

University of Technology, Sydney

Professor Derek Eamus University of Technology Sydney PO Box 123 Broadway NSW 2007 Australia

21/8/2015

Dear Referee's

I would like to thank all three referees for their insight and extremely valuable comments on our Ms "Groundwater-dependent ecosystems: recent insights. New techniques and an ecosystem-scale threshold response"

In the following pages I provide our responses (in tan colour) to these reviewers' comments.

Anonymous Referee #1

Received and published: 27 May 2015

The Authors presents a review on groundwater dependent ecosystems (GDEs) with the focus on the definition of their location, the quantification of their groundwater (GW) use, and their response to GW extraction. Although the review is in general well written and likely to be of interest to the readers of HESS, I have few issues that I would suggest the Authors to consider, as listed in the following points.

We thank the referee for his comment about the review being generally well written.

- The review is excessively long and touches on many topics that have been already reviewed in the recent literature. Recent review papers on GDEs are: Naumburg et al. (Environ. Manage., 35(6), 726–740, 2005), Lubczynski (Hydrogeol. J., 17(1), 247–259, 2009), Klove, B., et al. (Environ. Sci. Policy, 14(7), 770–781 and 782-793, 2011), and Orellana et al. (Rev. Geophys., 50, RG3003, 2012). I think the Authors should put their work in the context of what is already available in the literature and focus on what is currently missing from these existing review papers.

We have reduced the length of the review and have included mention of the Naumberg et al (2005) and Orellana et al (2012) references in the introduction, as suggested by this referee.

- Some sections of the paper are largely available in the existing literature and do not need to be repeated. For example, section 2 could be considerably shortened if not removed completely.

We agree that section 2 can be considerably shortened and we have now greatly reduced this section in the revised Ms.

Likewise, the parts on groundwater fluctuations and isotopes have been extensively reviewed in other recent papers.

We have reduced the text on GW fluctuations and isotopes, as suggested and this has significantly tightened the Ms.

The case studies are disconnected from the other sections of the review; I would consider to remove them.

We disagree with the suggestion to remove the case studies as we are not aware of any attempt to provide two contrasting case studies in a review of GDEs. We feel this does have value in the current review.

It seems to me that the new topics addressed here are the use of remote sensing (RS) technologies in GDE studies and the response to GW levels. Maybe, the Authors could focus their review on these issues. Accordingly to the points above, I would suggest to re-organize the review as:

1. Introduction: contextualize the review and focus on RS and ecosystem response to GW levels.

2. Identify GDEs: I would just present the sections on RS and maybe touch briefly on GW fluctuations and isotopes.

3. A primer on remote sensing...: I would include here current sections 4 and 5. I think the section on GRACE, which is a RS technology as well, should be here.

4. Current section 8

5. Current section 9

6. Conclusions

Two of the referee's suggest a significant restructure of the review. Having given this considerable thought and played around with a couple of new structures, we have come to the conclusion that a restructure **does** indeed improve the readability and flow of the Ms. Consequently we have restructured the entire review in light of the two (similar) suggestions presented by two reviewers.

SPECIFIC COMMENTS: -

P4678, L6; ...GDEs, and (3)...

We have made the change suggested.

P4691, L14: ...water table results...

We have made the change suggested.

- P4695, L7-8: it seems to me that these two paragraphs are disconnected. There is a logic jump.

We have reworded these two paragraphs to make the connection clearer.

- P4695, L16: ...applications, downscaling...

We have made the change suggested.

-P4697, L22: Fig 2 should be Fig. 3. The references to figure numbers is not correct throughout the manuscript.

We apologise for the errors in Fig numbering. We have corrected these throughout.

- Section 6.3: as far as I know, MODFLOW models GW flow; the modeling of flow in the unsaturated zone is very simplified and does not use the Richards equation. I also believe that Ajami et al. (2011 and 2012) did not model the unsaturated zone, but included direct root water uptake from GW in MODFLOW.

The referee is correct that MODFLOW is used to model groundwater flow and does not use Richard's equation. In contrast, HYDRUS is a variable saturation model that solves Richard's equation. The section title has been revised to clarify the distinction while still implying that both types of hydrological modelling are important to fully understand the ecohydrology of GDEs.

The issue of root water uptake is a particularly good example, thus we restricted our discussion in the second paragraph of this section to those studies that used HYDRUS for evaluating interactions between groundwater, soil water in the vadose zone, and root water uptake. As the referee argues, the two references by Ajami et al. (2011 and 2012) are not relevant as they refer to direct root water uptake from GW in MODFLOW.

- P4704, L22 25: what are 'end-member analyses'?

We have now explained this term in the text.

- P4708, L16-17: I would not say that ET rates exceeded radiation. I would use the term latent heat in relation to radiation.

We have amended the text as suggested.

- Table 5: I would not use a table to explain terms in a figure. I would include this table in the figure or figure caption.

We disagree with this suggestion as putting all of this information into the figure or figure caption would make it extremely unwieldy. A table is the optimum place for this set of information.

- Figs. 3, 4, and 5: I would remove these figures; they are not very informative.

We believe these figures assist the reader and have value in the review.

- Fig. 8: this figure carries a lot of information and is very difficult to understand. What is the meaning of the different types of arrows?

We are sorry that the referee found this difficult to understand. We have tried to make this figure simpler and added some words of explanation to the figure legend.

- Fig. 9: what is the variable on the vertical axis? I understand that this figure is from a

PhD thesis and the Authors might want to keep details for other publications; however, it is very difficult to understand what this figure refers to. Further, I would not fit a curve across the points. Any curve that goes from about 0.9 to about 0.7 when GW is around 9 m would fit the data well; as such, there is no point to fit a curve and report the R2. I would rather show the experimental points and have a vertical line or a colored vertical bar when GW is between 8-10 to show that there is a threshold effect.

We have added some text to the figure legend to explain what the normalised value refers to (ie how it was derived from the data). The referee is correct to note that the cut-off cannot be identified with precision and we have added text to the Ms to acknowledge this point. However, the statistical fit is valuable as it shows that there is a break within the data, but we can't identify with high precision the exact location of this break. However, we note that Dr O'Grady found this approximate location of the break to concur with other published studies.

The Authors might also want to link these results to the work by Benyon and Doody (2004) on plantations, where the suggested value of GW level for possible root water uptake was above 6 m.

We thank the referee for this observation and have made reference to two reviews and one field study where a threshold is discussed. We prefer to cite the larger, Benyon et al (2006) review here.

Interactive comment on "Groundwater-dependent ecosystems: recent insights, new techniques and an ecosystem-scale threshold response" by D. Eamus et al.

A. O'Grady anthony.ogrady@csiro.au Received and published: 28 May 2015

Eamus et al. present an interesting and timely review of the current state of knowledge and approaches for addressing issues in relation to GDE's. The manuscript is clearly relevant to the readership of HESS. While one anonymous commenter on the review argues that the parts of the review cover pre-existing reviews (e.g. around remote sensing) I believe that there is still value in having a review that brings much of this previous work together under the umbrella of groundwater dependent ecosystems.

We thank Dr O'Grady for these supportive comments.

Potentially the primer on remote sensing could be reduced, but I don't see it as a serious issue. The review didn't really cover traditional water balance approaches (eg the Doody and Benyon paper suggested by the other reviewer). In my mind these present a point of truth, against which the remote sensing techniques can be validated. Indeed many of the insights into the O'Grady et al 2011 paper cited throughout this manuscript were based on a review of existing albeit limited number of water balance studies that have quantified groundwater discharge.

We agree with Dr O'Grady and have made reference to more traditional water balance approaches in the text.

I found the discussion on remote sensing pretty interesting, but in my experience I find the way that remote sensing is applied in practice somewhat frustrating, and so a discussion on the limitations of remotes sensing in relation to identifying GDEs is I think really warranted. In itself that may be a separate review, but I think it would be good to recognise some of these limitation here. In reality remote is somewhat blunt instrument that often has very little validation, it is not unusual to have three GDE remote sensing products that give a different answer to the same problem. Further more remote sensing on its own can provide very little information on the source of the water in the signal, thus the "groundwater signal" may not accurately reflect the groundwater system the water manger is concerned about, e.g. a regional aquifer v a perched aquifer. I see remote sensing as a valuable way of focussing limited resources into areas of most concern or high risk, so that more detailed assessments can be preformed. The underlying assumption that systems with access to groundwater have an unlimited water supply (top paragraph of 4692, 'it is assumed that actual et rates are equivalent the et of a reference crop' is a flawed assumption. For example the salinity of groundwater may vary from fresh to saline, thus the plant available water is somewhat less.

We agree with this suggestion and have added additional discussion of the limits of RS in the study of GDEs. We have noted that saline GW may invalidate the assumption and have added words to this effect in the Ms.

With respect to the discussion on ecological response functions, I thought the approach to analysing the co-ordination of traits presented in figure 9 was really nice.

We thank Dr O'Grady for this supportive comment.

There is remarkably close agreement in terms of thresholds identified to that identified by Kath et al 2014 Global Ecology and Conservation, 2, 148-160, which is a nice approach at coming at this problem using remote sensing. It may be worthwhile recognising though that these approaches are correlative in nature, in that they correlate state with state, but are not in themselves ecological response functions, rather a prediction of what that response function might look like.

We thank Dr O'Grady for this comment and have added reference to the Kath et al paper.

This is a good review that should be published in HESS

We thank Dr O'Grady for this highly supportive final comment.

.....

Reviewer comments to the manuscript HESS-2015-90 "Groundwater-dependent ecosystems: recent insights, new techniques and an ecosystem-scale threshold response" by Eamus et al. <u>GENERAL COMMENTS</u>

In this paper, Eamus et al. review the last advances accounted for providing a better understanding of Groundwater Dependent Ecosystems. The review rests over three main pillars: (1) Identification of GDEs; (2) Quantification of their water requirements, and (3) Definition of

response functions to water table changes. Authors refer to a relevant number of recent studies that cover a wide range of techniques based on remote sensing, hydrodynamics, and ecophysiological and dendroecological measurements. Among all these techniques, a more emphasis has been given to satellite-based or remote sensing techniques developed recently to answer the two first pillars described above.

In general, it is a good and well-written paper which addresses a relevant scientific issue within the scope of HESS.

We thank the referee for these supportive comments.

Several items refereed inside the manuscript seem to be "out of the blue" (e.g. section 5 regarding the GRACE mission). In this regard, more space could be saved in an attempt to simplify the text or, if it is preferred, to go in deep in other interesting sections, e.g.: a) adapt the text in sections 3.2.3 and 4 to the different methods implicitly suggested in table 3; b) improve the conclusions maybe suggesting a a potential roadmap of activities or items that should be addressed in the next future, and how water management boards or agencies should address this topic.

With the new structure to the Ms we think the links between sections is much improved. We thank the referees for the suggestion to alter the structure.

Does the paper present novel concepts, ideas, tools, or data?

Because its nature, this paper review concepts and methods previously published in scientific literature. Most of the references are appropriate and relatively new. However, the list lacks of other key references that should be recognized here.

We thank the referee for the detailed bibliography (s)he provided in their review. These are indeed very useful additions and we have included 90 % of the literature the referee provided in the amended text.

Are the scientific methods and assumptions valid and clearly outlined?

Paper structure is improvable. A new structure is suggested to get the concordance required between the objectives depicted in Introduction and the rest of sections.

As noted earlier, we have significantly restructured the Ms in line with the detailed suggestions given by two of the referees.

Do the authors give proper credit to related work and clearly indicate their own new/original contribution?

Some figures and tables should be better credited. Please, put more attention to this item.

We have provided all the acknowledgement information in the legends, as requested.

Does the title clearly reflect the contents of the paper?

Yes, but could be shortened. Maybe "Groundwater-dependent ecosystems: Recent insights and, satellite and field-based studies"

We have amended the title of the Ms to make it shorter and more "punchy".

Should any parts of the paper (text, formulae, figures, tables) be clarified, reduced, combined, or eliminated?

Several changes are suggested in the following notes.

MAJOR COMMENTS

Structure article

In order to make easier the comprehension of the topics covered within the manuscript, several changes in the structure are suggested (sections should be in concordance with the three pillars depicted at the end of the Introduction). For example,

- 1. Introduction
- 2. Identifying GDEs
- 2.1. Indirect methods
- 2.2. Direct methods
 - 2.2.1. Satellite-based approaches
 - 2.2.2. Water table depth fluctuations
- 2.2.3. Isotopic analyses
- 3. Quantifying water requirements of GDEs
- 3.1. Satellite-based approaches (now section 4 and 4.2.)
- 3.1.1. Scaling issues (now section 4.1.)
- 3.2. Hydrological modelling
- 3.2.1. Conceptual water balance approaches (now 6.1)
 - 3.2.2. Physically-based water balance approaches (now 6.3)
- 3.3. Field-based measurements
- 3.3.1. Daily fluctuations of water table (now section 6.2.)
- 3.3.2. Isotopic techniques (now 6.4.)
- 4. Functional responses of GDEs to changes in water table depths
- 4.1. Evidences from dendrochronology and plant growth traits (now section 8)
- 4.2. Two case studies in semiarid regions (now section 7)
- 4.2.1. The Gnangara Mound (SW Australia)
- 4.2.2. Riparian forests in southwestern USA
- 4.3. Integrating multiple-scale responses (now section 9)
- 5. Concluding remarks

As noted above, we have significantly changed the structure of the Ms in accordance with these detailed suggestions.

In this review, section 5 focusing on GRACE measurements (and all the references inside) must be eliminated because the spatial and time resolutions of the outputs provided by this mission are not appropriate at all to infer data useful for improving our knowledge on GDEs. In the following, major items organized according the sections suggested in this review are highlighted

We strongly disagree with this because GRACE data can, for the first time ever, provide 10-day data on aquifer trends across the duration of multiple-year droughts (such as are frequently

evident in Australia and elsewhere), which is important information for managers of GDEs and aquifers. We provide two examples of where GRACE data have been used in this manner.

Introduction

First paragraph is suggested to be reduced. Please go directly to the focus of the paper, i.e. GDEs, trying to highlight what has been done until now in order to identify them and understand their functioning. Regarding this there are similar review essays reported in scientific literature focusing on GDEs (e.g. (Barron et al., 2014; Naumburg et al., 2005; Orellana et al., 2012)). Within this framework, authors are encouraged to highlight the reasons why a new revision is required.

We have greatly reduced the introduction.

Regarding the potential drivers that are threating the health and good ecological status of GDEs, authors may refer other excellent reviews recently written (see e.g. (Danielopol et al., 2003; Kløve et al., 2011a, 2011b).

This section has been deleted.

The simplified classification scheme with 3 classes described in section 2 is suggested to be moved to Introduction. Authors could delete the description of the detailed classification scheme without affecting the quality of the paper (a reference to a previous work would be sufficient for the purposes of this paper)

We have amended the text as requested.

Table 1 does not provide useful and relevant information to the topic discussed here. It is suggested to be deleted

Table 1 has been deleted.

Identifying GDEs

Indirect methods

Two interesting applications are described by Brown et al. (2011) and Howard and Merrifield (2010).

Direct Methods – Satellite-based approaches (now section 3.2.3)

Mapping GDEs based on the "green island method" or the concept of "spatial anomaly of vegetation" has been also tested by Contreras et al. (2011) in remote regions of central Argentina. Contreras et al.'s use positive anomalies of a vegetation index (VI) as surrogates of groundwater (or lateral inflow) reliance. Anomalies are spatially computed from the observed VI and a local rainfall-based expected value resulting from a regional Mean Annual Precipitation-VI function previously calibrated for a set of reference (non-disturbed) sites. In Contreras et al. (2013) the usefulness of the spatial vegetation anomaly is complemented with other seasonal phenometrics or greenness traits in order to get more accurate information on groundwater reliance patterns.

We thank the reviewer for this and now cite the Contreras et al reference.

Direct Methods – Stable isotope analysis (now section 3.2.2)

Here, key references are Jobbagy et al. (2011) and Aranibar et al (2014) who use water stable and C/N isotopes to explore the reliance and dynamics of Prosopis woodlands in the Monte desert.

We thank the reviewer for this. We have cited the Jobbagy et al reference. The Aranibar et al reference is, we think, less valuable to the current text, which focuses on use of ¹⁸O and deuterium rather than ¹³C and ¹⁵N.

Quantifying groundwater consumption rates

O'Grady et al. spreadsheet tool (now section 6.1)

- For the "groundwater risk model", it is stated that "groundwater uptake by vegetation is assumed to occur when ET exceeds rainfall". Authors should question this assumption or justify better its validity. This could be assumed at the annual scale, but not at the monthly scale in which soil moisture storage may play an important role in providing water to vegetation. If this statement is not right (probably I am missing something), please explain briefly the reasons.

We thank the reviewer for this insight and have modified the text to account for the soil moisture storage issue raised.

Sub-daily fluctuation in groundwater depth - "White method" refers to White (1932). Please cite it.

White 1932 is cited in the reference list.

Figure 4 is not self-explanatory and is difficult to understand from who is not familiar with the method. Please improve the figure and its caption to avoid jumping to the text.

We have added text to the legend to improve readability.

Ecological responses to groundwater table changes

Page 4715, L12-15. It is suggested that the water table depth threshold is around 9-10. However the abrupt breakpoint suggested may range between 6-10 m (no measurements exist in between).

As noted in our response to another reviewer, we have acknowledged in the text that we cannot precisely identify the breakpoint.

Tables

Table 3. A lot of references inside have been not cited in the "References" section. Include studies of Contreras et al. (2011, 2013) as a "Green island method".

We apologise for omitting some of the references cited in the tables from the reference list. We have now included these in the reference list.

MINOR COMMENTS:

- Page 4682, Line 23. Where says "Identifying the location of GDEs is the vital first step to managing them", change by "Identifying the location of GDEs is <u>the first requisite step</u> to manage them".

We have amended the text as suggested.

- P4685, L9-10. Where says "Remote sensing (RS) provides rapid and spatially extensive techniques to assess [...]", change by "Remote sensing (RS) provides <u>a robust and spatially-explicit mean to assess</u> [...]

We have amended the text as suggested.

- P4685, L11. Delete "This is now discussed" (vague sentence)

We have amended the text as suggested.

- P4686, L28 – P4687, L1-2. The relationship found by Jin et al. (2011) is not surprising at all. The two-side effect of groundwater table depth in vegetation productivity has been described widely, also in forests (Bogino and Jobbágy, 2011) and crops (Nosetto et al., 2009). Shallow groundwaters (<2 m) usually promote negative effects on growth vegetation because waterlogging or root anoxia, or salinization as Jin et al. described in his paper

We completely agree with this point and have changed the text to reflect this.

P4687, L8&9&10. "EVI" instead of "eVI"

We have amended the text as suggested.

P4687, L24. Maybe "alternative" instead of "alternate"?

We have amended the text as suggested.

P4688, L10. At the end of the sentence, change "drought" by "droughts" or "drought periods"

We have amended the text as suggested.

P4689, L14. "Scaling-up" instead of "Moving"

We have amended the text as suggested.

P4697, L22. "Fig. 3" instead "Fig. 2". From here, all the references in the text to figures are wrong. Please check them.

Apologies for the errors in Fig numbering. We have corrected these errors.

P4698, L10-11. "Local" instead of "existing"? Another key reference regarding the hydrological equilibrium hypothesis is given by Nemani and Running (1989).

We have amended the text as suggested and included this citation.

P4698, L13. Explicit which means foliar[N]

We have explained the meaning of foliar [N].

P4700, L6. "The White method tends to over-estimate ET". Do you mean ETg instead of ET?

We thank the referee for noting this error, which we have now corrected.

P4700, L9. "because" instead of "although"?

We have replaced the word "although" with the word "furthermore".

P4701, L26. "HYDRUS" instead of "HYRDUS"

Apologies for this typo, which we have now corrected.

P4703, L12-15. Regarding this, interesting studies have been recently published by Guevara et al. (2009) and Giordano et al. (2011)

We thank the reviewer for noting these studies and we have cited them in the text.

Section 7. Is it necessary to introduce each case study describing a "problem". I think these sentences do not add relevant information, so I suggest to delete them in both sub-sections.

We have deleted the statement of "the problem".

P4706, L27. "Gnangara" instead of "Gnangarra"

Apologies for this: we have amended the text as suggested.

P4708, L7. Maybe "reliance" better than "dependency"

We have amended the text as suggested.

Section 8. Maybe rename as "Effects of groundwater on growth and dendrochronological traits"

We have amended the text as suggested.

- Regarding dendroecological approaches, Giantomasi et al. (2012) provide a very interesting study in the *Prosopis* woodlands of the Monte desert.

We thank the referee for this observation and have amended the text to cite this reference.

P4714, L11. "observed" instead of "resultant"

We have amended the text as suggested.

P4714, L12. "Refer to....". Move this last sentence as part of the figure caption.

We disagree with this suggestion and prefer to leave the text as it currently stands.

P4716, L6. "Main means for" instead of "principle means of".

We have amended the text as suggested.

P4716, L8 "methodologies which include the use..." instead of "methodologies, including use..."

We have amended the text as suggested.

P4716, L10. Delete "putatively" (not relevant)

We have amended the text as suggested.

P4716, L11. "the location of GDEs but also... features of their functional behaviour" instead of "the location but also... features of the functional behaviour of GDEs"

We have amended the text as suggested.

P4716, L12-16. This sentence is too long. Please make shorter or rephrase.

We have amended the text to make this shorter.

P4716, L17. "providing data on" instead of "pertaining to both"

We have amended the text as suggested.

Fig. 7 (caption). "Eamus (2006b)" instead of "Eamus (2006)"

We have amended the text as suggested.

Figure 8 (caption). "Table 5" instead of "Table four"

We have amended the text as suggested.

"References" Section

P4720L31. First author is "Doody" instead of "Doodym"

We apologise for this error and have corrected the citation.

Is it possible make shorter the reference of Kattge et al. (2011)?

Not really, no.

Derek Eamus Professor Environmental Sciences UTS

Groundwater-dependent ecosystems: recent insights from satellite and field-based studies

Comment [u1]: Title changed

D. Eamus^{1,2}, S. Zolfaghar^{1,2}, R. Villalobos-Vega^{1,2}, J. Cleverly², and A. Huete²

¹National Centre for Groundwater Research and Training, University of Technology Sydney, P.O. Box 123, NSW 2007, Australia

²School of Life Sciences, University of Technology Sydney, P.O. Box 123, NSW 2007, Australia

Correspondence to: D. Eamus (derek.eamus@uts.edu.au)

Comment [u2]: Specific line-by-line comments made by the referees have be addressed as listed in the "Response to referee's" letter.

ABSTRACT

Groundwater-dependent ecosystems (GDEs) are at risk globally due to unsustainable levels of groundwater extraction, especially in arid and semi-arid regions. In this review, we examine recent developments in the ecohydrology of GDEs with a focus on three knowledge gaps: (1) how do we locate GDEs, (2) how much water is transpired from shallow aquifers by GDEs and (3) what are the responses of GDEs to excessive groundwater extraction? The answers to these questions will determine water allocations that are required to sustain functioning of GDEs and to guide regulations on groundwater extraction to avoid negative impacts on GDEs.

We discuss three methods for identifying GDEs: (1) techniques relying on remotely sensed information; (2) fluctuations in depth-to-groundwater that are associated with diurnal variations in transpiration; and (3) stable isotope analysis of water sources in the transpiration stream.

We then discuss several methods for estimating rates of GW use, including direct measurement using sapflux or eddy covariance technologies, estimation of a climate wetness index within a Budyko framework, spatial distribution of ET using remote sensing, groundwater modelling and stable isotopes. Remote sensing methods often rely on direct measurements to calibrate the relationship between vegetation indices and ET. ET from GDEs is also determined using hydrologic models of varying complexity, from the "White method" to fully coupled, variable saturation models. Combinations of methods are typically employed to obtain clearer insight into the components of groundwater discharge in GDEs, such as the proportional importance of transpiration *versus* evaporation (e.g., using stable isotopes) or from groundwater *versus* rainwater sources.

Groundwater extraction can have severe consequences on structure and function of GDEs. In the most extreme cases, phreatophytes experience crown dieback and death following groundwater drawdown. We provide a brief review of two case studies of the impacts of GW extraction and then provide an ecosystem-scale, multiple trait, integrated metric of the impact of differences in groundwater depth on the structure and function of eucalypt forests growing along a natural gradient in depth to groundwater. We conclude with a discussion of a depthto-groundwater threshold in this mesic GDE. Beyond this threshold, significant changes occur in ecosystem structure and function. **Comment [u3]:** Change in sequence 1 - 3

1 Introduction

Water stored belowground in the saturated zone (groundwater) is the largest global store of liquid freshwater, accounting for about 96 % of all liquid freshwater (Shiklomanov 2008). Whilst readily accessed by humans for millennia at naturally occurring springs/oases and as baseflow discharge into rivers, it has only been during the past 100 years that exploitation of groundwater resources has become of global concern (Gleick and Palaniappan 2010). The rate of groundwater use of three (Pakistan, Iran and Saudi Arabia) of the seven largest users of groundwater (India, the USA, Pakistan, China, Iran, Mexico and Saudi Arabia) use groundwater at an annual rate that exceeds the renewable resource volume (Giordano 2009). Only three of the top 10 users are OECD members, reflecting the large reliance on groundwater of less developed nations, which are often located in arid and semi-arid climates where surface water stores are generally low.

About two fifths of the world's terrestrial surface area is arid or semi-arid and more than 38 % of the world's population lives there. Managing groundwater resources sustainably is therefore a major global social and economic priority (Glazer and Likens 2012). Whilst about 40 % of global groundwater abstraction occurs in these regions, the scarcity of rain means that only 2 % of groundwater recharge occurs there (Wada et al., 2010). Water is increasingly becoming a geopolitical and strategic resource. Disputes between neighbouring states are increasing as demands for groundwater increase. Because of the close relationship between crop yield and water supply, diminishing availability of groundwater in arid and semi-arid regions has immediate and severe impacts on food supplies, food prices and concomitant social unrest. Recent estimates suggest that between 10 and 25 % of the food produced in China and India (home to 2.5 billion people) is at risk because of groundwater depletion (Seckler et al., 1999; Brown 2007).

Over extraction of groundwater stores can create several problems. These include: loss of discharge from groundwater to wetlands, springs and streams/rivers, which results in loss of ecosystem structure and function and the associated loss of ecosystem services (Eamus et al., 2006a; Murray et al., 2006); increased depth of groundwater, thereby reducing its availability within the root zone of terrestrial groundwater-dependent vegetation; reduced availability of groundwater for direct human consumption; and reduced availability of groundwater for commercial use, including irrigation, stock watering and other industrial applications.

In a recent wide-ranging review of GDEs, Orellana et al., (2012) identified quantification of the water used by GDEs and an understanding of the physiology of GDEs as major unresolved problems. Naumburg et al., (2005) provide a review of the impact of both declining and increasing depth to the water table on phreatophytic vegetation in arid zones and provide two conceptual models describing ecosystem responses to these changes in depth. They note that information on root depth and the impact this may have on responses to changes in depth-to-groundwater as a key knowledge gap. In this current review we discuss application of remote sensing techniques to quantify rates of water use of GDEs. We present ecophysiological responses of vegetation to differences in groundwater availability in two case studies plus the results of a four year ecophysiological study of eucalypt woodlands

Comment [u4]: New references adde new text added; additional context information provided. across a natural gradient in depth-to-groundwater in a mesic environment. From this last study we produce an integrated response metric for the response of these woodlands to differences in groundwater depth.

Whilst Hatton and Evans (1998) recognised five classes of ecosystem dependency on groundwater, we use the simplified classification system proposed by Eamus et al., (2006b):

- (Class I) *Aquifer and cave ecosystems where stygofauna reside*. This class also includes the hyporheic zones of rivers and floodplains.
- (Class II) *Ecosystems reliant on the surface expression of groundwater*. This includes springs, estuarine seagrasses, and base-flow rivers, streams and wetlands.
- (Class III) Ecosystems reliant on sub-surface presence of groundwater within the rooting depth of the ecosystem (usually via the capillary fringe).

Application of this simple classification scheme assists managers in identifying the correct techniques for assessing GDE structure, function and management regime (Eamus et al., 2006b), and this classification scheme was recently adopted in the Australian National Atlas of Groundwater-Dependent Ecosystems.

In this review, we focus on the ecohydrology of groundwater-dependent ecosystems rather than on groundwater resources *per se*. This is because we feel that environmental allocations of groundwater have generally received less attention than allocations to human demands and because we identify three important knowledge gaps to the sustainable management of groundwater for environmental allocations. These are:

- 1. How do we know where a groundwater-dependent ecosystem (GDE) is in the landscape? If we don't know where they are, we can't manage them and allocate groundwater resources appropriately.
- 2. How much groundwater is used by a GDE? If we don't know how much groundwater is used, we cannot allocate an appropriate quantity of the resource.
- 3. What are the likely responses of GDEs to over extraction of groundwater? Without knowing what to measure, we cannot regulate groundwater extraction in ways that do not negatively impact on GDEs.

2 Identifying groundwater dependent vegetation

Identifying the location of GDEs is the first requisite step to managing them. However, identifying their location across a landscape is difficult, time-consuming, expensive and requires a high level of technical expertise. In this section, a range of new techniques that can be used to assist in this are discussed.

Comment [u5]: All text that discusse the Hatton and Evans (1998) classes dele from revised Ms.

Comment [u6]: Previous section 3 n section 2.

2.1 Methods to identify GDEs: indirect inference

Early assessments of groundwater dependency generally relied on inference (Eamus et al., 2006a; Clifton and Evans 2001). Recent applications of inferential techniques to springs, wetland, rivers and lakes can be found in Brown et al., (2011) and to springs, wetlands and streams reliant on baseflow in Howard and Merrifield (2010) and are not further discussed here.

2.2 Direct methods

2.2.1 Satellite based approaches

In recent years remote sensing (RS) of land surfaces and vegetation structure (e.g. phenology, LAI) and function (e.g. ET, gross primary productivity) has become increasingly sophisticated (Glenn et al., 2010; Yuan et al., 2010; Jung et al., 2011; Rossini et al., 2012; Kanniah et al., 2013; Ma et al., 2013; Nagler et al., 2013) and increasingly applied to real-world applications of water resource management (Scott et al., 2008; Glenn et al., 2010; Barron et al., 2014; Doody et al., 2014). Remote sensing (RS) provides a robust and spatially explicit means to assess not only vegetation structure and function but also relationships amongst these and climate variables.

A key concept in the development of RS applications for identifying the location of GDEs is that of "green islands" (Everitt and DeLoach, 1990; Everitt et al., 1996; Neale, 1997; Akasheh et al., 2008), which began with the airborne observations of desert oases and riparian corridors. In this model the structure or function of one pixel in an RS image is compared to that of another pixel located nearby. If one pixel contains a GDE but the other does not, the hypothesis that the structure and function of vegetation in the two pixels will diverge during extended dry periods can be tested. The underlying assumption is that vegetation with access to groundwater will not be subject to the same degree of soil water deficit as vegetation that does not have access to groundwater, thus the spectral signature of the two pixels will diverge over time. By comparing vegetation structure or function across contrasting periods (e.g., comparisons across "wet" and "dry" periods) or across landscapes (e.g., comparisons from riverside to upland pixels), green islands within a sea of browning vegetation can be identified (Contreras et al., 2011)

Munch and Conrad (2007) used Landsat imagery to identify the presence/absence of wetlands across three catchments in South Africa. They combined this with GIS terrain modelling to determine whether GDEs could be identified using a landscape "wetness potential" for class II GDEs (those reliant on a surface expression of groundwater). They concluded that RS data could be used to classify landscapes by comparing the attributes of potential GDEs to the attributes of surrounding land covers during three periods: in July when rains started at the end of a dry year; in August during the winter of a wet year; and at the end of a dry summer. When this was combined with a GIS model using landscape characteristics, they were able to produce a regional-scale map of the distributions of GDEs.

Comment [u7]: New references adde

Comment [u8]: Sequence of sections now changed in line with referee's suggestions. Plant density is often correlated with water availability, especially in arid and semi-arid regions. Thus, plant density tends to be larger when groundwater is available than in nearby vegetation that does not have access to groundwater. Lv et al., (2012) used a remotely sensed vegetation index (normalised difference vegetation index; NDVI; 300 m resolution) to examine changes in depth-to-groundwater within a small region in northern China. NDVI is a reliable measure of the chlorophyll content ("greenness") in leaves and vegetation cover (Gamon et al., 1995; Carlson and Ripley, 1997; Huete et al., 2002). Using a 25 m resolution digital elevation model and groundwater bore data, the resultant relationship between NDVI and depth-to-groundwater was obtained (Fig. 1).

Fig 1 here

Similar in shape to the relationship between LAI and NDVI, the largest values of NDVI occurred at sites with shallow groundwater and declined curvi-linearly as depth-to-groundwater increased. In that study, a cut-off of approximately 10 m depth-to-groundwater was identified below which vegetation cover was relatively insensitive to further increase in groundwater depth. In contrast, the threshold was about 4.4 m depth-to-groundwater in the Ejina area of NW China (Jin et al., 2011). In their study, which included part of the Gobi desert where annual rainfall was about 40 mm, vegetation was absent in regions where groundwater depth exceeded 5.5 m. They also used NDVI and 13 groundwater bores, from which relationships between NDVI and groundwater depth for three vegetation classes (grassland, woodland and scrubland) were established. Maximal values of NDVI occurred at sites with intermediate (2.5 - 3.5 m) depth-to-groundwater rather than at sites with shallower groundwater, a result often ascribed to the effect of anoxia arising from root flooding when the water table is too shallow (Naumburg et al., 2005).

Geological, hydrological and ecological data can be used to define areas that have common physical and climatic profiles. These regions are expected to have similar vegetation cover (assuming no management has induced significant changes), thus such areas are expected to have a similar RS signature. Dresel et al., (2010) applied this approach for individual regions in South Australia by developing a correlation analysis using Landsat summer NDVI and MODIS enhanced vegetation index (EVI) as surrogate measures of productivity. EVI is effective for scaling productivity across the range of global ecosystem types (Campos et al., 2013). MODIS EVI images were used to identify regions displaying a consistent photosynthetic activity throughout the year. Landsat NDVI images were then used to locate areas displaying large inter-annual variation in photosynthetic activity across wet and dry years, which were identified by aridity thresholds that were calculated from the Thornthwaite index. Finally, they used an unsupervised classification of Landsat spectral data to locate pixels with similar spectral signatures of areas corresponding to known groundwaterdependent ecosystems. Species-specific differences in spectral signatures have been identified previously (Nagler et al., 2004). By combining all three sources of information **Comment [u9]:** Figure numbers checked throughout the Ms.

Comment [u10]: Additional reference to the flooding issue when GW too shall (geological, hydrological and ecological) within a GIS, Dresel et al., (2010) identified all pixels across a catchment that had a very high probability of being a GDE. Critical for providing assurance of accurate mapping, ground reconnaissance ("truthing") was used to validate these findings.

Mapping of groundwater discharge zones (that is, discharge through transpiration and to the ground surface) provides an alternative approach to finding GDEs. Discharge of groundwater has a large effect on local ecology. To define the spatial extent of discharge, information is required about the geology, hydrology, ecology and climate of a site (Tweed et al., 2007). By using thermal, Landsat optical and MODIS NDVI data coupled to digital elevation models and depth-to-groundwater data, Leblanc et al., (2003a, b), located discharge areas in semiarid Lake Chad basin in Africa. Similarly Tweed et al., (2007) examined discharge (and recharge) of the Glenelg-Hopkins catchment in SE Australia. Discharge occurred through direct evaporation from the water table (i.e., groundwater evaporation); groundwater transpiration; and discharge to the ground surface at landscape depressions, rivers, wetlands and break-of-slope localities. Importantly, they observed low variability of vegetation activity across wet and dry periods (seasons or years) using the NDVI as a measure of vegetation. In this case, the variability in NDVI was correlated with locations where groundwater was supporting vegetation activity. One possible limitation to this method is that it tends to be most accurate in more xeric locations, where rainfall is more likely to limit vegetation function, except during extended droughts.

2.2.2 Fluctuations in groundwater depth

When rooting depth is sufficient, vegetation can directly access the water table via the capillary zone of shallow unconfined aquifers. In some circumstances groundwater uptake by vegetation can be seen as a diel fluctuation in the depth-to-groundwater (Miller et al., 2010), as first identified in groundwater hydrographs by Walter White (1932). These daily fluctuations in depth-to-groundwater cease when the water table falls below the rooting zone (Butler et al., 2007) or when vegetation is dormant (Lautz, 2008; Martinet et al., 2009; Miller et al., 2007). However, changes in the density of water with temperature can cause expansion and contraction of an aquifer (Post and von Asmuth, 2013), leading to the erroneous conclusion that the vegetation from groundwater via bare soil can be substantial (1–10 mm d⁻¹) (Thorburn et al., 1992) and this may also be misinterpreted. Thus, groundwater dependency generally requires supporting confirmation from multiple indicators and cannot be identified definitively from the "White method" alone. Further elaboration of the White method is given in section 3.5.1 and described in detail in Orellana et al., (2012).

2.2.3 Stable isotope analysis

Direct evidence that vegetation is using groundwater can be obtained by comparing the stable isotope composition of groundwater, soil water, surface water (if relevant) and xylem water (Thorburn et al., 1993; Zencich et al., 2002; Lamontagne et al. 2005; O'Grady et al., 2006a,

Comment [u11]: This section moved from original in line with referee's suggestions.

Comment [u12]: New reference

b; Kray et al., 2012; Busch et al., 1992; Ehleringer and Dawson, 1992; Smith et al., 1998). This method is very effective in semi-arid regions where groundwater is derived from snowmelt or winter precipitation (which is isotopically lighter than summer precipitation) (Ehleringer and Dawson, 1992; Smith et al., 1998; Jobbagy et al., 2011). When sufficient differences in isotopic composition exist among sources of water, the dominant source used by different species at different times of year can be identified (Zencich et al., 2002).

An example of deuterium isotope analysis of water collected from xylem, soil, river and groundwater is shown in Table one. Species growing close to groundwater (*Melaleuca argentea*) have xylem isotope compositions close to that of groundwater but species growing further upslope away from the river had xylem isotope compositions close to that of soil water isotope. Further examples include: a) identification of soil and surface water use by juvenile riparian plants, in contrast to groundwater use by mature trees (Dawson and Ehleringer, 1991); and b) determination of the mountainous source of groundwater and opportunistic use of that groundwater by riparian trees (Chimner and Cooper, 2004).

Mixed-member models (i.e., "Keeling plots") can be applied to allow estimation of the relative contribution of multiple sources of water to the water absorbed by roots (Phillips and Greg 2003). While it is possible for a linear mixing model to distinguish more than two potential sources of water, such an application requires the fractionation of ²H or ¹⁸O to be independent of each other, which is often not the case. At a minimum, the use of stable isotopes can provide information about spatial and temporal variation in groundwater dependency across species and ecosystems. Application of stable isotope analyses to quantify the rate of water use is discussed later (Section 3.5.2).

Table 1 here	_	Comment [u13]: Original Table 1 deleted.

3 Quantifying water requirements of GDEs

3.1 A primer on remote sensing derived values of rates of water flux

Before discussing the application of RS techniques to estimate rates of groundwater use by vegetation, we will provide a simple summary of the principles of using RS to estimate ET more broadly. For a detailed and comprehensive evaluation of these methods, refer to Glenn et al., (2007). Table 2 provides examples of recent studies that have used RS in the study of GDEs.

The energy balance equation for land surfaces is:

$$LE + H = R_{n} - G \tag{1}$$

where LE is latent energy flux (ET), H is sensible heat flux. R_n is net radiation and G is soil heat flux. Differences in temperature between air temperature and canopy temperature have

Comment [u14]: Restructure of the

sequence of sections

been used to estimate sensible heat flux (Glenn et al., 2010). Using the reasonable assumption that G averages out to zero over any single 24-hour period and R_n is either measured or derived from remote sensing data, then LE (that is, ET) can be calculated by difference.

Table 2 here

Li and Lyons (1999) compared three methods that use surface temperatures to estimate ET. In two methods, differences in surface and air temperature were used to estimate ET, although the two methods differed in the details of the aerodynamic resistance functions. The third model combined NDVI, surface temperature and a soil-adjusted vegetation index that required the four extreme values of surface temperature and NDVI to be located simultaneously within the study area (i.e., patches of dry bare soils; wet bare soil; wet, fully vegetated patches; and dry, water stressed, fully vegetated surfaces). This can make its application problematic. Two methods used the energy balance equation to estimate ET, whereas ET was estimated in a third by using RS data to estimate the Priestley-Taylor factor that scales between ET and potential ET (ET_p). They concluded that the simplest first and second models produced better estimates of ET and that inclusion of the soil index improved the estimates of ET from native (i.e., non-agricultural) vegetation. Likewise, Nagler et al., (2005a) found that estimates of ET from riparian corridors using RS were improved with the incorporation of a soil index.

3.2 Estimating groundwater use by remote sensing

Quantifying the water balance of arid and semi-arid landscapes and aquifers is important to sustainably manage water resources. Accurate and spatially distributed estimates of discharge through vegetation are difficult to obtain through field measurements. Recently, RS methods have been calibrated against Penman-Monteith estimates of ET (Glenn et al., 2010; Nagler et al., 2013; Doody et al., 2014), which requires only standard weather data (net radiation, wind speed and vapour pressure deficit) and thus increases the coverage of calibration sites. Because ET in GDEs is generally not limited by soil moisture when groundwater is of high quality (i.e. not saline), it is assumed that actual ET rates are equivalent to the ET of a reference grass crop (i.e., reference ET, ET_0), as computed following FAO-56 (Allen et al., 1998). Then, normalised VIs, either EVI* or NDVI*, can be used like crop coefficients to estimate the spatial distribution of ET_a from ET_0 on a per-pixel basis. Nagler et al., (2013) used an exponential scaling function of EVI* to estimate ET_a :

$$ET_{a} = ET_{0}\left(a\left[1 - e^{-b EVI^{*}}\right] - c\right)$$
(4)

Comment [u15]: Sequence of sectio changed.

Similarly, Groeneveld and Baugh (2007) found that this methodology is particularly applicable to arid and semi-arid vegetation underlain by a shallow water table. In arid and semi-arid regions, annual rainfall is low and often erratic. Consequently, the presence of a shallow water table results in a relatively consistent supply of water to roots. NDVI* was calculated from summer peak season NDVI (Groeneveld and Baugh 2007):

$$NDVI^{*} = (NDVI - NDVI_{z}) / (NDVI_{m} - NDVI_{z})$$
(5)

where $NDVI_z$ and $NDVI_m$ are the NDVI values for zero vegetation cover and NDVI at saturation, respectively. Although selection of the values for $NDVI_z$ and $NDVI_m$ can introduce uncertainty, Groeneveld and Baugh (2007) found significant convergence in the NDVI by removal of non-systematic scatter in the data. Calibration of ET in the field is not required to apply this method but it is necessary to define $NDVI_m$. This requires highly verdant pixels in the RS images, arising either from irrigation or the presence of, for example, riparian vegetation that maintains a large LAI. At mesic sites, defining $NDVI_z$ may also be difficult. Despite these problems, Groeneveld and Baugh (2007) were able to disaggregate the influence of groundwater supply from that of recent rainfall.

Groeneveld et al., (2007) applied this NDVI* methodology to three arid sites in the US where annual ET_a values were available through the availability of Bowen ratio or eddy covariance measurements. A significant linear relationship ($R^2 = 0.94$) was found between measured annual ET_a and mid-summer NDVI*, despite very different vegetation composition and structure across those sites. However, the regression of ET_a / ET_0 versus NDVI* did not pass through the origin and would introduce an offset error if NDVI* were used to estimate ET_a . To overcome this, Groeneveld et al., (2007) transformed ET_a to ET_a^* :

$$ET_{a}^{*} = \left(ET_{a} - rainfall\right) / \left(ET_{0} - rainfall\right)$$
(6)

The resulting regression of ET_a^* *versus* NDVI* yielded a slope of 0.97, an intercept of zero and an R² of 0.96. They concluded that NDVI* was a reliable indicator of ET_a^* . Rearranging the equation above and substituting NDVI* for ET_a^* , they demonstrated that:

$$\mathbf{ET}_{a}\left(\mathbf{estimated}\right) = \left(\mathbf{ET}_{0} - \mathbf{rainfall}\right) \mathbf{NDVI} * + \mathbf{rainfall}$$
(7)

They estimated the amount of groundwater transpired (ET_g) by deducting annual rainfall from annual ET_a . That is, $ET_g = (ET_0 - rainfall)$ NDVI*. The average error in ET_g was estimated to be about 12 %, which in the absence of field measurements is a very valuable estimate of rates of groundwater use. Further application of the Groeneveld et al., (2007) method can be found in Groeneveld (2008).

3.2.1 Up-scaling from point to larger-scale estimates of ET

Riparian vegetation is often reliant on groundwater (either through bank recharge or direct access to the shallow water table), especially in arid and semi-arid regions. Rates of ET are enhanced by groundwater use in dry environments (Cleverly 2013), where riparian ET is a large component of the water balance (Dahm et al., 2002; Scott et al., 2008). However, measurement of the riparian ET component depends upon the physical characteristics of the riparian corridor. If a riparian corridor is sufficiently wide, eddy covariance can be used to directly measure ET (Cleverly 2013). Where the corridor is insufficiently wide, tree-scale sapflow techniques can be used (O'Grady et al., 2006)(Goodrich et al., 2000b). Combinations of both methods (Moore et al., 2008; Oishi et al., 2008) can be used to partition transpiration from evapotranspiration (Scott et al., 2006a), thereby estimating the proportion of ET due to transpiration from groundwater with the condition that groundwater evaporation is negligible.

RS methods are used to expand from measurements of ET at discrete locations to the largescale that is required by resource managers. In two studies, (Nagler et al., 2005a; Nagler et al., 2005b)MODIS EVI and maximum daily air temperatures (from MODIS land surface temperature LST) were used to derive an empirical estimate of riparian ET for the San Pedro River and Middle Rio Grande of the USA (Nagler et al., 2005a; Nagler et al., 2005b). Their equations for daily ET were:

$$ET = a \left(1 - e^{-b EVI^*}\right) \left(c \swarrow \left[1 + e^{-\left\{T_a - d \swarrow e\right\}}\right]\right) + f \qquad (Middle Rio Grande) and \qquad (2)$$
$$ET = a \left(1 - e^{-b EVI^*}\right) \left(LST - c\right) + d \qquad (both rivers) \qquad (3)$$

where a, b, c, d, e and f are regression constants derived by regression analysis, T_a is air temperature derived from MODIS LST retrievals, and EVI was normalised to obtain EVI*. Strong correlations between EVI*, T_a and ET were observed and used to provide scaled estimates for larger areas of vegetation. Despite this being an empirically derived equation from a single study, the form of the equation appears to be relatively robust across catchments (Nagler et al., 2005b). Similarly, Scott et al., (2008) and Nagler et al., (2009) applied these equations (Nagler et al., 2005a; Nagler et al., 2005b) in which they used MODIS-derived nocturnal surface temperature and daily maximal air temperature, respectively. In the regression between ET derived from RS and EC methods, the coefficient of determination (R²) was larger than 0.93 during all three years of study and across three vegetation types (grassland, shrubland and woodland), thereby indicating the broad applicability of this method. Thus, this method has the ability to (a) scale from point measurements using individual EC towers to much larger areas; and (b) estimate the difference between annual rainfall and ET and, where ET > rainfall, estimate vegetation groundwater use.

3.3 Gravity recovery and climate experiment (GRACE) for detecting changes in total terrestrial water storage

In addition to remote sensing measures of ET anomalies or NDVI green islands, there are also new satellite sensors and techniques that provide estimates of groundwater fluctuations and soil moisture storage changes that are of value to the study of GDE's (Brunner et al., 2007). The twin satellites known as the Gravity Recovery and Climate Experiment (GRACE) were launched in 2002 for the purpose of making detailed measurements of Earth's gravity field (Tapley et al., 2004). Although Earth's gravity variations tend to be relatively constant over long time intervals, more dynamic, time-variable gravity fields can be detected and these have been related to land surface moisture, ground water fluctuations, sea ice, sea level rise, and deep ocean currents. GRACE's ability to monitor changes in such "unseen water reserves" from space are a significant new addition to hydrological studies that can substantially improve our knowledge of below- and aboveground water resources and associated changes to vegetation functioning and GDE's.

Technically, the GRACE satellites detect changes in the Earth's gravity field by monitoring the changes in distance between the two spacecraft as they orbit Earth. The relative distance will change in response to variations in the Earth's mass, including changes in mass of both above- and below-ground water reservoirs (groundwater, soil moisture, snow, ice, and surface waters). The GRACE satellite data directly measures changes in total water storage (TWS) and not changes of the individual hydrologic components (e.g., surface water, soil moisture, and groundwater). Groundwater storage changes from GRACE are thus inferred by isolating and removing the contributions of all other TWS components, using either independent hydrologic datasets and/or land surface models.

In most cases, soil moisture becomes the sole component that must be removed from the gravity data to estimate groundwater changes, since variability of snow and surface water is relatively insignificant to total water storage variability. By subtracting the soil moisture contribution, the remaining time-variable change in GRACE's measure of total water storage will be due to changes in groundwater. Thus:

DTWS = DSW + DSM + DGW

(8)

Where ΔTWS , ΔSW , ΔSM and ΔGW are changes in total water store, soil moisture,

Many studies have compared changes in groundwater storage obtained from GRACE data with in situ data for validating the accuracy of GRACE data at either regional or continental scales (Henry et al., 2011; Leblanc et al., 2009; Rodell et al., 2009, 2007; Scanlon et al., 2012a,b; Syed et al., 2009).

GRACE is not a way to measure exact water storage amounts from space and cannot be used to measure how much water is stored in a river basin at a particular instant in time. Instead, gravity information is used to assess relative changes in water storage over large areas at **Comment [u16]:** Sequence of section has been changed.

monthly, seasonal or annual time steps. Seasonal changes in water storage may be the easiest to detect using the GRACE technique because such changes tend to be large.

In general, GRACE data are more accurate for large areas over long time intervals. For example, GRACE can detect seasonal and annual changes in water storage over large areasand can detect month-to-month changes over entire river basins (of the order of millions of square kilometers). Presently, GRACE can confidently detect water storage changes in areas larger than 200,000 square kilometers.

Rodell and Famiglietti (2001) showed that GRACE data can estimate annual groundwater change over the High Plains, USA within about 8.7 mm of their actual value. This level of accuracy may not always be an improvement for well-sampled and instrumented aquifers, but for most places in the world, estimates of water levels within a centimeter or less are extremely valuable and will help reveal groundwater depletion in areas of the world where such measurements are not systematically recorded.

Despite these coarse scales, such information can be extremely useful for water resource managers, especially as GRACE data continues to be refined to provide improved estimates of groundwater fluctuations and depletion. Regional monitoring of groundwater levels is limited by the lack of ground-based measurements and the lack of a sufficiently extensive network of monitoring wells. Thereby, the GRACE technique offers an objective, unbiased method for monitoring water storage changes at large scales.

Although many advances in TWS monitoring have been made using GRACE data, the practical application of GRACE data for local water resources management has been limited by the low spatial (>150,000 km²) and temporal (>10 days) resolution of GRACE measurements and by difficulties in disaggregating the various TWS components (Rodell et al., 2007). There is a trade-off between coarse spatial resolution and accuracy, and it remains to be determined whether better spatial resolutions can be achieved without degrading or increasing the uncertainties. However, Houborg et al., (2012) show the potential value of GRACE data to significantly improve drought prediction capacity through assimilation of these data into the Catchment Land Surface Model using ensemble Kalman smoother and forcing data from North American and Global Land Data Assimilation Systems Phase 2 (NLDAS-2). Similarly, Sun et al., (2012) imposed GRACE observations as constraints when recalibrating a regional-scale groundwater model, further highlighting the value of GRACE data to the study of groundwater and GDEs.

3.3.1 Downscaling

To fully realize the potential of GRACE data for hydrological applications, downscaling, both in space and time are required. This will enable better predictions of changes in groundwater level (Houborg et al., 2012). Sun et al., (2013) explored various downscaling techniques for GRACE data for useful predictions of changes in water level. They developed artificial neural network (ANN) model schemes to predict such changes directly by using a

gridded GRACE product and other publicly available hydrometeorological data sets. Their statistical downscaling approach can be readily integrated into local water resources planning activities, especially in the absence of continuous in situ groundwater observations. They noted that downscaled GRACE data could potentially fill the gap created by the declining coverage of in situ groundwater monitoring networks and 'index' wells used to gauge the wellbeing of aquifers.

3.3.2 Groundwater depletion studies

GRACE satellite data have been used to estimate groundwater depletion associated with severe droughts in Europe, U.S., China, and India (LeBlanc et al., 2009; Rodell et al., 2009). Groundwater pumping of aquifers often increases during severe droughts for urban, agriculture, livestock, and industry needs. This results in the decline of groundwater levels and the decrease of ground-water discharge to springs, surface water bodies and riparian zones (Peters et al., 2003). Leblanc et al., (2009) attempted to attribute groundwater loss during the recent drought in Murray-Darling Basin in Australia to groundwater pumping. However, they found that the pumping rate represented only less than 10% of the decline rate in groundwater storage as observed by GRACE from 2003 to 2008 (Fig. 2). They concluded that the observed decline is mostly be explained by reductions of groundwater recharge and the vast amount of groundwater transpired during the drought by the widespread presence of deep rooted trees (GDEs) as well as capillary rise from the saturated to the unsaturated zone.

Fig 2 here

3.3.3 Remote sensing limitations and challenges in GDE studies Comment [u17]: Entirely new section

Remote Sensing applications in studies of GDEs vary greatly, from basic detection, mapping, and monitoring of GDEs to more complex and quantitative measurements of ET, functioning, and energy and water balance. In most cases, mapping of GDE locations at appropriate management scales is prerequisite to more detailed studies, such as groundwater assessments that may require accurate estimates of ET (Gou et al., 2015).

Regardless of the application, there will be certain limitations in the use of remote sensing that need to be considered. Other geospatial data sources will often need to be integrated to make the best use of remote sensing, including climate, soils, landscape morphology, and ecologic data layers that will enable potential areas for GDEs to be delineated (Bertand et al., 2012). Multiple sensors and image data sets are best suited for studies of GDEs because of the inherent spectral-spatial-temporal limitations of single sensor systems. For example the use of fine spatial resolution Landsat (30 m) and high temporal frequency MODIS data (1-2

Comment [u17]: Entirely new section on limits and challenges, as requested by referee. day) allow us to identify potential GDE vegetation patches (Landsat) and track changes in their seasonal and inter-annual dynamics (MODIS spectral vegetation indices, VIs). Thus, vegetated areas that maintain high VI 'greenness' values during extended dry periods can be flagged as '*high GDE potential*', under the premise that GDEs exhibit low seasonality in greenness and ET between dry and wet seasons and low inter-annual variability across years.

However, many ecosystems may contain trees and shrubs that are non-GDE yet also exhibit weak seasonality and inter-annual variation due to their evergreen phenologies. In these mixed tree- grass landscapes, seasonal variability follows the very dynamic herbaceous grass layer that is strongly coupled to rainfall rather than groundwater availability. The stronger seasonality present in the grass layer can readily mask GDE signals from the tree layer and confuse GDE detection. This "mixed-pixel" problem restricts many remote sensing applications, particularly when the matrix background of an area with GDEs has insufficient thermal or greenness contrast to enable GDE detection. The detection of 'cool' thermal patches (transpiring GDE trees) from relatively warmer backgrounds (soil) will be a function of the size and magnitude of the cold patch relative to the pixel area. The 'greener' and 'cooler' signals from a groundwater dependent tree may be averaged out by the non-GDE plants present in the same pixel and a stressed GDE tree can gradually fade into the warmer soil background matrix. Spatial heterogeneity may overwhelm detection. Finer resolution imagery will improve detection capabilities but temporal information is then made poorer, due to inherent sensor resolution trade-off's.

It should be noted that although remote sensing is a useful diagnostic tool and proxy for the detection and sensing of GDE's, most detection and mapping is done by inference and careful user interpretation. Remote sensing often cannot directly ascertain causes and mechanisms for GDEs and much remains to be done to assess GDE influences on the water balance, their sensitivity to changing water availability, and responses to stress conditions. Future sensor systems planned for launch in the next few years include follow-on GRACE twin satellite missions with improved sensing capabilities allowing more detailed analyses groundwater, soil moisture, and surface water distributions and trends. The soil moisture active passive (SMAP) mission, launched in 2014, provides improved soil moisture retrievals which will improve upon the detection and differentiation of soil-moisture induced vegetation dynamics from those associated with groundwater use.

3.4 Hydrological modelling

3.4.1 Conceptual water balance approaches

A spreadsheet tool

O'Grady and co-workers have developed a simple but useful first-order approximation to estimate groundwater use of vegetation in an Excel spreadsheet tool (Leaney et al., 2011;

Comment [u18]: New section heading as requested.

http://www.csiro.au/products/recharge-discharge-estimation-suite). This toolbox includes three methods to estimate rates of groundwater discharge by vegetation:

- 1. Groundwater Risk Model
- 2. Ecological Optimality Model
- 3. Groundwater Discharge Salinity Model (not described here)

The groundwater risk model uses historical monthly rainfall and evaporation data for a site to produce a water balance. Soil texture is used to estimate soil moisture characteristics in each layer of the model, and groundwater uptake by vegetation is assumed to occur when ET exceeds rainfall, when also accounting for soil water storage for each month. ET is estimated from total evaporation using the Budyko framework (Budyko 1974; Donohue et al., 2007; Yang et al., 2008; Roderick and Farquhar 2009). The risk model in Leaney et al., (2011) uses the Choudhury-Yang formulation of the Budyko equation:

$$ET_{a} = \left(P \ ET_{p}\right) \swarrow \left(P^{n} + \left[ET_{p}\right]^{n}\right)^{1 \swarrow n}$$
(9)

where P is rainfall and n is a fitting parameter that determines the shape of the curve. Determining the value of n is difficult, but a close approximation can be derived from the climate wetness index ($CWI = P/ET_p$). When the CWI > 0.3, n is approximately equal to CWI and when CWI < 0.3, n is approximately 1.8 (Leaney et al., 2011). The influence of variation in *n* and the Budyko formulation is shown in Figure 3.

Figure 3 here

The model is run using historical monthly rainfall and estimated ET. Pan evaporation rates can be used instead of ET_p , in which case $ET_p = 0.75E_{pan}$. Modest agreement between modelled and observed rates of groundwater discharge was found in two Australian studies where ET exceeded rainfall in the Wattle Range by 2 to 440 mm y⁻¹ (Benyon and Doody 2004), although the range of estimated groundwater discharge rates was large: 107 to 671 mm y⁻¹ (Benyon and Doody 2004) and 380–730 mm y⁻¹ (Benyon et al., 2006).

As an alternative method to the risk assessment just described, Leaney et al., (2011) applied Eagleson's theory of ecological optimality (Eagleson 1978). This proposes that the LAI of a site is maximised according to long-term rainfall and soil water holding capacity such that productivity is maximised whilst minimising the development of water stress. In this hypothesis, native vegetation is assumed to be at equilibrium with the local hydrological regime (Nemani and Running 1989). Ellis and Hatton (2008) have shown that the LAI of a site is proportional to a climate wetness index (CWI = P/ET_p), whilst Eamus et al., (2001) used the Baldocchi-Meyers index (foliar [N] x P/E_{eq}, where foliar [N] is the concentration of

Comment [u19]: Acknowledgement role of soil water carry over here.

nitrogen in leaves and E_{eq} is equilibrium evapotranspiration) and found a strong ($R^2 = 0.95$ for 16 sites globally) curvilinear relationship with LAI, supporting the essentials of Eagleson's optimality theory. Similarly, Zeppel (2013) examined multiple species across sites in Australia and found strong convergence in daily rates of tree water-use and leaf area across five evergreen sclerophyllous genera. In the Eagleson optimality method of Leaney et al., (2011), the relationship between LAI and the CWI of Ellis and Hatton (2008) is used:

$$LAI = (3.31 \ CWI) - 0.04$$
 (10)

In GDEs, groundwater discharge combines with precipitation to supply ET (O'Grady et al., 2011), thus:

$$CWI_{g} = (P + GW) / ET_{p}$$
(11)

where CWI_g is the climate wetness index that includes the groundwater component (GW). Likewise, the Budyko curve can be modified to include the contribution of groundwater discharge to ET:

$$ET \swarrow ET_{p} = 1 + \left(P \swarrow ET_{p}\right) - \left(1 + \left[P \swarrow ET_{p}\right]^{w}\right)^{1/w} \text{ (Zhang et al., 2004) and } (12)$$
$$\left(ET \swarrow ET_{p}\right)_{g} = 1 + \left(\left[P + GW\right] \swarrow ET_{p}\right) - \left(1 + \left[\left\{P + GW\right\} \swarrow ET_{p}\right]^{w}\right)^{1/w} \text{ (O'Grady et al., 2011)}$$
$$(13)$$

Within zones of the same CWI, sites with access to shallow groundwater maintain a larger LAI than sites without access to groundwater (O'Grady et al., 2011). To determine GW, the pairs of equations (CWI, CWI_g; ET/ET_p , $[ET/ET_p]_g$) were optimised by obtaining the difference in rainfall required to attain a given LAI with a known CWI value (O'Grady et al., 2011).

3.4.2 Groundwater flow and variable saturation models: MODFLOW and HYDRUS

Two models, MODFLOW and HYDRUS, are commonly used to investigate the hydrologic state of the coupled surface water–groundwater–soil–vegetation system (McDonald and Harbaugh, 1988; Doble et al., 2006; Shah et al., 2007; Lowry and Loheide, 2010; Loheide and Booth, 2011; Ajami et al., 2012). HYDRUS applies Richard's equation to simulate water,

Comment [u20]: Section rewritten to improve clarity.

heat and solute movements in soil, whereas MODFLOW is fully distributed and coupled hydrologic model of groundwater flow (Orellana et al., 2012). Hydrologic models that apply Richard's equation in a soil medium of variable saturation are important for evaluating the mechanisms that generate groundwater hydrographs and flow. MODFLOW can also perform spatial scaling of ET as a function of depth-to-groundwater, although the form of ET depends upon parameterisation of the model. Often, ET is determined as ET_p or ET_0 , but measurements of ET_a from eddy covariance can also be used. In one example, Wilcox et al., (2007) estimated ET from Cleverly et al., (2002) to evaluate the interaction between riparian ET and surface water–groundwater interactions.

Variable saturation models have improved our understanding of the interactions between groundwater and soil moisture in the vadose zone. Root water uptake (RWU) creates soil moisture deficits in the vadose zone and the capillary fringe, thereby causing vadose zone water content to fluctuate with depth-to-groundwater (Nachabe et al., 2005; Shah et al., 2007; Logsdon et al., 2010). Using HYDRUS 1-D, Lowry and Loheide (2010) integrated ETg and RWU from the vadose zone by estimating the groundwater subsidy as the difference between RWU from the shallow groundwater and RWU from free drainage. Further complicating the relationship between groundwater and soil moisture, hydraulic redistribution of moisture from deep in the soil column to the surface (i.e., hydraulic lift) can reduce the amplitude of fluctuations in depth-to-groundwater, increase the amount of ET_g that is lost to groundwater evaporation, and decrease the nocturnal recovery in depth-to-groundwater (Orellana et al., 2012).

One of the goals of ecohydrological modelling in GDEs is the prediction of vegetation state based upon groundwater regime (Loheide and Booth, 2011). Likewise, the principle drivers of water use by vegetation in GDEs were aquifer attributes (S_y , regional groundwater flow), meteorology (solar radiation, vapour pressure deficit), environmental stress, and vegetation attributes (LAI, species composition) (Cleverly et al., 1997; Perkins and Sophocleous, 1999; Dahm et al., 2002; Cleverly et al., 2006; Butler et al., 2007; Lautz, 2008; Abudu et al., 2010). In general, these controls are observed in the wider literature on the controls of vegetation water use (Eamus et al., 2006b; Whitley et al., 2009). As the meteorological, environmental and vegetation effects on ET have been thoroughly described, we will focus on the regional aquifer effects on ET_g here.

One geomorphologic attribute of the aquifer that controls the flow of groundwater and thereby affects the distribution of groundwater-dependent vegetation depends upon whether the aquifer is gaining (i.e., water flows into the aquifer from its surroundings) or losing (i.e., an area where groundwater is lost to adjacent unsaturated soils) (Cleverly, 2013). A larger ET_g can lead to contrasting effects on seepage from streams to aquifers, depending upon whether along a losing or gaining reach (Ajami et al., 2011). Similarly, fluctuations in depth-to-groundwater can differ between gaining and losing reaches, of which the occurrence of the latter is where groundwater inflow might be insufficient to support large recovery rates in depth-to-groundwater (Schilling, 2012). The relationships between plant water use, aquifer dynamics, and seasonality (e.g., Logsdon et al., 2010; Ajami et al., 2011) are influenced by

the rooting patterns and groundwater depth– ET_g relationships of the specific plant functional types that inhabit the GDE (Baird and Maddock, 2005).

3.5 Field based measurements

3.5.1 Sub-daily fluctuation in groundwater depth

An idealised representation of the "White method" in a shallow unconfined aquifer is shown in Figure four.

Figure 4 here

In Figure four the oscillating curve represents the cycle of groundwater drawdown arising from evapotranspiration (ET) during the day followed by a "rebound" of the water table when ET returns to zero at night. The dashed straight line (with slope = r) provides an estimate of the recovery rate, which is how fast the water table rises in the absence of groundwater use (Butler et al., 2007). After accounting for recovery, the daily drawdown of the water table is scaled by the effective specific yield (S_y), or the volume of water (per unit surface area of an unconfined aquifer) released from the soil pores with a given change in depth-to-groundwater (White, 1932):

$$ET_{g} = S_{y} \left(24r + s \right)$$
(14)

where *s* is the change in aquifer storage and is determined from the 24-hr change in depth-togroundwater. This approach has been successfully applied in the Okavango Delta in Botswana (Bauer et al., 2004), an upland grassland catchment in central Argentina (Engel et al., 2005), an oak/grassland site on the Great Hungarian Plain of eastern Hungary (Nosetto et al., 2007), the Sopron Hills of western Hungary (Gribovszki et al., 2008), the Gobi Desert of northwest China (Wang et al., 2014), and various sites in the USA (Butler et al., 2007; Lautz et al., 2008; Martinet et al., 2009).

The White method tends to over-estimate ET_g (Loheide et al., 2005; Martinet et al., 2009). A major source of error is estimation of S_y , to which this method is very sensitive (Loheide et al., 2005; Gribovszki et al., 2008; Lautz, 2008; Logsdon et al., 2010; Miller et al., 2010). Furthermore, representative measurements of the readily available S_y are difficult to make and are complicated by capillary flux, trapped air, hysteresis, and departure of the soil–water ecosystem from an equilibrium (Logsdon et al., 2010). The value of S_y is dependent upon soil texture (Loheide et al., 2005), thus Martinet et al., (2009) applied a value of S_y that varied

Comment [u21]: Sequence of sectio changed as suggested by referees.

Comment [u22]: Legend included additional information

with the soil texture in contact with the capillary fringe of the water table. With a measure of ET_g (e.g., from eddy covariance), the White equation can be inverted to investigate the variation in Sy (Miller et al., 2010). Using an inversion of the White method, estimates of S_y account for spatial heterogeneity in soil texture and scaling effects on S_y , but further studies are required before comprehensive predictions of S_y can be obtained without independent measurements of ET_g . Alternatively, Nachabe et al., (2005) used a more direct estimate of S_y in the soil column by combining measured fluctuations of depth-to-groundwater and soil moisture across the vadose (i.e., unsaturated) zone. In either case, additional instrumentation to measure ET_g or soil moisture profiles improved the estimation of S_y .

Several modifications to the White method were evaluated in a study by Fahle and Dietrich (2014), in which they compared errors in estimation of S_y , recovery and ET_g . No model outperformed the others in each of these error benchmarks, thus illustrating that errors in the estimation of S_y are compensated by errors in the estimation of recovery (Fahle and Dietrich, 2014). The methods that provided the best estimates for recovery of the groundwater used approaches to estimate sub-daily rates of ET_g and recovery (Gribovszki et al., 2008; Loheide and Ii, 2008). In both methods, recovery was estimated from the previous and following nights, although application to other methods might require site-specific parameterisation of the time period that is most representative for their study conditions (e.g., 18.00–6.00; Fahle and Dietrich, 2014). In the method of Gribovszki et al., (2008), recovery was estimated from the time rate of change in depth-to-groundwater, and this important upgrade reduced the error of recovery estimates (Gribovszki et al., 2010; Fahle and Dietrich, 2014).

Groundwater hydrographs include the impact of regional fluctuations in the aquifer that are not associated with local changes arising from ET of vegetation (Engel et al., 2005). A regional effect that can cause problems with the White method occur when tides from nearby water bodies generate two daily peaks in the groundwater hydrograph (Miller et al., 2010), thereby requiring measurements of the water body that is causing the effect. After accounting for the regional hydrograph, soil moisture content in the vadose zone can still affect the correlation between sap flow measurements of ET_g and groundwater fluctuations (Engel et al., 2005). This was consistent with the modelling results of Loheide et al., (2005), who found that daily fluctuations were dampened by root water uptake from the vadose zone alone. Spectral methods (e.g., windowed Fourier decomposition) are effective at identifying break points in the daily signal like those associated with regional groundwater and soil moisture effects, although variations in ET_g can result in loss of amplitude, consequently rendering spectral analysis unsuitable for quantitative analysis without an adequate scaling factor (Schilling and Zhang, 2012; Soylu et al., 2012).

3.5.2 Using stable isotopes to estimate rates of groundwater use

Estimates of the proportion of total vegetation water use derived from groundwater can be determined from stable isotope anlyses (Querejeta et al., 2007; Maguas et al., 2011; Feikema et al., 2010; Kray et al., 2012; McLendon et al., 2008). Two types of information are

required to quantitatively partition ET_g from ET. The first is an independent estimate of ET_0 or ET_a as derived from eddy covariance (Kelliher et al., 1992; Baldocchi and Vogel, 1996; Baldocchi and Ryu, 2011), sapflow (Cook and O'Grady, 2006; O'Grady et al., 2006; Zeppel, 2013) or RS techniques (Nagler et al., 2009; Nagler et al., 2013). The second is the stable isotope composition of water in soil, groundwater and xylem. Upon determination of the proportion of ET that is due to ET_g (Section 3.2), the amount of ET_g , for example in mm d⁻¹, is the product of that proportion and ET.

Three generalities can be identified in the results of stable isotope studies of GDEs. First, multi-species comparisons at a common site generally confirm niche separation (spatially or temporally) in patterns of water uptake, thereby minimising competition for water (Lamontagne et al., 2005; Querejeta et al., 2007; Kray et al., 2012). Second, increased depth-to-groundwater results in a declining proportion of groundwater use (O'Grady et al., 2006), although this can vary amongst different vegetation communities (McLendon et al., (2008). Finally, as time since last rain increases, the proportion of groundwater used by vegetation usually increases (McLendon et al., 2008), but not always (Kray et al., 2012). Consequently seasonality of groundwater use may occur when rainfall is highly seasonal and groundwater availability is maintained throughout the dry season (O'Grady et al., 2006).

Stable isotope composition varies with depth (Table 1; Querejeta et al., 2007). Consequently taking an average value to represent the entire rooting depth can lead to errors. Whilst use of two independent isotopes allows the relative contribution of three sources to be determined, obtaining independence of both isotopes is very difficult. As an alternative, Cook and O'Grady (2006) developed a model that estimates the relative water uptake by vegetation from different soil depths. This model is based upon the following axioms: the rate of water uptake is determined by (a) the gradient in water potential between bulk soil and leaves; (b) root distribution through the soil profile; and (c) a lumped hydraulic conductance parameter. Soil isotopic composition as a function of depth and of xylem water is used to constrain root distributions within the model. This has the advantage over end-member analyses (an analytic tool to determine the relative contributions of soil water and groundwater to transpiration; Phillips and Gregg 2003) because: (i) it produces a quantitative estimation of the proportion of water extracted from multiple depths (including groundwater); (ii) it doesn't require distinct values of isotope composition for end-member analyses and therefore can deal with the more typical grading of isotope composition observed through the soil profile; and (iii) it is based on simple ecophysiological principles. Cook and O'Grady (2006) applied this model and demonstrated that two co-occurring species obtained 7-15 % of their transpirational water from the water table, a third species accessed 100 % from the water table, and a fourth species derived 53-77 % from groundwater.

4 Functional responses of GDEs to changes in GW depth

Comment [u23]: The order of the sections changed as suggested by referee

4.1 Effects of groundwater on growth and dendrochronological traits

A reduced growth rate in response to declining water availability is a universally observed plant response (Kelliher et al., 1980; Osmond et al., 1987; Oberhuber et al., 1998; Sarris et al., 2007). In most GDEs rainfall and groundwater provide important supplies of water, and the ratio of rainfall to groundwater uptake varies spatially and temporally. Consequently, increases in groundwater depth may be expected *a priori* to have the potential to affect plant growth. Dendrochronology (the study of growth in tree rings) has a long history in ecological research spanning many decades (Drew and Downes 2009; McCarroll and Loader, 2004). However, its application to the study of GDEs is much more recent (e.g. Giantomasi et al., 2012). Similarly, recording point dendrometers, which are sensitive stem gauges that monitor growth increment at hourly time-scales, recently have been used for expanding applications. In this section we briefly review some of the insights gained form dendrochronology and dendrometry in the study of GDEs.

Tree rings represent the history of past growth events, which are often but not always annual (Prior et al., 2012). Quantification of growth rates from tree rings can be used to reconstruct fluctuations in the supply water from precipitation and groundwater (Oberhuber et al., 1998; Bogino and Jobbagy, 2011; Perez-Valdivia and Sauchyn, 2011; Xiao et al., 2014). In mountainous regions where the regional water supply is derived from snowmelt, tree growth and groundwater depth are correlated with precipitation during the year prior to growth because much of the snow received in the winter melts in the year after it fell (Oberhuber et al., 1998; Perez-Valdivia and Sauchyn, 2011). Likewise, tree ring growth and groundwater fluctuations are correlated to the dominant climate driver in an area (e.g., the Pacific decadal oscillation and El Niño–Southern Oscillation in California, USA) (Hanson et al., 2006). In some circumstances, the effect of groundwater can be disentangled from climate through the use of spectral analysis (Bogino and Jobbagy, 2011), but in other cases depth-to-groundwater was not found to be a significant factor in explaining differences in either ring width of basal area increment (Stock et al., 2012).

The timing of groundwater dependence can influence the presence of a climate signal in tree rings: climate signals can be weaker during formation of late wood, when growth rates are small (Oberhuber et al., 1998); or during the dry season, when precipitation rates are negligible and growth is supported by groundwater (Drake and Franks, 2003). Thus, analysis of tree ring chronologies can provide an insight into the importance of access to groundwater on plant growth. Individual events can be identified in the tree ring growth record (Hultine et al., 2010), as can long-term trends in depth-to-groundwater (Bogino and Jobbagy, 2011). In riparian cottonwood trees and willows, Hultine et al., (2010) identified rapid, large and reversible responses of tree ring width to draining and refilling of a reservoir (Fig. 5).

Figure 5 here

Longer-term trends in depth-to-groundwater have impacted dendrochronologies in both directions, toward lower growth rates with groundwater extraction (Lageard and Drew, 2008)

and toward increasing growth rates with decreasing depth-to-groundwater, except in response to root anoxia arising from flooding (Bogino and Jobbagy, 2011). However, specific responses depend upon depth-to-groundwater and individual differences amongst functional types; for example, riparian cottonwood trees (*P. fremontii*) responded to rewetting with growth that was larger and faster than the response of co-occurring willow (*S. exigua*), a small-stature, thicket-forming shrub that is restricted to streamside areas with very shallow groundwater (Scurlock, 1998; Rood et al., 2011). From an understanding of the relationships between tree growth and depth-to-groundwater, historical periods of sensitivity to hydrological drought (i.e., affecting groundwater levels) *versus* meteorological drought (i.e., below-average precipitation) can be identified (Potts and Williams, 2004; Adams and Kolb, 2005; Cocozza et al., 2011). Such insights have value in developing a long-term understanding of the relationships amongst GDEs, climate and groundwater depth.

Wood formed during drought is enriched in ¹³C, reflecting decreases in stomatal conductance relative to photosynthesis and the consequential ratio of $[CO_2]$ within and outside of the leaf (C_i/C_a) (McCarroll and Loader, 2004; Cocozza et al., 2011) (Horton et al., 2001, Maguas et al., 2011). Interpretation of δ^{13} C in tree rings can be complicated by the effects of phloem loading (Gessler et al., 2009) and by photosynthetic re-fixation in the bark (Cernusak et al., 2001), although with independent confirmation, xylem δ^{13} C can explain differences in groundwater use and water stress in groundwater-dependent trees. In one such comparison, δ^{13} C was constant across xylem from *Populus* along a perennial stream (thereby implying access to groundwater) but changed with moisture conditions in an intermittent reach (Potts and Williams, 2004). Likewise, changes in ring width over time were reflected by δ^{13} C from leaves (Hultine et al., 2010), such that less negative values of δ^{13} C indicated increased water-use-efficiency when the supply of water was reduced.

On small time-scales (hourly-to-daily), incremental stem growth (and shrinkage) is measured using precision dendrometers that contain linear-variable-displacement transducers (Zweifel et al., 2005, Drew et al., 2008, Drew and Downes 2009). Changes in maximum daily trunk shrinkage arising from reduced water availability occur earlier and stronger than changes in stomatal conductance, stem water potential or transpiration (Ortuno et al., 2006, Conejero et al., 2007, 2011, Galindo et al., 2013). Nonetheless, rates of sapflow declined with maximum daily stem shrinkage, both of which responded exponentially to changes in depth-to-groundwater (Ma et al., 2013). Similarly February et al., (2007) and Drake et al., (2013) found that increased groundwater supply (actual or simulated) resulted in increased stem increment, sapflow and xylem water potential.

4.2 Two case studies

4.2.1 The Gnangara Mound

The Gnangara Mound is a shallow unconfined aquifer of the Swan Coastal Plain in Western Australia. Increased depth-to-groundwater has occurred over the past several decades as the result of long-term declines in annual rainfall, increased human abstraction and increased

discharge arising from the development of a plantation industry in the region (Elmahdi and McFarlane, 2012). The impacts of groundwater abstraction on woodlands have been documented in this region (Groom et al., 2000; Canham et al., 2009; Canham et al., 2012; Stock et al., 2012). In 1985 large rates of summer abstraction in this Mediterranean climate was associated with increased and widespread mortality of native woodlands (up to 80 % mortality close to abstraction bores; Mattiske and Associated 1988).

To determine long-term floristic changes associated with groundwater abstraction, a series of transect studies were initiated in 1988. A 2.2 m increase in depth-to-groundwater coupled to higher-than-normal summer temperatures resulted in further adult mortality of overstorey species by as much as 80 %; additionally, 64 % mortality was recorded in understory species 2 years after the start of groundwater abstraction (Groom et al., 2000). Increased rates of mortality were not observed at control sites that were not subject to groundwater pumping.

Large inter-specific differences in rates of mortality were observed in these Gnangara studies. Consequently, a further study examined the vulnerability of individual species to increased depth-to-groundwater (Froend and Drake 2006; Canham et al., 2009). Using xylem embolism vulnerability curves as a measure of sensitivity to water stress, Froend and Drake (2006) compared three *Banksia* and one *Melaleuca* species. They found that xylem vulnerability reflected the broad ecohydrological distribution of species across a topographic gradient, and they identified a threshold leaf water potential below which increased mortality was likely. Similarly Canham et al., (2009) examined Huber values (the ratio of sapwood to leaf area), leaf-specific hydraulic conductivity (k_1) and xylem vulnerability of two obligate phreatophytes and two facultative phreatophytes. At sites where depth-to-groundwater was shallow there were no inter-specific differences in vulnerability to water stress. However, by comparing across a topographic gradient, Canham et al., (2009) showed that two facultative phreatophytes) were more resistant to xylem embolism at the upper slope (larger depth-to-groundwater) than the lower slope.

It is not only aboveground tissues that adapt to changes in groundwater depth. Differences in root growth also respond to changes in depth-to-groundwater. Thus Canham et al., (2012) found that root growth varied with depth within the soil column: at the surface, root growth responded to seasonality and microclimate; at depth, root growth occurred all year and was dependent upon soil aeration (i.e., roots elongated rapidly followed a declining water table during the summer and died back in the following winter as the groundwater rebounded). These results are consistent with the increases in ET following groundwater decline that were observed by Cleverly et al., (2006). The ability to rapidly increase root depth during the (dry) summer is a critical attribute of phreatophytes occupying sites with seasonally dynamic depth-to-groundwater.

The development of ecosystem response trajectories for the impact of groundwater abstraction is an important resource management imperative. Froend and Sommer (2010) examined a rare, 40-year vegetation survey dataset from the Gnangara Mound. Whilst the long-term average (1976–2008) rainfall was 850 mm, the annual average for the recent past was about 730 mm and depth-to-groundwater has increased by 1 m in the past 50 years.
Depth-to-groundwater fluctuates about 0.5-3 m seasonally, and maximal depth occurs at the end of summer. Two transects were compared: a "control" where gradual increases in depth-to-groundwater (9 cm y⁻¹) have occurred as a result of the decline in annual rainfall; and an "impacted" transect where large rates of increase in depth-to-groundwater have occurred (50 cm y⁻¹). Principal component analyses were used to identify three vegetation communities: those associated with down-slope, mid-slope and upper-slope positions. Species having a high reliance on consistent water supplies (mesic species) were dominant at the down-slope site while xeric species dominated the upper-slope sites.

On the control transect it was hypothesised that groundwater decline would result in a replacement of the mesic by the xeric species. However, this hypothesis was not supported. Indeed, most of the compositional and structural attributes of the three communities remained unchanged. The principle community-scale response was a change in the abundance of mesic and xeric species rather than complete replacement of one species for another. In contrast to the results of Shatfroth et al., (2000), mesic species at sites with shallow groundwater were not more sensitive to increases in depth-to-groundwater than xeric species. By contrast, changes in composition on the impacted transect were far more pronounced, and mass mortality was observed across all classes (mesic to xeric) species. This study emphasises the importance of the rate of change in depth-to-groundwater as a determinant of the response of species and communities.

4.2.2 Riparian forest vegetation in the southwestern USA

In the southwestern USA, the majority of GDEs are riparian or littoral, where a shallow aquifer is formed by runoff from snowmelt in the mountainous headwaters. Much of the agriculture in the region is found along the rivers due to the large amount of surface water that flows past. The focus of irrigation to the riparian corridors has placed intense competition between water resources for people *versus* the environmental flows that are required to maintain shallow aquifers and associated GDEs. Of further risk to riparian GDEs and agriculture, groundwater extraction and land use change threaten riparian ecosystems (Scott et al., 1999; Nippert et al., 2010; Pert et al., 2010). Thus, many studies have been undertaken over several decades to investigate the water use of GDEs in southwestern North America (van Hylckama, 1970; Gay and Fritschen, 1979; Sala et al., 1996; Devitt et al., 2005b).

Sunlight is plentiful in the southwestern USA, thus riparian GDEs are strong carbon sinks (Kochendorfer et al., 2011). However, seasonal variability in surface water discharge and aquifer recharge can create cycles of hypoxia and drought stress (Lowry et al., 2011), both of which act to reduce production (Shah and Dahm, 2008). Often existing between these two states of stress, riparian vegetation can transpire substantial amounts of water, reaching near the theoretical maximum (ca. 12 mm d⁻¹) (Cleverly, 2013). This general release from limitations due to energy, moisture and stress results in rates of latent heat flux that exceed precipitation (i.e., ET/P > 1) (Scott et al., 2000; Cleverly et al., 2006; Scott et al., 2006b) and

net radiation (Devitt et al., 1998). Even when little or no groundwater use can be identified in the vegetation (e.g., in *Sporobolis*), ET losses from the riparian corridor can exceed precipitation inputs (Scott et al., 2000), implying that soil moisture in the vadose zone can be recharged by groundwater and that riparian GDEs need not use the groundwater directly.

In southwestern North America, vegetation in riparian corridors and adjacent rangelands or shrublands is classified by reliance upon access to groundwater (i.e., obligate or facultative phreatophyte; Smith et al., 1998) or plant functional type (obligate wetland, shallow-rooted or deep-rooted riparian, transitional riparian, or upland; Pockman and Sperry, 2000; Baird and Maddock, 2005; Baird et al., 2005). The result of groundwater depletion has distinct effects on the vegetation in each functional type. Shallow-rooted, obligate phreatophytes (e.g., cottonwood, Populus spp.) can be very sensitive to groundwater decline, resulting in reductions of ET, productivity and canopy conductance as a consequence of increases in vapour pressure deficit that are correlated with depth-to-groundwater (Gazal et al., 2006; Kochendorfer et al., 2011). Branch sacrifice, partial crown dieback and mortality commonly occur in *Populus* following substantial groundwater drawdown (Mahoney and Rood, 1991; Kranjcec et al., 1998; Scott et al., 1999; Rood et al., 2000; Cooper et al., 2003; Rood et al., 2003). However, stomatal closure and crown dieback in *Populus* can prevent total hydraulic failure, and thereby minimise mortality rates, by maintaining favourable xylem water potentials within the remainder of the crown (Amlin and Rood, 2003).

Decreased baseflow and drawdown of groundwater levels has been associated with a shift in dominance to xerophytic species in the American Southwest at the expense of forbs and obligate phreatophytes (Stromberg et al., 1996; Stromberg et al., 2006; Stromberg et al., 2007; Stromberg et al., 2010). Xerophytes in the riparian corridors of the American Southwest include deep-rooted phreatophytes (e.g., *Proposis, Tamarix*) and upland species (e.g., *Chrysothamnus*), any of which may be opportunistic users of groundwater or groundwater-independent. Stress tolerance, opportunistic use of groundwater and use of multiple water sources (e.g., soil moisture) have contributed to the invasive success of *Tamarix* (Busch et al., 1992; Cleverly et al., 1997; Di Tomaso, 1998; Nippert et al., 2010). Consequently, *Tamarix* inhabit sites with variable depth-to-groundwater (Lite and Stromberg, 2005), which results in an amount of ET that is equivalently variable in time and space (Cleverly et al., 2002; Cleverly, 2013).

The effective area of riparian vegetation has historically increased in the American Southwest due to expansion of deep-rooted phreatophytes like *Tamarix* and *Prosopis* (Hultine and Bush, 2011). The upland vegetation that previously occupied riverine upper terraces and grasslands supported small rates of ET (Shafroth et al., 2005; Hultine and Bush, 2011), thus expansion of phreatophytes into these areas has resulted in an increase in ET losses (Scott et al., 2006b; Cleverly, 2013) and thereby has placed a potential strain on groundwater resources. In the case of expansion by Tamarix, groundwater extraction may result in enhancement of ET (Cleverly et al., 2006), contrasting with post-extraction reductions in ET by native, shallow-rooted phreatophytes such as *Populus* (Cooper et al., 2006; Gazal et al., 2006) and thus representing a shift in the ecohydrology of riparian corridors throughout the semi-arid regions of south western North America.

4.3 Integrating multiple-scale responses

4.3.1 Multiple traits across leaf, branch, whole-tree and stand

The responses of vegetation to differences in depth-to-groundwater have been examined extensively at leaf, tree, canopy and population scales. Rates of leaf-scale photosynthesis, stomatal conductance, whole plant hydraulic conductance, tree- and canopy-scale transpiration and plant density are known to decline in response to reduced supply of groundwater (Table 3). Similarly, increased Huber value, crown dieback and mortality in response to reduced supply of groundwater have been observed (Table 3). Consequently, response functions for individual traits are readily apparent; examples include changes with depth-to-groundwater in rates of photosynthesis (Horton et al., 2001), plant cover (Elmore et al., 2006), NDVI (Lv et al., 2012) and crown dieback (Horton et al., 2001). However, few studies have examined *multiple traits* across *multiple scales* and then provided an integrated "ecosystem-scale" response to changes in groundwater availability have been hypothesised to be linear (Fig. 6), curvi-linear or a step function with which minimal damage occurs until a threshold is reached (Leffler and Evans, 1999; Eamus et al., 2006).

Information on how vegetation adapts to differences in water supply is critical for predicting vegetation survival, growth and water-use, which have important impacts on site hydrology (McDowell et al., 2008; Carter and White, 2009). The development of integrated response curves to reduced groundwater availability would significantly enhance our understanding of water requirements and lead to the identification of response thresholds. Such thresholds could be used to identify the limits of reduction in water-source availability, a useful parameter for characterising water requirements for resource and conservation management (Froend and Drake, 2006).

Table 3 here

In a recent comprehensive, three-year study, Zolfaghar (2014) examined leaf, branch, tree and stand-scale functional and structural attributes of woodlands across a gradient of depthto-groundwater (2.4 m to 37.5 m) in mesic Australia. She examined eighteen traits, including stand-scale basal area and tree height, leaf turgor loss point, sapwood hydraulic conductivity, sensitivity to xylem embolism and above ground net primary productivity. An increase in depth-to-groundwater across these sites was hypothesised to result in:

- 1. reduced standing biomass;
- 2. adjustment of leaf-, tree- and plot-scale plant traits with associated repercussions on plant water relations;
- 3. increased drought tolerance; and
- 4. increased water-use-efficiency.

Fig 6 here

Figure seven provides a summary of the observed responses of each trait to increasing depthto-groundwater. Refer to Table four for the abbreviations used in Figure seven.

Fig 7 here.

Table 4 here

It is clear from Figure seven that increased depth-to-groundwater was associated with declines in basal area, tree height and LAI, and hence light interception, of native woodlands. As a consequence, aboveground net primary productivity was reduced as groundwater availability declined. Increased drought tolerance, as indicated by increased water-use-efficiency, increased Huber value and reduced water potential at turgor loss and solute potential at full turgor, supported the principle over-arching hypothesis that increasing depth-to-groundwater results in a suite of leaf-branch and tree-scale adaptations that increase tree tolerance to reduced water supply.

A key aspect of this research was to develop an ecosystem-scale response function for depthto-groundwater. Zolfaghar (2014) normalised the responses (0 to 1) such that a response of 1 indicates no effect of differences in depth-to-groundwater and 0.5 indicates a 50 % decline/increase in the maximal/minimum value of a particular trait. The normalised response function is presented in Figure eight. Despite the large number of traits and species across the seven sites, the standard error of the ecosystem-scale average for each data point was remarkably small, indicating significant convergence in normalised responses to differences in depth-to-groundwater. Convergence of functional variations in traits across sites and species is increasingly observed with respect to rainfall or other climatic variables (Wright et al., 2004; Kattge et al., 2011). Indeed, identification of plant functional types (PFTs) is a practical means for models of land surface-atmosphere interactions across biomes to integrate the physiology of vegetation. Similarly, improved accuracy can be obtained from dynamic global vegetation models (DGVMs) through the construction of large datasets (cf. Wright et al., 2004, Kattge et al., 2011) that include a representation of groundwater-dependent ecosystems.

A second feature apparent in the response function of Fig. 8 is the large R^2 of the sigmoidal regression, reflecting the relatively high degree of confidence in this threshold response. The response curve further suggests that extraction of groundwater beyond 7 – 9 m depth is likely

to result in significant changes in ecosystem structure and function. Although we cannot pinpoint the exact break point with precision, it is clearly apparent that a breakpoint does occur in the data. Furthermore, two recent reviews based on water balance concluded that groundwater uptake ceased when depths exceeded 7.5 m (Benyon et al., 2006) or 8 - 10 m (O'Grady et al., 2010), whilst Cook et al., (1998) established a limit of approximately 8 m for a Eucalypt savanna. Finally, Kath et al., (2014) identified thresholds of groundwater depth across 118 sites in SE Australia for two tree species ranging from 12.1 m to 26.6 m further supporting our identification of a breakpoint in the responses of trees to groundwater depth. Such a strong response, consistent across multiple traits, should provide a strong management signal to guide future groundwater abstraction.

Figure 8 here

4.3.2 Co-ordination across traits

Some plant traits are a better indicator of plant sensitivity to water stress than others. Leaf water potential at turgor loss is recognised as a physiological measure of plant sensitivity to water stress (McDowell et al., 2008). Similarly, measurements of vulnerability to xylem cavitation and safety margins are critical determinants of drought tolerance (Markesteijn et al., 2011; Sperry et al., 2008). Safety margins are equal to the difference between minimum daily branch water potential and PLC_{50} (Meinzer et al., 2008; Sperry et al., 2008). A strong linear correlation between these two traits (Fig. 9) in the Kangaloon study (Zolfaghar 2014) reveals co-ordination in the response of leaf (cell traits) and xylem (branch trait) anatomy, as has been observed previously in a study of eight tropical dry forest species (Brodribb et al., 2003). This relationship indicates that as depth-to-groundwater increased, sensitivity to drought at both leaf cell and branch-scale decreased (lower leaf water potential is needed to reach turgor loss point and PLC₅₀ declined).

Figure 9 here

5 Concluding remarks

The existence of GDEs has been known for several centuries. The ecological, social, cultural and economic importance of GDEs, however, has only been understood more recently. Whilst inferential methods were the main means for determining the presence/location of GDEs for many decades these have now been replaced by more direct methodologies which include the use of stable isotopes and hourly direct measurements of fluctuations in shallow groundwater depth. The most revolutionary recent development has, perhaps, been the application of remote sensing techniques to identify the location of GDEs but also to reveal key features of their functional behaviour.

Increasing frequencies, spatial and temporal extent and severity of drought and resulting drought-induced mortality of forests have been recorded extensively (Dai 2011; Eamus et al., 2013) in the past two decades. Climate-change-induced changes in rainfall distribution and amounts pose a new stress to both groundwater resources and associated GDEs. For the first time, remotely sensed information on both the structure (e.g LAI) and functioning (e.g. rates of water-use and primary productivity) of GDEs are now available across several decades. The challenge now is to use this long history of remotely sensed and meteorological data as a unique natural experiment to determine response functions of multiple GDEs to changes in climate (and groundwater depth) globally to inform both the science of ecology and the practical needs of water and land resource managers into the future.

6 References

- Comment [u24]: 24 new references
- Abudu, S., Bawazir, A.S., King, J.P.: Infilling Missing Daily Evapotranspiration Data Using Neural Networks. J. of Irrig. and Drainage Engin. 136:317-325. DOI: 10.1061/(asce)ir.1943-4774.0000197, 2010
- Adams, H.D., Kolb, T.E.: Tree growth response to drought and temperature in a mountain landscape in northern Arizona, USA. J. Biogeog. 32:1629-1640. DOI: 10.1111/j.1365-2699.2005.01292.x, 2005.
- Aguilar, C., Zinnert, J.C., Jose Polo, M., Yound, D.R.: NDVI as an indicator for changes in water availability to woody vegetation. Ecol. Appl. 23: 290 300, 2012.
- Ajami, H., Maddock, T., Meixner, T., Hogan, J.F., Guertin, D.P.: RIPGIS-NET: A GIS tool for riparian groundwater evapotranspiration in MODFLOW. Ground Water 50:154-158. DOI: 10.1111/j.1745-6584.2011.00809.x, 2012.
- Ajami, H., Meixner, T., Maddock, T., Hogan, J.F., Guertin, P.: Impact of land-surface elevation and riparian evapotranspiration seasonality on groundwater budget in MODFLOW models. Hydrogeol. J. 19:1181-1188. DOI: 10.1007/s10040-011-0743-0, 2011.
- Akasheh, O.Z., Neale, C.M.U., Jayanthi, H.: Detailed mapping of riparian vegetation in the middle Rio Grande River using high resolution multi-spectral airborne remote sensing. J. Arid Env. 72:1734-1744, 2008.
- Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: "Crop evapotranspiration: Guidelines for computing crop requirements." Irrigation and Drainage Paper No. 56, FAO, Rome, Italy, 1998.
- Amlin, N., Rood, S.: Drought stress and recovery of riparian cottonwoods due to water table alteration along Willow Creek, Alberta. Trees: Structure and Function 17:351-358, 2003.
- Baird, K.J., Maddock, T.: Simulating riparian evapotranspiration: A new methodology and application for groundwater models. J. Hydrol. 312:176-190, 2005.
- Baird, K.J., Stromberg, J.C., Maddock, T.: Linking riparian dynamics and groundwater: An ecohydrologic approach to modeling groundwater and riparian vegetation. Environ. Manag. 36:551-564, 2005.

- Baldocchi, D.D, Ryu Y.: A synthesis of forest evaporation fluxes from days to years as measured with eddy covariance. Pages 101-116 in Levia DF, Carlyle-Moses D, and Tanaka T, editors. Forest Hydrology and Biogeochemistry: Synthesis of Past Research and Future Directions. Springer Sciences+Business Media B.V., Dordrecht, Netherlands, 2011.
- Baldocchi, D.D., Vogel, C.A.: Energy and CO₂ flux densities above and below a temperate broad-leaved forest and a boreal pine forest. Tree Phys. 16:5-16, 1996.
- Barron, O.V., Emelyanova, I., van Niel, T.G., Pollock, D., Hodgson G.: Mapping groundwater dependent ecosystems using remote sensing measures of vegetation and moisture dynamics. Hydrol. Proc. 28: 372 – 385, 2014.
- Bauer, P., Thabeng, G., Stauffer, F., and Kinzelbach, W.: Estimation of the evapotranspiration rate from diurnal groundwater level fluctuations in the Okavango Delta, Botswana. J. Hydrol. 288, 344-355, 2004.
- Benyon, R.G., Doody, T.M. :Water Use by Tree Plantations in South East South Australia. CSIRO Forestry and Forest Products Technical Report Number 148. CSIRO, Mount Gambier SA, 2004.
- Benyon, R.G., Theiveyanathan, S., Doody, T.M.: Impacts of tree plantations on groundwater in south-eastern Australia. Aus. J. Bot. 54:181-192, DOI: 10.1071/bt05046, 2006.
- Bertrand, G., Goldscheider, N., Gobat, J.M., Hunkeler, D.: Review: From multi-scale conceptualization to a classification system for inland groundwater-dependent ecosystems. Hydrogeology J. 20: 1, 1–21, 2012.
- Bogino, S.M., Jobbagy, E.G.: Climate and groundwater effects on the establishment, growth and death of Prosopis caldenia trees in the Pampas (Argentina). For. Ecol. and Manag. 262:1766-1774. DOI: 10.1016/j.foreco.2011.07.032, 2011.
- Brodribb, T.J., Holbrook, N.M., Edwards, E.J., and Gutierrez, M.V.: Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees. Pl. Cell and Environ. 26: 443-450. 2003.
- Brown, L.: Water tables falling and rivers running dry: international situation. Int. J. Environ. 3, 1-5, 2007.
- Brown, J., Bach, L., Aldous, A., Wyers, A., DeGagne, J.: Groundwater-dependent ecosystems in Oregon: an assessment of their distribution and associated threats. Front. In Ecol. and Envi. 9:97-102, 2010.
- Brunner, P., Franssen, H-J H., Kgotlhang, L., Bauer-Gottwein, P., and Kinzelbach, W.: How can remote sensing contribute in groundwater modeling? Hydrogeol. J., 15(1), 5-18, 2007, 2007.
- Budyko, M.I.: Climate and life. Academic Press, San Diego, CA. 508 pp, 1974.
- Busch, D.E., Ingraham, N.L., Smith, S.D.: Water uptake in woody riparian phreatophytes of the Southwestern United States: a stable isotope study. Ecol. Appl. 2:450-459, 1992.
- Butler, J.J., Kluitenberg, G.J., Whittemore, D.O., Loheide, S.P., Jin, W., Billinger, M.A., Zhan, X.Y.: A field investigation of phreatophyte-induced fluctuations in the water table. Water Res. Res. 43:W02404. DOI: 10.1029/2005WR004627, 2007.
- Campos, G.E.P., Moran, M.S., Huete, A., Zhang, Y., Bresloff, C., Huxman, T.E., Eamus, D., Bosch, D.D., Buda, A.R., and Gunter, S.A.: Ecosystem resilience despite large-scale altered hydroclimatic conditions. Nature 494:349-352, 2013.

- Canham, C.A., Froend, R.H., and Stock, W.D.: Water stress vulnerability of four Banksia species in contrasting ecohydrological habitats on the Gnangara Mound, Western Australia. Pl. Cell and Environ. 32, 64-72, 2009.
- Canham, C.A., Froend, R.H., Stock, W.D., and Davies, M.: Dynamics of phreatophyte root growth relative to a seasonally fluctuating water table in a Mediterranean-type environment. Oecologia 170, 909-916, 2012.
- Carlson, T.N., Ripley, D.A.: On the relation between NDVI, fractional vegetation cover, and leaf area index. Rem. Sens. Env. 62:241-252. DOI: 10.1016/s0034-4257(97)00104-1, 1997.
- Carter, J.L., White, D.A.: Plasticity in the Huber value contributes to homeostasis in leaf water relations of a mallee Eucalypt with variation to groundwater depth. Tree Physiol:tpp076. DOI: 10.1093/treephys/tpp076, 2009.
- Cernusak, L.A., Marshall, J.D., Comstock, J.P., Balster, N.J.: Carbon isotope discrimination in photosynthetic bark. Oecologia 128:24-35. DOI: 10.1007/s004420100629, 2001.
- Chimner, R.A., Cooper, D.J.: Using stable oxygen isotopes to quantify the water source used for transpiration by native shrubs in the San Luis Valley, Colorado USA. Plant and Soil 260:225-236. DOI: 10.1023/B:PLSO.0000030190.70085.e9, 2004.

Cleverly, J.: Water use by *Tamarix*. Pages 85-98 *in* Sher A and Quigley MF, editors. *Tamarix*. A Case Study of Ecological Change in the American West. Oxford University Press, New York, NY, 2013.

- Cleverly, J.R., Dahm, C.N., Thibault, J.R., Gilroy, D.J., Coonrod, J.E.A.: Seasonal estimates of actual evapo-transpiration from *Tamarix ramosissima* stands using threedimensional eddy covariance. J. Arid Env. 52:181–197. DOI: 10.1006/jare.2002.0972, 2002.
- Cleverly, J.R., Dahm, C.N., Thibault, J.R., McDonnell, D.E., Coonrod, J.E.A.: Riparian ecohydrology: Regulation of water flux from the ground to the atmosphere in the Middle Rio Grande, New Mexico. Hydro. Proc. 20:3207-3225, 2006.
- Cleverly, J.R, Smith, S.D, Sala, A, Devitt, D.A.: Invasive capacity of *Tamarix ramosissima* in a Mojave Desert floodplain: the role of drought. Oecologia 111:12-18, 1997.
- Clifton, C.A., and Evans, R.: Environmental water requirements to maintain groundwater dependent ecosystems. Environmental Flows Initiative Technical Report Number 2. Canberra: Commonwealth of Australia, 2001.
- Cocozza, C., Giovannelli, A, Traversi, M.L, Castro, G, Cherubini, P, Tognetti, R.: Do treering traits reflect different water deficit responses in young poplar clones (*Populus x canadensis* Monch 'I-214' and P. deltoides 'Dvina')? Trees-Structure and Function 25:975-985. DOI: 10.1007/s00468-011-0572-8, 2011.
- Conejero, W., Alarcon, J.J *et al.*: Daily sapflow and maximum daily trunk shrinkage measurements for diagnosing water stress in early maturing peach trees during the post harvest period. Tree Physiol. 27, 81-88, 2007.
- Conejero, W., Mellisho, C.D., Ortuno, M.F.: Using trunk diameter sensors for regulated irrigation scheduling in early maturing peach trees. Env. Exp. Bot. 71, 409-415, 2011.
- Contreras, S, Jobbagy, E.G, Villagra, P.E, Nosetto, M.D, Puigdefabregas, J,: Remote sensing estiates of supplementary water consumption by arid ecosystems of central Argentina. J. of Hydrol. 397: 10- 22, 2011.

- Cook, P.G., Hatton, T.J., Pidsley, Herczeg, D., Held, A.L., O'Grady, A., Eamus, D.: Water balance of a tropical woodland ecosystem, northern Australia: a combination of micro-meteorological, soil physical and groundwater chemical approaches. J. of Hydrol. 210: 161–177.doi:10.1016/S0022-1694(98)00181-4, 1998.
- Cook, P.G., O'Grady, A.P.: Determining soil and ground water use of vegetation from heat pulse, water potential and stable isotope data. Oecologia 148:97-107. DOI: 10.1007/s00442-005-0353-4, 2006.
- Cooper D., D'Amico D., Scott M.: Physiological and morphological response patterns of *Populus deltoides* to alluvial groundwater pumping. Environ. Manag. 31:215-226, 2003.
- Cooper, D.J., Sanderson, J.S., Stannard, D.I., Groeneveld, D.P.: Effects of long-term water table drawdown on evapotranspiration and vegetation in an arid region phreatophyte community. J. Hydrol. 325:21-34, 2006.
- Dahm, C.N., Cleverly, J.R., Coonrod, J.E.A., Thibault, J.R., McDonnell, D.E., Gilroy, D.F.: Evapotranspiration at the land/water interface in a semi-arid drainage basin. Freshwater Bio. 47:831-843, 2002.
- Dai, A.: Drought under global warming: a review. Wiley Interdisciplinary Reviews Climate Change 2, 45 -65, 2011.
- Dawson, T.E., Ehleringer, J.R.: Streamside trees that do not use stream water. *Nature* 350:335-337. DOI: 10.1038/350335a0, 1991.
- Devitt, D.A., Sala, A., Smith, S.D., Cleverly, J.R., Shaulis, L.K., Hammett, R.: Bowen ratio estimates of evapotranspiration for *Tamarix ramosissima* stands on the Virgin River in southern Nevada. Water Res. Res. 34:2407-2414, 1998.
- Di Tomaso, J.M.: Impact, biology, and ecology of saltcedar (*Tamarix* spp.) in the southwestern United States. Weed Technology 12:326-336, 1998.
- Doble, R, Simmons, C, Jolly, I, Walker, G.: Spatial relationships between vegetation cover and irrigation-induced groundwater discharge on a semi-arid floodplain, Australia. J. Hydrol. 329:75-97. DOI: 10.1016/j.jhydrol.2006.02.007, 2006.
- Donohue, R.J., Roderick, M.L., and McVicar, T.R.: On the importance of incouding vegetation dynamics in Budyko's hydrological model. Hydrology and Earth System Sciences 11, 983-995, 2007.
- Doody T.M., Benyon, R.G., Theiveyanathan, S., Koul, V., Stewart, L.: Development of pan coefficients for estimating evapotranspiration from riparian woody vegetation. Hydrol. Proc. 28:2129-2149. DOI: 10.1002/hyp.9753, 2014.
- Drake, P.L., Franks, P.J.: Water resource partitioning, stem xylem hydraulic properties, and plant water use strategies in a seasonally dry riparian tropical rainforest. Oecologia 137:321-329. DOI: 10.1007/s00442-003-1352-y, 2003.
- Drake, P.L., Coleman, B..F, and Vogwill, R.: The response of semi-arid ephemeral wetland plants to flooding: linking water use to Hydrol. Proc.. Ecohydrology 6, 852-862, 2013.
- Dresel, P.E, Clark, R., Cheng, X., Reid, M., Terry, A., Fawcett, J., and Cochrane, D.: Mapping Terrestrial GDEs: Method development and example output. Victoria Department of Primary Industries, Melbourne VIC. 66 pp, 2010.
- Drew, D.M, and Downes, G.M.: The use of precision dendrometers in research on daily stem

size and wood property variation: A review. Dendrochronologia 27, 169-172, 2009.

- Drew, D.M., O'Grady, A.P., Downes, G.M., Read, J., and Worledge, D.: Daily patterns of stem size variation in irrigated and unirrigated *Eucalyptus globulus*. Tree Phys. 28, 1573-1581, 2008.
- Eagleson, P.S.: Climate, soil and vegetation: 1. Introduction to water balance dynamics. Water Res. Res. 14:705-712, 1978.
- Eamus, D., Boulain, N., Cleverly, J., Breshears, D.D.: Global change-type drought induced tree mortality: vaour pressure deficit is more important than temperature *per se* in causing decline in tree health. Ecology and Evolution 3, 2711-2729, 2013.
- Eamus, D., Haton, T., Cook, P., Colvin, C.: *Ecohydrology: vegetation function, water and resource manangement.* CSIRO, Melbourne, 2006.
- Eamus, D., Hutley, L.B., O'Grady, A.P.: Daily and seasonal patterns of carbon and water fluxes above a north Australian savanna. Tree Phys. 21: 977–988, 2001.
- Eamus D., Froend, R., Loomes, R., Hose, G., and Murray, B.: A functional methodology for determining the groundwater regime needed to maintain the health of groundwaterdependent vegetation. Aus. J. Bot. 54, 97-114, 2006, 2006.
- Ehleringer, J.R, Dawson, T.E.: Water uptake by plants: perspectives from stable isotope composition. Pl. Cell and Environ. 15:1073-1082, 1992.
- Ellis, T.W. and Hatton, T.J.: Relating leaf area index of natural eucalypt vegetation to climate variables in southern Australia. Ag. Water Manag. 95:743-747, 2008.
- Elmahdi, A., McFarlane, D.: Integrated multi-agency framework: sustainable water management. Proceedings of the Institution of Civil Engineers-Water Management 165:313-326. DOI: 10.1680/wama.11.00003, 2012.
- Elmore, A.J., Manning, S.J., Mustard, J.F., and Craine, J.M.: Decline in alkali meadow vegetation cover in California: the effects of groundwater extraction and drought. J. App. Ecol. 43:770-779, 2006.
- Engel, V., Jobbagy, E.G., Stieglitz, M., Williams, M., Jackson, R.B.: Hydrological consequences of eucalyptus afforestation in the argentine pampas. Water Res. Res. 41. DOI: 10.1029/2004wr003761, 2005.
- Everitt, J.H, DeLoach, C.J.: Remote sensing of Chinese Tamarisk (*Tamarix chinensis*) and associated vegetation. Weed Science 38:273-278, 1990.
- Everitt, J.H, Judd, F.W, Escobar, D.E, Alaniz, M.A, Davis, M.R, MacWhorter, W.: Using remote sensing and spatial information technologies to map sabal palm in the lower Rio Grande Valley of Texas. Southwestern Naturalist 41:218-226, 1996.
- Fahle, M, Dietrich, O. (2014). Estimation of evapotranspiration using diurnal groundwater level fluctuations: Comparison of different approaches with groundwater lysimeter data. Water Res. Res. 50:273-286. DOI: 10.1002/2013wr014472, 2014.
- February, E.C, Higgins, S.I, Newton, R, and West, A.G.: Tree distribution on a steep environmental gradient in an arid savanna. J. Biogeog. 34, 270-278, 2007.
- Feikema, P.M, Morris, J.D, Connell, L.D.: The water balance and water sources of a *Eucalyptus* plantation over shallow saline groundwater. Plant and Soil 332, 429-449, 2010.

- Ford, C.R., Mitchell, R.J., Teskey, R.O.: Water table depth affects productivity, water use and the response to nitrogen addition in a savvan system. Can. J. For. Res. 38: 2118-2127, 2008.
- Froend, R.H, Drake, P.L.: Defining phreatophyte response to reduced water availability: preliminary investigations on the use of xylem cavitation vulnerability in *Banksia* woodland species. Aus. J. Bot. 54:173-179, 2006.
- Froend, R., Sommer, B.: Phreatophytic vegetation response to climatic and abstraction-induced GW drawdown: examples of long-term spatial and temporal variability in community response. Ecolog Engineering 36, 1191-1200, 2010.
- Galindo, A, Rodrigues, P, Mellisho, C.D, Torrecillas, E, Moriana, A, Cruz, Z.N, Conejero, W, Moreno, F and Terrecillas, A.: Assessment of discreetly measured indicators and maximum daily trunk shrinkage for detecting water stress in pomegranate trees. Ag. For. Met. 180, 58 – 65, 2013.
- Gamon, J, Field, C, Goulden, M, Griffin, K, Hartley, A, Joel, G, Penuelas, J, Valentini, R.: Relationships between NDVI, canopy structure, and photosynthesis in 3 Californian vegetation types. Ecol. Appl. 5:28-41, 1995.
- Gay, L.W, Fritschen, L.J.: An energy budget analysis of water use by saltcedar. Water Res. Res. 15:1589-1592, 1979.
- Gazal, R.M, Scott, R.L, Goodrich, D.C, Williams, D.G.: Controls on transpiration in a semiarid riparian cottonwood forest. Ag. For. Met. 137:56-67, 2006.
- Gessler, A, Brandes, E, Buchmann, N, Helle, G, Rennenberg, H, Barnard, R.L.: Tracing carbon and oxygen isotope signals from newly assimilated sugars in the leaves to the tree-ring archive. Pl. Cell Environ. 32:780-795. DOI: 10.1111/j.1365-3040.2009.01957.x, 2009.
- Giantomasi, M. A., Roig-Juñent, F. A. and Villagra, P. E.: Use of differential water sources by *Prosopis flexuosa* DC: a dendroecological study, Plant Ecol., 214(1), 11–27, doi:10.1007/s11258-012-0141-2, 2012.
- Giordano, C. V., Guevara, A., Boccalandro, H. E., Sartor, C. and Villagra, P. E.: Water status, drought responses, and growth of Prosopis flexuosa trees with different access to the water table in a warm South American desert, Plant Ecol., 212(7), 1123–1134, doi:10.1007/s11258-010-9892-9, 2011.
- Giordanos, M.: Global groundwater? Issue and solutions. Ann. Rev. Environ. Res. 34, 153-178.2009.
- Guevara, A., Giordano, C. V., Aranibar, J., Quiroga, M. and Villagra, P. E.: Phenotypic plasticity of the coarse root system of Prosopis flexuosa, a phreatophyte tree, in the Monte Desert (Argentina), Plant Soil, 330(1-2), 447–464, doi:10.1007/s11104-009-0218-4, 2009.
- Glenn, E.P, Huete, A.R, Nagler, P.L, Hirschboeck, K.K, Brown, P.: Integrating remote sensing and ground methods to estimate evapotranspiration. Crit. Rev. in Pl. Sci. 26:139-168. DOI: 10.1080/07352680701402503, 2007.
- Gleick, P and Palaniappan, M.: Peak water limits to freshwater withdrawal and use. Prooc. Nat. Acad. Sci. 107, 11155-11162, 2010.
- Glazer, A.N and Likens, G.E.: The water table: the shifting foundation of life on land. Ambio 41, 657-669, 2012.

- Glenn, E.P, Nagler, P.L, Huete, A.R.: Vegetation Index Methods for Estimating Evapotranspiration by Remote Sensing. Surveys in Geophysics 31:531-555. DOI: 10.1007/s10712-010-9102-2, 2010.
- Gonzalez, E, Gonzalex-Sanchis, M, Comin, F, A, Muller, E,: Hydrologic thresholds for riparian forest conservation in a regulated large Mediterranean river. River Res. And Appl. 28: 81-80, 2012.
- Goodrich D.C, Chehbouni A, Goff B, MacNish B, Maddock T, Moran S, Shuttleworth W.J, Williams D.G, Watts C, Hipps L.H, Cooper DI, Schieldge J, Kerr YH, Arias H, Kirkland M, Carlos R, Cayrol P, Kepner W, Jones B, Avissar R, Begue A, Bonnefond JM, Boulet G, Branan B, Brunel JP, Chen LC, Clarke T, Davis M.R, DeBruin H, Dedieu G, Elguero E, Eichinger W.E, Everitt J, Garatuza-Payan J, Gempko VL, Gupta H, Harlow C, Hartogensis O, Helfert M, Holifield C, Hymer D, Kahle A, Keefer T, Krishnamoorthy S, Lhomme J.P, Lagouarde J.P, Lo Seen D, Luquet D, Marsett R, Monteny B, Ni W, Nouvellon Y, Pinker R, Peters C, Pool D, Qi J, Rambal S, Rodriguez, J, Santiago. F, Sano. E, Schaeffer. S,M., Schulte. M., Scott, R., Shao, X., Snyder, K.A., Sorooshian, S., Unkrich, C.L, Whitaker, M, Yucel I.: Preface paper to the Semi-Arid Land-Surface-Atmosphere (SALSA) Program special issue. Ag. For. Met. 105:3-20, 2000a.
- Goodrich, D.C, Scott, R., Qi, J., Goff, B., Unkrich, C.L, Moran. M.S, Williams, D.,
 Schaeffer, S., Snyder, K., MacNish, R., Maddock, T., Pool, D., Chehbouni, A.,
 Cooper. D.I., Eichinger, W.E., Shuttleworth ,W.J., Kerr, Y., Marsett, R., Ni, W.:
 Seasonal estimates of riparian evapotranspiration using remote and *in situ*measurements. Ag. For. Met. 105:281-309, 2000b.
- Gou, S, Gonzales, S, Miller, G.: Mapping potential groundwater-dependent ecosystems for sustainable management. *Ground* Water 53: 99–110, 2015.
- Gribovszki, Z., Kalicz, P., Szilagyi, J., Kucsara, M.: Riparian zone evapotranspiration estimation from diurnal groundwater level fluctuations. J. Hydrol. 349:6-17, 2008.
- Gribovszki, Z., Szilagyi, J., Kalicz, P.: Diurnal fluctuations in shallow groundwater levels and streamflow rates and their interpretation - A review. J. Hydrol. 385:371-383. DOI: 10.1016/j.jhydrol.2010.02.001, 2010.
- Gries, D., Zeng, F., Foetzki A., Arndt S.K., Bruelheide, H., Thomas F.M., Zhang, X., Runge, M.: Growth and water relations of *Tamarix ramosissima* and *Populus euphratica* on Taklamakan desert dunes in relation to depth to a permanent water table. Pl. Cell and Environn 26, 725-736, 2003.
- Groeneveld, D.P., and Baugh, W.M.: Correcting satellite data to detect vegetation signal for eco-hydrologic analyses. J. Hydrol. 344, 135-145. 2007.
- Groeneveld, D.P, Baugh, W.M., Sanderson, J.S., and Cooper, D.J: Annual groundwater evapotranspiration mapped from single satellite scenes. J. Hydrol. 344, 146-156, 2007.
- Groeneveld, D.P.: Remotely-sensed groundwater evapotranspiration from alkali scrub affected by declining water table. J. Hydrol. 358, 294-303, 2008.
- Groom B.P, Froend R.H, Mattiske E.M.: Impact of groundwater abstraction on *Banksia* woodland, Swan Coastal Plain, Western Australia. Ecolog. Manag. & Restoration 1, 117-124, 2000.

- Hanson R.T, Dettinger M.D, Newhouse M.W.: Relations between climatic variability and hydrologic time series from four alluvial basins across the southwestern United States. Hydrogeol. J. 14:1122-1146. DOI: 10.1007/s10040-006-0067-7, 2006.
- Hatton T and Evans R.: Dependence of ecosystems on groundwater and its significance to Australia. Occasional Paper No 12/98. Land and Water Res. Res. and Dewvelopment Corporation. CSIRO Australia, 1998.
- Henry, C. M., D. M. Allen, and J. Huang.: Groundwater storage variability and annual recharge using well-hydrograph and GRACE satellite data, Hydrogeol. J., 19(4), 741-755, 2011.
- Horton, J.L, Kolb, T.E and Hart, S.C.: Responses of riparian trees to inter-annual variation in groundwater depth in a semi-arid river basin. Pl. Cell & Environ. 24, 293 – 304, 2001
- Houborg, R., M. Rodell, B. Li, R. Reichle, and B.F. Zaitchik.: Drought indicators based on model assimilated GRACE terrestrial water storage observations. Water Res. Res., 48, W07525, doi:10.1029/2011WR011291, 2012.
- Howard, J, Merrifield, M.: Mapping groundwater dependent ecosystems in California. PLoS ONE 5: e11249, 2010.
- Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG.: Overview of the radiometric and biophysical performance of the MODIS vegetation indices. *Rem. Sens. Env.* 83:195-213. DOI: 10.1016/s0034-4257(02)00096-2, 2002
- Hultine KR, Bush SE. (2011). Ecohydrological consequences of non-native riparian vegetation in the southwestern United States: A review from an ecophysiological perspective. Water Res. Res. 47:W07542. DOI: 10.1029/2010wr010317.
- Hultine K.R, Bush S.E, Ehleringer J.R.: Ecophysiology of riparian cottonwood and willow before, during, and after two years of soil water removal. Ecol. Appl. 20:347-361. DOI: 10.1890/09-0492.1, 2010
- Jin X.M, ME Schaepman, JG Clevers, Z.B Su and G Hu.: Groundwater depth and vegetation in the Ejina area, China. Arid Land Res. Manag. 25, 194-199, 2011.
- Jobbagy, E.G, Nosetto, M.D, Villagra, P.E, Jackson, R.B.: Water subsidies from montains to deserts: their roile in sustaining groundwater fed oases in a sandy landscape. Ecol. Appl. 21: 678 – 694, 2011.
- Jung, M, Reichstein M, Margolis H.A, Cescatti A, Richardson A.D, Arain M.A, Arneth A, Bernhofer C, Bonal D, Chen J.Q, Gianelle D, Gobron N, Kiely G, Kutsch W, Lasslop G, Law B.E, Lindroth A, Merbold L, Montagnani L, Moors E.J, Papale D, Sottocornola M, Vaccari F, Williams C.: Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. of Geophys. Res. 116:G00J07. DOI: 10.1029/2010jg001566, 2011.
- Kanniah, K.D, Beringer J, Hutley L.B.: Response of savanna gross primary productivity to interannual variability in rainfall: Results of a remote sensing based light use efficiency model. Prog. Phys. Geog. 37:642-663, 2013.
- Kath, J., Reardon-Smith, K., Le Brocque, A.F., Dyer, F.J., Dafny, E., Fritz, L., and Batterham, M.: Groundwater decline and tree change in floodplain landscapes:

Identifying non-linear threshold responses in canopy condition. Glob. Ecol. And Conserv. 2: 148-160, 2014.

- Kattge, J, Diaz S, Laborel S, Prentice C, Leadley P, Bonisch G *et al.*. TRY a global database of plant traints. Glob. Chng. Biol. 17, 2905 2935, 2011.
- Kelliher, F.M., Kirkham, M.B, Tauer C.G.: Stomatal resistance, transpiration and growth of drought-stressed eastern cottonwood. Can. J. For. Res. 10:447-451, 1980.
- Kelliher, F.M, Kostner B.M.M, Hollinger D.Y, Byers J.N, Hunt J.E, McSeveny T.M, Meserth R, Weir P.L, Schulze E.D.: Evaporation, xylem sapflow and tree transpiration in a New Zealand broad-leaved forest. Ag. For. Met. 62:53-73. DOI: 10.1016/0168-1923(92)90005-o, 1992.
- Kochendorfer, J, Castillo EG, Haas E, Oechel W.C, Paw U KT.: Net ecosystem exchange, evapotranspiration and canopy conductance in a riparian forest. Ag. For. Met.151:544-553, 2011.
- Kranjcec, J, Mahoney J.M, Rood .SB.: The responses of three riparian cottonwood species to water table decline. For. Ecol. and Manag. 110:77-87, 1998.
- Kray, J. Cooper, D., and Sanderson, J.: Groundwater use by native plants in response to changes in precipitation in an intermountain basin. J. Arid Env. 83, 25-34, 2012.
- Lageard J.G.A, Drew I.B.: Hydrogeomorphic control on tree growth responses in the Elton area of the Cheshire Saltfield, UK. Geomorphology 95:158-171. DOI: 10.1016/j.geomorph.2007.05.017, 2008.
- Lamontagne S, PG Cook, A O'Grady and D Eamus.: Groundwater use by vegetation in a tropical savanna riparian zone (Daly River, Australia). J. Hydrol. 310, 280-293, 2005.
- Lautz, L.K.: Estimating groundwater evapotranspiration rates using diurnal water-table fluctuations in a semi-arid riparian zone. Hydrogeol. J. 16:483-497, 2008.
- Leanay, F, Crosbie, R, O'Grady, A, Jolly, I, Gow, L, Davies, P, Wilford, J and Kilgour, P.: Recharge and discharge estimation in data poor areas. Scientific reference guide.
 CSIRO: Water for a Healthy Country National Research Flagship. 61 pp. Canberra Australia, 2011.
- Leblanc, M., Leduc, C., Razack, M., Lemoalle, J., Dagorne, D., Mofor, L.: Application of remote sensing and GIS for groundwater modelling of large semiarid areas: example of the Lake Chad Basin, Africa. Hydrology of Mediterranean and Semiarid Regions Conference, Montpieller, France, April 2003, IAHS (Red Books Series), Wallingford, UK, no. 278, pp 186–192, 2003a.
- Leblanc, M, Razack, M., Dagorne, D., Mofor, L., Jones, C.: Application of Meteosat thermal data to map soil infiltrability in the central part of the Lake Chad basin, Africa. Geophys. Res. Lett. 30(19):1998, 2003b.
- Leblanc, M. J., Tregoning, P., Ramillien, G., Tweed, S.O., and Fakes, A.: Basin-scale, integrated observations of the early 21st century multiyear drought in southeast Australia. Water Resour. Res., 45, W04408, doi :10.1029/2008WR007333, 2009.
- Leffler, A.J., Evans A.S.: Variation in carbon isotope composition among years in the riparian tree *Populus fremontii*. Oecologia 119:311-319, 1999.
- Li, F., and Lyons, T.: Estimation of regional evapotranspiration through remote sensing. J. Appl. Met. 38, 1644-1654, 1999.

- Lite S.J., Stromberg J.C.: Surface water and ground-water thresholds for maintaining *Populus-Salix* forests, San Pedro River, Arizona. Biol. Cons. 125:153-167, 2005.
- Logsdon, S.D., Schilling, K.E., Hernandez-Ramirez, G., Prueger, J.H., Hatfield, J.L., Sauer, T.J.: Field estimation of specific yield in a central Iowa crop field. Hydrol. Proc. 24:1369-1377. DOI: 10.1002/hyp.7600, 2010.
- Loheide, S.P., Booth, E.G.: Effects of changing channel morphology on vegetation, groundwater, and soil moisture regimes in groundwater-dependent ecosystems. Geomorph. 126:364-376, 2011.
- Loheide, S.P, Butler, J.J, Gorelick, SM.: Estimation of groundwater consumption by phreatophytes using diurnal water table fluctuations: A saturated-unsaturated flow assessment. Water Res. Res. 41:W07030. DOI: 10.1029/2005wr003942, 2005.
- Loheide, S.P.: A method for estimating subdaily evapotranspiration of shallow groundwater using diurnal water table fluctuations. Ecohydrology 1:59-66, 2008.
- Lowry, C.S, Loheide, S.P.: Groundwater-dependent vegetation: Quantifying the groundwater subsidy. Water Res. Res. 46:W06202. DOI: 10.1029/2009wr008874, 2010.
- Lowry, C.S, Loheide, S.P, Moore ,C.E, Lundquist, J.D.: Groundwater controls on vegetation composition and patterning in mountain meadows. Water Res. Res. 47:W00J11. DOI: 10.1029/2010wr010086, 2011.
- Lv, J., Wang, X.S., Zhou, Y., Qian, K., Wan, L., Eamus, D., and Tao, Z.: Groundwaterdependent distribution of vegetation in Hailiutu River catchment, a semi-arid region in China. Ecohydrology 6, 142-149, 2012.
- Ma X., Huete A., Yu Q., Coupe NR., Davies K., Broich M., Ratana P., Beringer J., Hutley L.B., Cleverly J., Boulain N., Eamus D.: Spatial patterns and temporal dynamics in savanna vegetation phenology across the North Australian Tropical Transect. Rem. Sens. Env. 139:97-115. DOI: 10.1016/j.rse.2013.07.030, 2013.
- Máguas, C., K Rascher, A Martins-Loucao, P Carvalho, P Pinho, M Ramos, O Correia and C Werner, C: Responses of woody species to spatial and temporal ground water changes in coastal sand dune systems. Biogeosciences Discussions 8, 1591-1616, 2011.
- Mahoney, J.M, Rood, S.B.: A device for studying the influence of declining water table on poplar growth and survival. Tree Phys. 8:305-314, 1991.
- Markesteijn, L., Poorter, L., Paz,, H., Sack, L., and Bongers, F.: Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits. Pl. Cell and Environ. 34:137-148, 2011.
- Martinet, M.C, Vivoni, E.R, Cleverly, J.R, Thibault, J.R, Schuetz, J.F, Dahm, C.N.: On groundwater fluctuations, evapotranspiration, and understory removal in riparian corridors. Water Res. Res. 45:W05425. DOI: 10.1029/2008WR007152, 2009.
- McCarroll, D., Loader, N.J.: Stable isotopes in tree rings. Quaternary Sci. Rev. 23:771-801. DOI: 10.1016/j.quascirev.2003.06.017, 2004.
- McDonald, M.G, Harbaugh, A.W.: A modular three-dimensional finite-difference groundwater flow model. US Geological Survey, Department of Interior, 1988.
- McDowell, N., Pockman, W.T., Allen, C.D., Breshears, D.D., Cobb, N., Kolb, T., Plaut, J., Sperry, J., West, A., Williams, D.G., Yepez, E.A.: Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phyt. 178:719-739. DOI: 10.1111/j.1469-8137.2008.02436.x, 2008.

- McLendon, T., Hubbard, P.J., and Martin, D.W: Partitioning the use of precipitation-and groundwater-derived moisture by vegetation in an arid ecosystem in California. J . Arid Env. 72, 986-1001, 2008.
- Meinzer, F.C., Campanello, P.I., Domec, J-C., Gatti, M.G., Goldstein, G., Villalobos-Vega, R., and Woodruff, D.R.: Constraints on physiological function associated with branch architecture and wood density in tropical forest trees. Tree Phys. 28:1609-1617, 2008.
- Merritt, D.M., Bateman, H.L.: Linking stream flow and groundwater to avian habitat in a desert riparian system. Ecol. Appl. 22: 1973-1988, 2012.
- Miller, G.R., Chen, X., Rubin, Y., Ma, S., Baldocchi, D.D.: Groundwater uptake by woody vegetation in a semiarid oak savanna. Water Res. Res. 46:W10503. DOI: 10.1029/2009wr008902, 2010.
- Moore, G.W, Cleverly, J.R, Owens, M.K.: Nocturnal transpiration in riparian *Tamarix* thickets authenticated by sap flux, eddy covariance and leaf gas exchange measurements. Tree Phys. 28:521-528, 2008.
- Münch, Z., and Conrad, J.: Remote sensing and GIS based determination of groundwater dependent ecosystems in the Western Cape, South Africa. Hydrogeol. J. 15, 19-28, 2007.
- Murray, B.R., Hose, G.C., Eamus, D and Licari, D.: Valuation of groundwater-dependent ecosystems: a functional methodology incorporating ecosystem services. Aus. J. Bot. 54, 221-229, 2006.
- Nachabe, M., Shah, N., Ross, M., Vomacka, J.: Evapotranspiration of two vegetation covers in a shallow water table environment. Soil Sci. Soc. of Amer. J. 69:492-499, 2005.
- Nagler, P., Glenn, E., Nguyen, U., Scott, R., Doody, T.: Estimating riparian and agricultural actual evapotranspiration by reference evapotranspiration and MODIS enhanced vegetation index. Remote Sensing 5:3849-3871, 2013.
- Nagler, P.L, Glenn, E., Thompson, T., Huete, A.: Leaf area index and NDVI as predictors of canopy characteristics and light interception by riparian species on the Lower Colarado River. Ag. For. Met. 116, 103 – 112, 2004.
- Nagler, P.L, Cleverly, J., Glenn, E., Lampkin, D., Huete, A., Wan Z.M.: Predicting riparian evapotranspiration from MODIS vegetation indices and meteorological data. Rem. Sens. Env. 94:17-30, 2005.
- Nagler P.L, Morino K, Didan K, Erker J, Osterberg J, Hultine K.R, Glenn EP. (2009). Widearea estimates of saltcedar (*Tamarix* spp.) evapotranspiration on the lower Colorado River measured by heat balance and remote sensing methods. Ecohydrology 2:18-33. DOI: 10.1002/eco.35, 2009.
- Nagler P.L, Scott R.L, Westenburg C., Cleverly J.R, Glenn E.P, Huete A.R.: Evapotranspiration on western US rivers estimated using the Enhanced Vegetation Index from MODIS and data from eddy covariance and Bowen ratio flux towers. Rem. Sens. Env. 97:337-351. DOI: 10.1016/j.rse.2005.05.011, 2005.
- Naumburg, E., Mata-Gonzalez, R., Hunter, R. G., McLendon, T. and Martin, D. W.: Phreatophytic vegetation and groundwater fluctuations: a review of current research and application of ecosystem response modeling with an emphasis on great basin vegetation., Environ. Manage., 35(6), 726–40, doi:10.1007/s00267-004-0194-7, 2005.

- Neale C.M.U.: Classification and mapping of riparian systems using airborne multispectral videography. Restor. Ecol.5:103-112, 1997.
- Nemani R.R, and Running S.W.: Testing a theoretical climate soil leaf-area hydrological equilibrium of forests using satellite data and ecosystem simulation. Ag. For. Met. 44: 245-260, 1989.
- Nippert, J.B, Butler, J.J, Kluitenberg ,G.J, Whittemore, D.O, Arnold, D., Spal, S.E, Ward, J.K.: Patterns of *Tamarix* water use during a record drought. Oecologia 162:283-292. DOI: 10.1007/s00442-009-1455-1, 2010.
- Nosetto, M.D., Jobbagy, E.G., Toth, T., Bella, C.M.D.: The effects of tree establishment on water and salt dynamics in naturally salt-affected grasslands. Oecologia 152, 695 705, 2007.
- O'Grady, A.P., Carter, J.L., Bruce J.: Can we predict groundwater discharge from terrestrial ecosystems using existing eco-hydrological concepts? Hydrology and Earth System Sci. 15:3731-3739, 2011.
- O'Grady, A.P, Carter, J.L, Holland, K.: Review of Australian groundwater discharge studies of terrestrial systems. CSIRO: Water for a Healthy Country National Research Flagship. CSIRO, Melbourne. 2010.
- O'Grady, A.P., Cook, P.G., Howe, P., Werren, G.: Groundwater use by dominant tree species in tropical remnant vegetation communities. Aus. J. Bot. 54:155-171. DOI: 10.1071/bt04179, 2006a.
- O'Grady, A.P., Eamus, D., Cook, P.G. and Lamontagne, S.: Groundwater use by riparian vegetation in the wet–dry tropics of northern Australia. Aus. J. Bot. 54:145-154, 2006b.
- Oberhuber, W., Stumbock, M., Kofler, W.: Climate tree-growth relationships of Scots pine stands (*Pinus sylvestris* L.) exposed to soil dryness. Trees-Structure and Function 13:19-27, 1998.
- Oishi, A.C., Oren, R., Stoy, P.C.: Estimating components of forest evapotranspiration: A footprint approach for scaling sap flux measurements. Ag. For. Met. 148:1719-1732. DOI: 10.1016/j.agrformet.2008.06.013, 2008.
- Orellana, F., Verma, P., Loheide, S.P., Daly E.: Monitoring and modelling water-vegetation interactions in groundwater-dependent ecosystems. Rev. of Geophys. 50:Rg3003. DOI: 10.1029/2011rg000383, 2012.
- Ortuno, M.F, Garcia-Orellana, Y. Stem and leaf water potentials, gas exchange, sapflow and trunk diameter fluctuation for detecting water stress in lemon trees. Trees 20, 1-8, 2006.
- Osmond, C.B., Austin, M.P., Berry, J.A., Billings, W.D., Boyer, J.S., Dacey, J.W.H., Nobel, P.S., Smith, S.D., Winner, W.E.: Stress physiology and the distribution of plants. Bioscience 37:38-47, 1987.
- Perez-Valdivia, C., Sauchyn, D.: Tree-ring reconstruction of groundwater levels in Alberta, Canada: Long term hydroclimatic variability. Dendrochronologia 29:41-47. DOI: 10.1016/j.dendro.2010.09.001, 2011.
- Perkins S.P, Sophocleous M.: Development of a comprehensive watershed model applied to study stream yield under drought conditions. *Ground Water* 37:418-426, 1999.

- Pert, P.L, Butler, J.R.A., Brodie, J.E., Bruce, C., Honzak, M., Kroon, F.J, Metcalfe, D., Mitchell, D., Wong, G.: A catchment-based approach to mapping hydrological ecosystem services using riparian habitat: A case study from the Wet Tropics, Australia. Ecolog. Complexity 7:378-388. DOI: 10.1016/j.ecocom.2010.05.002, 2010.
- Peters, E., P. J. Torfs, H. A. Van Lanen, and Bier, G.: Propagation of drought through groundwater— A new approach using linear reservoir theory. Hydrol. Processes, 17, 3023-3040,doi:10.1002/hyp.1274, 2003.
- Phillips D.L and Gregg J.W.: Source partitioning using stable isotopes: coping with too many sources. Oecologia 136, 261-269, 2003.
- Pockman W, Sperry J.: Vulnerability to xylem cavitation and the distribution of Sonoran desert vegetation. Amer. J. Bot. 87:1287-1299, 2000.
- Post V.E.A., von Asmuth J.R.: Review: Hydraulic head measurements-new technologies, classic pitfalls. Hydrogeol. J. 21:737-750. DOI: 10.1007/s10040-013-0969-0, 2013.
- Potts D.L, Williams D.G.: Response of tree ring holocellulose delta C-13 to moisture availability in *Populus fremontii* at perennial and intermittent stream reaches. Western North American Naturalist 64:27-37. 2004.
- Prior L.D, Grierson P.F, McCaw W.L, Tng D.Y.P, Nichols S.C, Bowman D.: Variation in stem radial growth of the Australian conifer, *Callitris columellaris*, across the world's driest and least fertile vegetated continent. Trees-Structure and Function 26:1169-1179. DOI: 10.1007/s00468-012-0693-8, 2012.
- Querejeta J.I., Estrada-Medina, H., Allen, M.F., and Jiménez-Osornio, J.J.: Water source partitioning among trees growing on shallow karst soils in a seasonally dry tropical climate. Oecologia 152: 26-36, 2007.
- Rodell, M., and Famiglietti, J.S.: Terrestrial water storage variations over Illinois : Analysis of observations and implications for Gravity Recovery and Climate Experiment (GRACE). Water Res. Res. 37(5): 1327-1340, 2001.
- Rodell, M., Chen, J.L., Kato, H., J Famiglietti, J.S., Nigro, J., and Wilson , C.R.: Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeol. J. 15(1): 159-166, 2007.
- Rodell, M., Velicogna, I., and Famiglietti, J.S.: Satellite-based estimates of groundwater depletion in India. Nature 460(7258): 999-1002, 2009.
- Roderick .ML and Farquhar G.D.: Water availability and evapotranspiration in the Murray Darling Basin: A look at the past and a glimpse into the future. Murray-Darling BasinAuthority, Canberra, 2009.
- Rood S, Braatne J, Hughes F.: Ecophysiology of riparian cottonwoods: stream flow dependency, water relations and restoration. Tree Phys. 23:1113-1124, 2003.
- Rood S, Patino S, Coombs K, Tyree M.: Branch sacrifice: cavitation-associated drought adaptation of riparian cottonwoods. Trees: Structure and Function 14:248-257, 2000.
- Rood S.B, Goater L.A, Gill K.M, Braatne J.H.: Sand and sandbar willow: A feedback loop amplifies environmental sensitivity at the riparian interface. Oecologia 165:31-40, 2011.
- Rossini, M., Cogliati S., Meroni, M., Migliavacca, M., Galvagno, M, Busetto L, Cremonese E, Julitta, T., Siniscalco, C., di Cella, U.M., Colombo, R.: Remote sensing-based

estimation of gross primary production in a subalpine grassland. BiogeoSciences 9:2565-2584. DOI: 10.5194/bg-9-2565-2012.

- Sala A, Devitt D.A, Smith S.D.: Water use by *Tamarix ramosissima* and associated phreatophytes in a Mojave Desert floodplain. Ecol. Appl. 6:888-898.
- Sarris D, Christodoulakis D, Korner C.: Recent decline in precipitation and tree growth in the eastern Mediterranean. Glob. Chng. Biol. 13:1187-1200. DOI: 10.1111/j.1365-2486.2007.01348.x, 2007.
- Scanlon, B. R., L. Longuevergne, and Long, D: Ground referencing GRACE satellite estimates of groundwater storage changes in the Cali-fornia Central Valley, USA, Water Resour. Res., 48, W04520, doi :10.1029/2011WR011312, 2012a.
- Scanlon, B. R., C. C. Faunt, L. Longuevergne, R. C. Reedy, W. M. Alley, V. L. McGuire, and McMahon, P.B.: Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc. Nat. Acad. Sci. 109(24): 9320-9325, 2012b.
- Schilling KE, Zhang YK.: Temporal scaling of groundwater level fluctuations near a stream. Ground Water 50:59-67. DOI: 10.1111/j.1745-6584.2011.00804.x, 2012.
- Scott M.L, Shafroth P.B, Auble G.T.: Responses of riparian cottonwoods to alluvial water table declines. Environ. Manag. 23:347-358, 1999.
- Scott R, Edwards E, Shuttleworth W, Huxman T, Watts C, Goodrich D.: Interannual and seasonal variation in fluxes of water and carbon dioxide from a riparian woodland ecosystem. Ag. For. Met. 122:65-84, 2004.
- Scott R.L, Cable W.L, Huxman T.E, Nagler P.L, Hernandez M, Goodrich D.C.: Multiyear riparian evapotranspiration and groundwater use for a semiarid watershed. J . Arid Env. 72:1232-1246, 2008.
- Scott R.L, Huxman T.E, Cable W.L, Emmerich W.E.: Partitioning of evapotranspiration and its relation to carbon dioxide exchange in a Chihuahuan Desert shrubland. Hydrol. Proc. 20:3227-3243, 2006a.
- Scott .RL, Huxman T.E, Williams D.G, Goodrich D.C.: Ecohydrological impacts of woodyplant encroachment: seasonal patterns of water and carbon dioxide exchange within a semiarid riparian environment. Glob. Chng. Biol. 12:311-324. DOI: 10.1111/j.1365-2486.2005.01093.x, 2006b.
- Scott RL., Shuttleworth W.J, Goodrich D.C, Maddock T.: The water use of two dominant vegetation communities in a semiarid riparian ecosystem. Ag. For. Met. 105:241-256, 2000.
- Scurlock D.: From the Rio to the Sierra: An Environmental History of the Middle Rio Grande Basin. General Technical Report RMRS-GTR-5, USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO, 1998.
- Seckler D, Barker, R. and Amarasinghe, U.: Water scarcity in the twenty-first century. *Int. J. Water Res. Dev.* 15, 29-42, 1999.
- Shafroth P.B, Cleverly J.R, Dudley T.L, Taylor J.P, Van Riper C, Weeks E.P, Stuart J.N.: Control of *Tamarix* in the Western United States: Implications for water salvage, wildlife use, and riparian restoration. Environ. Manag. 35:231-246, 2005.
- Shah J.J.F, Dahm C.N.: Flood regime and leaf fall determine soil inorganic nitrogen dynamics in semiarid riparian forests. Ecol. Appl. 18:771-788, 2008.

- Shah N, Nachabe M, Ross M.: Extinction depth and evapotranspiration from ground water under selected land covers. Ground Water 45:329-338, 2007.
- Shiklomanov I.A.: World water resources: A new appraisal and assessment for the 21st century, United Nations Educational, Scientific and Cultural Organisation.
- Smith S.D, Devitt D.A, Sala A, Cleverly J.R, Busch D.E.: Water relations of riparian plants from warm desert regions. Wetlands 18:687-696, 1998.
- Soylu M.E, Lenters J.D, Istanbulluoglu E, Loheide S.P, II.: On evapotranspiration and shallow groundwater fluctuations: A Fourier-based improvement to the White method. Water Res. Res. 48:W06506. DOI: 10.1029/2011wr010964, 2012.
- Sperry, J.S., Meinzer, F.C., and McCulloh, K.A.: Safety and efficiency conflicts in hydraulic architecture: scaling from tissues to trees. Pl. Cell and Environ. 31:632-645, 2008.
- Stock W.D, Bourke, L., and Froend, R.H.: Dendroecological indicators of historical responses of pines to water and nutrient availability on a superficial aquifer in southwestern Australia. For. Ecol. and Manag. 264: 108-114, 2012.
- Stromberg J.C, Beauchamp V.B, Dixon M.D, Lite S.J, Paradzick C.: Importance of low-flow and high-flow characteristics to restoration of riparian vegetation along rivers in and south-western United States. Freshwater Biol. 52:651-679, 2007.
- Stromberg J.C, Lite S.J, Dixon M.D.: Effects of stream flow patterns on riparian vegetation of a semiarid river: implications for a changing climate. River Research and Applic. 26:712-729. DOI: 10.1002/rra.1272, 2010.
- Stromberg J.C, Lite S.J, Rychener T.J, Levick .LR, Dixon M.D, Watts J.M.: Status of the riparian ecosystem in the upper San Pedro River, Arizona: Application of an assessment model. Envir. Mon. Assess. 115:145-173, 2006.
- Stromberg J.C, Tiller R, Richter B.: Effects of groundwater decline on riparian vegetation of semiarid regions: The San Pedro, Arizona. Ecol. Appl. 6:113-131, 1996.
- Sun, A. Y.: Predicting groundwater level changes using GRACE data. Water Res. Res. 49: doi :10.1002/ wrcr.20421, 2013.
- Syed, T. H., Famiglietti, J.S., and Chambers, D.P.: GRACE-based estimates of terrestrial freshwater discharge from basin to continental scales. J. Hydromet. 10: 22-40, doi: 10.1175/2008JHM993.1, 2009.
- Tapley, B. D., Bettadpur, S., Watkins, M., and Reigber, C.: The gravity recovery and climate experiment : Mission overview and early results. Geophys. Res. Lett., 31, L09607, doi :10.1029/2004GL019920, 2004.
- Thorburn, P.J., Walker, G.R., Woods P.H.: Comparison of diffuse discharge from shallowwater tables in soils and salt flats. J. Hydrol. 136:253-274, 1992.
- Thorburn, P., Hatton, T., and Walker, G.R.: Combining measurements of transpiration and stable isotopes to determine groundwater discharge from forests. J. Hydrol. 150: 563–587, 1993.
- Tweed, S. O., LeBlanc, M., Webb, J. A. and Lubczynski, M. W.: Remote sensing and GIS for mapping groundwater recharge and discharge areas in salinity prone catchments, southeastern Australia. Hydrogeol. J. 15, 75-96, 2007.
- van Hylckama T.E.A.: Water use by salt cedar. Water Res. Res. 6:728-735, 1970.

- Wada, Y., Van Beek, L.P.H., Van Kempen, C.M., Reckman, J.W.T.M., Vasak, S. & Bierkens, M.F.P.: Global depletion of groundwater resources. Geophys. Res. Lett. 37, L20402, 2010.
- Wang, P, Yu J.J, Pozdniakov S.P, Grinevsky S.O, Liu C.M.: Shallow groundwater dynamics and its driving forces in extremely arid areas: a case study of the lower Heihe River in northwestern China. Hyd. Proc. 28:1539-1553. DOI: 10.1002/hyp.9682, 2014.
- Wang, P, Zhang, Y.C, Yu, J.J,Fu, G.B, Ao, F,: Vegetation dynamics induced by groundwater flucturations in the lower Heihe River Basin northwestern China. J. Pl. Ecol. 4: 77-90, 2011.
- White, W.N.: A method of estimating ground-water supplies based on discharge by plants and evaporation from soil: Results of investigations in Escalante Valley, Utah. Page 105 *in* Interior, editor. U.S. Geological Survey, 1932.
- Whitley, R. and Eamus, D.: How much water does a woodland or plantation use: a review of some measurement methods, Canberra, Land & Water Australia, 2009.
- Wilcox L.J, Bowman R.S, Shafike N.G.: Evaluation of Rio Grande management alternatives using a surface-water/ground-water model. J. Am. Water Res. Ass. 43:1595-1603, 2007.
- Wright, I.J., P.K. Groom, B.B. Lamont, P. Poot, L.D. Prior, P.B. Reich, E.D. Schulze, E.J. Veneklaas and Westoby, M.: Leaf trait relationships in Australian plant species. Func. Pl. Biol. 31:551-558, 2004.
- Xiao, S.C, Xiao, H.L, Peng, X.M, Tian, Q.Y.: Intra-annual stem diameter growth of Tamarix ramosissima and association with hydroclimatic factors in the lower reaches of China's Heihe River. Journal of Arid Land 6:498-510. DOI: 10.1007/s40333-013-0248-x, 2014.
- Yang H, Yang D, Lie Z and Sun F.: New analytical derivation of the mean annual water energy balance equation. Water Res. Res., 44: W03410, 2008.
- Yang X, Smith PL, Yu T and Gao H,:Estimating ET from terrestrial GDEs using Landsat images. Int. J. of Digital Ear. 4: 154-170, 2011.
- Yuan W.P, Liu S.G, Yu G.R, Bonnefond J.M, Chen J.Q, Davis K, Desai A.R, Goldstein A.H, Gianelle D, Rossi F, Suyker AE, Verma S.B.: Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data. Rem. Sens. Env. 114:1416-1431. DOI: 10.1016/j.rse.2010.01.022, 2010.
- Zencich S.J, RH Froend, J.V Turner and V Gailitis,: Influence of groundwater depth on the seasonal sources of water accessed by *Banksia* tree species on a shallow, sandy coastal aquifer. Oecologia 131: 8-19, 2002.
- Zeppel M,: Convergence of tree water use and hydraulic architecture in water-limited regions: a review and synthesis. Ecohydrology 6: 889 900, 2013.
- Zinko, U., Seibert, J., Merritt, D.M., Dynesius M., Nilsson, C.: Plant species numbers predicted by a topography-based groundwater flow index. Ecosystems 8: 430-441, 2005.
- Zhang, L., K. Hickel, W.R. Dawes, F.H.S. Cheiw, A.W. Western and P.R. Briggs, P.R.: A rational function approach for estimating mean annual evapotranspiration. Water Res. Res. 40: DOI 10.1029/2003WR002710, 2004.

Zolfaghar, S.: Comparative ecophysiology of *Eucalyptus* woodlands along a depth-togroundwater gradient. PhD thesis, University of Technology Sydney. 228 pp, 2014.

Zunzunegui, M, Barradas M.C.D., Novo, F.G.: Different phenotypic responses of *Halimium halimifolium* in relation to groundwater availability. Pl. Ecol. 148: 165-174, 2000.

Zweifel, R, Zimmermann, L and Newbery, D.M (2005). Modelling tree water deficit from microclimate: an approach to quantifying drought stress. Tree Phys. 25: 147-156, 2005.

	Comment [u25]: Previously 216 references, now 240 references
	Comment [u26]: Original Fig 5 dele
	Comment [u27]: Original Fig 8 redrawn.
	Comment [u28]: Original Fig 9 has

Table 1:Deuterium analysis of xylem, soil, river water and groundwater in a study of
three species growing in the Northern Territory of Australia. The $\delta^2 H$ values
(%0) of soil became more negative as distance from groundwater increased
due to enrichment during surface evaporation. At shallow sites (*Melaleuca*
argentea) the groundwater is near the surface and xylem water $\delta^2 H$ values
match soil water and groundwater. As depth-to-groundwater increased
(because of local topography: the site slopes up from the river) xylem water

isotope composition was increasingly more negative than groundwater because groundwater was unavailable to the roots. From Lamontagne *et al.* (2005).

	Depth-to- groundwater (m)	River water	Soil water	Xylem water	Groundwater
Daly River	0	-44			
M. argentea	< 0.25		-44	-43 to -48	-43
B. acutangula	3		-80	-46 to -40	-45
C. bella	> 15		-56 to -91	-59 to -71	Not available to roots

Table 2:Some examples of the application of remote sensing to the study of
groundwater dependent ecosystems.

Notes on methods	Application	Reference	Comment [u29]: All references cite here now in reference list.

surface temp + water balance equationriparian ET; groundwater use quantified from $T_g = ET - (P-\Delta S)$ 2008eVI (MODIS) + empirical relationship of ET, eVI and ET arelationship of ET, eVI and ET (alculate standard deviation in NDVI across 14 y pixel by pixelCalibrated, empirical model of riparian ET; groundwater use quantifiedTillman et al., 2012"Green island method": Calculate standard deviation in eVI across years and seasonallyIdentifying location of GDEs by determining where veg activity shows minimal seasonal/inter annual variationTweed et al., 2007"Green island method": Calculate standard deviation in eVI across years and seasonally acluate LAI for adjacent pixels ; find regions with larger LAI with GW accessIdentifying location of GDEs by determining larger LAIColvin et al., 2007NDVI (MODIS) + groundwater depth from bore dataRelationship between GW depth and vegetation coverLv et al., 2011NDVI (MODIS) + groundwater depth from bore dataEstimating ET from GDEs at pixel- by-pixel resolutionVang et al., 2013SEBAL + NDVI (MODIS)Estimating ET at 90 m resolution aquifer dischargeBindhu et al., 2013SEBAL + MODISEstimating arid zone shallow aquifer dischargeMatic et al., 2013SEBAL + LANDSAT images conductarceEstimating arid zone shallow aquifer dischargeMatic et al., 2011Penman-Monteith equation with kRs estimates of LAI, NDVI and used to estimate land surface conductarceKm-scale estimates of ETCleugh et al., 2012	eVI (MODIS) + MODIS land	Calibrated, empirical model of	Scott et al.,
equationquantified from $ET_g = ET - (P-\Delta S)$ eV1 (MODIS) + empirical relationship of ET, eV1 and ET oCalibrated, empirical model of riparian ET; groundwater use quantifiedTillman et al., 2012"Green island method":Identifying location of GDEs by determining where veg activity shows minimal seasonal variationTweed et al., 2007"Green island method":Identifying location of GDEs by determining where veg activity shows minimal seasonal/inter annual variationDresel et al., 2010"Green island method":Identifying location of GDEs by determining where veg activity shows minimal seasonal/inter annual variationColvin et al., 2010"Green island method":Identifying location of GDEs by determining larger LAIColvin et al., 2007Calculate LAI for adjacent pixels ; find regions with larger LAI with GW accessRelationship between GW depth and vegetation coverJin et al., 2011NDVI (MODIS) + groundwater depth from bore dataRelationship between GW depth and vegetation coverLv et al., 2012Surface energy balance (SEBAL) + Landsat surface temp; LAI derived from MODISEstimating ET from GDEs at pixel- by-pixel resolutionBindhu et al., 2013SEBAL + MODISEstimating groundwater recharge (hydrology)Estimating arid zone shallow aquifer dischargeMatic et al., 2012SEBAL + LANDSAT images conductanceEstimating arid zone shallow aquifer dischargeMatic et al., 2007Penman-Monteith equation with used to estimate and surface conductanceKm-scale estimates of ETCleugh et al., 2007 <td>surface temp + water balance</td> <td>riparian ET; groundwater use</td> <td>2008</td>	surface temp + water balance	riparian ET; groundwater use	2008
eVI (MODIS) + empirical relationship of ET, eVI and ET of ET, eVI and eVI across 14 y pixel by pixelCalculate standard deviation in determining where veg activity shows minimal seasonal variationTweed et al., 2007"Green island method": Calculate standard deviation in eVI across years and seasonally aclaculate standard deviation in eVI across years and seasonally shows minimal seasonal/inter annual variationDresel et al., 2010"Green island method": Calculate LAI for adjacent pixels ; find regions with larger LAI with GW accessIdentifying location of GDEs by determining larger LAIColvin et al., 2007NDVI (MODIS) + groundwater depth from bore dataRelationship between GW depth and vegetation coverJin et al., 2011NDVI (MODIS) + groundwater depth from bore dataEstimating ET from GDEs at pixel- by-pixel resolutionYang et al., 2013SEBAL + NDVI (MODIS) SEBAL + NDVI (MODIS)Estimating ET at 90 m resolution aquifer dischargeBindhu et al., 2013SEBAL + SWAT model (hydrology)Estimating arid zone shallow aquifer dischargeGithui et al., 2012SEBAL + LANDSAT images conductanceEstimating arid zone shallow aquifer dischargeGithui et al., 2011Penman-Monteith equation with used to estimate and surface conductanceEstimating arid zone shallow aquifer dischargeGithui et al., 2007SEBAL + LANDSAT images conductanceEstim	equation	quantified from $ET_{g} = ET - (P - \Delta S)$	
Calculate standard deviation pixelCalculate standard deviation in iparian ET; groundwater use quantifiedTweed et al., 2007"Green island method": Calculate standard deviation in pixelIdentifying location of GDEs by determining where veg activity shows minimal seasonal variationTweed et al., 2007"Green island method": Calculate standard deviation in eVI across years and seasonallyIdentifying location of GDEs by determining where veg activity shows minimal seasonal/inter annual variationDresel et al., 2007"Green island method": Calculate LAI for adjacent pixels ; find regions with larger LAI with GW accessIdentifying location of GDEs by determining larger LAIColvin et al., 2007NDVI (MODIS) + groundwater depth from bore dataRelationship between GW depth and vegetation coverJin et al., 2011NDVI (MODIS) + groundwater depth from bore dataEstimating ET from GDEs at pixel- by-pixel resolutionYang et al., 2013SEBAL + NDVI (MODIS) SEBAL + NDVI (MODIS)Estimating ET at 90 m resolution aquifer dischargeBindhu et al., 2013SEBAL + SWAT model (hydrology)Estimating arid zone shallow aquifer dischargeGithui et al., 2012SEBAL + LANDSAT images conductanceEstimating arid zone shallow aquifer dischargeGithui et al., 2007SEBAL + LANDSAT images conductaceEstimating arid zone shallow aquifer dischargeGithui et al., 2011Penman-Monteith equation with kRs estimates of LAI, NDVI and used to estimate land surface conductacePartitions ET into vegetation and wurde et al., 2007 <td>eVI (MODIS) + empirical</td> <td>Calibrated empirical model of</td> <td>Tillman et al</td>	eVI (MODIS) + empirical	Calibrated empirical model of	Tillman et al
InstanceInput and Programmer P	relationship of FT_eVI and FT	rinarian FT ⁻ groundwater use	2012
"Green island method": Calculate standard deviation in NDVI across 14 y pixel by pixelIdentifying location of GDEs by determining where veg activity shows minimal seasonal variationTweed et al., 2007"Green island method": Calculate standard deviation in eVI across years and seasonally aclulate LAI for adjacent pixels; find regions with larger LAI with GW accessIdentifying location of GDEs by determining where veg activity shows minimal seasonal/inter annual variationDresel et al., 2010"Green island method": Calculate LAI for adjacent pixels; find regions with larger LAI with GW accessIdentifying location of GDEs by determining larger LAIColvin et al., 2007NDVI (MODIS) + groundwater depth from bore dataRelationship between GW depth and vegetation coverJin et al., 2011NDVI (MODIS) + groundwater depth from bore dataEstimating ET from GDEs at pixel- by-pixel resolutionYang et al., 2008; 2011SEBAL + NDVI (MODIS)Estimating ET at 90 m resolution aquifer dischargeBindhu et al., 2013SEBAL + NDVI (MODIS)Estimating arid zone shallow aquifer dischargeMatic et al., 2013SEBAL + NDSAT imagesEstimating arid zone shallow aquifer dischargeMatic et al., 2007SEBAL + LANDSAT imagesEstimating arid zone shallow aquifer dischargeMatic et al., 2007Setsmate of LAI, NDV1 and used to estimate land surface conductanceFaritions ET into vegetation and wet et al., 2007Mu et al., 2007	relationship of E1, evi and E1 ₀	quantified	2012
Calculate standard deviation in NDVI across 14 y pixel by pixelIntermining where veg activity shows minimal seasonal variation2007"Green island method": Calculate standard deviation in eVI across years and seasonally aclust the standard deviation in eVI across years and seasonally aclust the standard deviation in eVI across years and seasonally shows minimal seasonal/inter annual variationDresel et al., 2010"Green island method": Calculate LAI for adjacent pixels ; find regions with larger LAI with GW accessIdentifying location of GDEs by determining larger LAIColvin et al., 2007NDVI (MODIS) + groundwater depth from bore dataRelationship between GW depth and vegetation coverJin et al., 2011NDVI (MODIS) + groundwater depth from bore dataRelationship between GW depth and vegetation coverLv et al., 2012Surface energy balance (SEBAL) + Landsat surface temp; LAI derived from MODISEstimating ET from GDEs at pixel- by-pixel resolutionYang et al., 2013SEBAL + NDVI (MODIS) SEBAL + SWAT model (hydrology)Estimating arid zone shallow aquifer dischargeMatic et al., 2011SEBAL + LANDSAT images conductanceEstimating arid zone shallow aquifer dischargeMatic et al., 2011Penman-Monteith equation with RS estimates of LAI, NDVI and used to estimate land surface conductanceParitions ET into vegetation and wut et al., 2007	"Green island method"	Identifying location of GDEs by	Tweed et al
Calculate standard deviation in pixelConstraints where registering shows minimal seasonal variation"Green island method": Calculate standard deviation in eVI across years and seasonally average and seasonally shows minimal seasonal/inter annual variationDresel et al., 2010"Green island method": Calculate LAI for adjacent pixels ; find regions with larger LAI with GW accessIdentifying location of GDEs by determining larger LAIColvin et al., 2007NDVI (MODIS) + groundwater depth from bore dataRelationship between GW depth and vegetation coverJin et al., 2011NDVI (MODIS) + groundwater depth from bore dataRelationship between GW depth and vegetation coverLv et al., 2012Surface energy balance (SEBAL) + Landsat surface temp; LAI derived from MODISEstimating ET from GDEs at pixel- by-pixel resolutionYang et al., 2013SEBAL + NDVI (MODIS) SEBAL + NDVI (MODIS)Estimating ET at 90 m resolution aquifer dischargeBindhu et al., 2013SEBAL + LANDSAT images conductanceEstimating arid zone shallow aquifer dischargeMatic et al., 2007Penman-Monteith equation with RS estimates of LAI, NDVI and used to estimate land surface conductanceKm-scale estimates of ETCleugh et al., 2007EVI + surface temperature + conductanceParitions ET into vegetation and vegetation and wure et al.Mu et al., 2007	Calculate standard deviation in	determining where veg activity	2007
ND VI thereofpixelpixelIdentifying location of GDEs by determining where veg activity shows minimal seasonal/inter annual variationDresel et al., 2010"Green island method": Calculate LAI for adjacent pixels ; find regions with larger LAI with GW accessIdentifying location of GDEs by determining larger LAIColvin et al., 2007NDVI (MODIS) + groundwater depth from bore dataRelationship between GW depth and vegetation coverJin et al., 2011NDVI (MODIS) + groundwater depth from bore dataRelationship between GW depth and vegetation coverLv et al., 2012Surface energy balance (SEBAL) + Landsat surface temp; LAI derived from MODISEstimating ET from GDEs at pixel- by-pixel resolutionYang et al., 2013SEBAL + NDVI (MODIS)Estimating ET at 90 m resolution aquifer dischargeBindhu et al., 2013SEBAL + MODISEstimating groundwater recharge (hydrology)Githui et al., 2013SEBAL + LANDSAT imagesEstimating arid zone shallow aquifer dischargeMatic et al., 2011Penman-Monteith equation with RS estimates of LAI, NDVI and used to estimate land surface conductanceKm-scale estimates of ETCleugh et al., 2007EVI + surface temperature + conductancePartitions ET into vegetation and muter dischargeMut et al., 2007	NDVI across 14 v pixel by	shows minimal seasonal variation	2007
PrinceIdentifying location of GDEs by determining where veg activity shows minimal seasonal/inter annual variationDresel et al., 2010"Green island method": calculate LAI for adjacent pixels ; find regions with larger LAI with GW accessIdentifying location of GDEs by determining larger LAIColvin et al., 2007NDV1 (MODIS) + groundwater depth from bore dataRelationship between GW depth and vegetation coverJin et al., 2011NDV1 (MODIS) + groundwater depth from bore dataRelationship between GW depth and vegetation coverLv et al., 2012Surface energy balance (SEBAL) + Landsat surface temp; LAI derived from MODISEstimating ET from GDEs at pixel- by-pixel resolutionYang et al., 2012SEBAL + NDV1 (MODIS) SEBAL + NDVI (MODIS)Estimating ET at 90 m resolution estimating ET at 90 m resolutionBindhu et al., 2013SEBAL + SWAT model (hydrology)Estimating arid zone shallow aquifer dischargeGithui et al., 2012SEBAL + LANDSAT images conductanceEstimating arid zone shallow aquifer dischargeMatic et al., 2007Penman-Monteith equation with RS estimates of LAI, NDVI and used to estimate land surface conductanceKm-scale estimates of ETCleugh et al., 2007EVI + surface temperature + conductanceParitions ET into vegetation and auti et al., 2007Mu et al., 2007	pixel		
Calculate standard deviation in eVI across years and seasonallydetermining where veg activity shows minimal seasonal/inter annual variation2010"Green island method": Calculate LAI for adjacent pixels ; find regions with larger LAI with GW accessIdentifying location of GDEs by determining larger LAIColvin et al., 2007NDVI (MODIS) + groundwater depth from bore dataRelationship between GW depth and vegetation coverJin et al., 2011NDVI (MODIS) + groundwater depth from bore dataRelationship between GW depth and vegetation coverLv et al., 2012Surface energy balance (SEBAL) + Landsat surface temp; LAI derived from MODISEstimating ET from GDEs at pixel- by-pixel resolutionYang et al., 2013SEBAL + NDVI (MODIS) SEBAL + NDVI (MODIS)Estimating ET at 90 m resolution estimating ETBindhu et al., 2013SEBAL + SWAT model (hydrology)Estimating arid zone shallow aquifer dischargeMatic et al., 2012SEBAL + LANDSAT images conductanceEstimating arid zone shallow aquifer dischargeMatic et al., 2007Penman-Monteith equation with RS estimates of LAI, NDVI and used to estimate land surface conductanceKm-scale estimates of ETCleugh et al., 2007EVI + surface temperature + conductancePartitions ET into vegetation and were to were to were to were conductanceMu et al., 2007	"Green island method".	Identifying location of GDEs by	Dresel et al
eVI across years and seasonally eVI across years and seasonallyshows minimal seasonal/inter annual variation1000"Green island method": Calculate LAI for adjacent pixels ; find regions with larger LAI with GW accessIdentifying location of GDEs by determining larger LAIColvin et al., 2007NDV1 (MODIS) + groundwater depth from bore dataRelationship between GW depth and vegetation coverJin et al., 2011NDV1 (MODIS) + groundwater depth from bore dataRelationship between GW depth and vegetation coverLv et al., 2012Surface energy balance (SEBAL) + Landsat surface temp; LAI derived from MODISEstimating ET from GDEs at pixel- by-pixel resolutionYang et al., 2013SEBAL + NDVI (MODIS) SEBAL + SWAT model (hydrology)Estimating arid zone shallow aquifer dischargeGithui et al., 2011Penman-Monteith equation with RS estimates of LAI, NDVI and used to estimate land surface conductanceEstimating arid zone shallow aquifer dischargeMatic et al., 2007EVI + surface temperature + conductancePartitions ET into vegetation and weithermentMut et al., 2007	Calculate standard deviation in	determining where veg activity	2010
annual variationannual variation"Green island method":Identifying location of GDEs by (Calculate LAI for adjacent pixels; find regions with larger LAI with GW accessColvin et al., 2007NDVI (MODIS) + groundwater depth from bore dataRelationship between GW depth and vegetation coverJin et al., 2011NDVI (MODIS) + groundwater depth from bore dataRelationship between GW depth and vegetation coverLv et al., 2012Surface energy balance (SEBAL) + Landsat surface temp; LAI derived from MODISEstimating ET from GDEs at pixel- by-pixel resolutionYang et al., 2013SEBAL + MODISEstimating ET at 90 m resolution (Mydrology)Bindhu et al., 20132013SEBAL + SWAT model (hydrology)Estimating groundwater recharge aquifer dischargeGithui et al., 2012SeBAL + LANDSAT images econductanceEstimating arid zone shallow aquifer dischargeMatic et al., 2007Penman-Monteith equation with RS estimate of LAI, NDVI and used to estimate land surface conductancePartitions ET into vegetation and Mu et al., 2007	eVI across years and seasonally	shows minimal seasonal/inter	
"Green island method":Identifying location of GDEs by determining larger LAIColvin et al., 2007Calculate LAI for adjacent pixels ; find regions with larger LAI with GW accessIdentifying location of GDEs by determining larger LAIColvin et al., 2007NDVI (MODIS) + groundwater depth from bore dataRelationship between GW depth and vegetation coverJin et al., 2011NDVI (MODIS) + groundwater depth from bore dataRelationship between GW depth and vegetation coverLv et al., 2012Surface energy balance (SEBAL) + Landsat surface temp; LAI derived from MODISEstimating ET from GDEs at pixel- by-pixel resolutionYang et al., 2008; 2011SEBAL + NDVI (MODIS) SEBAL + MODISEstimating ET at 90 m resolution and resolutionBindhu et al., 2013SEBAL + SWAT model (hydrology)Estimating groundwater recharge aquifer dischargeGithui et al., 2011Penman-Monteith equation with RS estimate and surface conductanceKm-scale estimates of ETCleugh et al., 2007EVI + surface temperature + EVI + surface temperature +Partitions ET into vegetation and Mu et al., 2007Mu et al., 2007		annual variation	
Calculate LAI for adjacent pixels ; find regions with larger LAI with GW accessdetermining larger LAI2007NDVI (MODIS) + groundwater depth from bore dataRelationship between GW depth and vegetation coverJin et al., 2011NDVI (MODIS) + groundwater depth from bore dataRelationship between GW depth and vegetation coverLv et al., 2012Surface energy balance (SEBAL) + Landsat surface temp; LAI derived from MODISEstimating ET from GDEs at pixel- by-pixel resolutionYang et al., 2008; 2011SEBAL + NDVI (MODIS)Estimating ET at 90 m resolution aquifer dischargeBindhu et al., 2013SEBAL + MODISEstimating groundwater recharge (hydrology)Githui et al., 2013SEBAL + LANDSAT imagesEstimating arid zone shallow aquifer dischargeMatic et al., 2011Penman-Monteith equation with RS estimates of LAI, NDVI and used to estimate land surface conductancekm-scale estimates of ETCleugh et al., 2007EVI + surface temperature + conductancePartitions ET into vegetation and weil were to the surface conductanceMu et al., 2007	"Green island method":	Identifying location of GDEs by	Colvin et al
pixels ; find regions with larger LAI with GW accessRelationship between GW depth and vegetation coverJin et al., 2011NDVI (MODIS) + groundwater depth from bore dataRelationship between GW depth and vegetation coverLv et al., 2012NDVI (MODIS) + groundwater depth from bore dataRelationship between GW depth and vegetation coverLv et al., 2012Surface energy balance (SEBAL) + Landsat surface temp; LAI derived from MODISEstimating ET from GDEs at pixel- by-pixel resolutionYang et al., 2008; 2011SEBAL + NDVI (MODIS)Estimating ET at 90 m resolutionBindhu et al., 2013SEBAL + MODISEstimating groundwater recharge (hydrology)Githui et al., 2012SEBAL + SWAT model (hydrology)Estimating arid zone shallow aquifer dischargeMatic et al., 2011Penman-Monteith equation with RS estimates of LAI, NDVI and used to estimate land surface conductancekm-scale estimates of ETCleugh et al., 2007EVI + surface temperature + everyPartitions ET into vegetation and wei hurmer of actional hurmer.Mu et al., 2027	Calculate LAI for adjacent	determining larger LAI	2007
LAI with GW accessRelationship between GW depth and vegetation coverJin et al., 2011NDVI (MODIS) + groundwater depth from bore dataRelationship between GW depth and vegetation coverLv et al., 2012NDVI (MODIS) + groundwater depth from bore dataRelationship between GW depth and vegetation coverLv et al., 2012Surface energy balance (SEBAL) + Landsat surface temp; LAI derived from MODISEstimating ET from GDEs at pixel- by-pixel resolutionYang et al., 2008; 2011SEBAL + NDVI (MODIS)Estimating ET at 90 m resolution 2013Bindhu et al., 2013SEBAL + MODISEstimating groundwater recharge (hydrology)Githui et al., 2012SEBAL + SWAT model (hydrology)Estimating arid zone shallow aquifer dischargeMatic et al., 2011Penman-Monteith equation with RS estimate and surface conductanceKm-scale estimates of ETCleugh et al., 2007EVI + surface temperature + event for the present of exting terme of the string of the string of the string and the string and the string and action and muse of the string terme of the string and 2007Mu et al.,	pixels; find regions with larger		
NDVI (MODIS) + groundwater depth from bore dataRelationship between GW depth and vegetation coverJin et al., 2011NDVI (MODIS) + groundwater depth from bore dataRelationship between GW depth and vegetation coverLv et al., 2012Surface energy balance (SEBAL) + Landsat surface temp; LAI derived from MODISEstimating ET from GDEs at pixel- by-pixel resolutionYang et al., 2008; 2011SEBAL + NDVI (MODIS)Estimating ET at 90 m resolution 2013Bindhu et al., 2013SEBAL + MODISEstimating ET arang et al., 2013Tang et al., 2013SEBAL + SWAT model (hydrology)Estimating arid zone shallow aquifer dischargeGithui et al., 2012SEBAL + LANDSAT images conductanceEstimating arid zone shallow aquifer dischargeMatic et al., 2007Penman-Monteith equation with used to estimate land surface conductancekm-scale estimates of ETCleugh et al., 2007EVI + surface temperature + EVI + surface temperature +Partitions ET into vegetation and stil normMu et al., 2007	LAI with GW access		
depth from bore dataand vegetation cover2011NDVI (MODIS) + groundwater depth from bore dataRelationship between GW depth and vegetation coverLv et al., 2012Surface energy balance (SEBAL) + Landsat surface temp; LAI derived from MODISEstimating ET from GDEs at pixel- by-pixel resolutionYang et al., 2008; 2011SEBAL + NDVI (MODIS)Estimating ET at 90 m resolution 2013Bindhu et al., 2013SEBAL + MODISEstimating ET tang et al., 2013Tang et al., 2013SEBAL + SWAT model (hydrology)Estimating groundwater recharge aquifer dischargeGithui et al., 2012SEBAL + LANDSAT images conductanceEstimating arid zone shallow aquifer dischargeMatic et al., 2011Penman-Monteith equation with used to estimate land surface conductancekm-scale estimates of ETCleugh et al., 2007EVI + surface temperature + EVI + surface temperature +Partitions ET into vegetation and partitions ET into vegetation andMu et al., 2007	NDVI (MODIS) + groundwater	Relationship between GW depth	Jin et al.,
NDVI (MODIS) + groundwater depth from bore dataRelationship between GW depth and vegetation coverLv et al., 2012Surface energy balance (SEBAL) + Landsat surface temp; LAI derived from MODISEstimating ET from GDEs at pixel- by-pixel resolutionYang et al., 2008; 2011SEBAL + NDVI (MODIS)Estimating ET at 90 m resolution 2013Bindhu et al., 2013SEBAL + MODISEstimating ET tang et al., 2013Tang et al., 2013SEBAL + SWAT model (hydrology)Estimating groundwater recharge aquifer dischargeGithui et al., 2012SEBAL + LANDSAT images conductanceEstimating arid zone shallow aquifer dischargeMatic et al., 2011Penman-Monteith equation with used to estimate land surface conductancekm-scale estimates of ETCleugh et al., 2007EVI + surface temperature + EVI + surface temperature +Partitions ET into vegetation and surfaceMu et al., 2007	depth from bore data	and vegetation cover	2011
depth from bore dataand vegetation cover2012Surface energy balance (SEBAL) + Landsat surface temp; LAI derived from MODISEstimating ET from GDEs at pixel- by-pixel resolutionYang et al., 2008; 2011SEBAL + NDVI (MODIS)Estimating ET at 90 m resolutionBindhu et al., 2013SEBAL + MODISEstimating ETTang et al., 2013SEBAL + SWAT model (hydrology)Estimating groundwater recharge aquifer dischargeGithui et al., 2012SEBAL + LANDSAT imagesEstimating arid zone shallow aquifer dischargeMatic et al., 2011Penman-Monteith equation with used to estimate land surface conductancekm-scale estimates of ETCleugh et al., 2007EVI + surface temperature + EVI + surface temperature +Partitions ET into vegetation and avil acumentsMu et al., 2007	NDVI (MODIS) + groundwater	Relationship between GW depth	Lv et al.,
Surface energy balanceEstimating ET from GDEs at pixel- by-pixel resolutionYang et al., 2008; 2011(SEBAL) + Landsat surface temp; LAI derived from MODISEstimating ET at 90 m resolutionBindhu et al., 2013SEBAL + NDVI (MODIS)Estimating ET at 90 m resolutionBindhu et al., 2013SEBAL + MODISEstimating ETTang et al., 2013SEBAL + SWAT model (hydrology)Estimating groundwater recharge Estimating arid zone shallow aquifer dischargeGithui et al., 2012SEBAL + LANDSAT imagesEstimating arid zone shallow aquifer dischargeMatic et al., 2011Penman-Monteith equation with RS estimates of LAI, NDVI and used to estimate land surface conductancekm-scale estimates of ETCleugh et al., 2007EVI + surface temperature + EVI + surface temperature +Partitions ET into vegetation and orither and surfaceMu et al., 2007	depth from bore data	and vegetation cover	2012
SEBAL + Landsat surface temp; LAI derived from MODISby-pixel resolution2008; 2011SEBAL + NDVI (MODIS)Estimating ET at 90 m resolution 2013Bindhu et al., 2013SEBAL + MODISEstimating ET 2013Tang et al., 2013SEBAL + SWAT model (hydrology)Estimating groundwater recharge 2012Githui et al., 2012SEBAL + LANDSAT images Penman-Monteith equation with RS estimates of LAI, NDVI and used to estimate land surface conductanceKm-scale estimates of ETCleugh et al., 2007EVI + surface temperature + EVI + surface temperature +Partitions ET into vegetation and partitions ET into vegetation andMu et al., 2007	Surface energy balance	Estimating ET from GDEs at pixel-	Yang et al
temp; LAI derived from MODISEstimating ET at 90 m resolutionBindhu et al., 2013SEBAL + NDVI (MODIS)Estimating ET at 90 m resolutionBindhu et al., 2013SEBAL + MODISEstimating ETTang et al., 2013SEBAL + SWAT model (hydrology)Estimating groundwater rechargeGithui et al., 2012SEBAL + LANDSAT imagesEstimating arid zone shallow aquifer dischargeMatic et al., 2011Penman-Monteith equation with RS estimates of LAI, NDVI and used to estimate land surface conductancekm-scale estimates of ETCleugh et al., 2007EVI + surface temperature + EVI + surface temperature + exercise for string lacencePartitions ET into vegetation and scale at an and surface conductanceMu et al., 2007	(SEBAL) + Landsat surface	by-pixel resolution	$2008 \cdot 2011$
SEBAL + NDVI (MODIS)Estimating ET at 90 m resolutionBindhu et al., 2013SEBAL + MODISEstimating ETTang et al., 2013SEBAL + SWAT model (hydrology)Estimating groundwater recharge 2012Githui et al., 2012SEBAL + LANDSAT imagesEstimating arid zone shallow aquifer dischargeMatic et al., 2011Penman-Monteith equation with RS estimates of LAI, NDVI and used to estimate land surface conductancekm-scale estimates of ETCleugh et al., 2007EVI + surface temperature + EVI + surface temperature + emerge for this of a surfacePartitions ET into vegetation and actil some stateMu et al., 2007	temp: LAI derived from MODIS		2000, 2011
SEBAL + MODISEstimating ET at your reconstrontEntance out, 2013SEBAL + SWAT model (hydrology)Estimating groundwater recharge 2012Githui et al., 2012SEBAL + LANDSAT imagesEstimating arid zone shallow aquifer dischargeMatic et al., 2011Penman-Monteith equation with RS estimates of LAI, NDVI and used to estimate land surface conductancekm-scale estimates of ETCleugh et al., 2007EVI + surface temperature + EVI + surface temperature + emerge fractional energyPartitions ET into vegetation and actional energyMu et al., 2007	SEBAL + NDVI (MODIS)	Estimating ET at 90 m resolution	Bindhu et al
SEBAL + MODISEstimating ETTang et al., 2013SEBAL + SWAT model (hydrology)Estimating groundwater recharge 2012Githui et al., 2012SEBAL + LANDSAT imagesEstimating arid zone shallow aquifer dischargeMatic et al., 2011Penman-Monteith equation with RS estimates of LAI, NDVI and used to estimate land surface conductancekm-scale estimates of ETCleugh et al., 2007EVI + surface temperature + EVI + surface temperature + emergy for this parameterPartitions ET into vegetation and acting the sume temperature temp			2013
SEBAL + SWAT model (hydrology)Estimating groundwater recharge 2012Githui et al., 2012SEBAL + LANDSAT imagesEstimating arid zone shallow aquifer dischargeMatic et al., 2011Penman-Monteith equation with RS estimates of LAI, NDVI and used to estimate land surface conductancekm-scale estimates of ETCleugh et al., 2007EVI + surface temperature + EVI + surface temperature + emergy fractional accercPartitions ET into vegetation and acil accercMu et al., 2007	SEBAL + MODIS	Estimating ET	Tang et al.,
SEBAL + SWAT model (hydrology)Estimating groundwater recharge 2012Githui et al., 2012SEBAL + LANDSAT imagesEstimating arid zone shallow aquifer dischargeMatic et al., 2011Penman-Monteith equation with RS estimates of LAI, NDVI and used to estimate land surface conductancekm-scale estimates of ETCleugh et al., 2007EVI + surface temperature + penersum fractional examplePartitions ET into vegetation and actil action andMu et al., 2007			2013
(hydrology)2012SEBAL + LANDSAT imagesEstimating arid zone shallow aquifer dischargeMatic et al., 2011Penman-Monteith equation with RS estimates of LAI, NDVI and used to estimate land surface conductancekm-scale estimates of ETCleugh et al., 2007EVI + surface temperature + penersurfractional external	SEBAL + SWAT model	Estimating groundwater recharge	Githui et al.,
SEBAL + LANDSAT imagesEstimating arid zone shallow aquifer dischargeMatic et al., 2011Penman-Monteith equation with RS estimates of LAI, NDVI and used to estimate land surface conductancekm-scale estimates of ETCleugh et al., 2007EVI + surface temperature + penersum fractional accuratePartitions ET into vegetation and accurateMu et al., 2007	(hydrology)		2012
aquifer discharge2011Penman-Monteith equation with RS estimates of LAI, NDVI and used to estimate land surface conductancekm-scale estimates of ETCleugh et al., 2007EVI + surface temperature + penerum fractional enteringPartitions ET into vegetation and actional enteringMu et al., 2007	SEBAL + LANDSAT images	Estimating arid zone shallow	Matic et al.,
Penman-Monteith equation with RS estimates of LAI, NDVI and used to estimate land surface conductancekm-scale estimates of ET 2007Cleugh et al., 2007EVI + surface temperature + penergy fractional accessPartitions ET into vegetation and accil accessMu et al., 2007		aquifer discharge	2011
RS estimates of LAI, NDVI and used to estimate land surface conductance2007EVI + surface temperature + persent fractional accessPartitions ET into vegetation and scil accessMu et al., 2007	Penman-Monteith equation with	km-scale estimates of ET	Cleugh et al.,
used to estimate land surface Image: second surface conductance Image: second surface EVI + surface temperature + Partitions ET into vegetation and exercise fractional surface Second surface	RS estimates of LAI, NDVI and		2007
conductance Partitions ET into vegetation and EVI + surface temperature + Partitions ET into vegetation and conserve fractional ensure collocation	used to estimate land surface		
EVI + surface temperature + Partitions ET into vegetation and Mu et al.,	conductance		
	EVI + surface temperature +	Partitions ET into vegetation and	Mu et al.,
canopy fractional cover soft components 2007	canopy fractional cover	soil components	2007

$ET_a^* = ET_a - rainfall)/(ET_o - $	Estimated GW use (ET _g) rather	Groeneveld
rainfall)	than ET _a	2008
ET _a linearly correlated with		
NDVI*		
$ET_g = ET_0 - rainfall)NDVI*$		
MODIS veg indices compared;	Estimate ET _a and G _c	Yebra et al.,
PM equation used to find G_c and		2013
regress G _c against MODIS veg		
indices		
MODIS reflectance + residual	Estimate ET at 1 km spatial	Guerschman
moisture index (from eVI) +	resolution	et al., 2009
Global veg moisture index		
Actual ET calculated from		
PET*crop factor and crop factor		
is derived from EVI		

Table 3:A summary of some of the recent literature documenting the response of
vegetation, across multiple scales, to reduced availability of groundwater.

Process/trait	Response to reduced availability of	References
	groundwater and range of depths	
Leaf-scale	Decreased (zero to -9 m DGW);	Horton et al., 2001
photosynthesis		
Stomatal	Decrease (zero to -9 m DGW);	Horton et al., 2001
conductance	Decreased (zero to >-1 m DGW increased);	Cooper et al., 2003
	Stomatal resistance increased from 38.8 to 112.5	Zunzunegui et al., 2000
	(zero to >-3 m DGW)	Gries et al., 2003
	Decreased (-7 to -23 m DGW)	Kochendorfer et al.,
	Decreased (-2 to -4 m DGW)	2011
Canopy	Decreased (-1.5 to >-5 m DGW)	Carter and White 2009b
conductance	Decreased (-2 to -4 m DGW)	Kochendorfer et al.,
		2011
Leaf and stem	Ψ_{pd} decrease from -0.5 to -1.7 MPa (zero to -9	Horton et al., 2001
water	m);	Cooper et al., 2003
potential	Ψ_{pd} decreased from 0.2-0.4 to -0.4 to -0.8 MPa	Froend and Drake 2006
-	(zero to >-1 m DGW increased);	Zunzunegui et al., 2000
	Decreased from -0.79 to -2.55 MPa (<-2 to >-20	Gries et al., 2003
	m DGW);	
	Decreased from -1.85 to -3.99 (zero to >-3 m	
	DGW)	
	Ψ_{midday} decreased (-7 to -23 m DGW)	
Transpiration	Total Et decreased 32% (-0.9 to -2.5 m DGW);	Cooper et al., 2006
rate	Et decreased (-2 to -4 m DGW)	Kochendorfer et al.,
	E decreased from 966 to 484 mm (-1.1 to -3.1 m	2011
	DGW)	Gazal et al., 2006
	Annual E decreased (zero to -8 m DGW)	Ford et al., 2008
Resistance to	Increased (-1.5 to -30 m DGW);	Canham et al., 2009
xylem	PLC ₅₀ decreased from -1.07 to -3.24 MPa ($<$ -2 to	Froend and Drake 2006
embolism	>-20 m DGW)	
Growth rate	Decreased (zero to >-1 m DGW increased);	Scott et al. 1999
	Decreased (-7 to -23 m DGW)	Gries et al. 2003
Leaf area	Decreased from 3.5 to 1.0 (-1.5 to >-5 m DGW)	Carter and White 2009b
index	Decreased	O'Grady et al. 2011
	Decreased from 2.5 to 0.66 (zero to ->3 m DGW)	Zunzunegui et al. 2000
	Decreased from 2.7 to 1.7 (-1.1 to -3.1 m DGW)	Gazal et al., 2006
Huber value	Increased from 3.3 to 4.7 (-1.1 to -3.1 m DGW)	Gazal et al., 2006
(SWA/LA)	No change (-1.5 to -30 m DGW)	Canham et al., 2009
	increased from 3.4 to 4.3 $\times 10^{-4}$ (-1.5 to >-5 m	Carter and White 2009b

Comment [u30]: All references here now in the reference list

	DGW)	
Plant density	Vascular species number decreased;	Zinko et al., 2005
	Species composition changed (-0.9 to -2.5 m	Cooper et al., 2006
	DGW);	Merritt and Bateman
	plant cover type changed (-1.1 to -2.5 m DGW);	2012
	vegetation cover and diversity decreased (-1 to -	Lv et al., 2013
	110 m DGW)	
NDVI	Decreased (-1 to -110 m DGW);	Lv et al., 2013
	Decreased (zero to -1.5 m DGW increased)	Aguilar et al., 2012
	Decreased (-1.8 to -3.5 m DGW)	Wang et al., 2011
Crown die-	Increased between <40% to >50% (zero to -9 m);	Horton et al., 2001
back	Leaf loss 34% (zero to >-1 m DGW increased)	Cooper et al., 2003
Mortality	Increased (>-2.2 DGW increased);	Groom et al., 2000
	Increased (zero to >-1 m DGW increased)	Scott et al., 1999
	Increased (-0.4 to -5 m DGW)	González et al., 2012

Table 4:The meaning of the abbreviations/ traits used in Figure 7.

Abbreviation	Explanation/definition
Ψ _{TLP}	The water potential of leaves at which turgor is zero
Π ₁₀₀	The solute potential at a relative water content of 100 %
RWC _{TLP}	The relative water content at which leaf turgor is zero
SWD	The saturated water content of wood
Ks	Sapwood-specific hydraulic conductivity of branch xylem
KL	Leaf-specific hydraulic conductivity of branch xylem
PLC ₅₀	The water potential at which 50 % of the hydraulic conductivity is lost
PLC ₈₈	The water potential at which 88 % of the hydraulic conductivity is lost
H _v	Huber value: the ratio of leaf area to sapwood area
BA	Total basal area of trees within a plot
LAI	Leaf area index of a stand of trees
AGB	Above-ground biomass
ANPP	Above-ground net primary productivity
WUE	Water-use-efficiency; calculated as the ratio of ANPP/stand water-use
Height	Average height of the trees in a plot
Water-use	Rates of stand water-use; up-scaled from sapflow measurements
Stem density	The number of trees per hectare
Litterfall	Rates of annual litterfall within a plot

Figure 1: The relationship between NDVI and depth to the water table for the Hailiutu River catchment in northern China. Redrawn from Lv et al. (2012).

Figure 2: Change of (a) total water storage anomalies; (b) groundwater anomalies; (c) soil moisture storage anomalies; and (d) surface water anomalies relative to the mean of the Murray-Darling Basin during the multiyear drought. Redrawn from Leblanc et al. (2009).

Figure 3: A representation of the Budyko formulation using the Choudhury-Yang formulation with three different values of n (from 1.5 to 2.0). Redrawn from Leaney et al., (2011).

Figure 4:

An idealised representation of changes in depth-to-groundwater over a 48 h period. The water table declines (depth increases) during the day because of transpiration by vegetation but increases (depth decreases) at night when transpiration tends to zero and recharge exceeds loss. The dashed line represents the trajectory of overnight recharge in the absence of transpiration on the following day. See text for further discussion of this.

Figure 5: Change in tree ring width of cottonwood (solid line, diamonds) and willow (dashed line, squares) before (2004) during (2005 – 2006) and after draining the reservoir (early 2005) and refilling (mid 2006). Redrawn from Hultine et al. (2010).

Figure 6: Hypothetical response functions for ecosystem function to differences groundwater availability. From Eamus *et al.* (2006).

Figure 7: A summary of the traits examined and the general trend in response of those traits to increased depth-to-groundwater along a natural topographic gradient. Upward/downward pointing arrows within a coloured text box indicate increasing/decreasing values of the plant trait as depth-to-groundwater increases. Horizontal arrows indicate no change. Table four provides the definition of all abbreviations used in this figure.

Figure 8: Ecosystem response to increase in depth-to-groundwater, fitted with 4 parameter sigmoidal function. From Zolfaghar (2014).

Figure 9: Co-ordination in the response of a leaf-scale and branch-scale trait and drought sensitivity. From Zolfaghar (2014).