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To: Hydrology and Earth Systems Sciences Discussion 
 
Re:  Interactive comment on “A review of applications of satellite SAR, optical, 
altimetry and DEM data for surface water modelling, mapping and parameter 
estimation” 
by Z. N. Musa et al. 
 

Dear Editor 

 

Please find, in the submission section of the Authors, the new version of the manuscript " “A 

review of applications of satellite SAR, optical, altimetry and DEM data for surface water modelling, 

mapping and parameter estimation” (hess-2015-165) which we are submitting following the 

comments received from you and the reviewers. We have amended the manuscript with all requested 

changes by the reviewers.  

We would like to thank the editor and the reviewers for taking time in reading and suggesting 

modifications to the paper. With received suggestions we have improved the manuscript. 

Please find below this letter the responses to your comments with reference to issues raised 

by reviewer number one, and the marked up version of the manuscript showing all changes made 

within the text.   

As per reviewers suggestion we made several modifications to the manuscript; added details 

to all the sections; restructured the manuscript; included two more figures and a table describing 

commonly used satellite data in hydrology for surface water applications. All the modifications were 

made by carefully looking at the questions, researching more literature and updating the information 

included in the manuscript. Consequently, we have added all the cited literature in the new version of 

the manuscript. 

We have submitted a manuscript with highlighted changed areas so that the new additions 

and modifications can be compared with the initial text. 

Thank you very much for your kind consideration of this resubmitted version of our 

manuscript. 

 

 

Sincerely yours, 

Zahrah N. Musa 

(On behalf of the authors of the manuscript) 
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Manuscript modification based on Reviewer #1 comment no 3 
 
The responses to the individual comments of reviewer#1 are detailed below.  
(Note: Reviewer comments are in italic, authors' responses are in normal text) 
 
Comment3: Some of the topics covered in the Yan review that are not mentioned here are: The use of 
the new high resolution SARs for flood detection (e.g. CSK, TerraSAR-X, RADARSAT-2, PALSAR), 
including mapping of flooding in urban as well as rural areas. The CSK constellation satellites can 
have a revisit interval of 12 hours for a flood, which is sufficiently frequent to capture floods in 
medium-sized catchments. Also, there is no mention here of the Sentinel-1 constellation (the first of 
which is already working), which will give high resolution images in near real-time (making them 
suitable for flood forecasting operations), on an almost daily basis in Europe. The methods used to 
derive flood extent data from SAR images are also not considered e.g. Martinis et al., 2009, 2011). 
  
Authors Answer: based on the comments above, the manuscript has been modified to include the 
following: 
 

1. Under future direction in satellite applications for hydrology, we discuss the available 
satellite data (such as TERRASAR-X) that provide an improvement in the DEM quality. This 
explanation is given as follows:   
 
With better SAR missions such as TerraSAR-X- TanDEM-X formation, DEM data with good vertical accuracy are 

now available for better hydraulic flood modelling. TanDEM-X has 12.5m spatial resolution and produces less than 2m 

vertical accuracy (DLR, 2015). Although made for polar ice change estimation and monitoring, the high spatial coverage 

of Cryosat-2 is also being exploited for near-shore mapping and inland water monitoring; all evaluations have produced 

good results (Villladsen, Andersen, & Stenseng, 2014). Cryosat-2 has a drifting orbit and therefore (unlike all the other 

satellites) has little repetitive data (since repeat cycle is 369 days) but high spatial density coverage, which makes it 

good for hydraulic modelling. With successful use of Cryosat-2 data to obtain river water levels and topography, the use 

of drifting orbits is being proposed as more suitable for river water surface topography mapping, derivation of river 

profiles and building of pseudo time series (Bercher, et al., 2014). 

Other satellite products that improve the accuracy of satellite data based research in hydrology include: Cosmo-

SkyMed from the Italian Space Agency, RadarSat2 from the Canadian Space Agency, and Sentinel-1 from ESA 

(Schumann, et al., 2015). Others are Global Change Observation mission-water (GCOM-W) from Japan Space Agency 

(JAXA), Global Precipitation Measurement (GPM) from JAXA /USA, Soil Moisture Active Passive (SMAP) from USA.  

To improve quality of satellite SAR and topographic data, new satellite missions with higher precision 

instruments are being planned. One of such missions is the Sentinel constellation that will consist of seven satellites; 

two of which (Sentinel 3 and 6) are especially dedicated to hydrological purposes. Sentinel 1 is already in orbit and 

undergoing calibration; it has a C-band SAR instrument to continue present C-band data provision. Sentinel 3 is planned 

to provide fast data for flood emergencies, therefore it has three instruments one of which is a dual-frequency (Ku and C 

band) advanced Synthetic Aperture Radar Altimeter (SRAL) that will provide accurate topographic data of oceans, ice 

sheets, sea ice, rivers and lakes (ESA, 2015). Sentinel 6, which will compliment the Sentinel 3 data, will carry on board a 

high precision radar altimeter.  RADARSAT constellation, a new Low Earth Orbit (LEO) C-band SAR mission is under 

development by the Canadian space Agency (CSA). The constellation which will have several operating modes will 

provide interferometric SAR data that can be used for wetlands and coastal change mapping, flood disaster warning and 

response with resolutions 3, 5, 16, 30, 50 and 100m (Canadian Space Agency (CSA), 2015). 
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2. The methods used to derive flood extent from SAR data are also included within the text with 
examples of applications also given. The additional text reads as follows:  
 

SAR data are useful for flood extent measurements even in cloud covered areas, and are therefore often used to 

make flood maps (e.g. Schumann, et al., 2007; Horritt, 2006; Di Baldassarre, et al., 2009; Vermeulen, et al., 2005; 

Mason, et al., 2007; Long et al., 2014).  The variation of radar backscatter from different targets enables flood extent 

mapping. Several methods have been used to delineate the flooding extent from SAR data; e.g. utilization of multi-

polarized Advanced SAR images, application of a statistical active control model,  multi-temporal image enhancement 

and differencing, histogram thresholding/ clustering, radiometric thresholding, pixel-based segmentation, use of 

artificial neural networks, etc (Long et al,. 2014) . Multi-temporal image flood mapping involves acquiring flooding and 

non-flood images of the same area and combing them to get an image which indicates change by colours appearing in 

the image. A modification of the multi-temporal technique introduces an index that shows the changing areas (Skakun, 

2010). Sarhadi et al., (2012) applied satellite stereoscopic images of Cartosat-1 to delineate flood hazard maps; the 

method used Rational Polynomial Coefficients to extract a high resolution DTM and detailed parameterization of the 

channel in Halilrud basin and Jiroft city in south-eastern Iran.  

Segmentation threshold algorithms are used to delineate flood extents after a threshold has been manually 

chosen. Flood extent maps were created over four years of seasonal flooding in the Chobe floodplain, Namibia (Long et 

al,. 2014). 11 scenes of SAR data were enhanced using adaptive Gamma filtering (to remove speckles), and difference 

images created by subtracting from the reference non flood season image. The histograms of the difference images were 

then used to create thresholds separating flooded and non-flooded areas. The threshold for flooded areas was 

determined by subtracting the standard deviation multiplied by a coefficient Kf from the mean pixel value. For flooding 

under vegetated areas, the threshold was determined adding the standard deviation multiplied by a coefficient Kfv to 

the mean pixel value. The flood maps were then created using segmentation clustering in ENVI. Segmentation based on 

self-organizing Kohonen’s maps (SOM) neural networks was used by Skakun (2010) to map flooding from five rivers in 

China, India, Hungary, Ukraine, Laos and Thailand. Training and testing of the neural networks were based on ground-

truth data which enabled classification of water and dry land pixels. SOM produces a low dimensional representation of 

the input space that still preserves the topological properties of the input space. The method enabled automatic 

discovery of statistically salient features of pattern vectors, clustering and classification of new patterns. The resulting 

flood maps show an 85-95% classification rate compared with independent testing data; showing the applicability of the 

method for emergency flood mapping.   

Interferometric phase difference between two SAR images is called the interferogram and includes signatures 

from topography, noise, displacement, atmospheric effects and baseline error. The advantage of phase changes in SAR 

interferometer data (INSAR) enables detection of change in the Earths land-use and land cover. This characteristic is 

very useful for identification of flooded areas over wetlands as used by (Dellepiane et al., 2004). The method, based on 

fuzzy connectivity concepts, automatically selected the coastline from two InSAR imagery using the coherence of the 

two images. 
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Abstract 

Hydrological data collection requires deployment of physical infrastructure like rain gauges, water 

level gauges, as well as use of expensive equipment like echo sounders. Many countries around the 

world have recorded a decrease in deployment of physical infrastructure for hydrological 

measurements; developing countries especially have less of this infrastructure and where they exist, 

they are poorly maintained. Satellite remote sensing can bridge this gap, and has been applied by 

hydrologists over the years, with the earliest applications in water body and flood mapping. With the 

availability of more optical satellites with relatively low temporal resolutions globally, satellite data 

is commonly used for: mapping of water bodies, testing of inundation models, precipitation 

monitoring, and mapping of flood extent. Use of satellite data to estimate hydrological parameters 

continues to increase due to use of better sensors, improvement in knowledge of/ and utilization of 

satellite data, and expansion of research topics. A review of applications of satellite remote sensing 

in surface water modelling, mapping and estimation is presented, and its limitations for surface water 

applications are also discussed.  

 

1. Introduction 

Hydrological data collection still remains a difficult task nowadays due to non-availability of 

measurement devices, inaccessibility of the terrain and limitations of space/time (Quin et al, 2010; 

Pereira-Cardenal, et al., 2011). A good alternative to overcome these difficulties is use of satellite 

remote sensing, which can give a synoptic view of target areas (figure 1), measure target surface 

changes and therefore provide information needed for hydrological studies, river basin management, 

water hazard/ disaster monitoring/prevention and water management, etc. Through the science of 
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remote sensing, information about an object can be obtained without coming in direct contact with it 

(Lillesand, et al., 2004). This capability works by measuring electromagnetic energy reflected or 

radiated from objects on the earth's surface (figure 1), in such a way that the difference in reflectivity 

of objects enables recognition/detection and isolation of each type/class (figure 2).  

Remotely sensed data are of two types depending on the main source of energy. Passive remote 

sensing depends on natural energy from the sun. Active remote sensing uses controlled energy 

sources from instruments beaming sections of the electromagnetic spectrum. Imagery obtained via 

instruments that measure reflectance from the sun, are known as optical imagery. Optical imagery 

from satellites is therefore acquired during the day since it depends on the reflections of sunlight 

from objects on the earth surface in the absence of cloud cover. Depending on the mission 

specifications satellites are placed on different kinds of orbits around the earth. The orbits include: 

Low Earth Orbit (LEO), Medium Earth Orbit (MEO), and Geo-Synchronous orbits (GSO); variations 

of these classes of orbits are the polar orbit, the Geostationary orbits, the Molneya orbit and the sun-

synchronous orbit. Most optical satellites used for hydrological applications are in near earth orbits 

and are therefore able to provide detailed data at high ground (e.g. figure 1); although the best 

resolution data are usually not freely available and expensive to obtain. Due to this detailed 

resolution, optical satellite imagery is used for inundation mapping, drainage mapping, disaster 

monitoring, land-use/land cover change analysis etc (Owe, et al., 2001). 

Active remote sensing can provide data as imagery (e.g. radar), and in the form of pulse 

measurements (e.g. altimeters and scatterometers). Radar is an active source of remote sensing data 

which acquires data via instruments that emit radar signal towards the object of interest and measure 

the reflected energy from the object. Radar can penetrate cloud cover and can be acquired at any time 

independent of availability of sunlight. The penetration characteristic of the SAR satellites enables 

measurement of soil moisture in bare areas, making it useful for land-use and land cover studies as 

well as earth observation and monitoring (Owe, et al., 2001). SAR is a side-looking instrument that 

sends out signals inclined at an angle. For water bodies the reflectivity of SAR waves is spectacular 

giving a very low radar return and very dark images. However when there are surrounding or 

emergent vegetation, wind, turbulence etc, there can be significant backscatter; which affects the 

accuracy of information obtained from the radar measurements (Smith, 1997).   

Satellite remote sensing has been applied in hydrology for many years. Table 1 shows some satellite 

missions and sensors used for hydrological studies and the application areas. A review by Smith, 

(1997) shows that the earliest hydrological applications were in water body and flood mapping; the 

review includes many examples of inundation maps developed from satellite imagery. Owe, et al., 
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(2001) also compiled papers presented at a conference on applications of remote sensing in many 

aspects of hydrology.  Beyond mapping, satellite data in the form of imagery, DEM, altimetry data, 

etc, can be used as hydraulic model input forcing factors or to constrain model data during 

calibration/validation/verification (Pereira-Cardenal, et al., 2011). Satellite based estimates of river 

flow, river width, water levels and flooding extent are used for model 

calibration/validation/verification. Choice of suitable observed data can introduce subjectivity in the 

modelling process and subsequently increase uncertainty. Consequently, satellite data used to 

benchmark the model output accuracy can influence model calibration and validation (Stephens, et 

al., 2012).  A review of types of satellite data used for flood modelling by Yan, et al., (2015) 

discusses satellite data accuracy and methods used for error reduction.  

The main scope of this review is to present literature findings about application of satellite remote 

sensing in surface water modelling, mapping and parameter estimation. The review limits itself to 

water flowing within channels and coastal areas, and therefore excludes applications of satellite 

remote sensing for soil moisture measurement, rainfall estimation, rainfall/run off modelling and its 

associated routing estimations.  

The paper is structured into two main parts. The first gives an overview of applications of SAR, 

Optical, Altimetry and DEM data for estimation of surface water parameters, modelling and 

mapping. The second part discusses the limitations of utilizing satellite derived data in surface water 

applications and the future directions aimed to fill the gaps. The review ends with a conclusion.  

 

2. Overview of Satellite data applications for surface water studies 

1. SAR data applications 

SAR data are useful for flood extent measurements even in cloud covered areas, and are therefore 

often used to make flood maps (e.g. Schumann, et al., 2007; Horritt, 2006; Di Baldassarre, et al., 

2009; Vermeulen, et al., 2005; Mason, et al., 2007; Long et al., 2014).  The variation of radar 

backscatter from different targets enables flood extent mapping. Several methods have been used to 

delineate the flooding extent from SAR data; e.g. utilization of multi-polarized Advanced SAR 

images, application of a statistical active control model,  multi-temporal image enhancement and 

differencing, histogram thresholding/ clustering, radiometric thresholding, pixel-based segmentation, 

use of artificial neural networks, etc (Long et al,. 2014) . Multi-temporal image flood mapping 

involves acquiring flooding and non-flood images of the same area and combing them to get an 
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image which indicates change by colours appearing in the image. A modification of the multi-

temporal technique introduces an index that shows the changing areas (Skakun, 2010). Sarhadi et al., 

(2012) applied satellite stereoscopic images of Cartosat-1 to delineate flood hazard maps; the method 

used Rational Polynomial Coefficients to extract a high resolution DTM and detailed 

parameterization of the channel in Halilrud basin and Jiroft city in south-eastern Iran.  

Segmentation threshold algorithms are used to delineate flood extents after a threshold has been 

manually chosen. Flood extent maps were created over four years of seasonal flooding in the Chobe 

floodplain, Namibia (Long et al,. 2014). 11 scenes of SAR data were enhanced using adaptive 

Gamma filtering (to remove speckles), and difference images created by subtracting from the 

reference non flood season image. The histograms of the difference images were then used to create 

thresholds separating flooded and non-flooded areas. The threshold for flooded areas was determined 

by subtracting the standard deviation multiplied by a coefficient Kf from the mean pixel value. For 

flooding under vegetated areas, the threshold was determined adding the standard deviation 

multiplied by a coefficient Kfv to the mean pixel value. The flood maps were then created using 

segmentation clustering in ENVI. Segmentation based on self-organizing Kohonen’s maps (SOM) 

neural networks was used by Skakun (2010) to map flooding from five rivers in China, India, 

Hungary, Ukraine, Laos and Thailand. Training and testing of the neural networks were based on 

ground-truth data which enabled classification of water and dry land pixels. SOM produces a low 

dimensional representation of the input space that still preserves the topological properties of the 

input space. The method enabled automatic discovery of statistically salient features of pattern 

vectors, clustering and classification of new patterns. The resulting flood maps show an 85-95% 

classification rate compared with independent testing data; showing the applicability of the method 

for emergency flood mapping.   

Interferometric phase difference between two SAR images is called the interferogram and includes 

signatures from topography, noise, displacement, atmospheric effects and baseline error. The 

advantage of phase changes in SAR interferometer data (INSAR) enables detection of change in the 

Earths land-use and land cover. This characteristic is very useful for identification of flooded areas 

over wetlands as used by (Dellepiane et al., 2004). The method, based on fuzzy connectivity 

concepts, automatically selected the coastline from two InSAR imagery using the coherence of the 

two images. 

InSAR has been used to calculate the changes in water levels using satellite altimetry data for 

calibration (Kim, et al., 2009; Jung, et al., 2010). To obtain the displacement phase used to obtain the 

change in water height, all other signals are removed. The interferogram data gives the relative water 
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level change between two locations. Where there is measured water level data (within acceptable 

radius) the relative water level change can be converted into the absolute water level change. Jung el 

al., (2010) used interferometric SAR data from JERS-1 to study change in water levels for the 

Amazon and Congo rivers. The data were acquired for the low flow and high flow seasons and 

processed using the 'two pass' method which includes flat earth phase removal and interferometric 

phase removal. Flooded vegetation, non-flooded areas and open water were differentiated based on 

backscatter 'noise floor' and 'mean interferometric coherence' of flooded and non-flooded areas. The 

temporal variation in water level dh/dt was obtained by converting the phase changes in imagery to 

water level referenced to the WGS84 datum using altimeter measurements from Topex/Poseidon. 

Using dh/dt to characterize the Amazon floodplain showed increasing dh/dt from upstream to 

downstream within a complex pattern of interconnected channels with distinct boundaries and 

varying dh/dt. The Congo River characterization of dh/dt showed a uniformity and limited 

connectivity between the river and the adjoining wetlands. Schumann et al., (2007) used Envisat 

ASAR data to identify spatial clusters of channel roughness in order to calibrate a HEC-RAS model 

of Alzette river flooding. ERS SAR data of the same event and an aerial photo of an earlier event 

were used for validation of the calibrated model and overall model performance was compared to 

measured high water marks at seven points during the flood event. The mean cross sectional water 

levels used for model evaluation were estimated from the intersection of ASAR flood extent 

boundaries with LIDAR DEM. At each cross section, ranges of channel roughness values are run in a 

Monte Carlo simulation and the CDF's of the values are generated; these CDF's are compared with a 

CDF of uniformly distributed model (where model functioning is same over the entire parameter 

space). The deviation of the individual CDF's from the CDF of uniform distribution give the measure 

of the parameter sensitivity, the sum of which show the local functioning of the model at that cross 

section. CDF's with similar error characteristics are grouped into clusters using k-mean clustering. 

The results showed that two clusters of roughness values are enough to measure the parameter 

sensitivity.  

To utilise SAR data for flood depth estimation, methods have been developed that derive flood 

heights from flood extent data. The methods used combine SAR data with elevation data sources like 

DEMs, altimetry, and TINs. Mason, et al., (2007) and Schumann, et al., (2006), estimated the mean 

cross sectional water levels used for model evaluation from the intersection of SAR flood extent 

boundaries with LIDAR DEM. Schumann, et al., (2006) used  linear regression and an elevation 

based model (REFIX) to convert SAR flood extent to heights and derived the flood water depth. 

Assuming a horizontal water height at cross sections, the water levels on the left and right banks 
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were taken and used to subtract the floodplain DEM values to get the water height. The flood water 

line was then extracted using the regression equation: H= a.d+b, where a= slope of the regression 

line, d= downstream water distance, b= intercept. Using the cross sections as break lines and the 

flood water heights extracted, a TIN of the water heights at each cross section was produced. The 

flood water depth was derived by subtracting the DEM at the cross sectional interception points from 

the flood water height TIN. The result showed an RMSE of 18cm for a channel with no hydraulic 

structures and 31cm for a channel with many hydraulic structures and changes in slope. The study 

recommends that nonlinear regression/ piece wise regression can be used in the case of sudden 

changes in slope (due to hydraulic structures etc) that cause the channel geometry to change.  

Altimetry data from ENVISAT was combined with INSAR data from PALSAR and Radarsat-1 to 

compute absolute water level changes over the wetlands of Louisiana (Kim et al., 2009). Two pass 

INSAR method was used to check the two SAR images acquired at different times for phase 

differences. The ENVISAT altimetry data was used as the reference absolute water level change 

dh0/dt to compute the all the changes in water level over the domain. The results obtained for water 

level changes showed better comparison with the wetland gauge than with the channel gauge which 

had many levees interrupting the flow. Westahoff, et al., (2010) mapped probabilistic flood extents 

from SAR data by using the amount of backscatter and local incidence angles to create histograms 

that distinguish between wet and dry areas. The histograms were used to calculate the probability of 

flooding of every pixel. 

Satellite data is used to calibrate hydrologic models especially in un-gauged catchments (Vermeulen 

et al, 2005; Sun, et al., 2009).  Calibration of flood inundation models can be done using several 

model parameters, but the most sensitive parameter that shows a direct relation with water stage and 

therefore flooding extent and timing is the channel roughness (Schumann et al., 2007). 

Woldemicheal et al., (2010) showed that for braided rivers where the hydraulic radius is obtained 

from indirect sources like satellite data, Manning's roughness coefficients can be used to minimize 

computed water level outliers. Roughness coefficient values to be used for calibration can be 

determined via flood modelling where the measured data are available. 

 Satellite based maps of flood extent have been used to calibrate flood inundation models either 

based on single or multiple flood events (Di Baldassarre, et al., 2009). Horritt (2006) calibrated and 

validated a model of uncertain flood inundation extent for the Severn River using observed flooded 

extent mapped from satellite imagery.  Model accuracy was checked using reliability diagrams, and 

model precision was checked using an entropy-like measure which computes the level of uncertainty 

in the flood inundation map. The ensemble model outputs were compared with ERS and Radarsat 
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data for calibration using the measure of fit. The results showed that the mapped flood extent 

produced only a modest reduction in the uncertainty of model predictions because the timing of 

satellite passes did not coincide with the flood event. Di Baldassarre, et al., (2009) showed that 

satellite flood imagery acquired during an event can be reliable for flood mapping. They used 

imagery of a single event covered by two satellite passes captured almost at the same time to develop 

a method to calibrate flood inundation models based on 'possible' inundation extents from the two 

imageries. Hydrodynamic flood model extents were compared with the satellite flood extent maps in 

order to calibrate the floodplain frictional parameters and determine the best satellite resolution for 

flood extent mapping. In spite of their different resolutions the result showed that both satellite 

imageries could be used for model calibration, but different frictional values have to be used in the 

model. 

For un-gauged basins where hydrological data is inaccessible, satellite measurement of river width 

can be used for hydrological model calibration (Schumann, et al., 2013; Sun, et al., 2009). River 

width can be estimated from several sources of satellite data; making it more readily available than 

discharge or water level. Sun, et al., (2009) used measured river width from satellite SAR imagery to 

calibrate HYMOD hydrological model. The model calibration based on river width gave 88.24% 

Nash coefficient, with a larger error during low flow than high flow periods; implying its usefulness 

for flood discharge calculations. From the results, braided rivers showed lower errors for good Q-W 

relations from satellites. However, a small error in width measurement can lead to a large error in 

discharge estimation as the discharge variability was much larger than the width variability. Sun, et 

al., (2010) used the GLUE methodology to reduce this uncertainty in calibration of river width -to- 

discharge estimation with the HYMOD hydrological model. From 50000 samples of the parameter 

sets, 151 (Likelihood=RMSE values) succeeded as behavioural sets to be used in the model to 

simulate the measured satellite river widths. River discharge simulated with the successful 

parameters (Likelihood = Nash-Sutcliffe efficiency) gave good discharge simulation with a 

correlation R
2 

= 0.92.    

Model use in forecasting is affected by the propagation of the input uncertainties which make it less 

accurate. Data assimilation can be used to reduce the accumulation of errors in hydraulic models. 

Assimilation combines model predictions with observations and quantifies the errors between them 

in order to determine the optimal model and improve future forecasts (Mcmillan, et al., 2013). Types 

of assimilation techniques include Kalman filter (and its variations), particle filter and variational 

technique. Particle filter assimilation is a bayesian learning system which accounts for input data 

uncertainty propagation by selecting suitable input data from randomly generated ones without 
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assuming any particular distribution of their PDF (Noh, et al., 2011). Particle filter technique was 

used in studies like Matgen, et al., (2010), Giustarini, et al., (2011) where input data are in form of 

ensemble flow outputs of a hydrological model.  In Giustarini, et al., (2011) to assimilate water 

levels derived from two SAR images of flooding in the Alzette River into a hydraulic model, 64 

upstream flows were generated from an ensemble hydrologic model and used as the upstream 

boundary conditions. The most commonly used data assimilation technique however, is the Kalman 

filter which is a state-space filtering method which assumes a Gaussian distribution of errors. 

Vermeulen et al., (2005) used SAR derived flood maps and time series data to make flood 

forecasting more accurate through data assimilation. The assimilation process based on kalman 

filtering technique used adaptation factors to multiply the original model output and adaptation factor 

in order to generate a new parameter value. The process included calculation of water 

levels/discharge on the Rhine River by combining hydrologic modelling of the sub-basins and 

hydraulic modelling using downstream measured data. Data assimilation was done using measured 

water levels to determine the roughness coefficients which calibrate the calculated water levels. The 

model output water levels were compared with water levels derived from flood maps but because the 

natural flow of the channel or floodplain has been modified, good results were only obtained when 

the geo-referencing of the map is deliberately shifted or the flooding extent is exaggerated by adding 

some random noise over a large area of 7-12km. Barneveld, et al., (2008) applied the same method 

and models for flood forecasting on the Rhine River and produced good results of 10 day forecasts; 

therefore assimilating data for natural catchments results in better forecast model values. More 

information on hydrologic data assimilation techniques can be found in (Matgen, et al., (2010); 

Chen, et al., 2013); García-Pintado, et al., 2015).  

2. Satellite Altimetry data applications 

Satellite altimetry (figure 3) works on the principle of return echo of pulses sent from the satellite 

nadir point and reflected from the surfaces of open water.  

The height of the water surface is extracted from the distance between the satellite and the water 

body with reference to a local datum given as: 

cor
t

cRh 






 
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2
        (1) 

where h= water level, R = distance between the satellite altimeter and the water body, c= speed of 

light, Δt/2 = two way travel time of radar pulse, ∑cor = sum of corrections for ionospheric, wet and 

dry tropospheric, and tidal corrections. 
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This principle (figure 3) has its limitations as the accuracy of the data is affected by atmospheric 

conditions, sensor and satellite characteristics, and reflectance conditions (Belaud, et al., 2010).   

Although satellite altimetry was developed and optimized to measure ocean level changes (not 

rivers), it has been demonstrated as a source of data over large rivers and lakes (Tarpanelli, et al., 

2013; Jarihani, et al., 2013). Typical altimeter footprints are in kilometres; e.g. ENVISAT ranges 

from 1.6-10.8km, TOPEX/POSEIDON from 2.0-16.4km. Thus satellite altimetry data is used as the 

primary source of water level data in ungauged basins, and as a secondary data source to compare 

with measured data in sparsely gauged basins.  

Often times the selection of altimeter water level data to be used depends on the time and season of 

acquisition (Papa, et al., 2012). Data acquired during high flows give better measurements than low 

flow season data which usually have artefacts (in the form of islets, river banks, vegetation, etc) that 

reduce the accuracy of the data in comparison with local gauge data.  Analysing data over the Ganga-

Brahmaputra Rivers, Papa, et al., (2012) got mean errors less than cm when high flow altimetry data 

were compared with measured data, but low flow data showed errors larger than 30cm.  Siddique-E-

Akbor, et al., (2011) used data from ENVISAT to compare with 1D HECRAS model output water 

levels in order to check for accuracy and ability to get the seasonal trend. The model was run for 

periods of available ENVISAT data and the output compared with the ENVISAT time series. The 

results showed RMSE ranging from 0.70-2.4m with the best correlation obtained during high flow 

seasons. The study suggest the use of calibrated hydrodynamic/ hydrologic model outputs to 

benchmark altimetry data in ungauged and poorly gauged catchments. 

Virtual altimeter gauging stations are located at the intersection of satellite tracts with water bodies. 

Santos da Silver et al., (2007) used virtual altimeter stations as water level data sources for ungauged 

catchments. They chose the median values of virtual stations that fell within river water bodies as 

water levels for the river and compared with measured values from gauging stations located within 

20km of the virtual stations using weighted linear regression. In order to avoid comparing two areas 

with different hydrological conditions, a ratio χ was computed of the discrepancy between the 

ENVISAT master points and the linear regression and the uncertainties associated to the ENVISAT 

master points. The developed method enabled a comparison that produced regression coefficient 

greater than 0.95 between the ENVISAT and gauges series. Santos da Silver, et al., (2012) used 533 

ENVISAT virtual stations and 106 gauging data to map extreme stage variations along 32 Amazon 

basin rivers and analysed for drought in the catchment. Using 2005 drought and 2009 flooding events 

as basis, data from 2002-2005 were analysed and time series of ENVISAT per virtual station were 

averaged to get monthly values. Values of the mean amplitude stage variation for the measured 
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gauges showed good consistency with those of satellite altimetry and results for drought showed a 

range between -4 and 1m of anomalies. Getirana, et al., (2009) went even further and developed a 

rating curve of discharge values using virtual stations from ENVISAT for the upper part of the 

Branco River basin, Brazil. Virtual stations data were compared with nearby gauge data to check for 

seasonal similarity and trend, and those virtual stations with standard deviations <0.1m were chosen. 

The method used a distributed hydrological model to derive discharge values for the virtual stations. 

Model calibration and validation results showed good correlation with measured data, and the rating 

curve showed a 2.5-5% increase in bias when compared with rating curves from measured data. The 

calibration results were affected by rainfall data spatial distribution.  

Although use of satellite altimetry for river stage monitoring is usually applied to large rivers with a 

few kilometres width (Papa, et al., 2012), altimetry data was used to estimate discharge in an 

ungauged part of the Po river basin (width:200-300m) using cross section data (Tarpanelli, et al., 

2013). They used a simplified routing model (RCM) based on upstream data, wave travel time and 

hydraulic conditions on two river sections to get the flow in the second river section. The results 

showed good agreement between simulated and insitu discharges, and gave lower RMSEs (relative 

to the mean observed discharge) than calculated results using an empirical equation also based on 

cross section geometry. Seyler, et al., (2009) used altimetry virtual stations to estimate river slope. 

The calculated river slopes were used to get the river bank full discharge, and the results compared 

well with gauge data. Lake water volumes were calculated for Lake Mead (USA) and Lake Tana 

(Ethiopia) using five altimetry data products: T/P (Topex/Poseidon), Jason-1, Jason-2, GFO (Geosat 

Fellow On), ICESat and ENVISAT (Duan & Bastiaanssen, 2013). The method used Landsat 

TM/ETM + imagery data to map the water surface areas using the Modified Normalized Difference 

Water Index (MNDWI) method which enables robust extraction of water bodies from optical data 

(Zhang, et al., 2006).  The calculated water surface areas agreed with in-situ measured data with an 

R2 of 0.99for Lake Mead and 0.89 for Lake Tana with RMSEs of 2.19% for Lake Mead and 4.64%. 

The water volume was estimated using the lowest altimeter water level as the reference water level; 

this is then subtracted from all the other measurements to obtain the Water Level above Lowest 

Level (WLALL) to be used for volume estimation. Using regression analysis a relationship was 

established between the estimated water surface areas and the WLALL as A = f(WLALL) = 

aWLALL2 + bWLALL + c; where a, b, and c, are constants. The integral of this relation provides 

the Water Volume Above the Lowest water Level (WVALL). The estimated water volumes agreed 

well with in-situ water volumes for both LakeMead and Lake Tana with R2>0.95and RMSE ranging 

between 4.6 and 13.1%. 
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3. Optical satellite data  

Depending on its contents, water reflects electromagnetic waves differently; pure clear water reflects 

differently from muddy water or water containing vegetation (floating or submerged). The amount of 

energy measured from the satellite sensor also depends on the bands used; blue band penetrates 

water up to 10m, red band is partially absorbed, and near infra-red band is totally absorbed. These 

sensor properties consequently affect the image, so that an image acquired using the blue band will 

measure reflectance from any submerged vegetation within its reach, while red/near infra-red images 

will show water as dark grey/ black respectively (Meijerink, et al., 2007).  

With the availability of more optical satellites with relatively low temporal resolutions globally, 

many scenes of archived data can be accessed and used for change detection studies and flood extent 

mapping in areas with little cloud cover. Penton & Overton, (2007) combined flood mask extents 

from LandSat ETM of four flood events with LIDAR DEM to produce water heights for the 

floodplain. The heights of the flood mask water points were used to interpolate a water height 

surface which was subtracted from the DEM to produce the inundation map.  To check for water 

surface change, satellite microwave data from AMSR-E satellite was used to calibrate CREST 

hydrologic model using ratio brightness temperature measurements over water bodies and calibrated 

dry areas (Khan, et al., 2012). The AMSR-E detected water surface signal frequency was compared 

with gauge flow with a probability of exceedance <25% and showed good agreement. The output of 

model calibrated with AMSR-E detected water surface signal showed good agreement with observed 

flow frequency.  Results of validation were equally good with high correlation between model results 

and observed flows with probability of exceedance <25%. The output of the model calibrated with 

AMSR-E detected water surface signal showed good agreement with observed flow frequency 

(Nash-Sutcliff coefficient of 0.90 and a correlation coefficient of 0.80).  

Due to inaccessibility of the coastal terrain, many remote wetlands and swamps have few or no 

gauges, and are not covered by national gridding systems. As a result such areas are not included in 

topographic mapping projects; even where data is available the resolution is usually very coarse and 

not detailed (e.g. in Ezer & Liu, 2010). The morphology of coastal areas are affected by sediment 

supply, sea level change, littoral transport, storm surges, as well as hydrodynamics at the river 

mouths of deltaic areas (Kumar, et al., 2010). Tidal flat morphology for example, changes with the 

tidal cycle and this can affect navigation, coastal defence, fishing, etc. The monitoring and modelling 

of tidal flat morphology is thus important (Mason, et al., 2010). Apart from natural causes, coastal 

areas are affected by human activities like sand mining, and construction of coastal infrastructure 

like ports, harbours, groins and other coastal defence systems.  
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Satellite data are used to study coastal morphological changes that affect the ecosystem and 

biodiversity of coastal areas. Kumar, et al., (2010) studied the morphological changes in coastal parts 

Karnataka State, India using satellite and ancillary data. They calculated the rate of shoreline change 

over a ninety five year period (1910-2005) and used the results to predict future shoreline change 

rates to 2029.  25 LandSat TM imageries were used to map the tidal mudflats of Cooks Inlet Alaska 

by integrating with an inundation model (Ezer & Liu, 2010). The morphology of Cooks Inlet is such 

that, tidal floods move much faster than the ebbing period which moves very slowly; therefore areas 

at the far end of the mudflats take several hours before tidal waters lower. To study their morphology 

as a test bed for prediction of floods and its effects, mapping of these frequently flooded areas was 

done using the LandSat imagery to delineate water only areas, and show the range of shoreline data 

and water levels. The model results calculated the water depth and gave the estimated 3D topography 

of Cooks Inlet. Similarly, four LandSat TM imagery of the Ganges -Brahmaputra River mouth taken 

during low-flow and high-flow seasons were used by Islam, et al., (2002) to estimate suspended 

sediment concentration. The method used converted the digital numbers of the imageries to radiance 

values and subsequently to spectral reflectance and linearly related them to suspended sediment 

concentration (SSC). The SSC results showed higher distribution of suspended sediments during 

high discharge seasons when the turbidity zone moves further seaward reaching debts of 10m, than 

during low flow periods when the turbidity zone remains close to the shore. Yang & Ouchic (2012) 

used 2000-2009 optical and SAR satellite imagery and insitu data of the Han estuary in Korea to 

study bar morphology by relating it with tides and precipitation using regression analysis. The results 

showed areas closer to the sea correlating bar size/shape with tides, and areas closer to the river 

mouths correlating with precipitation. 

Optical satellite images of Sumatra Island were used to study post tsunami coastal recovery based on 

beach nourishment and sediment refilling. Liew, et al., (2010) used 1m Ikonos images of pre-

tsunami, tsunami, and post tsunami periods to show that coasts affected by tsunamis naturally rebuild 

to their former morphological states in areas with little anthropogenic activity. The results showed 

straight beaches rebuilding few weeks after the tsunami, but recovery of barrier beaches and lagoons 

is much slower, enabling inland rivers and streams to directly discharge into the ocean. Thus, they 

concluded that due to the fast recovery of coastal features post tsunami, sedimentary deposits are 

better indicators of coastal geomorphology than tsunami events.  
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4. Satellite derived DEM data applications 

Satellite data provide topographic information in the form of digital elevation models (DEM's) 

generated from radar echoes of spot heights e.g. ASTER DEM, SRTM, and SPOT DEM. The most 

common and freely available DEM is the Shuttle Radar Topographic Mission (SRTM) DEM flown 

in February 2000 which covered 85% of the earth's surface.  SRTM which was obtained through 

SAR interferometry of C-band signals is available in 30m and 90m spatial resolutions and an 

approximate vertical accuracy of 3.7m (Syvitski, et al., 2012). The vertical accuracy of SRTM is 

higher in areas with gentle slopes than on steep slopes; on low-lying floodplains SRTM has shown 

less than 2m accuracy. More information on SRTM DEM accuracy can be found in (Yan, et al., 

2015; Jarihani, et al., 2015).   

At the land-water boundary in areas with gentle slopes, satellite DEMs can be used to measure river 

stage when combined with high resolution imagery. Such combinations have been used in flood 

inundation mapping, although there is less accuracy in situations where the water edge is obscured 

by vegetation (Smith, 1997).  Syvitski, et al., (2012) adjusted SRTM data using ocean heights 

measured by the TOPEX/POSEIDON satellite altimeter to enable the mapping of floodplain zones. 

Advanced microwave Scanning Radiometer (AMSR-E) data provided brightness temperature 

measurements of the floodplain. The ratio of land area brightness temperatures to water area 

brightness temperature gave the discharge estimator; chosen dry areas were used as calibration areas 

for measurements over water covered areas. A rating curve of the ratio versus discharge was then 

used to extract the discharge values. Four floodplain zones were classified around the world from the 

33 floodplains studied, namely: container valleys, floodplain depressions, nodal avulsions and delta 

plains. SRTM data measure surface level which over river channels is equivalent to water levels 

when the land water boundary is delineated. Jung, et al., (2010) used insitu (bathymetry and cross 

sectional) data and SRTM DEM water levels to derive water surface slope, and calculate the 

discharge of the Brahmaputra River. The cross sectional water level was obtained by fitting a first 

degree polynomial function to the SRTM data elevation. The average calculated discharge results 

when compared to insitu gauge reading gave a difference of 2.3%. Two DEM's of the Morecambe 

bay were used to determine the relative change in inter-tidal sediment volume above and below mean 

sea level (Mason, et al., 2010). The first set of DEMs was derived from satellite SAR imagery and 

the second set from LiDAR. By using the sea height as zero level the LiDAR DEM was normalized 

to the same height as the SAR DEM. The relative change in sediment volume was derived by 

subtracting the normalized LiDAR DEM heights from the SAR DEM.  SRTM 30m data was 

combined with MODIS 500m water mask data to produce 30m static water masks of 2003 flooding 
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along the Mississipi river (Li, et al., 2013). The method involved using SRTM to mark the minimum 

water level from the MODIS water mask, which is then used to calculate the maximum water-level 

for that pixel using a water fraction relation. All SRTM 30m pixels with heights between minimum 

and maximum water levels are classified as water, and all those with heights higher than the 

maximum level are classified as dry. Consequently, the 500m MODIS water mask is integrated into 

a 30m water mask with the SRTM. The results gave detailed flood maps with the same flooding 

coverage as the MODIS water masks but enlarged 18 times. The flood maps were compared with 

Landsat TM images of the flood and showed over 94% match in water area coverage. Errors/ 

mismatch were found to be mostly around areas with trees and vegetation cover. 

 

3. Future needs and direction 

1. Gaps and limitations  

As useful as satellite data applications have been in estimating surface water parameters, the 

measurements come with limitations due to sensor specifications/ errors, pre and post data 

processing techniques, calibration, measurement conditions, satellite distance from the targets, etc. 

Optical satellite data for example is limited to day time acquisition due to its dependence on sunlight, 

and is not very useful in areas perpetually covered by clouds because the target cannot be reached 

(Smith, 1997).  

Since satellite data is used for calibration, its accuracy when compared with measured data is very 

important. Satellite data accuracy is estimated using different error measurement techniques (e.g. 

RMSE, Mean error), checking for correlation with measured data, or measuring the coefficient of 

determination (e.g. Tarpanelli, et al., 2013). There are multiple sources of error that can affect the 

data; for example the uncertainties in using satellite river width for calibration include: the satellite 

estimation of the river width, the power relation between the discharge and river width (which is an 

approximation of the conditions at a river cross section when there is no backwater effect) and the 

assumption of a stable/static river cross section. However these sources of uncertainty are lowest for 

the period of satellite data acquisition and increase in with change in season and hydraulic conditions 

(Sun, et al., 2010). 

SAR 

The quality and usefulness of SAR data for hydrological studies depends on meteorological 

conditions (wind and rain), emergent vegetation, incidence angle and the polarisation mode used for 
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data acquisition. Horizontal - Horizontal (HH) polarisation gives better results for flood extent 

mapping than Vertical - Horizontal (VH) and Vertical - Vertical (VV) polarisations. However, VH 

and VV polarisations are also useful since VV polarisation data highlight vertical features like 

vegetation, and VH polarisation data reflect the horizontal nature of the smoothed flood water 

(Schumann, et al., 2007). Another important factor for SAR data use in hydrology is the river size. 

Until the recent launch of CSK, RADARSAT-2, PALSAR, and TerraSAR-X, most available SAR 

satellites had large spatial resolutions which excluded smaller rivers from being captured; since it 

was difficult to delineate them in an image (Sun, et al., 2009). 

Satellite SAR used for delineation of water extent has the limitation of floodplain vegetation being 

included and classified as water pixels; more so the height of the SAR waterline does not show the 

variation in water height with flow direction. 

Altimetry 

For river stage estimation and wetlands delineation, problems encountered with satellite altimetry 

data include: incorrect processing of radar echoes over rivers/lakes by satellite trackers, poor 

temporal resolution, and lack of information within the data about the atmospheric wet vapour 

content over lakes/rivers (Crétaux, et al., 2009). The errors recorded while using altimeter water level 

data can however be increased by incorrect choice of data; which frequently occurs when dry area 

data is retained within the data for computing water stages in low flow seasons (Santos da Silva, et 

al., 2007). The difference between altimeter and gauge measurements also increases with distance 

between the points, topography and river width (León, et al., 2006). When compared with gauge 

data, RMSEs of altimetry data measured over the Amazon have ranges from 30cm-70cm using data 

from ENVISAT, ERS2, and GeoSaT (Tarpanelli, et al., 2013),however at cross track situations 

where altimetry measurements are taken at the same location with a gauging station the difference 

can be <20cm (Seyler, et al., 2009). The accuracy of altimeter measurements over rivers is also 

affected by the river width and the morphology of the river banks so that data on narrow rivers and 

vegetated banks have lower accuracy (Papa, et al., 2012). Furthermore, the specifications of the 

altimetry system itself can affect quality of measurements; for example ENVISAT data have been 

shown to have lower RMSE compared to ERS2 data due to ENVISATs ability to switch frequency 

modes in response to change in terrain and its smaller bin width (Tarpanelli, et al., 2013).  
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DEM 

The limitation of satellite DEM is in the data quality. DEM data needed for modelling and other 

analyses that require topographic data depends on the acquisition method, the data processing and 

the characteristics of the mapped terrain. Satellite derived DEMs have less vertical accuracy, higher 

bias and higher RMSE than other DEMS derived from airborne LIDAR and airborne IFSAR (Fraser 

& Ravanbakhsh, 2011).  

In spite of their limited accuracy satellite DEMs have global or almost global coverage unlike 

airborne DEMs. Therefore they are useful sources of topographic data especially for low lying 

coastal areas with gentle slopes (Gorokhovich & Voustianiouk, 2006; Schumann, et al., 2008); and 

consequently applicable for inundation modelling (Karlsson & Arnberg, 2011). Figure 4 shows 

results of flood modelling undertaken for the Lower Niger River (Nigeria) using SRTM 30 and 90m. 

The Niger River overflowed its banks in 2007 and flooded a large part of the floodplain. MODIS 

satellite data was used to map the flood and provided the only reference record of the flood. Figure 4 

shows that the model results are comparable with the MODIS flooding extent.  

Generally satellite based DEMs are either generated from radar echoes of spot heights, or from SAR 

interferometry. However Mason et al., (2010) also derived DEMs from SAR images. The method 

involved using SAR water height to interpolate a set of waterlines, which were then used to produce 

a 50m DEM of the intertidal zone with an accuracy of 40cm. The method is however limited by the 

temporal de-correlation of the waterline heights. 

2.  Current data use strategies 

Innovative methodologies are being introduced by scientists to better exploit satellite data to 

overcome the data limitations within present uncertainties. For example cloud filtering techniques 

have been developed that remove a high percentage of the clouds in optical data, thus adding to data 

availability. In terms of temporal limitations, combining MODIS data with its high temporal 

resolution with other types of satellite data is a technique that is now exploited more  (Jarihani, et al., 

2014). The technique generates new datasets that blend higher spatial resolution at the high temporal 

resolution of MODIS. When combined with DEM data for example, flood maps that provide daily 

information can be easily generated (Li, et al., 2013). SRTM has been combined with MODIS data to 

generate a 250m water mask called MOD44W; because of the high temporal resolution of MODIS 

this product can be updated regularly to provide static water masks (Li, et al., 2013). 
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Use of Satellite SAR for flood extent mapping and model calibration can be improved through 

combination with other higher resolution data to increase precision in flood height determination. To 

improve the vertical accuracy of SAR waterline extent during floods, Mason, et al., (2007) used 

waterline data extracted from ERS-1 SAR corrected with 1m resolution LIDAR heights (along the 

Thames River bank) to calibrate a LISFLOOD model of flood extent. The output waterline when 

compared with waterline measured from aerial photos showed a lower root mean squared error than 

those obtained using SAR data only.  

Satellite DEMs that are enhanced through vegetation smoothing or hydrological correction have 

shown lower errors compared with the original data (Jarihani et al., 2015). Due to the availability of 

the hydrologically corrected SRTM DEM, a global static 30-m water mask has been generated which 

is very useful for flood detection especially in data scarce areas. 

To improve the use of satellite altimetry data, interpolation methods have been developed to correct 

the data accuracy and precision by comparing the data with lakes and reservoir measurements. Thus 

the correlation with measured gauge data, range of RMSE and reduction in discrepancies have 

improved to levels >0.95 correlation during validation (Ričko, et al., 2012). Altimeter measurements 

over modified channels is however less reliable than that of natural catchments (Kim, et al., 2009). 

The use of altimeter data is also limited by the poor temporal resolution of satellite altimeters; which 

range from days to several weeks. Belaud, et al., (2010) developed a method to interpolate river 

water levels in-between satellite observations in order to provide continuous data. The developed 

method used upstream ground station measurements and altimetry data as output to calibrate a 

propagation model by adjusting the satellite observed values. The propagation model used a transfer 

function to predict water level variations based on the relationship between the propagation times 

and water levels. The results were able to predict flood peaks during periods of no satellite coverage. 

Crétaux, et al., (2011) addressed the problem of data gaps by combining three sets of altimetry data 

(TOPEX/POSEIDON, ENVISAT1 and JASON2) with MODIS measurements of water extent to 

monitor wetlands and floodplains in arid/semi arid regions. The MODIS data was used to classify the 

open water pixels whose relative values were then extracted from altimetry data. The results 

provided relative water heights, due to the low temporal resolution of the altimetry data sets. 

Altimeter data from ICESat was used to calibrate a large scale LISFLOOD-FP hydro-dynamic flood 

model of the Zambezi River, Mozambique (Schumann, et al., 2013). Eight in-channel water levels 

from ICESat from one altimeter pass were used for calibration of model output. The models with a 

mean bias within one standard deviation of the ICESat values were accepted as comparable with 

Landsat measured flooding extents. The results showed 86% agreement between the Landsat flood 
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extent and the accepted model outputs; corresponding to mean distance of 1.42-1.60 km. After 

calibration the model upstream boundary was changed to forecast flow values in order to forecast 

downstream flooding. The results correlated with the baseline model, but showed that with a lead 

time of 5 days, better basin wide precipitation observations will enable flood forecasting on the 

Zambezi.  

3. Future direction 

Available literature show that efforts have been made to develop an empirical relationship between 

satellites derived surface water extents (including flooded areas) with river stage or discharge. Such a 

relationship has been established for braided rivers; for non-braided rivers the results have depended 

on the river system, thus inundation area can increase or decrease with stage. With better SAR 

missions such as TerraSAR-X- TanDEM-X formation, DEM data with good vertical accuracy are 

now available for better hydraulic flood modelling. TanDEM-X has 12.5m spatial resolution and 

produces less than 2m vertical accuracy (DLR, 2015). Although made for polar ice change 

estimation and monitoring, the high spatial coverage of Cryosat-2 is also being exploited for near-

shore mapping and inland water monitoring (Villladsen, Andersen, & Stenseng, 2014). Cryosat-2 

which operates in SAR and interferometric modes, has a drifting orbit and therefore (unlike all the 

other satellites) has little repetitive data (since repeat cycle is 369 days). Its high spatial density 

coverage makes it good for hydraulic modelling (and all its evaluations have produced good results). 

With successful use of Cryosat-2 data to obtain river water levels and topography, the use of drifting 

orbits is being proposed as more suitable for river water surface topography mapping, derivation of 

river profiles and building of pseudo time series (Bercher, et al., 2014). 

Other satellite products that improve the accuracy of satellite data based research in hydrology 

include: Cosmo-SkyMed from the Italian Space Agency, RadarSat2 from the Canadian Space 

Agency, and Sentinel-1 from ESA (Schumann, et al., 2015). Others are Global Change Observation 

mission-water (GCOM-W) from Japan Space Agency (JAXA), Global Precipitation Measurement 

(GPM) from JAXA /USA, Soil Moisture Active Passive (SMAP) from USA.  

To improve quality of satellite SAR and topographic data, new satellite missions with higher 

precision instruments are being planned. One of such missions is the Sentinel constellation that will 

consist of seven satellites; two of which (Sentinel 3 and 6) are especially dedicated to hydrological 

purposes. Sentinel 1 is already in orbit and undergoing calibration; it has a C-band SAR instrument 

to continue present C-band data provision. Sentinel 3 is planned to provide fast data for flood 

emergencies, therefore it has three instruments one of which is a dual-frequency (Ku and C band) 
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advanced Synthetic Aperture Radar Altimeter (SRAL) that will provide accurate topographic data of 

oceans, ice sheets, sea ice, rivers and lakes (ESA, 2015). Sentinel 6, which will compliment the 

Sentinel 3 data, will carry on board a high precision radar altimeter.  RADARSAT constellation, a 

new Low Earth Orbit (LEO) C-band SAR mission is under development by the Canadian space 

Agency (CSA). The constellation which will have several operating modes will provide 

interferometric SAR data that can be used for wetlands and coastal change mapping, flood disaster 

warning and response with resolutions 3, 5, 16, 30, 50 and 100m (Canadian Space Agency (CSA), 

2015). 

Other upcoming satellite missions like Surface Water & Ocean Topography (SWOT) made 

especially to survey global surface water have specifications that will enable better use of satellite 

data in hydrology. SWOT which uses a wide-swath altimetry technology will also observe the fine 

details of the ocean's surface topography, and measure how water bodies change over time with 

repeated high-resolution elevation measurements. The mission, scheduled to be launched in 2020 is 

an international collaboration between the US National Aeronautics and Space Agency (NASA) and 

Centre National E'tudes Spatiales (CNES) of France; supported by the Canadian Space Agency 

(CSA) and the UK Space Agency (UKSA) (Pavelsky, et al., 2015). Another product of international 

cooperation that will support hydrological research is the Jason3 altimetry mission from NOAA, due 

to be launched in July 2015. The Jason3 mission is dedicated to the measurement of sea surface 

height, wave, wind speed, and will provide useful data to monitor sea level rise, coastal areas 

modelling of oil spills, forecasting of hurricanes etc. To enable precise detection of sea level change, 

Jason3 combines GPS, radar altimetry, and a microwave radiometer to produce data within 1cm 

accuracy every 10 days (NOAA, 2015).  Jason3 is jointly owned by US National Oceanic and 

Atmospheric Adminitration (NOAA), CNES-France, European Organisation for the Exploitation of 

Meteorological Satellites (EUMETSAT), and US NASA.  

 

4. Conclusions 

Satellite remote sensing provides a source of hydrological data that is unhindered by geopolitical 

boundaries, has access to remote/unreachable areas, and provides frequent and reliable data (Jung, et 

al., 2010). Use of satellite data to estimate hydrological parameters continues to increase due to 

greater availability of satellite data, improvement in knowledge of and utilization of satellite data, as 

well as expansion of research topics. A very important catalyst to this growth in satellite data 

utilization is the ability to use it in a GIS environment. GIS enables comparison and deduction of 
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relationships that exist amongst the complex data sources used for analysis. Thus relationships like 

the effects of land-use change on surrounding water bodies or water management are easily analysed 

and depicted. Consequently, satellite data is commonly used for: mapping of water bodies, testing of 

inundation models, soil moisture measurements, precipitation monitoring, estimation of evapo-

transpiration, and mapping of flood extent. 

Data quality, pre/post data processing etc, introduce new errors and increase the uncertainties in 

satellite data utilization. However several methods have been developed to quantify the errors and 

produce acceptable results. Moreover, a number of satellite missions to address issues of climate 

change are being planned; some of these are dedicated to water resources management and will carry 

high precision instruments. The products of these missions will have less error; consequently results 

obtained will more accurate, thereby filling the gap in data availability.  
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Table 1. Some satellite mission and sensors used for  hydrological studies. 

Mission Sensor (s) Application (hydrological) 

Aqua AIRS, AMSR-E, AMSU-A, 

CERES, HiRDLS, HSB, MODIS   

      Surface temperatures 

      of land and ocean.  

        (Flood    mapping) 

CryoSat DORIS-NG, Laser Reflectors  

(ESA), SIRAL 

Ice thickness (Applied also 

for near-shore mapping and 

inland water monitoring) 

Envisat AATSR, ASAR, ASAR  Physical oceanography, ice 
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(image mode), ASAR  

(wave mode), DORIS-NG, 

MERIS, MIPAS 

and snow, (Ocean/ river water 

level altimetry) 

ERS 1 

 

ERS 2 

 

 

Jason 1 

 

Jason 2 

 

Radarsat 1/2 

Sentinel 1 

SRTM 

 

SPOT 4 

 

SPOT 5 

 

Terra  

 

 

Topex/Poseidon 

AMI/SAR/Image,  

AMI/SAR/Wave,  

AMI/Scatterometer, ATSR    

AMI/SAR/Image,AMI/SAR/Wave, 

AMI/Scatterometer, ATSR/M 

DORIS-NG, JMR, LRA, 

POSEIDON-2 (SSALT-2), TRSR 

AMR, DORIS-NG, GPSP, JMR,  

LRA, POSEIDON-3 

C-Band SAR, X-Band SAR 

C-Band SAR 

C-Band SAR, X-Band SAR 

 

DORIS (SPOT),  

HRVIR, VEGETATION 

DORIS-NG (SPOT), HRG,  

HRS, VEGETATION 

MODIS, MOPITT, MISR,  

ASTER, CERES 

 

DORIS, LRA, POSEIDON-1 

 (SSALT-1), TMR, TOPEX 

Earth Resources, Physical 

oceanography (altimetry) 

Earth resources, Physical 

oceanography (altimetry) 

 

Physical oceanography 

(Ocean/River water level 

altimetry) 

Physical oceanography 

(altimetry) 

Flood mapping/modelling 

Flood mapping/ modelling 

Digital elevation models, 

flood modelling 

Digital terrain models, 

environmental monitoring 

Digital terrain models, 

environmental monitoring  

Physical processes, surface 

temperatures of land and 

ocean (surface water 

mapping) 

Physical oceanography 

(altimetry) 
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Figure 1. NigeriaSatX satellite image showing rivers in the Niger delta  

 

 

Figure 2. Classified NigeriaSat-1 image of the Niger delta showing five feature classes 

 



35 

 

 

Figure 3. An illustration of height measurement using satellite Altimetry 

 

 

Figure 4. Model simulation result of flooding on the Niger River (2007) using SRTM topographic 

data 
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