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Abstract 9 

Hydrological data collection requires deployment of physical infrastructure like rain gauges, water 10 

level gauges, as well as use of expensive equipment like echo sounders. Many countries around the 11 

world have recorded a decrease in deployment of physical infrastructure for hydrological 12 

measurements; developing countries especially have less of this infrastructure and where they exist, 13 

they are poorly maintained. Satellite remote sensing can bridge this gap, and has been applied by 14 

hydrologists over the years, with the earliest applications in water body and flood mapping. With the 15 

availability of more optical satellites with relatively low temporal resolutions globally, satellite data 16 

is commonly used for: mapping of water bodies, testing of inundation models, precipitation 17 

monitoring, and mapping of flood extent. Use of satellite data to estimate hydrological parameters 18 

continues to increase due to use of better sensors, improvement in knowledge of/ and utilization of 19 

satellite data, and expansion of research topics. A review of applications of satellite remote sensing 20 

in surface water modelling, mapping and estimation is presented, and its limitations for surface water 21 

applications are also discussed.  22 

 23 

1. Introduction 24 

Hydrological data collection still remains a difficult task nowadays due to non-availability of 25 

measurement devices, inaccessibility of the terrain and limitations of space/time (Quin et al, 2010; 26 

Pereira-Cardenal, et al., 2011). A good alternative to overcome these difficulties is use of satellite 27 

remote sensing, which can give a synoptic view of target areas (figure 1), measure target surface 28 

changes and therefore provide information needed for hydrological studies, river basin management, 29 
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water hazard/ disaster monitoring/prevention and water management, etc. Through the science of 30 

remote sensing, information about an object can be obtained without coming in direct contact with it 31 

(Lillesand, et al., 2004). This capability works by measuring electromagnetic energy reflected or 32 

radiated from objects on the earth's surface (figure 1), in such a way that the difference in reflectivity 33 

of objects enables recognition/detection and isolation of each type/class (figure 2).  34 

Remotely sensed data are of two types depending on the main source of energy. Passive remote 35 

sensing depends on natural energy from the sun. Active remote sensing uses controlled energy 36 

sources from instruments beaming sections of the electromagnetic spectrum. Imagery obtained via 37 

instruments that measure reflectance from the sun, are known as optical imagery. Optical imagery 38 

from satellites is therefore acquired during the day since it depends on the reflections of sunlight 39 

from objects on the earth surface in the absence of cloud cover. Depending on the mission 40 

specifications satellites are placed on different kinds of orbits around the earth. The orbits include: 41 

Low Earth Orbit (LEO), Medium Earth Orbit (MEO), and Geo-Synchronous orbits (GSO); variations 42 

of these classes of orbits are the polar orbit, the Geostationary orbits, the Molneya orbit and the sun-43 

synchronous orbit. Most optical satellites used for hydrological applications are in near earth orbits 44 

and are therefore able to provide detailed data at high ground (e.g. figure 1); although the best 45 

resolution data are usually not freely available and expensive to obtain. Due to this detailed 46 

resolution, optical satellite imagery is used for inundation mapping, drainage mapping, disaster 47 

monitoring, land-use/land cover change analysis etc (Owe, et al., 2001). 48 

Active remote sensing can provide data as imagery (e.g. radar), and in the form of pulse 49 

measurements (e.g. altimeters and scatterometers). Radar is an active source of remote sensing data 50 

which acquires data via instruments that emit radar signal towards the object of interest and measure 51 

the reflected energy from the object. Radar can penetrate cloud cover and can be acquired at any time 52 

independent of availability of sunlight. The penetration characteristic of the SAR satellites enables 53 

measurement of soil moisture in bare areas, making it useful for land-use and land cover studies as 54 

well as earth observation and monitoring (Owe, et al., 2001). SAR is a side-looking instrument that 55 

sends out signals inclined at an angle. For water bodies the reflectivity of SAR waves is spectacular 56 

giving a very low radar return and very dark images. However when there are surrounding or 57 

emergent vegetation, wind, turbulence etc, there can be significant backscatter; which affects the 58 

accuracy of information obtained from the radar measurements (Smith, 1997).   59 

Satellite remote sensing has been applied in hydrology for many years. Table 1 shows some satellite 60 

missions and sensors used for hydrological studies and the application areas. A review by Smith, 61 

(1997) shows that the earliest hydrological applications were in water body and flood mapping; the 62 
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review includes many examples of inundation maps developed from satellite imagery. Owe, et al., 63 

(2001) also compiled papers presented at a conference on applications of remote sensing in many 64 

aspects of hydrology.  Beyond mapping, satellite data in the form of imagery, DEM, altimetry data, 65 

etc, can be used as hydraulic model input forcing factors or to constrain model data during 66 

calibration/validation/verification (Pereira-Cardenal, et al., 2011). Satellite based estimates of river 67 

flow, river width, water levels and flooding extent are used for model 68 

calibration/validation/verification. Choice of suitable observed data can introduce subjectivity in the 69 

modelling process and subsequently increase uncertainty. Consequently, satellite data used to 70 

benchmark the model output accuracy can influence model calibration and validation (Stephens, et 71 

al., 2012).  A review of types of satellite data used for flood modelling by Yan, et al., (2015) 72 

discusses satellite data accuracy and methods used for error reduction.  73 

The main scope of this review is to present literature findings about application of satellite remote 74 

sensing in surface water modelling, mapping and parameter estimation. The review limits itself to 75 

water flowing within channels and coastal areas, and therefore excludes applications of satellite 76 

remote sensing for soil moisture measurement, rainfall estimation, rainfall/run off modelling and its 77 

associated routing estimations.  78 

The paper is structured into two main parts. The first gives an overview of applications of SAR, 79 

Optical, Altimetry and DEM data for estimation of surface water parameters, modelling and 80 

mapping. The second part discusses the limitations of utilizing satellite derived data in surface water 81 

applications and the future directions aimed to fill the gaps. The review ends with a conclusion.  82 

 83 

2. Overview of Satellite data applications for surface water studies 84 

1. SAR data applications 85 

SAR data are useful for flood extent measurements even in cloud covered areas, and are therefore 86 

often used to make flood maps (e.g. Schumann, et al., 2007; Horritt, 2006; Di Baldassarre, et al., 87 

2009; Vermeulen, et al., 2005; Mason, et al., 2007; Long et al., 2014).  The variation of radar 88 

backscatter from different targets enables flood extent mapping. Several methods have been used to 89 

delineate the flooding extent from SAR data; e.g. utilization of multi-polarized Advanced SAR 90 

images, application of a statistical active control model,  multi-temporal image enhancement and 91 

differencing, histogram thresholding/ clustering, radiometric thresholding, pixel-based segmentation, 92 

use of artificial neural networks, etc (Long et al,. 2014) . Multi-temporal image flood mapping 93 
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involves acquiring flooding and non-flood images of the same area and combing them to get an 94 

image which indicates change by colours appearing in the image. A modification of the multi-95 

temporal technique introduces an index that shows the changing areas (Skakun, 2010). Sarhadi et al., 96 

(2012) applied satellite stereoscopic images of Cartosat-1 to delineate flood hazard maps; the method 97 

used Rational Polynomial Coefficients to extract a high resolution DTM and detailed 98 

parameterization of the channel in Halilrud basin and Jiroft city in south-eastern Iran.  99 

Segmentation threshold algorithms are used to delineate flood extents after a threshold has been 100 

manually chosen. Flood extent maps were created over four years of seasonal flooding in the Chobe 101 

floodplain, Namibia (Long et al,. 2014). 11 scenes of SAR data were enhanced using adaptive 102 

Gamma filtering (to remove speckles), and difference images created by subtracting from the 103 

reference non flood season image. The histograms of the difference images were then used to create 104 

thresholds separating flooded and non-flooded areas. The threshold for flooded areas was determined 105 

by subtracting the standard deviation multiplied by a coefficient Kf from the mean pixel value. For 106 

flooding under vegetated areas, the threshold was determined adding the standard deviation 107 

multiplied by a coefficient Kfv to the mean pixel value. The flood maps were then created using 108 

segmentation clustering in ENVI. Segmentation based on self-organizing Kohonen’s maps (SOM) 109 

neural networks was used by Skakun (2010) to map flooding from five rivers in China, India, 110 

Hungary, Ukraine, Laos and Thailand. Training and testing of the neural networks were based on 111 

ground-truth data which enabled classification of water and dry land pixels. SOM produces a low 112 

dimensional representation of the input space that still preserves the topological properties of the 113 

input space. The method enabled automatic discovery of statistically salient features of pattern 114 

vectors, clustering and classification of new patterns. The resulting flood maps show an 85-95% 115 

classification rate compared with independent testing data; showing the applicability of the method 116 

for emergency flood mapping.   117 

Interferometric phase difference between two SAR images is called the interferogram and includes 118 

signatures from topography, noise, displacement, atmospheric effects and baseline error. The 119 

advantage of phase changes in SAR interferometer data (INSAR) enables detection of change in the 120 

Earths land-use and land cover. This characteristic is very useful for identification of flooded areas 121 

over wetlands as used by (Dellepiane et al., 2004). The method, based on fuzzy connectivity 122 

concepts, automatically selected the coastline from two InSAR imagery using the coherence of the 123 

two images. 124 

InSAR has been used to calculate the changes in water levels using satellite altimetry data for 125 

calibration (Kim, et al., 2009; Jung, et al., 2010). To obtain the displacement phase used to obtain the 126 
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change in water height, all other signals are removed. The interferogram data gives the relative water 127 

level change between two locations. Where there is measured water level data (within acceptable 128 

radius) the relative water level change can be converted into the absolute water level change. Jung el 129 

al., (2010) used interferometric SAR data from JERS-1 to study change in water levels for the 130 

Amazon and Congo rivers. The data were acquired for the low flow and high flow seasons and 131 

processed using the 'two pass' method which includes flat earth phase removal and interferometric 132 

phase removal. Flooded vegetation, non-flooded areas and open water were differentiated based on 133 

backscatter 'noise floor' and 'mean interferometric coherence' of flooded and non-flooded areas. The 134 

temporal variation in water level dh/dt was obtained by converting the phase changes in imagery to 135 

water level referenced to the WGS84 datum using altimeter measurements from Topex/Poseidon. 136 

Using dh/dt to characterize the Amazon floodplain showed increasing dh/dt from upstream to 137 

downstream within a complex pattern of interconnected channels with distinct boundaries and 138 

varying dh/dt. The Congo River characterization of dh/dt showed a uniformity and limited 139 

connectivity between the river and the adjoining wetlands. Schumann et al., (2007) used Envisat 140 

ASAR data to identify spatial clusters of channel roughness in order to calibrate a HEC-RAS model 141 

of Alzette river flooding. ERS SAR data of the same event and an aerial photo of an earlier event 142 

were used for validation of the calibrated model and overall model performance was compared to 143 

measured high water marks at seven points during the flood event. The mean cross sectional water 144 

levels used for model evaluation were estimated from the intersection of ASAR flood extent 145 

boundaries with LIDAR DEM. At each cross section, ranges of channel roughness values are run in a 146 

Monte Carlo simulation and the CDF's of the values are generated; these CDF's are compared with a 147 

CDF of uniformly distributed model (where model functioning is same over the entire parameter 148 

space). The deviation of the individual CDF's from the CDF of uniform distribution give the measure 149 

of the parameter sensitivity, the sum of which show the local functioning of the model at that cross 150 

section. CDF's with similar error characteristics are grouped into clusters using k-mean clustering. 151 

The results showed that two clusters of roughness values are enough to measure the parameter 152 

sensitivity.  153 

To utilise SAR data for flood depth estimation, methods have been developed that derive flood 154 

heights from flood extent data. The methods used combine SAR data with elevation data sources like 155 

DEMs, altimetry, and TINs. Mason, et al., (2007) and Schumann, et al., (2006), estimated the mean 156 

cross sectional water levels used for model evaluation from the intersection of SAR flood extent 157 

boundaries with LIDAR DEM. Schumann, et al., (2006) used  linear regression and an elevation 158 

based model (REFIX) to convert SAR flood extent to heights and derived the flood water depth. 159 
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Assuming a horizontal water height at cross sections, the water levels on the left and right banks 160 

were taken and used to subtract the floodplain DEM values to get the water height. The flood water 161 

line was then extracted using the regression equation: H= a.d+b, where a= slope of the regression 162 

line, d= downstream water distance, b= intercept. Using the cross sections as break lines and the 163 

flood water heights extracted, a TIN of the water heights at each cross section was produced. The 164 

flood water depth was derived by subtracting the DEM at the cross sectional interception points from 165 

the flood water height TIN. The result showed an RMSE of 18cm for a channel with no hydraulic 166 

structures and 31cm for a channel with many hydraulic structures and changes in slope. The study 167 

recommends that nonlinear regression/ piece wise regression can be used in the case of sudden 168 

changes in slope (due to hydraulic structures etc) that cause the channel geometry to change.  169 

Altimetry data from ENVISAT was combined with INSAR data from PALSAR and Radarsat-1 to 170 

compute absolute water level changes over the wetlands of Louisiana (Kim et al., 2009). Two pass 171 

INSAR method was used to check the two SAR images acquired at different times for phase 172 

differences. The ENVISAT altimetry data was used as the reference absolute water level change 173 

dh0/dt to compute the all the changes in water level over the domain. The results obtained for water 174 

level changes showed better comparison with the wetland gauge than with the channel gauge which 175 

had many levees interrupting the flow. Westahoff, et al., (2010) mapped probabilistic flood extents 176 

from SAR data by using the amount of backscatter and local incidence angles to create histograms 177 

that distinguish between wet and dry areas. The histograms were used to calculate the probability of 178 

flooding of every pixel. 179 

Satellite data is used to calibrate hydrologic models especially in un-gauged catchments (Vermeulen 180 

et al, 2005; Sun, et al., 2009).  Calibration of flood inundation models can be done using several 181 

model parameters, but the most sensitive parameter that shows a direct relation with water stage and 182 

therefore flooding extent and timing is the channel roughness (Schumann et al., 2007). 183 

Woldemicheal et al., (2010) showed that for braided rivers where the hydraulic radius is obtained 184 

from indirect sources like satellite data, Manning's roughness coefficients can be used to minimize 185 

computed water level outliers. Roughness coefficient values to be used for calibration can be 186 

determined via flood modelling where the measured data are available. 187 

 Satellite based maps of flood extent have been used to calibrate flood inundation models either 188 

based on single or multiple flood events (Di Baldassarre, et al., 2009). Horritt (2006) calibrated and 189 

validated a model of uncertain flood inundation extent for the Severn River using observed flooded 190 

extent mapped from satellite imagery.  Model accuracy was checked using reliability diagrams, and 191 

model precision was checked using an entropy-like measure which computes the level of uncertainty 192 
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in the flood inundation map. The ensemble model outputs were compared with ERS and Radarsat 193 

data for calibration using the measure of fit. The results showed that the mapped flood extent 194 

produced only a modest reduction in the uncertainty of model predictions because the timing of 195 

satellite passes did not coincide with the flood event. Di Baldassarre, et al., (2009) showed that 196 

satellite flood imagery acquired during an event can be reliable for flood mapping. They used 197 

imagery of a single event covered by two satellite passes captured almost at the same time to develop 198 

a method to calibrate flood inundation models based on 'possible' inundation extents from the two 199 

imageries. Hydrodynamic flood model extents were compared with the satellite flood extent maps in 200 

order to calibrate the floodplain frictional parameters and determine the best satellite resolution for 201 

flood extent mapping. In spite of their different resolutions the result showed that both satellite 202 

imageries could be used for model calibration, but different frictional values have to be used in the 203 

model. 204 

For un-gauged basins where hydrological data is inaccessible, satellite measurement of river width 205 

can be used for hydrological model calibration (Schumann, et al., 2013; Sun, et al., 2009). River 206 

width can be estimated from several sources of satellite data; making it more readily available than 207 

discharge or water level. Sun, et al., (2009) used measured river width from satellite SAR imagery to 208 

calibrate HYMOD hydrological model. The model calibration based on river width gave 88.24% 209 

Nash coefficient, with a larger error during low flow than high flow periods; implying its usefulness 210 

for flood discharge calculations. From the results, braided rivers showed lower errors for good Q-W 211 

relations from satellites. However, a small error in width measurement can lead to a large error in 212 

discharge estimation as the discharge variability was much larger than the width variability. Sun, et 213 

al., (2010) used the GLUE methodology to reduce this uncertainty in calibration of river width -to- 214 

discharge estimation with the HYMOD hydrological model. From 50000 samples of the parameter 215 

sets, 151 (Likelihood=RMSE values) succeeded as behavioural sets to be used in the model to 216 

simulate the measured satellite river widths. River discharge simulated with the successful 217 

parameters (Likelihood = Nash-Sutcliffe efficiency) gave good discharge simulation with a 218 

correlation R
2 

= 0.92.    219 

Model use in forecasting is affected by the propagation of the input uncertainties which make it less 220 

accurate. Data assimilation can be used to reduce the accumulation of errors in hydraulic models. 221 

Assimilation combines model predictions with observations and quantifies the errors between them 222 

in order to determine the optimal model and improve future forecasts (Mcmillan, et al., 2013). Types 223 

of assimilation techniques include Kalman filter (and its variations), particle filter and variational 224 

technique. Particle filter assimilation is a bayesian learning system which accounts for input data 225 
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uncertainty propagation by selecting suitable input data from randomly generated ones without 226 

assuming any particular distribution of their PDF (Noh, et al., 2011). Particle filter technique was 227 

used in studies like Matgen, et al., (2010), Giustarini, et al., (2011) where input data are in form of 228 

ensemble flow outputs of a hydrological model.  In Giustarini, et al., (2011) to assimilate water 229 

levels derived from two SAR images of flooding in the Alzette River into a hydraulic model, 64 230 

upstream flows were generated from an ensemble hydrologic model and used as the upstream 231 

boundary conditions. The most commonly used data assimilation technique however, is the Kalman 232 

filter which is a state-space filtering method which assumes a Gaussian distribution of errors. 233 

Vermeulen et al., (2005) used SAR derived flood maps and time series data to make flood 234 

forecasting more accurate through data assimilation. The assimilation process based on kalman 235 

filtering technique used adaptation factors to multiply the original model output and adaptation factor 236 

in order to generate a new parameter value. The process included calculation of water 237 

levels/discharge on the Rhine River by combining hydrologic modelling of the sub-basins and 238 

hydraulic modelling using downstream measured data. Data assimilation was done using measured 239 

water levels to determine the roughness coefficients which calibrate the calculated water levels. The 240 

model output water levels were compared with water levels derived from flood maps but because the 241 

natural flow of the channel or floodplain has been modified, good results were only obtained when 242 

the geo-referencing of the map is deliberately shifted or the flooding extent is exaggerated by adding 243 

some random noise over a large area of 7-12km. Barneveld, et al., (2008) applied the same method 244 

and models for flood forecasting on the Rhine River and produced good results of 10 day forecasts; 245 

therefore assimilating data for natural catchments results in better forecast model values. More 246 

information on hydrologic data assimilation techniques can be found in (Matgen, et al., (2010); 247 

Chen, et al., 2013); García-Pintado, et al., 2015).  248 

2. Satellite Altimetry data applications 249 

Satellite altimetry (figure 3) works on the principle of return echo of pulses sent from the satellite 250 

nadir point and reflected from the surfaces of open water.  251 

The height of the water surface is extracted from the distance between the satellite and the water 252 

body with reference to a local datum given as: 253 

cor
t

cRh 






 


2
        (1) 254 



9 

 

where h= water level, R = distance between the satellite altimeter and the water body, c= speed of 255 

light, Δt/2 = two way travel time of radar pulse, ∑cor = sum of corrections for ionospheric, wet and 256 

dry tropospheric, and tidal corrections. 257 

This principle (figure 3) has its limitations as the accuracy of the data is affected by atmospheric 258 

conditions, sensor and satellite characteristics, and reflectance conditions (Belaud, et al., 2010).   259 

Although satellite altimetry was developed and optimized to measure ocean level changes (not 260 

rivers), it has been demonstrated as a source of data over large rivers and lakes (Tarpanelli, et al., 261 

2013; Jarihani, et al., 2013). Typical altimeter footprints are in kilometres; e.g. ENVISAT ranges 262 

from 1.6-10.8km, TOPEX/POSEIDON from 2.0-16.4km. Thus satellite altimetry data is used as the 263 

primary source of water level data in ungauged basins, and as a secondary data source to compare 264 

with measured data in sparsely gauged basins.  265 

Often times the selection of altimeter water level data to be used depends on the time and season of 266 

acquisition (Papa, et al., 2012). Data acquired during high flows give better measurements than low 267 

flow season data which usually have artefacts (in the form of islets, river banks, vegetation, etc) that 268 

reduce the accuracy of the data in comparison with local gauge data.  Analysing data over the Ganga-269 

Brahmaputra Rivers, Papa, et al., (2012) got mean errors less than cm when high flow altimetry data 270 

were compared with measured data, but low flow data showed errors larger than 30cm.  Siddique-E-271 

Akbor, et al., (2011) used data from ENVISAT to compare with 1D HECRAS model output water 272 

levels in order to check for accuracy and ability to get the seasonal trend. The model was run for 273 

periods of available ENVISAT data and the output compared with the ENVISAT time series. The 274 

results showed RMSE ranging from 0.70-2.4m with the best correlation obtained during high flow 275 

seasons. The study suggest the use of calibrated hydrodynamic/ hydrologic model outputs to 276 

benchmark altimetry data in ungauged and poorly gauged catchments. 277 

Virtual altimeter gauging stations are located at the intersection of satellite tracts with water bodies. 278 

Santos da Silver et al., (2007) used virtual altimeter stations as water level data sources for ungauged 279 

catchments. They chose the median values of virtual stations that fell within river water bodies as 280 

water levels for the river and compared with measured values from gauging stations located within 281 

20km of the virtual stations using weighted linear regression. In order to avoid comparing two areas 282 

with different hydrological conditions, a ratio χ was computed of the discrepancy between the 283 

ENVISAT master points and the linear regression and the uncertainties associated to the ENVISAT 284 

master points. The developed method enabled a comparison that produced regression coefficient 285 

greater than 0.95 between the ENVISAT and gauges series. Santos da Silver, et al., (2012) used 533 286 
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ENVISAT virtual stations and 106 gauging data to map extreme stage variations along 32 Amazon 287 

basin rivers and analysed for drought in the catchment. Using 2005 drought and 2009 flooding events 288 

as basis, data from 2002-2005 were analysed and time series of ENVISAT per virtual station were 289 

averaged to get monthly values. Values of the mean amplitude stage variation for the measured 290 

gauges showed good consistency with those of satellite altimetry and results for drought showed a 291 

range between -4 and 1m of anomalies. Getirana, et al., (2009) went even further and developed a 292 

rating curve of discharge values using virtual stations from ENVISAT for the upper part of the 293 

Branco River basin, Brazil. Virtual stations data were compared with nearby gauge data to check for 294 

seasonal similarity and trend, and those virtual stations with standard deviations <0.1m were chosen. 295 

The method used a distributed hydrological model to derive discharge values for the virtual stations. 296 

Model calibration and validation results showed good correlation with measured data, and the rating 297 

curve showed a 2.5-5% increase in bias when compared with rating curves from measured data. The 298 

calibration results were affected by rainfall data spatial distribution.  299 

Although use of satellite altimetry for river stage monitoring is usually applied to large rivers with a 300 

few kilometres width (Papa, et al., 2012), altimetry data was used to estimate discharge in an 301 

ungauged part of the Po river basin (width:200-300m) using cross section data (Tarpanelli, et al., 302 

2013). They used a simplified routing model (RCM) based on upstream data, wave travel time and 303 

hydraulic conditions on two river sections to get the flow in the second river section. The results 304 

showed good agreement between simulated and insitu discharges, and gave lower RMSEs (relative 305 

to the mean observed discharge) than calculated results using an empirical equation also based on 306 

cross section geometry. Seyler, et al., (2009) used altimetry virtual stations to estimate river slope. 307 

The calculated river slopes were used to get the river bank full discharge, and the results compared 308 

well with gauge data. Lake water volumes were calculated for Lake Mead (USA) and Lake Tana 309 

(Ethiopia) using five altimetry data products: T/P (Topex/Poseidon), Jason-1, Jason-2, GFO (Geosat 310 

Fellow On), ICESat and ENVISAT (Duan & Bastiaanssen, 2013). The method used Landsat 311 

TM/ETM + imagery data to map the water surface areas using the Modified Normalized Difference 312 

Water Index (MNDWI) method which enables robust extraction of water bodies from optical data 313 

(Zhang, et al., 2006).  The calculated water surface areas agreed with in-situ measured data with an 314 

R2 of 0.99for Lake Mead and 0.89 for Lake Tana with RMSEs of 2.19% for Lake Mead and 4.64%. 315 

The water volume was estimated using the lowest altimeter water level as the reference water level; 316 

this is then subtracted from all the other measurements to obtain the Water Level above Lowest 317 

Level (WLALL) to be used for volume estimation. Using regression analysis a relationship was 318 

established between the estimated water surface areas and the WLALL as A = f(WLALL) = 319 
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aWLALL2 + bWLALL + c; where a, b, and c, are constants. The integral of this relation provides 320 

the Water Volume Above the Lowest water Level (WVALL). The estimated water volumes agreed 321 

well with in-situ water volumes for both LakeMead and Lake Tana with R2>0.95and RMSE ranging 322 

between 4.6 and 13.1%. 323 

3. Optical satellite data  324 

Depending on its contents, water reflects electromagnetic waves differently; pure clear water reflects 325 

differently from muddy water or water containing vegetation (floating or submerged). The amount of 326 

energy measured from the satellite sensor also depends on the bands used; blue band penetrates 327 

water up to 10m, red band is partially absorbed, and near infra-red band is totally absorbed. These 328 

sensor properties consequently affect the image, so that an image acquired using the blue band will 329 

measure reflectance from any submerged vegetation within its reach, while red/near infra-red images 330 

will show water as dark grey/ black respectively (Meijerink, et al., 2007).  331 

With the availability of more optical satellites with relatively low temporal resolutions globally, 332 

many scenes of archived data can be accessed and used for change detection studies and flood extent 333 

mapping in areas with little cloud cover. Penton & Overton, (2007) combined flood mask extents 334 

from LandSat ETM of four flood events with LIDAR DEM to produce water heights for the 335 

floodplain. The heights of the flood mask water points were used to interpolate a water height 336 

surface which was subtracted from the DEM to produce the inundation map.  To check for water 337 

surface change, satellite microwave data from AMSR-E satellite was used to calibrate CREST 338 

hydrologic model using ratio brightness temperature measurements over water bodies and calibrated 339 

dry areas (Khan, et al., 2012). The AMSR-E detected water surface signal frequency was compared 340 

with gauge flow with a probability of exceedance <25% and showed good agreement. The output of 341 

model calibrated with AMSR-E detected water surface signal showed good agreement with observed 342 

flow frequency.  Results of validation were equally good with high correlation between model results 343 

and observed flows with probability of exceedance <25%. The output of the model calibrated with 344 

AMSR-E detected water surface signal showed good agreement with observed flow frequency 345 

(Nash-Sutcliff coefficient of 0.90 and a correlation coefficient of 0.80).  346 

Due to inaccessibility of the coastal terrain, many remote wetlands and swamps have few or no 347 

gauges, and are not covered by national gridding systems. As a result such areas are not included in 348 

topographic mapping projects; even where data is available the resolution is usually very coarse and 349 

not detailed (e.g. in Ezer & Liu, 2010). The morphology of coastal areas are affected by sediment 350 

supply, sea level change, littoral transport, storm surges, as well as hydrodynamics at the river 351 
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mouths of deltaic areas (Kumar, et al., 2010). Tidal flat morphology for example, changes with the 352 

tidal cycle and this can affect navigation, coastal defence, fishing, etc. The monitoring and modelling 353 

of tidal flat morphology is thus important (Mason, et al., 2010). Apart from natural causes, coastal 354 

areas are affected by human activities like sand mining, and construction of coastal infrastructure 355 

like ports, harbours, groins and other coastal defence systems.  356 

Satellite data are used to study coastal morphological changes that affect the ecosystem and 357 

biodiversity of coastal areas. Kumar, et al., (2010) studied the morphological changes in coastal parts 358 

Karnataka State, India using satellite and ancillary data. They calculated the rate of shoreline change 359 

over a ninety five year period (1910-2005) and used the results to predict future shoreline change 360 

rates to 2029.  25 LandSat TM imageries were used to map the tidal mudflats of Cooks Inlet Alaska 361 

by integrating with an inundation model (Ezer & Liu, 2010). The morphology of Cooks Inlet is such 362 

that, tidal floods move much faster than the ebbing period which moves very slowly; therefore areas 363 

at the far end of the mudflats take several hours before tidal waters lower. To study their morphology 364 

as a test bed for prediction of floods and its effects, mapping of these frequently flooded areas was 365 

done using the LandSat imagery to delineate water only areas, and show the range of shoreline data 366 

and water levels. The model results calculated the water depth and gave the estimated 3D topography 367 

of Cooks Inlet. Similarly, four LandSat TM imagery of the Ganges -Brahmaputra River mouth taken 368 

during low-flow and high-flow seasons were used by Islam, et al., (2002) to estimate suspended 369 

sediment concentration. The method used converted the digital numbers of the imageries to radiance 370 

values and subsequently to spectral reflectance and linearly related them to suspended sediment 371 

concentration (SSC). The SSC results showed higher distribution of suspended sediments during 372 

high discharge seasons when the turbidity zone moves further seaward reaching debts of 10m, than 373 

during low flow periods when the turbidity zone remains close to the shore. Yang & Ouchic (2012) 374 

used 2000-2009 optical and SAR satellite imagery and insitu data of the Han estuary in Korea to 375 

study bar morphology by relating it with tides and precipitation using regression analysis. The results 376 

showed areas closer to the sea correlating bar size/shape with tides, and areas closer to the river 377 

mouths correlating with precipitation. 378 

Optical satellite images of Sumatra Island were used to study post tsunami coastal recovery based on 379 

beach nourishment and sediment refilling. Liew, et al., (2010) used 1m Ikonos images of pre-380 

tsunami, tsunami, and post tsunami periods to show that coasts affected by tsunamis naturally rebuild 381 

to their former morphological states in areas with little anthropogenic activity. The results showed 382 

straight beaches rebuilding few weeks after the tsunami, but recovery of barrier beaches and lagoons 383 

is much slower, enabling inland rivers and streams to directly discharge into the ocean. Thus, they 384 
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concluded that due to the fast recovery of coastal features post tsunami, sedimentary deposits are 385 

better indicators of coastal geomorphology than tsunami events.  386 

4. Satellite derived DEM data applications 387 

Satellite data provide topographic information in the form of digital elevation models (DEM's) 388 

generated from radar echoes of spot heights e.g. ASTER DEM, SRTM, and SPOT DEM. The most 389 

common and freely available DEM is the Shuttle Radar Topographic Mission (SRTM) DEM flown 390 

in February 2000 which covered 85% of the earth's surface.  SRTM which was obtained through 391 

SAR interferometry of C-band signals is available in 30m and 90m spatial resolutions and an 392 

approximate vertical accuracy of 3.7m (Syvitski, et al., 2012). The vertical accuracy of SRTM is 393 

higher in areas with gentle slopes than on steep slopes; on low-lying floodplains SRTM has shown 394 

less than 2m accuracy. More information on SRTM DEM accuracy can be found in (Yan, et al., 395 

2015; Jarihani, et al., 2015).   396 

At the land-water boundary in areas with gentle slopes, satellite DEMs can be used to measure river 397 

stage when combined with high resolution imagery. Such combinations have been used in flood 398 

inundation mapping, although there is less accuracy in situations where the water edge is obscured 399 

by vegetation (Smith, 1997).  Syvitski, et al., (2012) adjusted SRTM data using ocean heights 400 

measured by the TOPEX/POSEIDON satellite altimeter to enable the mapping of floodplain zones. 401 

Advanced microwave Scanning Radiometer (AMSR-E) data provided brightness temperature 402 

measurements of the floodplain. The ratio of land area brightness temperatures to water area 403 

brightness temperature gave the discharge estimator; chosen dry areas were used as calibration areas 404 

for measurements over water covered areas. A rating curve of the ratio versus discharge was then 405 

used to extract the discharge values. Four floodplain zones were classified around the world from the 406 

33 floodplains studied, namely: container valleys, floodplain depressions, nodal avulsions and delta 407 

plains. SRTM data measure surface level which over river channels is equivalent to water levels 408 

when the land water boundary is delineated. Jung, et al., (2010) used insitu (bathymetry and cross 409 

sectional) data and SRTM DEM water levels to derive water surface slope, and calculate the 410 

discharge of the Brahmaputra River. The cross sectional water level was obtained by fitting a first 411 

degree polynomial function to the SRTM data elevation. The average calculated discharge results 412 

when compared to insitu gauge reading gave a difference of 2.3%. Two DEM's of the Morecambe 413 

bay were used to determine the relative change in inter-tidal sediment volume above and below mean 414 

sea level (Mason, et al., 2010). The first set of DEMs was derived from satellite SAR imagery and 415 

the second set from LiDAR. By using the sea height as zero level the LiDAR DEM was normalized 416 
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to the same height as the SAR DEM. The relative change in sediment volume was derived by 417 

subtracting the normalized LiDAR DEM heights from the SAR DEM.  SRTM 30m data was 418 

combined with MODIS 500m water mask data to produce 30m static water masks of 2003 flooding 419 

along the Mississipi river (Li, et al., 2013). The method involved using SRTM to mark the minimum 420 

water level from the MODIS water mask, which is then used to calculate the maximum water-level 421 

for that pixel using a water fraction relation. All SRTM 30m pixels with heights between minimum 422 

and maximum water levels are classified as water, and all those with heights higher than the 423 

maximum level are classified as dry. Consequently, the 500m MODIS water mask is integrated into 424 

a 30m water mask with the SRTM. The results gave detailed flood maps with the same flooding 425 

coverage as the MODIS water masks but enlarged 18 times. The flood maps were compared with 426 

Landsat TM images of the flood and showed over 94% match in water area coverage. Errors/ 427 

mismatch were found to be mostly around areas with trees and vegetation cover. 428 

 429 

3. Future needs and direction 430 

1. Gaps and limitations  431 

As useful as satellite data applications have been in estimating surface water parameters, the 432 

measurements come with limitations due to sensor specifications/ errors, pre and post data 433 

processing techniques, calibration, measurement conditions, satellite distance from the targets, etc. 434 

Optical satellite data for example is limited to day time acquisition due to its dependence on sunlight, 435 

and is not very useful in areas perpetually covered by clouds because the target cannot be reached 436 

(Smith, 1997).  437 

Since satellite data is used for calibration, its accuracy when compared with measured data is very 438 

important. Satellite data accuracy is estimated using different error measurement techniques (e.g. 439 

RMSE, Mean error), checking for correlation with measured data, or measuring the coefficient of 440 

determination (e.g. Tarpanelli, et al., 2013). There are multiple sources of error that can affect the 441 

data; for example the uncertainties in using satellite river width for calibration include: the satellite 442 

estimation of the river width, the power relation between the discharge and river width (which is an 443 

approximation of the conditions at a river cross section when there is no backwater effect) and the 444 

assumption of a stable/static river cross section. However these sources of uncertainty are lowest for 445 

the period of satellite data acquisition and increase in with change in season and hydraulic conditions 446 

(Sun, et al., 2010). 447 
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SAR 448 

The quality and usefulness of SAR data for hydrological studies depends on meteorological 449 

conditions (wind and rain), emergent vegetation, incidence angle and the polarisation mode used for 450 

data acquisition. Horizontal - Horizontal (HH) polarisation gives better results for flood extent 451 

mapping than Vertical - Horizontal (VH) and Vertical - Vertical (VV) polarisations. However, VH 452 

and VV polarisations are also useful since VV polarisation data highlight vertical features like 453 

vegetation, and VH polarisation data reflect the horizontal nature of the smoothed flood water 454 

(Schumann, et al., 2007). Another important factor for SAR data use in hydrology is the river size. 455 

Until the recent launch of CSK, RADARSAT-2, PALSAR, and TerraSAR-X, most available SAR 456 

satellites had large spatial resolutions which excluded smaller rivers from being captured; since it 457 

was difficult to delineate them in an image (Sun, et al., 2009). 458 

Satellite SAR used for delineation of water extent has the limitation of floodplain vegetation being 459 

included and classified as water pixels; more so the height of the SAR waterline does not show the 460 

variation in water height with flow direction. 461 

Altimetry 462 

For river stage estimation and wetlands delineation, problems encountered with satellite altimetry 463 

data include: incorrect processing of radar echoes over rivers/lakes by satellite trackers, poor 464 

temporal resolution, and lack of information within the data about the atmospheric wet vapour 465 

content over lakes/rivers (Crétaux, et al., 2009). The errors recorded while using altimeter water level 466 

data can however be increased by incorrect choice of data; which frequently occurs when dry area 467 

data is retained within the data for computing water stages in low flow seasons (Santos da Silva, et 468 

al., 2007). The difference between altimeter and gauge measurements also increases with distance 469 

between the points, topography and river width (León, et al., 2006). When compared with gauge 470 

data, RMSEs of altimetry data measured over the Amazon have ranges from 30cm-70cm using data 471 

from ENVISAT, ERS2, and GeoSaT (Tarpanelli, et al., 2013),however at cross track situations 472 

where altimetry measurements are taken at the same location with a gauging station the difference 473 

can be <20cm (Seyler, et al., 2009). The accuracy of altimeter measurements over rivers is also 474 

affected by the river width and the morphology of the river banks so that data on narrow rivers and 475 

vegetated banks have lower accuracy (Papa, et al., 2012). Furthermore, the specifications of the 476 

altimetry system itself can affect quality of measurements; for example ENVISAT data have been 477 

shown to have lower RMSE compared to ERS2 data due to ENVISATs ability to switch frequency 478 

modes in response to change in terrain and its smaller bin width (Tarpanelli, et al., 2013).  479 



16 

 

DEM 480 

The limitation of satellite DEM is in the data quality. DEM data needed for modelling and other 481 

analyses that require topographic data depends on the acquisition method, the data processing and 482 

the characteristics of the mapped terrain. Satellite derived DEMs have less vertical accuracy, higher 483 

bias and higher RMSE than other DEMS derived from airborne LIDAR and airborne IFSAR (Fraser 484 

& Ravanbakhsh, 2011).  485 

In spite of their limited accuracy satellite DEMs have global or almost global coverage unlike 486 

airborne DEMs. Therefore they are useful sources of topographic data especially for low lying 487 

coastal areas with gentle slopes (Gorokhovich & Voustianiouk, 2006; Schumann, et al., 2008); and 488 

consequently applicable for inundation modelling (Karlsson & Arnberg, 2011). Figure 4 shows 489 

results of flood modelling undertaken for the Lower Niger River (Nigeria) using SRTM 30 and 90m. 490 

The Niger River overflowed its banks in 2007 and flooded a large part of the floodplain. MODIS 491 

satellite data was used to map the flood and provided the only reference record of the flood. Figure 4 492 

shows that the model results are comparable with the MODIS flooding extent.  493 

Generally satellite based DEMs are either generated from radar echoes of spot heights, or from SAR 494 

interferometry. However Mason et al., (2010) also derived DEMs from SAR images. The method 495 

involved using SAR water height to interpolate a set of waterlines, which were then used to produce 496 

a 50m DEM of the intertidal zone with an accuracy of 40cm. The method is however limited by the 497 

temporal de-correlation of the waterline heights. 498 

2.  Current data use strategies 499 

Innovative methodologies are being introduced by scientists to better exploit satellite data to 500 

overcome the data limitations within present uncertainties. For example cloud filtering techniques 501 

have been developed that remove a high percentage of the clouds in optical data, thus adding to data 502 

availability. In terms of temporal limitations, combining MODIS data with its high temporal 503 

resolution with other types of satellite data is a technique that is now exploited more  (Jarihani, et al., 504 

2014). The technique generates new datasets that blend higher spatial resolution at the high temporal 505 

resolution of MODIS. When combined with DEM data for example, flood maps that provide daily 506 

information can be easily generated (Li, et al., 2013). SRTM has been combined with MODIS data to 507 

generate a 250m water mask called MOD44W; because of the high temporal resolution of MODIS 508 

this product can be updated regularly to provide static water masks (Li, et al., 2013). 509 
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Use of Satellite SAR for flood extent mapping and model calibration can be improved through 510 

combination with other higher resolution data to increase precision in flood height determination. To 511 

improve the vertical accuracy of SAR waterline extent during floods, Mason, et al., (2007) used 512 

waterline data extracted from ERS-1 SAR corrected with 1m resolution LIDAR heights (along the 513 

Thames River bank) to calibrate a LISFLOOD model of flood extent. The output waterline when 514 

compared with waterline measured from aerial photos showed a lower root mean squared error than 515 

those obtained using SAR data only.  516 

Satellite DEMs that are enhanced through vegetation smoothing or hydrological correction have 517 

shown lower errors compared with the original data (Jarihani et al., 2015). Due to the availability of 518 

the hydrologically corrected SRTM DEM, a global static 30-m water mask has been generated which 519 

is very useful for flood detection especially in data scarce areas. 520 

To improve the use of satellite altimetry data, interpolation methods have been developed to correct 521 

the data accuracy and precision by comparing the data with lakes and reservoir measurements. Thus 522 

the correlation with measured gauge data, range of RMSE and reduction in discrepancies have 523 

improved to levels >0.95 correlation during validation (Ričko, et al., 2012). Altimeter measurements 524 

over modified channels is however less reliable than that of natural catchments (Kim, et al., 2009). 525 

The use of altimeter data is also limited by the poor temporal resolution of satellite altimeters; which 526 

range from days to several weeks. Belaud, et al., (2010) developed a method to interpolate river 527 

water levels in-between satellite observations in order to provide continuous data. The developed 528 

method used upstream ground station measurements and altimetry data as output to calibrate a 529 

propagation model by adjusting the satellite observed values. The propagation model used a transfer 530 

function to predict water level variations based on the relationship between the propagation times 531 

and water levels. The results were able to predict flood peaks during periods of no satellite coverage. 532 

Crétaux, et al., (2011) addressed the problem of data gaps by combining three sets of altimetry data 533 

(TOPEX/POSEIDON, ENVISAT1 and JASON2) with MODIS measurements of water extent to 534 

monitor wetlands and floodplains in arid/semi arid regions. The MODIS data was used to classify the 535 

open water pixels whose relative values were then extracted from altimetry data. The results 536 

provided relative water heights, due to the low temporal resolution of the altimetry data sets. 537 

Altimeter data from ICESat was used to calibrate a large scale LISFLOOD-FP hydro-dynamic flood 538 

model of the Zambezi River, Mozambique (Schumann, et al., 2013). Eight in-channel water levels 539 

from ICESat from one altimeter pass were used for calibration of model output. The models with a 540 

mean bias within one standard deviation of the ICESat values were accepted as comparable with 541 

Landsat measured flooding extents. The results showed 86% agreement between the Landsat flood 542 
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extent and the accepted model outputs; corresponding to mean distance of 1.42-1.60 km. After 543 

calibration the model upstream boundary was changed to forecast flow values in order to forecast 544 

downstream flooding. The results correlated with the baseline model, but showed that with a lead 545 

time of 5 days, better basin wide precipitation observations will enable flood forecasting on the 546 

Zambezi.  547 

3. Future direction 548 

Available literature show that efforts have been made to develop an empirical relationship between 549 

satellites derived surface water extents (including flooded areas) with river stage or discharge. Such a 550 

relationship has been established for braided rivers; for non-braided rivers the results have depended 551 

on the river system, thus inundation area can increase or decrease with stage. With better SAR 552 

missions such as TerraSAR-X- TanDEM-X formation, DEM data with good vertical accuracy are 553 

now available for better hydraulic flood modelling. TanDEM-X has 12.5m spatial resolution and 554 

produces less than 2m vertical accuracy (DLR, 2015). Although made for polar ice change 555 

estimation and monitoring, the high spatial coverage of Cryosat-2 is also being exploited for near-556 

shore mapping and inland water monitoring (Villladsen, Andersen, & Stenseng, 2014). Cryosat-2 557 

which operates in SAR and interferometric modes, has a drifting orbit and therefore (unlike all the 558 

other satellites) has little repetitive data (since repeat cycle is 369 days). Its high spatial density 559 

coverage makes it good for hydraulic modelling (and all its evaluations have produced good results). 560 

With successful use of Cryosat-2 data to obtain river water levels and topography, the use of drifting 561 

orbits is being proposed as more suitable for river water surface topography mapping, derivation of 562 

river profiles and building of pseudo time series (Bercher, et al., 2014). 563 

Other satellite products that improve the accuracy of satellite data based research in hydrology 564 

include: Cosmo-SkyMed from the Italian Space Agency, RadarSat2 from the Canadian Space 565 

Agency, and Sentinel-1 from ESA (Schumann, et al., 2015). Others are Global Change Observation 566 

mission-water (GCOM-W) from Japan Space Agency (JAXA), Global Precipitation Measurement 567 

(GPM) from JAXA /USA, Soil Moisture Active Passive (SMAP) from USA.  568 

To improve quality of satellite SAR and topographic data, new satellite missions with higher 569 

precision instruments are being planned. One of such missions is the Sentinel constellation that will 570 

consist of seven satellites; two of which (Sentinel 3 and 6) are especially dedicated to hydrological 571 

purposes. Sentinel 1 is already in orbit and undergoing calibration; it has a C-band SAR instrument 572 

to continue present C-band data provision. Sentinel 3 is planned to provide fast data for flood 573 

emergencies, therefore it has three instruments one of which is a dual-frequency (Ku and C band) 574 



19 

 

advanced Synthetic Aperture Radar Altimeter (SRAL) that will provide accurate topographic data of 575 

oceans, ice sheets, sea ice, rivers and lakes (ESA, 2015). Sentinel 6, which will compliment the 576 

Sentinel 3 data, will carry on board a high precision radar altimeter.  RADARSAT constellation, a 577 

new Low Earth Orbit (LEO) C-band SAR mission is under development by the Canadian space 578 

Agency (CSA). The constellation which will have several operating modes will provide 579 

interferometric SAR data that can be used for wetlands and coastal change mapping, flood disaster 580 

warning and response with resolutions 3, 5, 16, 30, 50 and 100m (Canadian Space Agency (CSA), 581 

2015). 582 

Other upcoming satellite missions like Surface Water & Ocean Topography (SWOT) made 583 

especially to survey global surface water have specifications that will enable better use of satellite 584 

data in hydrology. SWOT which uses a wide-swath altimetry technology will also observe the fine 585 

details of the ocean's surface topography, and measure how water bodies change over time with 586 

repeated high-resolution elevation measurements. The mission, scheduled to be launched in 2020 is 587 

an international collaboration between the US National Aeronautics and Space Agency (NASA) and 588 

Centre National E'tudes Spatiales (CNES) of France; supported by the Canadian Space Agency 589 

(CSA) and the UK Space Agency (UKSA) (Pavelsky, et al., 2015). Another product of international 590 

cooperation that will support hydrological research is the Jason3 altimetry mission from NOAA, due 591 

to be launched in July 2015. The Jason3 mission is dedicated to the measurement of sea surface 592 

height, wave, wind speed, and will provide useful data to monitor sea level rise, coastal areas 593 

modelling of oil spills, forecasting of hurricanes etc. To enable precise detection of sea level change, 594 

Jason3 combines GPS, radar altimetry, and a microwave radiometer to produce data within 1cm 595 

accuracy every 10 days (NOAA, 2015).  Jason3 is jointly owned by US National Oceanic and 596 

Atmospheric Adminitration (NOAA), CNES-France, European Organisation for the Exploitation of 597 

Meteorological Satellites (EUMETSAT), and US NASA.  598 

 599 

4. Conclusions 600 

Satellite remote sensing provides a source of hydrological data that is unhindered by geopolitical 601 

boundaries, has access to remote/unreachable areas, and provides frequent and reliable data (Jung, et 602 

al., 2010). Use of satellite data to estimate hydrological parameters continues to increase due to 603 

greater availability of satellite data, improvement in knowledge of and utilization of satellite data, as 604 

well as expansion of research topics. A very important catalyst to this growth in satellite data 605 

utilization is the ability to use it in a GIS environment. GIS enables comparison and deduction of 606 
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relationships that exist amongst the complex data sources used for analysis. Thus relationships like 607 

the effects of land-use change on surrounding water bodies or water management are easily analysed 608 

and depicted. Consequently, satellite data is commonly used for: mapping of water bodies, testing of 609 

inundation models, soil moisture measurements, precipitation monitoring, estimation of evapo-610 

transpiration, and mapping of flood extent. 611 

Data quality, pre/post data processing etc, introduce new errors and increase the uncertainties in 612 

satellite data utilization. However several methods have been developed to quantify the errors and 613 

produce acceptable results. Moreover, a number of satellite missions to address issues of climate 614 

change are being planned; some of these are dedicated to water resources management and will carry 615 

high precision instruments. The products of these missions will have less error; consequently results 616 

obtained will more accurate, thereby filling the gap in data availability.  617 
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 855 

Table 1. Some satellite mission and sensors used for  hydrological studies. 856 

Mission Sensor (s) Application (hydrological) 

Aqua AIRS, AMSR-E, AMSU-A, 

CERES, HiRDLS, HSB, MODIS   

      Surface temperatures 

      of land and ocean.  

        (Flood    mapping) 

CryoSat DORIS-NG, Laser Reflectors  

(ESA), SIRAL 

Ice thickness (Applied also 

for near-shore mapping and 

inland water monitoring) 

Envisat AATSR, ASAR, ASAR  Physical oceanography, ice 
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(image mode), ASAR  

(wave mode), DORIS-NG, 

MERIS, MIPAS 

and snow, (Ocean/ river water 

level altimetry) 

ERS 1 

 

ERS 2 

 

 

Jason 1 

 

Jason 2 

 

Radarsat 1/2 

Sentinel 1 

SRTM 

 

SPOT 4 

 

SPOT 5 

 

Terra  

 

 

Topex/Poseidon 

AMI/SAR/Image,  

AMI/SAR/Wave,  

AMI/Scatterometer, ATSR    

AMI/SAR/Image,AMI/SAR/Wave, 

AMI/Scatterometer, ATSR/M 

DORIS-NG, JMR, LRA, 

POSEIDON-2 (SSALT-2), TRSR 

AMR, DORIS-NG, GPSP, JMR,  

LRA, POSEIDON-3 

C-Band SAR, X-Band SAR 

C-Band SAR 

C-Band SAR, X-Band SAR 

 

DORIS (SPOT),  

HRVIR, VEGETATION 

DORIS-NG (SPOT), HRG,  

HRS, VEGETATION 

MODIS, MOPITT, MISR,  

ASTER, CERES 

 

DORIS, LRA, POSEIDON-1 

 (SSALT-1), TMR, TOPEX 

Earth Resources, Physical 

oceanography (altimetry) 

Earth resources, Physical 

oceanography (altimetry) 

 

Physical oceanography 

(Ocean/River water level 

altimetry) 

Physical oceanography 

(altimetry) 

Flood mapping/modelling 

Flood mapping/ modelling 

Digital elevation models, 

flood modelling 

Digital terrain models, 

environmental monitoring 

Digital terrain models, 

environmental monitoring  

Physical processes, surface 

temperatures of land and 

ocean (surface water 

mapping) 

Physical oceanography 

(altimetry) 
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 858 

Figure 1. NigeriaSatX satellite image showing rivers in the Niger delta  859 

 860 

 861 

Figure 2. Classified NigeriaSat-1 image of the Niger delta showing five feature classes 862 

 863 
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 864 

Figure 3. An illustration of height measurement using satellite Altimetry 865 

 866 

 867 

Figure 4. Model simulation result of flooding on the Niger River (2007) using SRTM topographic 868 

data 869 

 870 



32 

 

 871 


