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Abstract. Copulas have already proven their flexibility in rainfall modelling. Yet, their use is gen-

erally restricted to the description of bivariate dependence. Recently, vine copulas have been intro-

duced, allowing multi-dimensional dependence structures to be described on the basis of a stage

by stage mixing of two-dimensional copulas. This paper explores the use of such vine copulas in

order to incorporate all relevant dependences between the storm variables of interest. On the basis5

of such fitted vine copulas, an external storm structure is modeled. An internal storm structure is

superimposed based on Huff curves, such that a continuous time series of rainfall is generated. The

performance of the rainfall model is evaluated through a statistical comparison between an ensem-

ble of synthetical rainfall series and the observed rainfall series and through the comparison of the

annual maxima.10

1 Introduction

Rainfall serves as an important base for many studies involving hydrological applications including

flood risk estimation, the design of hydraulic structure and urban drainage systems or the evaluation

of hydrological effects of climate change. Ideally, one should then have extensive observed rainfall

time series at hand, both in time and space and at different time scales. Therefore, several rainfall15

modelling approaches have been proposed during the last decades (e.g. Kavvas and Delleur (1981);

Rodriguez-Iturbe et al. (1987a, b); Katz and Parlange (1998); Menabde and Sivapalan (2000); Willems

(2001); Evin and Favre (2008); Gyasi-Agyei (2011); Viglione et al. (2012)), which can be subdi-

vided in models that generate design storms and models that allow for the simulation of continuous

time series at a point or spatially distributed. Design storms are generally developed for a given return20

period and storm duration. The corresponding rainfall volume, obtained from e.g. intensity-duration-
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frequency (IDF) curves is then assigned to the design storm according to a temporal rainfall pattern

or internal storm structure (Chow et al., 1988). However, this approach has an important drawback

as it does not properly account for the antecedent wetness state of the catchment (Verhoest et al.,

2010). Yet, this initial condition regulates the fractioning of the incident rainfall into runoff and infil-25

tration and thus determines the fluvial response of a catchment to the imposed rainfall event. It was

shown by Verhoest et al. (2010) that, because of this, the return period of the rainfall event may dif-

fer significantly from that of the corresponding discharge. In order to account for the antecedent soil

moisture condition within the catchment, one can alternatively work with continuous rainfall models

that provide input to rainfall-runoff models. As the latter models continuously update the soil mois-30

ture state, they therefore provide continuous estimates of the antecedent wetness state within the

catchment. Continuous rainfall models can be classified in four categories (Onof et al., 2000): (1)

physically-based meteorological models; (2) stochastic multi-scale models that allow for modelling

the spatial evolution of the rainfall process; (3) statistical models, preserving trends in precipitation

and (4) stochastic process models that mimic the hierarchical structure of the rainfall process using35

a limited number of model parameters.

The variables that characterize a storm, i.e. the storm intensity, duration and volume, mostly ex-

hibit some kind of mutual dependence: a long storm duration is more likely to be associated with a

low storm intensity than with a high one. It is therefore of utmost importance to construct joint prob-

ability distribution functions whenever frequency analysis studies, e.g. to analyse extremes, need to40

be carried out. Yet, the marginal probability distribution functions of these storm variables usually

do not exhibit the same type of parametric distribution and are largely skewed (Vandenberghe et al.,

2010b), i.e. there is a large deviation from the normal distribution. These characteristics hamper the

identification of the joint probability distribution functions needed in order to calculate the proba-

bility of occurrence of a storm with a specific duration and intensity. The introduction of copulas in45

hydrology facilitated this task.

Copulas are functions that couple the marginal distribution functions of the random variables

into their joint distribution function and therefore describe the dependence structure between these

random variables (Sklar, 1959). The great advantage of copulas is that the joint distribution func-

tion is built based on two independent tasks comprising the modelling of the dependence and the50

modelling of the marginal distribution functions. As this property allows for modelling a large va-

riety of joint probability functions, copulas have been used within an increased number of publi-

cations in recent years. Pioneering work with respect to applying copulas in hydrology was per-

formed by De Michele and Salvadori (2003); Salvadori and De Michele (2004); Favre et al. (2004)

and De Michele et al. (2005). Concerning rainfall modelling, copulas offer a great flexibility in the55

modelling of high-dimensional dependence structures, however, determining parametric distribu-

tions for high-dimensional random vectors is complex (Aas and Berg, 2009). Copulas can, for in-

stance, improve many rainfall models that mimic the external rainfall process, i.e. the process of
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storm arrival, duration and mean intensity at the coarse scale (Salvadori and De Michele, 2007).

These models mostly consider rainfall as a sequence of rectangular pulses, having a certain duration60

and mean intensity, followed by a specific dry period.

This paper explores how a point-scale rainfall model can be constructed using multivariate cop-

ulas, in order to incorporate all relevant dependences between the storm variables of interest. The

application of multivariate copulas in hydrology is, in contrast to the application of bivariate copu-

las, a less explored domain. Some applications can be found in the modelling of trivariate rainfall65

(Zhang and Singh, 2007; Kao and Govindaraju, 2008; Salvadori and De Michele, 2006; Grimaldi and Serinaldi,

2006), trivariate floods (Serinaldi and Grimaldi, 2007; Genest et al., 2007; Ganguli and Reddy, 2013)

and trivariate droughts (Song and Singh, 2010; Wong et al., 2010; Ma et al., 2013). Copula applica-

tions in hydrology that go beyond the trivariate case are still very scarce. One example is

De Michele et al. (2007) who provide a study on constructing a copula for a four-dimensional sea70

storm phenomenon. The lack of successful applications of multivariate copulas in hydrology is,

of course, influenced by the progress made in the theory of multivariate copulas. Due to the in-

crease in dimensionality, the study of copulas becomes more complicated than in the bivariate case.

Therefore, the question of how to construct a copula family that is sufficiently flexible to model the

complete dependence structure is a very vivid one in theoretical research. Recently, a flexible con-75

struction method, based on mixing (conditional) bivariate copulas, has been introduced, which holds

a large potential for many hydrological applications. In literature, this method is referred to as the

vine-copula (or pair-copula) construction method (see e.g. Kurowicka and Cooke (2007); Aas et al.

(2009); Aas and Berg (2009); Hobæk Haff et al. (2010)). The underlying theory for this method is

given by Bedford and Cooke (2001, 2002) and stems from Joe (1997), which also forms the ba-80

sis for the method of “conditional mixtures", as applied by De Michele et al. (2007). The use of

vine copulas is becoming popular in finance (see e.g. Nikololoupoulos et al. (2012); Zhang (2014);

Mendes and Accioly (2014)) and geophysics and hydrology (see e.g. Gräler (2014); Xiong et al.

(2014); Gyasi-Agyei and Melching (2012); Gräler et al. (2013)).

The model that is developed in this paper consists of two submodels. In a first submodel, the85

vine-copulas-model, three- and four-dimensional vine copulas are used to describe the dependence

between the storm duration, storm volume, the interstorm period following the storm and, in case a

four-dimensional vine-copula is used, also the dry fraction within the storm. In a second submodel,

the intrastorm-generating-model, the intrastorm variability is obtained based on Huff curves (Huff,

1967), which plot the normalized cumulative storm depth against the normalized time since the90

beginning of a storm. Before introducing the model, Section 2 provides some background on the

construction of vine copulas and the simulation using vine copulas. Section 3 briefly introduces the

historical time series, while Section 4 describes the rainfall model. In Section 5 the model perfor-

mance is assessed and a comparison with a state-of-the-art stochastic rainfall model is performed to

further assess the performance of the newly introduced model.95
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2 Vine copulas

2.1 Construction

A vine copula mixes (conditional) bivariate copulas stage by stage in order to build a high-dimensional

copula, i.e. the full density function is decomposed into a product of low-dimensional density func-

tions. Consider the case of two random variables X and Y describing a phenomenon (e.g. storm100

duration and storm volume). Using their marginal distribution functions FX and FY , the values of

both random variables are transformed into values, respectively U and V , in the real unit interval

I= [0,1]:










u= FX(x)

v = FY (y)
⇔











x= F−1

X (u)

y = F−1

Y (v)
, (1)

where x, y, u and v are the values of the corresponding variables X , Y , U and V . U and V are uni-

formly distributed on I. F−1

X and F−1

Y are the (quasi-)inverse functions of the distribution functions105

FX and FY (Nelsen, 2006).

A bivariate copula or a 2-copula is a function C : I× I→ I that satisfies:

1. for all u,v ∈ I,

C(u,0) = 0 and C(0,v) = 0 (2)

C(u,1) = u and C(1,v) = v

2. for all u1,u2,v1,v2 ∈ I for which u1 ≤ u2 and v1 ≤ v2:

C(u2,v2)−C(u2,v1)−C(u1,v2)+C(u1,v1)≥ 0 . (3)

The extension of this definition to k dimensions results in a k-copula (see (Nelsen, 2006) for the110

definition and a detailed explanation). The theorem of Sklar (1959) relates bivariate copulas and

bivariate distribution functions and states that for any two continuous random variables X1 and X2,

with continuous marginal cumulative distribution functions F1 and F2, a unique bivariate copula

C12 exists such that

F12(x1,x2) = C12(F1(x1),F2(x2)) = C12(u,v) , (4)

where F12 is the joint cumulative distribution function of X1 and X2. This theorem thus formu-115

lates that a copula couples the marginal cumulative distribution functions of two random variables

into a joint cumulative distribution function F12. This theorem can be extended to k dimensions

and hence relates a k-dimensional cumulative distribution function F12...k to k marginal distribu-

tion functions (Sklar, 1959): for k continuous random variables X1, X2, . . ., Xk, with continuous

marginal distributions functions F1, F2, . . ., Fk, there exists a unique k-copula C12...k such that:120

F12...k(x1,x2, . . . ,xk) = C12...k(F1(x1),F2(x2), . . . ,Fk(xk)) . (5)
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In order to explain the construction of vine copulas, the construction of a three-dimensional vine

copula is first explained. The joint probability density function (PDF) f123 of a random vector

(X1,X2,X3) can, for instance, be decomposed as follows:

f123(x1,x2,x3) = f13|2(x1,x3|x2) · f2(x2) , (6)125

where f13|2 is the joint PDF of X1 and X3, given X2 = x2 and f2 is the marginal PDF of X2.

The joint cumulative distribution function (CDF) F123 is then obtained by integration, following the

conditional mixtures approach (De Michele et al., 2007):

F123(x1,x2,x3) =

x1
∫

−∞

x2
∫

−∞

x3
∫

−∞

f123(r,s, t)drdsdt

=

x1
∫

−∞

x2
∫

−∞

x3
∫

−∞

f13|2(r,t|s)f2(s)drdsdt

=

x2
∫

−∞





x1
∫

−∞

x3
∫

−∞

f13|2(r,t|s)drdt



f2(s)ds

=

x2
∫

−∞

F13|2(x1,x3|s)dF2(s)

=

x2
∫

−∞

C13|2(F1|2(x1|s),F3|2(x3|s))dF2(s) .

(7)

The conditional cumulative distribution functionsF1|2(x1|x2) andF3|2(x3|x2) can also be expressed130

in terms of copulas:

F1|2(x1|x2) =
∂

∂u2

C12(u1,u2) ;

F3|2(x3|x2) =
∂

∂u2

C23(u2,u3) ,

(8)

with u1 = F1(x1), u2 = F2(x2) and u3 = F3(x3). When instead of X1, X2 and X3, their trans-

formed uniform random variables on I, U1, U2 and U3, are considered, Eq. (7) can be expressed as

follows:135

C123 =

u2
∫

0

C13|2

(

∂

∂s
C12(u1,s),

∂

∂s
C23(s,u3)

)

ds. (9)

In the theory of vine copulas, the same decomposition of the density function is performed, but

instead of using cumulative probability functions, all equations are rather expressed in terms of

density functions and the full density function c123 of the three-dimensional copula is then given by:

c123(u1,u2,u3) = c13|2(F1|2(x1|x2),F3|2(x3|x2)) · c12(u1,u2) · c23(u2,u3) . (10)140
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Similarly, for a random vector (X1,X2,X3,X4), the joint probability density function f1234 can,

for instance, be decomposed as follows:

f1234(x1,x2,x3,x4) = f14|23(x1,x4|x2,x3) · f23(x2,x3) . (11)

The joint cumulative distribution function F1234 is then obtained by integration, similarly as in

Eq. (7):145

F1234(x1,x2,x3,x4) =

x2
∫

−∞

x3
∫

−∞

C14|23(F1|23(x1|s,t),F4|23(x4|s,t))dF23(s,t) . (12)

Herein, the derivative of the bivariate CDF F23(x2,x3) is expressed as

dF23(x2,x3) = f23(x2,x3)dx2dx3. The functions F1|23(x1|x2,x3) and F4|23(x4|x2,x3) are con-

ditional cumulative distribution functions, and can also be expressed in terms of copulas:

F1|23(x1|x2,x3) =
∂C12|3(F1|3(x1|x3),F2|3(x2|x3))

∂F2|3(x2|x3)
,

F4|23(x4|x2,x3) =
∂C24|3(F2|3(x2|x3),F4|3(x4|x3))

∂F2|3(x2|x3)
,

(13)150

where the conditional CDFs F1|3, F2|3 and F4|3 are calculated as in Eq. (8).

2.2 Fitting a three- or four-dimensional vine copula

Figures 1 and 2 illustrate the principle of constructing a three- respectively four-dimensional vine

copula. Consider tree 1 in Figures 1 and 2 where three (respectively four) uniform (on [0,1]) random

variables U1, U2 and U3 (or U1, U2, U3 and U4) are given and their pairwise dependences are de-155

scribed by the bivariate copulas C12 and C23 (respectively C12, C23 and C34). Given a specific value

of the second variable, these bivariate copulas can be conditioned (cfr. dashed arrows in Figures 1

and 2) through partial differentiation (Aas et al., 2009), resulting in the conditional cumulative dis-

tribution functions F1|2 and F3|2 (respectively F1|2, F3|2, F2|3 and F4|3). The pairwise dependences

between these conditional cumulative distribution functions are then captured by the bivariate copula160

C13|2 (respectively the copulas C13|2 and C24|3). See tree 2 in Figures 1 and 2. These latter copulas

can then also be conditioned by partial differentiation to obtain F3|12 (respectively F3|12 and F4|23).

For the four-dimensional vine copula, another bivariate copula C14|23 captures the pairwise depen-

dence between these conditional cumulative distribution functions and can on its turn be partially

differentiated to obtain F4|123. See tree 3 in Figure 2. The conditional cumulative distribution func-165

tions F3|12 and F4|123 (of the three- and four-dimensional vine copula, respectively) will be of use

for simulation purposes (Aas et al., 2009). It should be noted that the hierarchical nesting of bivari-

ate (conditional) copulas as presented here is just one of the possibilities and corresponds to what is

called a D-vine (Aas et al., 2009).

In practice, the bivariate copulas in a higher tree of the vine copula (e.g. C13|2) are fitted as170

follows. Consider a set of n data points, for all triplets (u1,i,u2,i,u3,i) (or for all quadruplets
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(u1,i,u2,i,u3,i,u4,i)), i= 1, . . . ,n, the conditional CDF values (e.g. the CDF values according to

F1|2 and F3|2 in the case of C13|2) are calculated. The bivariate copulas (e.g. C13|2) are then fitted

to these ‘conditioned observations’, which are again approximately uniformly distributed on I.

2.3 Generating samples out of the vine copula175

A general simulation algorithm is presented next, borrowed from the theory on conditional mix-

tures. The literature on vine copulas reports very similar simulation algorithms (Aas and Berg, 2009;

Aas et al., 2009). In order to simulate a random sample (u1,u2,u3) (or (u1,u2,u3,u4)) out of the

three- (or four-dimensional) conditional mixture copula, i.e. U1, U2, U3 (and U4) are uniformly dis-

tributed on I, the one-dimensional conditional cumulative distribution function (CCDF) is highly180

important and is defined as (De Michele et al., 2007):

Gk|1...k−1(uk|u1, . . . ,uk−1) = P(Uk ≤ uk | U1 = u1, . . . ,Uk−1 = uk−1)

=

∂k−1

∂u1...∂uk−1

C1...k(u1, . . . ,uk)

∂k−1

∂u1...∂uk−1

C1...k−1(u1, . . . ,uk−1)
.

(14)

Herein, the numerator is the mixed partial derivative of the k-dimensional copula with respect to

the conditioning variables. The denominator is the copula density of the (k−1)-dimensional copula

of the conditioning variables. In order to simulate a random sample out of the three- (respectively185

four-) dimensional conditional mixture copula, a random sample (t1, t2, t3) (or (t1, t2, t3, t4)) should

be first generated from (T1,T2,T3) (respectively (T1,T2,T3,T4)) which are uniformly distributed

random variables on I, and serve as random probability levels of the CCDFs in the simulation algo-

rithm which is listed next (of course for generating a three-dimensional sample, step 4 should not be

performed):190

1. u1 = t1 ;

2. u2 =G−1

2|1(t2|u1) , where

G2|1(u2|u1) =
∂

∂u1

C12(u1,u2) ; (15)

3. u3 =G−1

3|12(t3|u1,u2) , where

G3|12(u3|u1,u2) =
∂2

∂u1∂u2

C123(u1,u2,u3)

∂2

∂u1∂u2

C12(u1,u2)
; (16)195

4. u4 =G−1

4|123(t4|u1,u2,u3) , where

G4|123(u4|u1,u2,u3) =
∂3

∂u1∂u2∂u3

C1234(u1,u2,u3,u4)
∂3

∂u1∂u2∂u3

C123(u1,u2,u3)
. (17)
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The calculation of some partial derivatives, necessary for obtaining the CCDF G4|123 is given below:

∂3

∂u1∂u2∂u3

C1234(u1,u2,u3,u4)

=
∂

∂u1

C14|23(G1|23(u1|u2,u3),G4|23(u4|u2,u3)) ,

(18)

with200

G1|23(u1|u2,u3) =
∂2

∂u2∂u3

C123(u1,u2,u3)
∂2

∂u2∂u3

C23(u2,u3)

=

∂
∂u3

C13|2

(

∂
∂u2

C12(u1,u2),
∂

∂u2

C23(u2,u3)
)

∂2

∂u2∂u3

C23(u2,u3)
,

(19)

and

G4|23(u4|u2,u3) =
∂2

∂u2∂u3

C234(u2,u3,u4)
∂2

∂u2∂u3

C23(u2,u3)

=

∂
∂u3

C24|3

(

∂
∂u3

C23(u2,u3),
∂

∂u3

C34(u3,u4)
)

∂2

∂u2∂u3

C23(u2,u3)
.

(20)

Once u1, u2, u3 and u4 are simulated, the corresponding values of x1, x2, x3 and x4 can be calcu-

lated by means of the inverse marginal cumulative distribution functions F−1

1
, F−1

2
, F−1

3
and F−1

4
,205

respectively.

3 Historical time series characteristics

The time series used in this paper for fitting the model consists of a 105-year 10-minute rainfall

record of Uccle, Belgium. These data were obtained by a Hellmann-Fuess pluviograph, installed

in and operated by the Royal Meteorological Institute at Uccle near Brussels, Belgium (Demarée,210

2003). This exceptional time series has been used in several studies, albeit with varying lengths,

concerning statistical analyses (Vaes et al., 2002; De Jongh et al., 2006; Ntegeka and Willems, 2008;

Vandenberghe et al., 2010b) and stochastic rainfall modelling (Verhoest et al., 1997; Vandenberghe et al.,

2011; Vanhaute et al., 2012; Evin and Favre, 2013; Pham et al., 2013). For the current study, storms

were first selected and their characteristics of interest calculated. Storms were selected on the basis215

of a minimal dry duration that separates two storms. Any dry period shorter than this threshold is

thus considered to be part of a storm (Bonta and Rao, 1988). Similar to Verhoest et al. (1997) and

Vandenberghe et al. (2010a, b, 2011), a dry period of 24 h was chosen, as this period assures that the

arrival times of independent storms are Poisson distributed (Restrepo-Posada and Eagleson, 1982).

In this way, 8665 storms were selected and the following characteristics calculated: the onset of a220

storm (day, month, year), the storm volume V [mm], the storm duration W [h], the dry duration after

the storm D [h], and the fraction dry within the storm pd. It was observed that events with identical
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values of variables occur in the observed time series. As this is not desirable for a copula-based

analysis, in which ranks are important, random noise, uniformly distributed between −0.1 mm and

+0.1 mm was introduced to all strictly positive 10 minute observations as described and motivated225

in Vandenberghe et al. (2010b). The choice of 0.1 mm was based on the pluviograph’s resolution.

We also refer to Vandenberghe et al. (2010b) for a profound analysis of the dependences between

the variables W , V , and D. Vandenberghe et al. (2010b) asserted that the hypothesis of stationarity

of storms on the Uccle time series is fulfilled through seasonally subdividing the storms allowing

copulas to be fitted per season. Therefore, the storm characteristics of the 105-year 10-minute rain-230

fall time series are subdivided according to the season in which the storms occurred. To this end,

similarly as in Vandenberghe et al. (2010b), winter is defined as the months December, January and

February, spring as the months March, April and May, summer as the months June, July and August

and autumn as the months September, October and November. It was furthermore noticed that some

of the storms have no internal dry 10 minute intervals, i.e. pd = 0. The set of storms within each235

season is then further subdivided into a subset of storms for which pd = 0 and a subset of storms for

which pd 6= 0. The observed probability of pd = 0 for the different seasons is listed in Table 1.

A kernel-smoothed distribution function was fitted to the observed values of W , V , D and pd

as none of the commonly used probability distributions fitted well the data. As D has a theoretical

minimum of 24 h, due to the selection criterion, the distribution was fit to D− 24 h values, and240

afterwards, 24 h were added.

As the storm characteristics V , W andD do not reveal any information on the internal storm struc-

ture, and pd only gives partial information, Huff curves, as derived in Vandenberghe et al. (2010a)

are employed to provide statistical information on the internal structure. The idea to use Huff curves

to generate an internal storm structure has also been adopted by Candela et al. (2014). Given the 105-245

year time series at hand, empirical Huff curves can be obtained by partitioning each storm in the time

series in e.g. 20 identical time intervals at every 5% of the total storm duration. Furthermore, storms

were classified into seasons, and quartile groups according to the quarter of the storm duration that

received the largest amount of rainfall. For each season and each quartile group the corresponding

Huff curves were obtained by visualizing the 10% and 90% percentiles of the distribution. In this250

way, 16 Huff curves were obtained (four quartile groups per season). As an example, Figure 3 illus-

trates the 10% and 90% percentile curves of the second quartile autumn storms. Vandenberghe et al.

(2010a) showed that these curves are independent of the extremity of the storm.
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4 Description of the rainfall model

4.1 The vine-copulas-submodel: Construction and use of vine copulas in the generation of a255

time series

By examining the storm characteristics of the historical time series, it is observed that some storms

have internal dry 10 minute intervals while others have not. It was decided to fit, for each season, a

four-dimensional vine copula to the values of W , V , D and the non-zero values of pd. Furthermore,

for each season, a three-dimensional vine copula was fitted to the values of W , V and D in case260

pd = 0. In this way, dependences between the variables for pd = 0 and pd 6= 0 are taken into account

and four three-dimensional and four four-dimensional vine copulas are obtained.

The ordering of the copulas in the vine copula, i.e. the selection of a D-vine, is based on the

values of Kendall’s tau as listed in Table 2. These values show that the strongest dependences exist

between the variables W and V , pd and W , and V and D. By putting the most dependent pair of265

variables in the first tree of the vine copula, the structure of a D-vine is established. The three- (W ,

V , and D) and four-dimensional (pd,W , V , D) vine copulas are fitted stage by stage, following

the method explained in Section 2.2. We are aware that different copula families could be used to

describe the dependences between the different variables (cfr. Vandenberghe et al. (2010b)). Yet, in

this conceptual study, we opted to restrict to the Frank copula family to describe the (conditional)270

bivariate dependences within the vine copulas, because of its ability to represent positive or neg-

ative dependence. Furthermore, this family is frequently applied to describe bivariate hydrological

phenomena (Pan et al., 2013). Alternative families could better fit the different dependences within

the vine copula, however, the search for the best fitting copula was out of the scope of the current

study. It should be remarked that two different ways of parameterizing the Frank copula exist. In this275

paper, the one that has the dependence parameter range of [−∞,+∞] is employed. The parameters

of the Frank copulas are numerically estimated using the relationship between Kendall’s tau and the

parameter value of the Frank copula (Genest, 1987):

τK = 1−
4

θ
(1−

1

θ

θ
∫

0

t

et− 1
dt) , (21)

The fitted Frank copula parameters are presented in Table 3. Figures 4 and 5 show the contours280

of the Frank copulas and the empirical copulas for the three- and four-dimensional vine copula for

the first season. It can be seen that the Frank copula fits the empirical copulas fairly well. Only the

dependence between W and V in the three-dimensional vine copula and the dependence between pd

and W , and W |V and D|V in the four-dimensional vine copula are less well represented. In order to

check whether the vine copulas preserve the dependence between the variables, two samples, with285

size 10 000, are simulated using the three- and four-dimensional vine copulas, respectively, based on

the method described in Section 2.3. Table 2 shows the good correspondence between the observed
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and simulated pairwise dependences. To be able to transform samples from the fitted copula to real

samples, the (inverse) marginal cumulative distribution functions of pd, W , V and D are employed.

The inverse CDFs are then used to transform simulated uniformly distributed values in I to values290

in R. Once the simulated values of the quadruplet (pd,W,V,D) are known, a time series of 105

years of rectangular rainfall pulses with duration W and height I = V/W , being separated by a dry

duration D, is obtained. Of course, these rectangular pulses only correspond to the external storm

structure. At this stage, only the timing of the beginning and the end of a storm is important. The

pulse itself, characterized by W , V and pd, needs to be further disaggregated into finer scale rainfall,295

which is elaborated upon in the next section.

4.2 The intrastorm-generating-submodel: Disaggregation of rectangular pulses by means of

Huff curves

In order to employ Huff curves in the disaggregation of the rectangular pulses, a random quartile

group is first assigned based on the probabilities of occurrence of the four quartile groups, as indi-300

cated in Table 4. By assigning the first pulse of the generated time series to the beginning of the year,

the season of each simulated pulse is easily derived. On the basis of the probability of pd = 0, the

three- or four-dimensional vine copula for the corresponding season is employed to obtain simulated

storm pulses. Next, as the season and the quartile group are known, a random internal storm struc-

ture can be assigned to each simulated storm pulse on the basis of the corresponding 10% and 90%305

Huff curves. To this end, time instants corresponding to the end of each 10 minute interval within

the storm are selected. The 10% and 90% curves are then interpolated such that the values of the

normalized cumulative storm depth for each of these time instants (expressed as a percentage of the

total storm duration) are obtained.

The internal storm structure is then generated as follows. Firstly, time intervals having zero rainfall310

are randomly assigned within the storm such that the sampled value of pd is respected. It should be

noted that the first and the last interval of the storm cannot have zero rainfall in order to preserve

the duration W of the storm. Furthermore, when the value of pd is such that the storm should only

contain one wet 10 minute interval (i.e. pd is close to one), the rainfall depth is evenly divided

among the first and last 10 minute intervals. In addition, the total length of a dry spell within a storm315

is constrained to 23 hours, i.e. one hour less than the selection criterion, in order to avoid that one

storm would result in two different storms when the same storm selection criterion is applied on the

simulated rainfall series. It should also be mentioned that storms that have a duration smaller than

40 minutes and for which pd 6= 0, are disregarded in the generation of the rainfall series, because of

the inability to assure the generation of the imposed quartile storm.320

Secondly, the cumulative storm depths are randomly selected. This procedure calculates the nor-

malized cumulative depth at the end of a time interval, i.e. at time instant b, before moving to the next
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time interval. During the generation of the internal storm structure, three cases may occur, requiring

different sampling strategies. These cases are:

1. Time instant b is situated in between two consecutive wet 10 minute intervals. In this case, a325

cumulative storm depth is randomly selected between the 10% and the 90% percentile curves,

ensuring that the cumulative storm depths do not decrease in time. Figure 6(a) illustrates this

instant, where time instant a denotes the previous time instant at which a value Dnc(a) was

selected, with Dnc the normalized cumulative storm depth. The current time instant b, at which

a value Dnc(b) is to be selected, is also indicated. Dnc(b) is randomly selected between a330

minimal (H10(b)) and a maximal value (H90(b)), indicated in the figure. H10(b), respectively

H90(b), denote the value of the 10%, respectively 90% Huff curve, at instant b.

2. Time instant b corresponds to the end of a dry period. In this case, depicted in Figure 6(b), no

sampling has to be performed (as the time interval between a and b should be dry), and thus

the cumulative storm depth takes the value of the previous time instant, i.e. Dnc(b) =Dnc(a),335

where Dnc(b) may be situated outside the percentile curves.

3. Time instant b corresponds to the end of a wet period. In this third case, depicted in Fig-

ures 6(c) and (d), the dry period starts at time instant b and ends at time instant c. Two

sampling strategies are possible, among which is chosen with equal probability. It is allowed

that a cumulative storm depth is sampled according to the 10% and 90% Huff curves ei-340

ther at time instant b or at time instant c. When the first strategy is chosen (cfr. Figure 6(c)),

Dnc(b) is sampled from the interval [max(Dnc(a),H10(b)),H90(b)], and the sampled value

can hence be smaller than H10(c), which indicates that the generated Huff curve will intersect

the 10% Huff curve, before reaching time instant c and will hence not remain between the 10

and 90% boundaries. When the second strategy is chosen (cfr. Figure 6(d)), Dnc(b) is drawn345

from [max(Dnc(a),H10(c)),H90(c)], i.e. the sample is chosen according to the 10% and 90%

Huff curves at time instant c. The sampled value can hence be larger than H90(b), which in-

dicates that the generated Huff curve will intersect the 90% Huff curve before reaching time

instant b. Such flexibility is required as the fraction of dry spells often does not allow to remain

between the 10 and 90% boundaries. However, this flexibility is not a major problem, as at350

each time interval within the storm there are always 20% of the historical relative cumulative

storm depths outside these boundaries by definition.

Based on the historical time series, it was observed that the increment in cumulative storm depth

between two subsequent time instants in a Huff curve is not uniformly distributed (this observation

was neglected in Vandenberghe et al. (2010a)). Smaller increments occur more often than large in-355

crements. This behaviour is simulated by first establishing a cumulative probability distribution of

strictly positive increments on the basis of the 105-year time series. To this end, for all storms in

a particular season and quartile group, the frequencies of normalized (strictly positive) increments
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of cumulative rainfall depths between two subsequent wet periods were recorded. This empirical

cumulative distribution function for the respective season and quartile group is then used to ran-360

domly select a normalized increase in storm depth for the subsequent wet time interval. Figure 7

illustrates the use of the cumulative distribution in the sampling procedure. In this figure, the mini-

mum and maximum bounds of the increments are first determined on the basis of the Huff curves,

as explained above. These bounds are then transferred to the cumulative distribution of normalized

increments between which a value is randomly selected by uniformly sampling within this sampling365

range (cfr. Figure 7). The corresponding difference percentage of total storm depth is then obtained.

5 Results

It is common to validate the performance of a model through comparing statistics of one modeled

time series to those calculated on the observed time series. However, given that the model has a

stochastic nature, the statistics of the simulated time series will show some variability. To account370

for these stochastic effects, the model described in the previous section is employed to generate

an ensemble of 100 time series of 105 years of 10-minute rainfall (i.e. similar to the length of the

observed time series). In order to evaluate whether the model performs well in the reproduction of

aggregated rainfall statistics, the 100 time series are furthermore regarded as equally probable re-

alisations and the statistics are calculated on a yearly basis. The traditional first and second order375

statistical moments (i.e. mean and variance), autocorrelation (AC) at different time lags and the zero

depth probability (ZDP) are calculated along with the third order central moment (skewness). These

statistics are calculated on a yearly basis for each ensemble member at aggregation levels of 1/6, 1,

3, 6, 12 and 24 hours. Thus, for an aggregation level, 100 × 105 values of each of these statistics are

obtained, such that a bundle of 100 empirical cumulative distributions can be established, i.e. one380

distribution per ensemble member. The empirical cumulative distribution of the values of the statis-

tics of the observed time series can then be compared with this bundle. If the empirical cumulative

distribution function of the observed statistics is situated within the bundle of distributions obtained

by the model, the model performes well.

Figure 8(a) visualises the bundles of the 100 empirical cumulative distributions of the yearly385

statistics of the time series generated by the copula-based model and the empirical cumulative distri-

bution of the yearly statistics of the observed time series for a 10-min aggregation level. Figure 8(b)

displays the comparison for a 1-h aggregation level. These figures show that the observed mean is

well represented by the copula-based model. For a 10-min aggregation level, also the ZDP is fairly

well represented. The variance and the third central moment are overestimated, whereas the lag-1390

and lag-2 autocovariances are underestimated. For the 1-h aggregation level, the ZDP and the lag-

1 autocovariance are underestimated, the other statistics are fairly well represented. For the other

aggregation levels, only the mean is well represented. The other statistics are sometimes well repre-
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sented, under- or overestimated. With respect to the ZDP-statistic, the fact that this statistic is well

represented at a 10-min aggregation level, yet, underestimated at higher aggregation levels (except395

for a 24-h aggregation level), is probably due to the selection of the dry periods within the storm. For

storms that have a duration of more than one hour, these zero intervals are probably not connected

as no temporal correlation is taken into account during the selection of dry periods, such that less

dry periods are obtained after the aggregation than what is observed in the Uccle time series. Future

research will further elaborate on a better selection of dry periods within the storm.400

As simulated time series are often used to simulate extreme discharges (Verhoest et al., 2010),

the behaviour of the modelled extreme rainfall was also assessed. Figure 9 shows the annual max-

imum rainfall depths of the ensemble and of the observed rainfall series related to empirical return

periods, considering six different aggregation levels. This figure shows that the extrema are well

modelled albeit the model overestimates extremes at short aggregation levels and tends to underesti-405

mate extremes at larger aggregation levels. Notwithstanding the shortcomings highlighted, this novel

modelling concept holds promise. It should furthermore be stressed that other stochastic models such

as the state-of-the-art Bartlett-Lewis models also are not able to preserve all statistics.

6 Conclusions

This study is the first in its kind in which a continuous stochastic rainfall generator is developed that410

uses vine copulas to describe the storms and their arrival process. The internal storm structure is

based on the concept of Huff curves, while the fraction of dry periods within the storm is determined

by the copulas. The main advantage of this approach is that the model is completely data driven

and is easier to calibrate than other rainfall generators such as the commonly used Modified Bartlett

Lewis model as, once the structure of the vine copula is determined, the calibration is reduced to415

estimating the parameters of the bivariate copulas. It should, however, be noted that we have at our

disposal an exceptionally long time series of rainfall data on the basis of which the vine copulas are

determined. If one would follow the same approach and search for the best-fitting copula family on

a more commonly shorter time series of e.g. < 50 years of rainfall data, one could be faced with

difficulties as the number of storms per season may become too small for fitting the copulas.420

The model applies three- and four-dimensional vine copulas to describe the dependence between

the different storm characteristics. The three-dimensional vine copulas are employed to describe the

seasonal dependence between storm duration, storm volume, and the interstorm period for storms

that have no dry fraction within the storm. The four-dimensional vine copulas are employed to de-425

scribe the seasonal dependence between these storm characteristics and the dry fraction within the

storm. These vine copulas were fitted to the observed storm characteristics of a 105-years time se-

ries of 10-minute rainfall. Because of its frequent successful application in hydrological applications,
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the Frank copula family was chosen to be used within the vine copulas. On the basis of these vine

copulas, values of these four storm characteristics were drawn, representing the external storm struc-430

ture, ensuring a time series of 105 year of rectangular rainfall pulses. According to their seasonal

probability of occurence, storms with zero dry fractions were sampled from the three-dimensional

vine copulas. The internal storm structure of the rectangular pulses is superimposed based on Huff

curves, which were identified on the basis of the observed time series, leading to the generation of

continuous 10-minute rainfall time series. In the generation of the internal storm structure, it is en-435

sured that the fraction of dry periods within the storm as drawn from the vine copulas, is maintained.

The internal storm structures are furthermore generated according to the probability of occurrence

of the quartile storms in the observed time series, and the season in which they occur. In order to

determine the difference of cumulative storm depths in the internal storm structure, the empirical

cumulative probability distribution function of increments between two subsequent wet periods in440

the storm is employed. In this way it is guaranteed that smaller increments occur more often than

larger increments, as was observed in the measured time series.

In order to evaluate the performance of the rainfall model, an ensemble of 100 time series of

ca. 105 year 10-minute rainfall was generated, such that stochastic effects were accounted for. The

results show that the copula-based rainfall model represents the mean value of the time series well,445

whereas the other statistics are either represented (fairly) well, over- or underestimated, depending on

the aggregation level. A second evaluation of the generated ensemble encompassed the calculation

of the annual maximum series, for different aggregation levels. It was observed that the annual

maxima simulated by means of the copula-based model were larger than the observed maxima for

an aggregation level of 10 min, and the moderate return period of the 24-h aggregation level. For450

aggregation levels of 1 h – 12 h and the smaller and larger return periods of an aggregation level

of 24 h, a good correspondence between the simulated and observed extremes was observed. Future

research will reveal whether the representation of the ZDP-statistic for larger aggregation levels by

the copula-based model can be improved by better selecting the internal dry storm periods. The

performance of the copula-based model will also be compared to state-of-the-art stochastic rainfall455

generators. Also, it should be investigated whether including other bivariate copula families in the

vine copulas can further improve the performance of the vine-copula-based model.
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Figure 5. Contour plots of the empirical (dotted lines) and the fitted Frank copulas (solid lines) for the different

trees in the four-dimensional vine copula for season 1. Bivariate copulas between pd and W , W and V , and

V and D (top panel), between pd|W and V |W , and W |V and D|V (middle panel) and between pd|WV and

D|WV (bottom panel) are shown.
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Figure 6. Illustration of the generation of an internal storm structure. The part of the Huff curve that is already

generated (up to time instant a) is indicated by a thick solid line. The value at time instant b needs to be

determined. Four sampling strategies are possible: Sampling in between two consecutive wet periods (case 1)

(a), sampling at the end of a dry period (case 2) (b), sampling at the end of a wet period followed by a dry period

with a selection on the basis of the current time instant (case 3) (c) and with a selection on the basis of the last

time instant in the dry period (case 3) (d).
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Figure 7. Illustration of the procedure to sample the storm depth at the next time instant (b). First, the minimal

and maximal increment in percentage of storm depth at time instant b are determined (top panel). Then, the

corresponding sampling range in the cumulative distribution function of normalized increments is defined based

on the minimal and maximal increment in percentage of storm depth derived from the top pannel (bottom panel).
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Figure 8. Comparison of the empirical cumulative distributions of the yearly statistics of the observed time

series (black line) and the bundle of empirical cumulative distributions of synthetic time series generated by

means of the copula-based model (grey) at a 10-minute (a) and a 1-h aggregation level (b).
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Figure 9. Comparison of empirically derived annual maxima related to the empirical return periods for different

aggregation levels on the observed (black asterisks) and ensemble of synthetic time series generated by means

of the copula-based rainfall model (grey asterisks).
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Table 1. Observed probability of pd = 0 for the storms in the different seasons

Probability of pd = 0

Winter 8.75%

Spring 11.21%

Summer 13.13%

Autumn 12.14%

Table 2. Correspondence between the observed and simulated pairwise dependences among (pd,W,V,D),

expressed as Kendall’s tau τK .

observed 3D observed 4D simulated 3D simulated 4D

season 1

τ12 – 0.3040 – 0.3066

τ23 0.4140 0.6361 0.4118 0.6305

τ34 -0.0804 -0.0736 -0.0754 -0.0790

τ13 – -0.0336 – -0.0092

τ24 -0.0831 -0.0341 -0.0760 -0.0425

τ14 – 0.0259 – 0.0111

season 2

τ12 – 0.3418 – 0.3423

τ23 0.5318 0.5888 0.5314 0.5866

τ34 -0.0773 -0.0778 -0.0811 -0.0649

τ13 – -0.0183 – -0.0018

τ24 -0.0397 -0.0410 -0.0421 -0.0416

τ14 – 0.0221 – 0.0026

season 3

τ12 – 0.4060 – 0.4132

τ23 0.5243 0.5540 0.5248 0.5483

τ34 0.0247 -0.0855 0.0222 -0.0820

τ13 – 0.0411 – 0.0602

τ24 -0.0079 -0.0613 -0.0109 -0.0672

τ14 – -0.0126 – -0.0332

season 4

τ12 – 0.3208 – 0.3276

τ23 0.4887 0.6058 0.4948 0.6016

τ34 -0.1066 -0.0779 -0.1084 -0.0816

τ13 – -0.0287 – -0.0080

τ24 -0.1377 -0.0636 -0.1680 -0.0737

τ14 – -0.0086 – -0.0099
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Table 3. Parameters of the bivariate Frank copulas in the construction of the three- and four-dimensional vine

copulas.

parameter (W,V,D) (pd,W,V,D)

season 1

θ12 – 2.9632

θ23 4.3567 8.9789

θ34 -0.7276 -0.6651

θ13|2 – -9.1797

θ24|3 -0.4077 0.4199

θ14|23 – -0.4670

season 2

θ12 – 3.4077

θ23 6.3457 7.6379

θ34 -0.6992 -0.7037

θ13|2 – -7.6601

θ24|3 0.2150 0.2348

θ14|23 – -0.2741

season 3

θ12 – 4.2445

θ23 6.1971 6.8144

θ34 0.2221 -0.7737

θ13|2 – -6.0083

θ24|3 -0.3429 0.0194

θ14|23 – -0.2419

season 4

θ12 – 3.1574

θ23 5.5352 8.0877

θ34 -0.9686 -0.7041

θ13|2 – -8.1955

θ24|3 -1.1409 -0.0918

θ14|23 – -0.0958

Table 4. Probability of a storm to belong to a certain quartile group.

quartile group probability [-]

first 0.3930

second 0.2063

third 0.1826

fourth 0.2181
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