 111 Elzg = 0.3320Rentl 60 35.8 28.5 15.1 10.8 6.2
BV o gt o 99 1O 70 64 a7
Daily | Raay = 0-1661Pyay (110) day 38.4 29.2 19.6 16.2 11.7
Month | Ruonn = 0.1575P, . *°"* 69.5 46.7 39.4 28.7
Month 11 Rionth = 0.1862P, 0. (Pso) month 36.0 19.9 18.6 131
Month 111 ARWlh =0.0770P, 5, (Pr420) month 55.2 26.7 24.8 12.3
Year | Ryear = 0.5115P,, *** 38.1 235
Year Il Ryear = 0.1101Pc,, (Foo) year 209 14.3
Year 1l Ryear =0.0502Pcq; (Ra0) year 28.8 17.3
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Fig. 1. Bistribution-Locations of the 18 stations with one-minute resolution rainfall data.

stations marked with dots were used to calibrate 21 models. The other seven stations marked with

triangles were used to validate models and conduct comparisons with previous research.
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Fig. 2. Scatterplots for power law models using rainfall amount: (a) Monthly I, (b) Yearky I, (c)

Average Monthly I, and (d) Annual I, based on the 11 calibration stations.



(a) Tonghe from month models (b) Tengchong from month models
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Fig. 3. Comparisons of average monthly R values between observation values calculated using
one-minute resolution rainfall data and estimated values using month models (a, b) and average

monthly models (c, d) for the Tonghe and Tengchong stations.

53



(a) Tonghe from monthly models (b) Tengchong from monthly models
40

[ = Observation = = Observation
E’\, 50 ==="Monthly | 3\/ ==="Monthly |
a4 Monthly 11 o 30t Monthly 11
2 40 e Monthly 111 2| e Monthly 111
£ £
1< 1<
g 30+ g 20+
@ @
= 20r >
< <
2, g 10
z 101 I
0 - ; 0
0 2 4 6 8 10 12 0 2
Month Month
(c) Tonghe from average monthly models (d) Tengchong from average monthly models
0 40
:\3 = Observation ;\a = Observation
< 50 ---Average monthly | ~ ==+ Average monthly |
@ Average monthly 11 o 30r Average monthly |1
E 40 -+ Average monthly 111 g """ Average monthly 111 /':\
= | c L £ A
g 30 g 20 5
@ @
= 20 >
< I
2 10 g
< <
0 - 0
0 2 4 6 8 10 12 0 2 4 6 8 10 12




(a) Tonghe from month models (b) Tengchong from month models
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Fig. 4. Comparison of yearly R values between observation values calculated using one-minute
resolution rainfall data and estimated values using monthiy models (a, b) and yearky models (c, d) for

the Tonghe and Tengchong stations.  The years without marks were ineffective years.
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(a) Month models (b) Year models
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Fig. 5. Comparisons of the estimated R-factor value calculated based on (a) monthly, (b) yearly, (c)
average monthly, and (d) average annual models using one-minute resolution data for the seven
independent validation stations. Monthly models included models in Wu (1994), Zhou et al. (1995),
and Monthby I, 11, and 111 from this study. Yearky models included models from Sun et al. (1990),
Wang et al. (1995, the one with MAPEy, of 18.9%), Zhang and Fu (2003), and Yearky I, 11, and 111
from this study. Average monthly models included models from Average Monthly I, 11, and 111
from this study. Average annual models included models from Wang et al. (1995, the one with
MAPEgyn, of 11.5%), Zhang and Fu (2003, the one with MAPEgy, of 34.6%), and Annual I, 11, and

111 from this study.
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