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Abstract

The Soil Water Assessment Tool (SWAT) was configured for the Puarenga Stream
catchment (77 km2), Rotorua, New Zealand. The catchment land use is mostly plan-
tation forest, some of which is spray-irrigated with treated wastewater. A Sequential
Uncertainty Fitting (SUFI-2) procedure was used to auto-calibrate unknown parame-5

ter values in the SWAT model which was applied to the Puarenga catchment. Dis-
charge, sediment, and nutrient variables were then partitioned into two components
(base flow and quick flow) based on hydrograph separation. A manual procedure (one-
at a-time sensitivity analysis) was then used to quantify parameter sensitivity for the
two hydrologically-separated regimes. Comparison of simulated daily mean discharge,10

sediment and nutrient concentrations with high-frequency, event-based measurements
allowed the error in model predictions to be quantified. This comparison highlighted the
potential for model error associated with quick-flow fluxes in flashy lower-order streams
to be underestimated compared with low-frequency (e.g. monthly) measurements de-
rived predominantly from base flow measurements. To overcome this problem we ad-15

vocate the use of high-frequency, event-based monitoring data during calibration and
dynamic parameter values with some dependence on discharge regime. This study
has important implications for quantifying uncertainty in hydrological models, particu-
larly for studies where model simulations are used to simulate responses of stream
discharge and composition to changes in irrigation and land management.20

1 Introduction

Catchment models are valuable tools for understanding natural processes occurring
at basin scales and for simulating the effects of different management regimes on soil
and water resources (e.g. Cao et al., 2006). Model applications may have uncertain-
ties as a result of errors associated with the forcing variables, measurements used for25

calibration, and conceptualisation of the model itself (Lindenschmidt et al., 2007). The
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ability of catchment models to simulate hydrological processes and pollutant loads can
be assessed through analysis of uncertainty or errors during a calibration process that
is specific to the application domain (White and Chaubey, 2005).

The Soil and Water Assessment Tool (SWAT) model is increasingly used to predict
discharge, sediment and nutrient loads on a temporally resolved basis, and to quantify5

material fluxes from a catchment to the downstream receiving environment such as
a lake (e.g. Nielsen et al., 2013). The SWAT model is physically-based and provides
distributed descriptions of hydrologic processes at sub-basin scale (Arnold et al., 1998;
Neitsch et al., 2011). It has numerous parameters, some of which can be fixed on the
basis of pre-existing catchment data (e.g. soil maps) or knowledge gained in other10

studies. However, values for other parameters need to be assigned during a calibration
process as a result of complex spatial and temporal variations that are not readily cap-
tured either through measurements or within the model algorithms themselves (Boyle
et al., 2000). Such parameter values assigned during calibration are therefore lumped,
i.e., they integrate variations in space and/or time and thus provide an approximation15

for real values which often vary widely within a study catchment. Model calibration is an
iterative process whereby parameters are adjusted to the system of interest by refining
model predictions to fit closely with observations under a given set of conditions (Mori-
asi et al., 2007). Manual calibration depends on the system used for model application,
the experience of the modellers, and knowledge of the model algorithms. It tends to be20

subjective and time-consuming. By contrast, auto-calibration provides a less labour-
intensive approach by using optimisation algorithms (Eckhardt and Arnold, 2001). The
Sequential Uncertainty Fitting (SUFI-2) procedure has previously been applied to auto-
calibrate discharge parameters in a SWAT application for the Thur River, Switzerland
(Abbaspour et al., 2007), as well as for groundwater recharge, evapotranspiration and25

soil storage water considerations in West Africa (Schuol et al., 2008). Model validation
is subsequently performed using measured data that are independent of those used
for calibration (Moriasi et al., 2007).
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Values for hydrological parameter values in the SWAT model can vary temporally.
Cibin et al. (2010) found that the optimum calibrated values for hydrological param-
eters varied with different flow regimes (low, medium and high), thus suggesting that
SWAT model performance can be optimised by assigning parameter values based on
hydrological characteristics. Other work has similarly demonstrated benefits from as-5

signing separate parameter values to low, medium, and high discharge periods (Yil-
maz et al., 2008), or based on whether a catchment is in a dry, drying, wet or wetting
state (Choi and Beven, 2007). Such temporal dependence of model parameterisation
on hydrologic conditions has implications for model performance. Krause et al. (2005)
compared different statistical metrics of hydrological model performance separately for10

base-flow periods and storm events to evaluate the performance. They found that the
logarithmic form of the Nash-Sutcliffe efficiency (NSE) value provided more informa-
tion on the sensitivity of model performance for simulations of discharge during storm
events, while the relative form of NSE was better for base flow periods. Similarly, Guse
et al. (2014) investigated temporal dynamics of sensitivity of hydrological parameters15

and SWAT model performance using Fourier amplitude sensitivity test (Reusser et al.,
2011) and cluster analysis (Reusser et al., 2009). They found that three groundwater
parameters were highly sensitive during quick flow, while one evaporation parameter
was most sensitive during base flow, and model performance was also found to vary
significantly for the two flow regimes. Zhang et al. (2011) calibrated SWAT hydrological20

parameters for periods separated on the basis of six climatic indexes. Model perfor-
mance improved when different values were assigned to parameters based on six hy-
droclimatic periods. Similarly, Pfannerstill et al. (2014) found that assessment of model
performance was improved by considering an additional performance statistic for very
low-flow simulations amongst five hydrologically-separated regimes.25

To date, analysis of temporal dynamics of SWAT parameters has predominantly fo-
cussed on simulations of discharge rather than water quality constituents. This partly
reflects the paucity of comprehensive water quality data for many catchments; near-
continuous discharge data can readily be collected but this is not the case for water
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quality parameters such as suspended sediment or nutrient concentrations. Data col-
lected in monitoring programmes that involve sampling at regular time intervals (e.g.
monthly) are often used to calibrate water quality models, but these are unlikely to fully
represent the range of hydrologic conditions in a catchment (Bieroza et al., 2014). In
particular, water quality data collected during storm-flow periods are rarely available5

for SWAT calibration, thus prohibiting opportunities to investigate how parameter sen-
sitivity varies under conditions which can contribute disproportionately to nutrient or
sediment transport, particularly in lower-order catchments (Chiwa et al., 2010; Abell
et al., 2013). Failure to fully consider storm-flow processes could therefore result in
overestimation of model performance. Thus, further research is required to examine10

how water quality parameters vary during different flow regimes and to understand
how model uncertainty may vary under future climatic conditions that affect discharge
regimes (Brigode et al., 2013).

In this study, the SWAT model was configured to a relatively small, mixed land use
catchment in New Zealand that has been the subject of an intensive water qual-15

ity sampling programme designed to target a wide range of hydrologic conditions.
A catchment-wide set of parameters was calibrated using the SUFI-2 procedure which
is integrated into the SWAT Calibration and Uncertainty Program (SWAT-CUP). The
objectives of this study were to: (1) quantify the performance of the model in simulating
discharge and fluxes of suspended sediments and nutrients at the catchment outlet, (2)20

rigorously evaluate model performance by comparing daily simulation output with mon-
itoring data collected under a range of hydrologic conditions; and (3) quantify whether
parameter sensitivity varies between base flow and quick flow conditions.
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2 Methods

2.1 Study area and model configuration

The Puarenga Stream is the second-largest surface inflow (2.03 m3 s−1) to Lake Ro-
torua (Bay of Plenty, New Zealand) and drains a catchment of 77 km2. The predomi-
nant land use (47 %) is exotic forest (Pinus radiata). Approximately 26 % is managed5

pastoral farmland, 11 % mixed scrub and 9 % indigenous forest. Since 1991, treated
wastewater has been pumped from the Rotorua Wastewater Treatment Plant and
spray-irrigated over 16 blocks of total area of 1.93 km2 in the Whakarewarewa For-
est (Fig. 1a). Following this, it took approximately four years before elevated nitrate
concentrations were measured in the receiving waters of the Puarenga Stream (Lowe10

et al., 2007). Prior to 2002, the irrigation schedule entailed applying wastewater to two
blocks per day so that each block was irrigated approximately weekly. Since 2002, 10 to
14 blocks have been irrigated simultaneously at daily frequency. Over the entire period
of irrigation, nutrient concentrations in the irrigated water have gradually decreased as
improvements in treatment of the wastewater have been made (Lowe et al., 2007).15

Measurements from the Forest Research Institute (FRI) stream-gauge (1.7 km
upstream of Lake Rotorua; Fig. 1b) were considered representative of the down-
stream/outlet conditions of the Puarenga Stream. The FRI stream-gauge was closed
in mid 1997, then reopened late in 2004 (Environment Bay of Plenty, 2007). Discharge
records during 1998–2004 were intermittent. In July 2010, the gauge was repositioned20

720 m downstream to the State Highway 30 (SH 30) bridge (Fig. 1b).
SWAT input data requirements included a digital elevation model, meteorological

records, records of springs and water abstraction, soil characteristics, land use classi-
fication, and management schedules for key land uses (pastoral farming, wastewater
irrigation, and timber harvesting). Descriptions and sources of the data used to con-25

figure the SWAT model are given in Table 1. Values of SWAT required parameters
were assigned based on: (i) measured data (e.g. most of the soil parameters; Table 1),
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(ii) literature values from published studies of similar catchments (e.g. parameters for
dominant land uses; Table 2); or (iii) calibrated values if other information was lacking.

2.2 Parameter calibration

Unknown parameter values (Table 3) were assigned based on either automated or
manual calibration. Manual calibration was undertaken for 11 parameters related to5

total phosphorus (TP), while a Sequential Uncertainty Fitting (SUFI-2) procedure was
applied to auto-calibrate 31 parameters for simulations of discharge and suspended
sediment (SS), and 17 parameters related to total nitrogen (TN). SUFI-2 involves Latin
hypercube sampling (LHS) which is a method that efficiently quantifies and constrains
parameter uncertainties from default ranges with the fewest number of iterations. It10

generates a sample of plausible parameter values from a multidimensional distribution
and is widely applied in uncertainty analysis (Marino et al., 2008). SUFI-2 considers
two criteria to constrain uncertainty in each iteration. One is the P-factor, the percent-
age of measured data bracketed by 95 % prediction uncertainty (95PPU). Another is
the R-factor, the average thickness of the 95PPU band divided by the standard devi-15

ation of measured data. Subsequent iterations were undertaken to produce narrower
parameter ranges. Optimal parameter values were considered to occur when > 90 %
of measured data was bracketed by simulated output and the R-factor was close to
one. Spatial distribution of parameters was not considered in this study as a result
of the small study area size (77 km2). Steps in the SUFI-2 application are outlined20

by Abbaspour et al. (2004) who integrated the SUFI-2 procedure into the SWAT Cal-
ibration and Uncertainty program (SWAT-CUP) and linked SWAT-CUP to the SWAT
model. SWAT simulates loads of “mineral phosphorus” (MINP) and “organic phospho-
rus” (ORGP) of which the sum is total phosphorus (TP). The MINP fraction represents
soluble P either in mineral or in organic form, while ORGP refers to particulate P bound25

either by algae or by sediment (White et al., 2014). Soluble P may be uptaken during
algae growth, or be released from benthic sediment. Either fraction can be transformed
to particulate P contained in algae or sediment.
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SWAT simulates loads of nitrate-nitrogen (NO3–N), ammonium-nitrogen (NH4–N)
and organic nitrogen (ORGN), the sum of which is total nitrogen (TN). Nitrogen pa-
rameters were auto-calibrated for each N fraction. The SWAT model does not account
for the initial nitrate concentration in shallow aquifers, an issue also noted by Conan
et al. (2003). Ekanayake and Davie (2005) indicated that SWAT underestimated N5

loading from groundwater and suggested a modification by adding a background con-
centration of nitrate in streamflow to represent groundwater nitrate contributions. We
added 0.44 mg N L−1 to all model estimates of TN concentration, based on groundwater
composition data from Paku (2001).

2.3 Model evaluation10

Discharge measured every 15 min and water quality data collected monthly by Bay of
Plenty Regional Council at the FRI stream gauge (Fig. 1b), were used for model eval-
uation. Daily mean discharge (from 15 min measurements) was compared with daily
mean simulated discharge. Concentrations of SS, TP and TN measured monthly were
compared with the respective simulated monthly values (derived from daily mean out-15

puts). The calibration period was from 2004 to 2008 and the validation period was from
1994 to 1997. A validation period was chosen that pre-dated the calibration period
because wastewater irrigation has occurred daily since 2002, compared with weekly
during the validation period (1994–1997). Therefore, because the groundwater nutrient
pool is not dynamically modelled in SWAT, we chose to calibrate the model to reflect20

current operations so that it can later be used to examine how changes to land man-
agement may affect current water quality.

In addition, high-frequency (1–2 h) water quality sampling was undertaken at the FRI
stream-gauge during 2010–2012 to derive estimates of daily mean contaminant loads
during storm events. Samples were analysed for SS (nine events), TP and TN (both 1425

events) over sampling periods of 24–73 h. The sampling programme was designed to
encompass pre-event base flow, storm generated quick flow and post-event base flow
(Abell et al., 2013). These data permitted calculation of daily discharge-weighted (Q-
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weighted) mean concentrations to compare with modelled daily mean estimates. The
Q-weighted mean concentrations CQWM were calculated as:

CQWM =

n∑
i=1

CiQi

n∑
i=1

Qi

(1)

where n is number of samples, Ci is contaminant concentration measured at time i ,
and Qi is discharge measured at time i .5

Model goodness-of-fit was assessed graphically and quantified using coefficient of
determination (R2), Nash-Sutcliffe efficiency (NSE) and percent bias (PBIAS; Table 4).
R2 (range 0 to 1) and NSE (range −∞ to 1) values are commonly used to evalu-
ate SWAT model performance at daily time step (Gassman et al., 2007). PBIAS value
indicates the average tendency of simulated outputs to be larger or smaller than ob-10

servations (Gupta et al., 1999).

2.4 Hydrograph and contaminant load separation

The Web-based Hydrograph Analysis Tool (Lim et al., 2005) was applied to partition
both measured and simulated discharges into base flow (Qb) and quick flow (Qq). An
Eckhardt filter parameter of 0.98 and ratio of base flow to total discharge of 0.8 were15

assumed (cf. Lim et al., 2005). There were a total of 60 days without quick flow during
the calibration period (2004–2008) and 1379 days for which hydrograph separation
defined both base flow and quick flow.

Contaminant (SS, TP and TN) concentrations (Csep) were partitioned into base flow
(C′b) and quick flow components (C′q; cf. Rimmer and Hartmann, 2014) to separately20

examine the sensitivity of water quality parameters during base flow and quick flow:

Csep =
Qq ×C

′
q +Qb ×C

′
b

Qq +Qb
(2)
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C′b for each contaminant was estimated as the average concentration for the 60 days
with no quick flow. C′q for each contaminant was calculated by rearranging Eq. (2) as:

C′q =
(Qq +Qb)×Csep −Qb ×C

′
b

Qq
(3)

To retain Eq. (3) rational, C′q must be positive, therefore C′b is the minimum between

Csep and Csep. Measured and simulated base flow and quick flow contaminant loads5

were then calculated.

2.5 Sensitivity analysis

A one-at a-time (OAT) routine proposed by Morris (1991) was applied to investigate how
parameter sensitivity varied between the two flow regimes (base flow and quick flow).
OAT sensitivity analysis was employed by varying the parameter of interest among ten10

equidistant values within the default range. The standard deviation of log10-transformed
NSE values was calculated from the sensitivity analysis for each variable and for the
two flow regimes (base flow and quick flow). Parameters were ranked from most to least
sensitive on the basis of the sensitivity metric (standard deviation of log10-transformed
NSE), using a value of 0.1 as a threshold above which parameters were deemed par-15

ticularly “sensitive”. Methods used to quantify parameter sensitivity are illustrated in
Fig. 2.

3 Results

3.1 Model performance

Modelled and measured base flow showed high correspondence, although measured20

daily mean discharge during storm peaks was often underestimated (Fig. 3a and e).
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Modelled SS concentrations overestimated measurements of monthly grab samples
by an average of 18.3 % during calibration and 0.32 % during validation (Fig. 3b and f).
Measured TP concentrations in monthly grab samples were underestimated by 23.8 %
during calibration (Fig. 3c) and 24.5 % during validation (Fig. 3g). Similarly, measured
TP loads were underestimated by 34.5 and 38.4 %, during calibration and validation,5

respectively. Modelled and measured TN concentrations were generally better aligned
during base flow (Fig. 3d), apart from a mismatch prior to 1996 when monthly mea-
sured TN concentrations were substantially lower than model predictions although
they gradually increased (Fig. 3h) during the validation period (1994–1997). The av-
erage measured TN load increased from 134 kg N d−1 prior to 1996, to 190 kg N d−1

10

post 1996. The comparable increase in modelled TN load was 167 to 205 kg N d−1,
respectively.

Statistical evaluations of goodness-of-fit are shown in Table 5. The R2 values for
discharge were 0.77 for calibration and 0.68 for validation, corresponding to model
performance ratings of “very good” and “good” (cf. Table 4). Similarly, the NSE values15

for discharge were 0.73 (good) for calibration and 0.62 (satisfactory) for validation.
Positive PBIAS (7.8 % for calibration and 8.8 % for validation) indicated a tendency
for underestimation of daily mean discharge, however, the low magnitude of PBIAS
values corresponded to a performance rating of “very good”. The R2 values for SS
were 0.42 (unsatisfactory) for calibration and 0.80 for validation (very good). Similarly,20

the NSE values for SS were −0.08 (unsatisfactory) for calibration and 0.76 (very good)
for validation. The model did not simulate trends well for monthly measured TP and TN
concentrations. The R2 values for TP and TN were both < 0.1 (unsatisfactory) during
calibration and validation and NSE values were both < 0 (unsatisfactory). Values of
PBIAS corresponded to “good” or “very good” performance ratings for TP and TN.25

Observed Q-weighted daily mean concentrations derived from hourly measurements
and simulated daily mean concentrations of SS, TP and TN during an example two-day
storm event are shown in Fig. 4a–c. The simulation of SS and TN concentrations was
somewhat better than for TP. Comparisons of Q-weighted daily mean concentrations
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(CQWM) during storm events from 2010 to 2012 are shown in Fig. 4d–f for SS (nine
events), TP and TN (both 14 events). The CQWM of TP exceeded the simulated daily
mean by between 0.02 and 0.2 mg P L−1, and on average, the model underestimated
measurements by 69.4 % (Fig. 4e). Although R2 and NSE values for CQWM of TN were
unsatisfactory (Table 5), they were both close to the threshold for satisfactory perfor-5

mance (0.5). For CQWM of SS and TP, R2 and NSE values indicated that the model per-
formance was unsatisfactory. The PBIAS value of −0.87 for CQWM of TN corresponded
to model performance ratings of “very good”, while the PBIAS values for CQWM of SS
and TP were 43.9 and 69.4, respectively, indicating satisfactory model performance.

3.2 Parameter sensitivity10

Measured and simulated discharge and contaminant concentrations for the two flow
regimes (base flow and quick flow), are shown in Fig. 5. The OAT sensitivity analysis
undertaken separately for base flow and quick flow identified three parameters that
most influenced the quick flow estimates, and five parameters that most influenced the
base flow estimates (parameters above the dashed line in Fig. 6a). Those sensitive flow15

parameters specifically relate to the relevant flow components, providing a mechanistic
basis for the finding that they were particularly sensitive. Channel hydraulic conductiv-
ity (CH_K2) is used to estimate the peak runoff rate (Lane, 1983). Lateral flow slope
length (SLSOIL) and lateral flow travel time (LAT_TIME) have an important controlling
effect on the amount of lateral flow entering the stream reach during quick flow. Both20

slope (HRU_SLP) and soil available water content (SOL_AWC) were particularly sen-
sitive for the base flow simulation because they affect lateral flow within the kinematic
storage model in SWAT (Sloan and Moore, 1984). The aquifer percolation coefficient
(RCHRG_DP) and the base flow alpha factor (ALPHA_BF) strongly influenced base
flow calculations (Sangrey et al., 1984), as did the channel Manning’s N value (CH_N2)25

which is used to estimate channel flow (Chow, 2008).
For SS loads, 12 and four parameters, respectively, were identified as sensitive in re-

lation to the simulations of base flow and quick flow (parameters above the dashed line
4326
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in Fig. 6b). Parameters that control main channel processes (e.g. CH_K2 and CH_N2)
and subsurface water transport processes (e.g. LAT_TIME and SLSOIL) were found to
be much more sensitive for base flow SS load estimations. Exclusive parameters for
SS estimations, such as SPCON (linear parameter), PRF (peak rate adjustment factor),
SPEXP (exponent parameter), CH_COV1 (channel erodibility factor), and CH_COV25

(channel cover factor) were found to be much more sensitive in base flow SS load,
while LAT_SED (SS concentration in lateral flow and groundwater flow) was more sen-
sitive in quick flow SS load. Parameters that control overland processes, e.g. CN2 (the
curve number), OV_N (overland flow Manning’s N value) and SLSUBBSN (sub-basin
slope length), were found to be much more sensitive for quick flow SS load estimations.10

Of the sensitive parameters, BC4 (ORGP mineralization rate) was particularly sen-
sitive for the simulation of base flow MINP load (Fig. 6c). RCN (nitrogen concentra-
tion in rainfall) related specifically to the dynamics of the base flow NO3–N load and
NPERCO (nitrogen percolation coefficient) significantly affected quick flow NO3–N load
(Fig. 6d). Parameter CH_ONCO (channel ORGN concentration) similarly affected both15

flow components of ORGN load (Fig. 6e) and SOL_CBN (organic carbon content) was
most sensitive for the simulations of quick flow ORGN and NH4–N loads. Parameter
BC1 (nitrification rate in reach) was particularly sensitive for the simulation of base flow
NH4–N load (Fig. 6f).

4 Discussion20

4.1 Temporal dynamics of model performance

This study examined temporal dynamics of model performance and parameter sensi-
tivity in a SWAT model application that was configured for a small, relatively steep and
lower order stream catchment in New Zealand. This country faces increasing pressures
on freshwater resources (Parliamentary Commissioner for the Environment, 2013) and25

models such as SWAT potentially offer valuable tools to inform management of wa-
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ter resources although, to date, the SWAT model has received limited consideration
in New Zealand (Cao et al., 2006). Model evaluation on the basis of the data col-
lected during an extended monitoring programme enabled a detailed examination of
how model performance varied during different flow regimes. It also permitted error in
daily mean estimates of contaminant loads to be quantified with relative precision, al-5

lowing assessment of the ability of SWAT model to simulate contaminant loads during
storm events when lower-order streams typically exhibit considerable sub-daily variabil-
ity in both discharge and contaminant concentrations (Zhang et al., 2010). Separating
discharge and loads of sediments and nutrients into those associated with base flow
and quick flow for separate OAT sensitivity analyses provided important insights into10

the varying dependency of parameter sensitivity on hydrologic conditions.
The poor fit between simulated daily mean TP concentrations and monthly instanta-

neous measurements may partly reflect a mismatch between the dominant processes
affecting phosphorus cycling in the stream and those represented in SWAT. The ORGP
fraction that is simulated in SWAT includes both organic and inorganic forms of partic-15

ulate phosphorus, however, the representation of particulate phosphorus cycling only
focusses on organic phosphorus cycling with limited consideration of interactions be-
tween inorganic streambed sediments and dissolved reactive phosphorus in overly-
ing water (White et al., 2014). This contrasts with phosphorus cycling in the study
stream where it has been shown that dynamic sorption processes between the dis-20

solved and particulate inorganic phosphorus pools exert major control on phosphorus
cycling (Abell and Hamilton, 2013).

Overestimation of TN concentration prior to 1996 (PBIAS = −26.7 %) reflects the fact
that NO3–N concentrations in groundwater were likely higher during the calibration pe-
riod (PBIAS = −0.05 %; 2004–2008) due to wastewater irrigation operations, and had25

reached a new quasi-steady state between wastewater loads and in-stream attenua-
tion. Our decision to deliberately select a validation period (1994–1997) during which
the boundary conditions of system (anthropogenic nutrient loading) differed consider-
ably from the calibration period allowed us to rigorously assess the capability of SWAT
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to accurately predict water quality under an altered management scenario (i.e. the pur-
pose of most SWAT applications). Our results also highlight a discrepancy between
the static nature of the groundwater nitrogen pool represented in SWAT and the reality
that groundwater nutrient concentrations change dynamically in a lagged response to
changes to sources in modified catchments (Bain et al., 2012).5

Our finding that measured Q-weighted mean concentrations (CQWM) of TP and SS
during storm events (2010–2012) were greatly underestimated relative to simulated
daily mean TP (PBIAS = 69.4 %) and SS (PBIAS = 43.9 %) concentrations has im-
portant implications for studies that examine effects of altered flow regimes on con-
taminant transport. For example, studies which simulate scenarios comprising more10

frequent large rainfall events (associated with climate change predictions for many re-
gions; IPCC, 2013) may considerably underestimate projected future loads of SS and
associated particulate nutrients if only base flow water quality measurements (i.e. those
predominantly collected during “state of environment” monitoring) are used for calibra-
tion/validation (see Radcliffe et al., 2009 for a discussion of this issue in relation to15

phosphorus). This is also reflected by the two model performance statistics relating to
validation of modelled SS concentrations using monthly grab samples (predominantly
base flow; “very good”) and CQWM estimated during storm sampling (“unsatisfactory”)
based on R2 and NSE values. Furthermore, the disparity in goodness-of-fit statistics
between discharge (typically “good” or “very good”) and nutrient variables (often “unsat-20

isfactory”) highlights the potential for catchment models which inadequately represent
contaminant cycling processes (manifest in unsatisfactory concentration estimates) to
nevertheless produce satisfactorily load predictions. This highlights the potential for
model uncertainty to be underestimated in studies which aim to predict the effects of
scenarios associated with changes in contaminant cycling such as increases in fer-25

tiliser application rates.
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4.2 Temporal dynamics of parameter sensitivity

To date, studies of temporal variability of parameters have focused on hydrological
parameters, rather than on water quality parameters. Defining separate contaminant
concentrations in base flow and quick flow enabled us to examine how the sensitivity
of water quality parameters varied depending on hydrologic conditions.5

In a study of a lowland catchment (481 km2), Guse et al. (2014) found that three
groundwater parameters, RCHRG_DP (aquifer percolation coefficient), GW_DELAY
(groundwater delay) and ALPHA_BF (base flow alpha factor) were highly sensitive in
relation to simulating discharge during quick flow, while ESCO (soil evaporation com-
pensation factor) was most sensitive during base flow. This is counter to the findings of10

this study for which the base-flow discharge simulation was sensitive to RCHRG_DP
and ALPHA_BF. This result may reflect that, relative to our study catchment, the catch-
ment studied by Guse et al. (2014) had moderate precipitation (884 mmy−1) with less
forest cover and flatter topography. Although the GW_DELAY parameter reflects the
time lag that it takes water in the soil water to enter the shallow aquifers, its lack of15

sensitivity under both base flow and quick flow conditions in this study is a reflection
of higher water infiltration rates and steeper slopes. The ESCO parameter controls
the upwards movement of water from lower soil layers to meet evaporative demand
(Neitsch et al., 2011). Its lack of sensitivity in our study may reflect relatively high and
seasonally-consistent rainfall (1500 mmy−1), in addition to extensive forest cover in20

the Puarenga Stream catchment, which reduces soil evaporative demand by shading.
Soil texture is also likely a contributor to this result. The predominant soil horizon type
in the Puarenga Stream catchment was A, indicating high macroporosity which pro-
motes high water infiltration rate and inhibits upward transport of water by capillary
action (Neitsch et al., 2011). The variability in the sensitivity of the parameter SURLAG25

(surface runoff lag coefficient) between this study (relatively insensitive) and that of
Cibin et al. (2010; relatively sensitive) likely reflects differences in catchment size. The
Puarenga Stream catchment (77 km2) is much smaller than the study catchment (St
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Joseph River; 2800 km2) of Cibin et al. (2010) and, consequently, distances to the
main channel are much shorter, with less potential for attenuation of surface runoff in
off-channel storage sites. The curve number (CN2) parameter was not found to be sen-
sitive in both this study and Shen et al. (2012), because surface runoff was simulated
based on the Green and Ampt method (1911) requiring the hourly rainfall inputs, rather5

than the curve number equation which is an empirical model. By contrast, the most
sensitive parameters in our study are those that determine the extent of lateral flow, an
important contributor to streamflow in the catchment, due to a general lack of ground
cover under plantation trees and formation of gully networks on steep terrain.

Parameters that control surface water transport processes (e.g. LAT_TIME and10

SLSOIL) were found to be much more sensitive for base flow SS load estimation than
parameters that control groundwater processes (e.g. ALPHA_BF and RCHRG_DP),
reflecting the importance of surface flow processes for sediment transport. Sensitive
parameters for quick flow SS load estimation related to overland flow processes (e.g.
OV_N and SLSUBBSN), thus reflecting the fact that sediment transport is largely de-15

pendent on rainfall-driven processes, as is typical of steep and lower-order catchments.
Modelled base flow NO3–N loads were most sensitive to the nitrogen concentration
in rainfall (RCN) because of rainfall as a predominant contributor to recharging base
flow. The nitrogen percolation coefficient (NPERCO) was more influential for quick flow
NO3–N load estimation, probably indicating that the quick flow NO3–N load is more20

influenced by the mobilisation of concentrated nitrogen sources associated with agri-
culture or treated wastewater distribution. High sensitivity of the organic carbon con-
tent (SOL_CBN) for quick flow ORGN load estimates likely reflects mobilisation of N
associated with organic material following rainfall. The finding that base flow NH4–N
load was more sensitive to nitrification rate in reach (BC1) likely reflects that base flow25

provides more favourable conditions to complete this oxidation reaction, as NH4–N is
less readily leached and transported. Similarly, the ORGP mineralization rate (BC4)
strongly influenced base flow MINP load estimation, reflecting that base flow phospho-
rus transport is relatively more influenced by cycling from channel bed stores, whereas
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quick flow phosphorus transport predominantly reflects the transport of phosphorus
that originated from sources distant from the channel.

5 Conclusions

The performance of a SWAT model was quantified for different hydrologic conditions in
a small catchment with mixed land use. Discharge-weighted mean concentrations of5

TP and SS measured during storm events were greatly underestimated by SWAT, high-
lighting the potential for uncertainty to be greatly underestimated in catchment model
applications that are validated using a sample of contaminant load measurements
that is over-represented by measurements made during base flow conditions. Accu-
rate simulation of nitrogen concentrations was constrained by the non-steady state of10

groundwater nitrogen concentrations due to historic variability in anthropogenic nitro-
gen applications to land. The sensitivity of many parameters varied depending on the
relative dominance of base flow and quick flow, while curve number, soil evaporation
compensation factor, surface runoff lag coefficient, and groundwater delay were largely
invariant to the two flow regimes. Parameters relating to main channel processes were15

more sensitive when estimating variables during base flow, while those relating to over-
land processes were more sensitive for quick flow. Temporal dynamics of both param-
eter sensitivity and model performance due to dependence on hydrologic conditions
should be considered in further model applications. Monitoring programmes which col-
lect high-frequency and event-based data have an important role in supporting the20

robust calibration and validation of SWAT model applications.
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Table 1. Description of data used to configure and calibrate the SWAT model.

Data Application Data description and configuration details Source

Digital elevation
model (DEM)
and digitized
stream network

Sub-basin
delineation
(Fig. 1b)

25 m resolution. Used to define five slope
classes: 0–4 %, 4–10 %, 10–17 %, 17–26 %
and > 26 %.

Bay of Plenty Regional
Council (BoPRC)

Stream dis-
charge and
water quality
measurements

Calibration
(2004–
2008) and
validation
(1994–
1997;
2010–
2012)

FRI: 15–min stream discharge (1994–1997;
2004–2008), monthly grab samples for in-
stantaneous SS, TP and TN concentrations
(1994–1997; 2004–2008), high–frequency
event–based samples for concentrations of
SS (nine events), TP and TN (both 14 events)
at 1–2 h frequency (2010–2012).

BoPRC; Abell
et al. (2013)

Spring dis-
charge, nutrient
loads, and wa-
ter abstraction
volumes

Point
source
(Fig. 1b)
and water
use

Constant daily discharge assigned to two
cold-water springs (Waipa Spring and Hemo
Spring) and one geothermal spring based
on spot measurements. Constant nutrient
concentrations assigned to Waipa Spring
and Hemo Spring and the geothermal
spring based on samples collected between
Aug 1984 and Jun 2004. Monthly water ab-
straction assigned to two cold-water springs.

Kusabs and
Shaw (2008); White
et al. (2004); Prof-
fit (2009) (Unpub-
lished Site Visit
Report); Paku (2001);
Mahon (1985);
Glover (1993);
Jowett (2008); Ro-
torua District Council
(personal communica-
tion, 2012)

Land use HRU defi-
nition

25 m resolution, 10 basic land-cover cate-
gories. Some particular land-cover parame-
ters were prior-estimated (Table 2).

New Zealand Land
Cover Database
Version 2; BoPRC

Soil character-
istics

HRU defi-
nition

Properties of 22 soil types were determined
using the key physical properties and the
characteristics of functional horizons provided
by soil map.

New Zealand Land
Resource Inven-
tory and digital
soil map (avail-
able at http://smap.
landcareresearch.co.
nz)
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Table 1. Continued.

Data Application Data description and configuration details Source

Meteorological
data

Meteorological
forcing

Daily maximum and minimum temperature,
daily mean relative humidity, daily global so-
lar radiation, daily (9 a.m.) surface wind speed
and hourly precipitation.

National Climatic
Data Centre
(available at http:
//cliflo.niwa.co.nz/);
Kaituna rain gauge
(Fig. 1a)

Agricultural
management
practices

Agricultural
management
schedules

Farm-specific stocking density, fertilizer
application rates and farming practices
(1993–2012). Simulated applications of urea
(twice in winter/spring; four times in sum-
mer/autumn) and di-ammonium phosphate
(once or twice in spring/autumn). Application
of manure-associated nutrients to paddocks
was simulated as a function of stock numbers
and literature values for the average N and P
content of excreta.

Statistics New
Zealand (2006);
Fert Research (2009);
Ledgard and Thor-
rold (1998); Dairying
Research Corpora-
tion (1999)

Nutrient loading
by wastewater
application

Nonpoint-
source
from land
treatment
irrigation

Wastewater application rates and effluent
composition (TN and TP concentration) for
16 spray blocks from 1996–2012. Each spray
block was assigned an individual manage-
ment schedule specifying daily application
rates.

Rotorua District Coun-
cil (2006)

Forest stand
map and har-
vest dates

Forestry
planting and
harvesting
operations

Planting and harvesting data for 472 ha
forestry stands. Prior to 2007 we assumed
stands were cleared one-year prior to the es-
tablishment year. Post 2007, harvesting date
was assigned to the first day of harvesting
month.

Timberlands Limited,
Rotorua, New Zealand
(personal communica-
tion, 2012)
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Table 2. Prior-estimated parameter values for three dominant types of land-cover in the
Puarenga Stream catchment. Values of other land use parameters were based on the default
values in the SWAT database.

Land-cover
type

Parameter Definition Value Source

PINE (Pinus ra-
diata)

HVSTI Percentage of biomass harvested 0.65 (Ximenes et al., 2008)

T_OPT (◦C) Optimal temperature for plant
growth

15 (Kirschbaum and Watt,
2011)

T_BASE (◦C) Minimum temperature for plant
growth

4 (Kirschbaum and Watt,
2011)

MAT_YRS Number of years to reach full de-
velopment

30 (Kirschbaum and Watt,
2011)

BMX_TREES
(tonnesha−1)

Maximum biomass for a forest 400 (Bi et al., 2010)

GSI (ms−1) Maximum stomatal conductance 0.00198 (Whitehead et al.,
1994)

BLAI (m2 m−2) Maximum leaf area index 5.2 (Watt et al., 2008)
BP3 Proportion of P in biomass at ma-

turity
0.000163 (Hopmans and Elms,

2009)
BN3 Proportion of N in biomass at ma-

turity
0.00139 (Hopmans and Elms,

2009)
FRSE (Ever-
green forest)

HVSTI Percentage of biomass harvested –

BMX_TREES
(tonnesha−1)

Maximum biomass for a forest 372 (Hall et al., 2001)

MAT_YRS (years) Number of years for tree to reach
full development

100 –

PAST (Pastoral
farm)

T_OPT (◦C) Optimal temperature for plant
growth

25 (McKenzie et al.,
1999)

T_BASE (◦C) Minimum temperature for plant
growth

5 (McKenzie et al.,
1999)
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Table 3. Summary of calibrated SWAT parameters. Discharge (Q), suspended sediment (SS)
and total nitrogen (TN) parameter values were assigned using auto-calibration, while total phos-
phorus (TP) parameters were manually calibrated. SWAT default ranges and input file exten-
sions are shown for each parameter.

Parameter Definition Unit Default range

Q and SS
EVRCH.bsn Reach evaporation adjustment factor 0.5–1
PRF.bsn Peak rate adjustment factor for sediment routing in the main channel 0–2
SPCON.bsn Linear parameter for calculating the maximum amount of sediment

that can be re-entrained during channel sediment routine
0.0001–0.01

SPEXP.bsn Exponent parameter for calculating sediment re-entrained in channel
sediment routine

1–1.5

SURLAG.bsn Surface runoff lag coefficient 0.05–24
ALPHA_BF.gw Base flow alpha factor (0–1) 0.0071–0.0161
GW_DELAY.gw Groundwater delay 0–500
GW_REVAP.gw Groundwater “revap” coefficient 0.02–0.2
GW_SPYLD.gw Special yield of the shallow aquifer m3 m−3 0–0.4
GWHT.gw Initial groundwater height 0–25
GWQMN.gw Threshold depth of water in the shallow aquifer required for return

flow to occur
mm 0–5000

RCHRG_DP.gw Deep aquifer percolation fraction 0–1
REVAPMN.gw Threshold depth of water in the shallow aquifer required for “revap”

to occur
mm 0–500

CANMX. hru Maximum canopy storage mm 0–100
EPCO. hru Plant uptake compensation factor 0–1
ESCO. hru Soil evaporation compensation factor 0–1
HRU_SLP. hru Average slope steepnes mm−1 0–0.6
LAT_SED. hru Sediment concentration in lateral flow and groundwater flow mgL−1 0–5000
LAT_TTIME. hru Lateral flow travel time 0–1800
OV_N. hru Manning’s N value for overland flow 0.01–30
RSDIN. hru Initial residue cover kgha−1 0–10 000
SLSOIL. hru Slope length for lateral subsurface flow 0–150
SLSUBBSN. hru Average slope length 10–150
CH_COV1.rte Channel erodibility factor 0–0.6
CH_COV2.rte Channel cover factor 0–1
CH_K2.rte Effective hydraulic conductivity in the main channel alluvium mmh−1 0–500
CH_N2.rte Manning’s N value for the main channel 0–0.3
CH_K1.sub Effective hydraulic conductivity in the tributary channel alluvium mmh−1 0–300
CH_N1.sub Manning’s N value for the tributary channel 0.01–30
CN2. mgt Initial SCS runoff curve number for moisture condition 35–89
USLE_P.mgt USLE equation support practice factor 0–1
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Table 3. Continued.

Parameter Definition Unit Default range

TP
P_UPDIS.bsn Phosphorus uptake distribution parameter 0–100
PHOSKD.bsn Phosphorus soil partitioning coefficient 100–200
PPERCO.bsn Phosphorus percolation coefficient 10–17.5
PSP.bsn Phosphorus sorption coefficient 0.01–0.7
GWSOLP.gw Soluble phosphorus concentration in groundwater loading mg P L−1 0–1000
LAT_ORGP.gw Organic phosphorus in the base flow mg P L− 0–200
ERORGP. hru Organic phosphorus enrichment ratio 0–5
CH_OPCO.rte Organic phosphorus concentration in the channel mg P L−1 0–100
BC4.swq Rate constant for mineralization of organic phosphorus to dissolved

phosphorus in the reach at 20 ◦C
d−1 0.01–0.7

RS2.swq Benthic (sediment) source rate for dissolved phosphorus in the reach
at 20 ◦C

mgm−2 d−1 0.001–0.1

RS5.swq Organic phosphorus settling rate in the reach at 20 ◦C d−1 0.001–0.1

TN
RSDCO.bsn Residue decomposition coefficient 0.02–0.1
CDN.bsn Denitrification exponential rate coefficient 0–3
CMN.bsn Rate factor for humus mineralization of active organic nitrogen 0.001–0.003
N_UPDIS.bsn Nitrogen uptake distribution parameter 0–100
NPERCO.bsn Nitrogen percolation coefficient 0–1
RCN.bsn Concentration of nitrogen in rainfall mg N L−1 0–15
SDNCO.bsn Denitrification threshold water content 0–1
HLIFE_NGW.gw Half-life of nitrat-nitrogen in the shallow aquifer d−1 0–200
LAT_ORGN.gw Organic nitrogen in the base flow mg N L−1 0–200
SHALLST_N.gw Nitrat-nitrogen concentration in the shallow aquifer mg N L−1 0–1000
ERORGN. hru Organic nitrogen enrichment ratio 0–5
CH_ONCO.rte Organic nitrogen concentration in the channel mg N L−1 0–100
BC1.swq Rate constant for biological oxidation of ammonium–nitrogen to

nitrit–nitrogen in the reach at 20 ◦C
d−1 0.1–1

BC2.swq Rate constant for biological oxidation of nitrit–nitrogen to nitrat–
nitrogen in the reach at 20 ◦C

d−1 0.2–2

BC3.swq Rate constant for hydrolysis of organic nitrogen to ammonium–
nitrogen in the reach at 20 ◦C

d−1 0.2–0.4

RS3.swq Benthic (sediment) source rate for ammonium–nitrogen in the reach
at 20 ◦C

mgm−2 d−1 0–1

RS4.swq Rate coefficient for organic nitrogen settling in the reach at 20 ◦C d−1 0.001–0.1
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Table 4. Criteria for model performance. Note: on is the nth observed datum, sn is the nth
simulated datum, o is the observed mean value, s is the simulated daily mean value, and N is
the total number of observed data. Performance rating criteria are based on Moriasi et al. (2007)
for Q: discharge, SS: suspended sediment, TP: total phosphorus and TN: total nitrogen.

Statistic equation Constituent Performance ratings

Unsatisfactory Satisfactory Good Very good

R2 =

(
N∑

n=1
((sn−s)(on−ō))

)2

N∑
n=1

(on−ō)2×
N∑

n=1
(sn−s̄)2

(2) All < 0.5 0.5–0.6 0.6–0.7 0.7–1

NSE = 1−
N∑

n=1
(on−sn)i

N∑
n=1

(on−o)i
i = 2 (3) All < 0.5 0.5–0.65 0.65–0.75 0.75–1

±PBIAS% =

N∑
n=1

(on−sn)

N∑
n=1

on

×100 (4) Q > 25 15–25 10–15 < 10

SS > 55 30–55 15–30 < 15
TP, TN > 70 40–70 25–40 < 25

R2: coefficient of determination.
NSE: Nash–Sutcliffe efficiency.
PBIAS: percent bias.

4345

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/4315/2015/hessd-12-4315-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/4315/2015/hessd-12-4315-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
12, 4315–4352, 2015

Modelling water,
sediment and

nutrient fluxes from a
mixed land-use

catchment in New
Zealand

W. Me et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 5. Model performance ratings for discharge (Q), suspended sediment (SS), total phos-
phorus (TP) and total nitrogen (TN) simulations. n indicates the number of measurements.
Q-weighted mean concentrations were calculated using Eq. (1).

Model performance Statistics Q SS TP TN

Calibration with n = 1439 n = 43 n = 45 n = 39
instantaneous measurements R2 0.77 (Very good) 0.42 (Unsatisfactory) 0.02 (Unsatisfactory) 0.08 (Unsatisfactory)
(2004–2008) NSE 0.73 (Good) −0.08 (Unsatisfactory) −1.31 (Unsatisfactory) −0.30 (Unsatisfactory)

±PBIAS % 7.8 (Very good) −18.3 (Very good) 23.8 (Very good) −0.05 (Very good)
Validation with n = 1294 n = 37 n = 37 n = 36
instantaneous measurements R2 0.68 (Good) 0.80 (Very good) 0.01 (Unsatisfactory) 0.01 (Unsatisfactory)
(1994–1997) NSE 0.62 (Satisfactory) 0.76 (Very good) −0.97 (Unsatisfactory) −2.67 (Unsatisfactory)

±PBIAS % 8.8 (Very good) −0.32 (Very good) 24.5 (Very good) −26.7 (Good)
Validation with – n = 12 n = 18 n = 18
Q-weighted mean concentrations R2 – 0.38 (Unsatisfactory) 0.06 (Unsatisfactory) 0.46 (Unsatisfactory)
(2010–2012) NSE – −0.03 (Unsatisfactory) −4.88 (Unsatisfactory) 0.42 (Unsatisfactory)

± PBIAS % – 43.9 (Satisfactory) 69.4 (Satisfactory) −0.87 (Very good)
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Figure 1. (a) Location of Puarenga Stream surface catchment in New Zealand, Kaituna rain
gauge, climate station and managed land areas for which management schedules were pre-
scribed in SWAT, and (b) location of the Puarenga Stream, major tributaries, monitoring stream-
gauges, two cold-water springs and the Whakarewarewa geothermal contribution.
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Figure 2. Flow chart of methods used for parameter sensitivity analysis in sequence of each in-
dividual variable: Q (discharge), SS (suspended sediment), MINP (mineral phosphorus), ORGN
(organic nitrogen), NH4–N (ammonium–nitrogen), and NO3–N (nitrate–nitrogen). NSE: Nash–
Sutcliffe efficiency.
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1 
 

 

Figure 3. Measurements and daily mean simulated values of discharge, suspended sediment
(SS), total phosphorus (TP) and total nitrogen (TN) during calibration (a–d) and validation (e–
h). Measured daily mean discharge was calculated from 15 min observations and measured
concentrations of SS, TP and TN correspond to monthly grab samples.
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Figure 4. Example of hourly measurements, calculated discharge (Q)-weighted mean concen-
trations and simulated daily mean concentrations of suspended sediment (SS), total phospho-
rus (TP) and total nitrogen (TN) for two days during one storm event (a–c). Comparison includes
Q-weighted mean concentrations for 24 h periods (horizontal bars show range of hourly mea-
surements) during storm events (2010–2012) and simulated daily mean estimates of SS, TP
and TN (d–f).
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Figure 5. Measurements and simulations derived using the calibrated set of parameter values.
Data are shown separately for base flow and quick flow. (a) Daily mean base flow and quick
flow; (b) suspended sediment (SS) load; (c) total phosphorus (TP) load; (d) total nitrogen (TN)
load. Vertical lines in (b–d) show the contaminant load in quick flow. Time series relate to cal-
ibration (2004–2008) and validation (1994–1997) periods (note time discontinuity). Measured
instantaneous loads of SS, TP, and TN correspond to monthly grab samples.
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Figure 6. Parameter sensitivity for base flow and quick flow based on one-at a-time (OAT) sen-
sitivity analysis for each simulated variable: (a) Q (discharge); (b) SS (suspended sediment);
(c) MINP (mineral phosphorus); (d) NO3–N (nitrate–nitrogen); (e) ORGN (organic nitrogen);
(f) NH4–N (ammonium–nitrogen). Parameter sensitivity is quantified as the variation in stan-
dard deviation of log10-transformed Nash–Sutcliffe efficiency (NSE) with a sensitivity threshold
assigned as 0.1 (see Sect. 2.5). Definitions of each parameter are shown in Table 3.
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