
Comments from the Editor: 

The paper has improved significantly since the last revision, and the reviewers are 

happy with the result. 

1. Please clarify with respect to the comments of Reviewer 2. 

 We have made relevant changes to each of the points raised by Reviewer 2 

(for details see our response below). 

 

2. I would separate Table 1 into 2 tables, one for the data used for configuring the 

model and the other with the data used for calibrating the model.  

 An additional table has now been added after Table 2 as follows: “Table 3. 

Description of data used to calibrate the SWAT model. Data were measured at 

the Forest Research Institute (FRI) stream–gauge and were considered 

representative of the downstream/outlet conditions of the Puarenga Stream”. 

Data Application Measurement data details Source 

Stream 

discharge 

measurements 

Calibration 

(2004–2008) 

Validation 

(1994–1997)  

15–min stream discharge data were 

measured at FRI stream–gauge (Fig. 1b) 

within the catchment and aggregated as 

daily mean values (1994–1997; 2004–

2008).  

BoPRC; 

Abell et 

al., 2013 

Stream water 

quality 

measurements 

Calibration 

(2004–2008) 

Validation1 

(1994–1997; 

2010–2012)  

Monthly grab samples for determination 

of suspended sediment (SS), total 

phosphorus (TP) and total nitrogen 

(TN) concentrations (1994–1997; 2004–

2008), and high–frequency event–based 

samples for concentrations of SS (nine 

events), TP and TN (both 14 events) at 

1–2 h frequency (2010–2012), were also 

measured at FRI stream–gauge (Fig. 1b) 

within the catchment. 

BoPRC; 

Abell et 

al., 2013 

 

3. I would separate each item (e.g. instead of having stream discharge and water 

quality, have 2 separate items).  

 Each item has been separated as “stream discharge measurements” and 

“stream water quality measurements” as suggested. 

                                                           
1  Model validation was undertaken using two different datasets. The monthly 

measurements (1994–1997) were predominantly collected when base flow was 

the dominant contributor to stream discharge. Data from high–frequency sampling 

during rain events (2010–2012) were also used to validate model performance 

during periods when quick flow was high. 



4. Also, they should mention where the stream discharge and water quality was 

measured (e.g. outlet or internal stations), possibly relating each item to the 

calibration stage where it was used. 

 The relevant text has been added as follows: “… were measured at FRI 

stream–gauge (Fig. 1b) within the catchment”. 

 Each item in Table 3 has been linked to text in the section on Model 

calibration and validation as follows:  

“Daily mean discharge was firstly calibrated based on daily mean values of 

15–minute measurements (Table 3)”,  

“Modelled mean daily concentrations were compared with concentrations 

measured during monthly grab sampling, with monthly measurements 

assumed equal to daily mean concentrations (Table 3)”, and  

“In addition, high–frequency (1–2 h) water quality sampling was undertaken 

at the FRI stream–gauge during 2010–2012 (Table 3) to derive estimates of 

daily mean contaminant loads during storm events”. 

 

5. The table and text should also clarify whether the model was calibrated using 

only outlet data, or also internal station data.  

 Please see the caption of Table 3: “…considered representative of the 

downstream/outlet conditions of the Puarenga Stream”. 

 

6. Finally, Figure 1 should list the measurement stations that were actually used 

for model calibration, possibly cross-referencing with Table 1. 

 The relevant text has been added in the caption of Figure 1 (but note reference 

to Table 3) as follows: “… Measurement data (Table 3) used to calibrate the 

SWAT model were from the Forest Research Institute (FRI) stream–gauge 

and were considered representative of the downstream/outlet conditions of the 

Puarenga Stream”. 
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Anonymous Referee #1 

After a re-review, I appreciate the authors for accurate responses to all of my 

comments. I think that quality of the text is very better than the previous version. 

However, I have also some minor comments before final acceptance: 

1. I'm satisfied with the authors' responses on comments# 5, 6, and 8. However, 

kindly add the statements as the sources of error and/or recommendations for next 

investigations at the end of the manuscript. 

 On Page 21, lines 6–11, the relevant text was stated in Conclusions as follows: 

“Discharge–weighted mean concentrations of TP and SS measured during 

storm events were greatly underestimated by SWAT, highlighting the 

potential for uncertainty to be greatly underestimated in catchment model 

applications that are validated using a sample of contaminant load 

measurements that is over–represented by measurements made during base 

flow conditions”. This has been now linked with the statement: “Monitoring 

programmes which collect high–frequency and event–based data should be 

considered further to support more robust calibration and validation of SWAT 

model applications”. 

 On Page 21, lines 11–13, the relevant text was also stated in Conclusions 

as follows: “Accurate simulation of nitrogen concentrations was constrained 

by the non–steady state of groundwater nitrogen concentrations due to historic 

variability in anthropogenic nitrogen applications to land”. Additional 

recommendation has been now added as follows: “Improved representation of 

groundwater processes in the model structure would reduce this aspect of 

model uncertainty”.  

 

2. As the authors known, use of Penman–Monteith (potential/reference 

evapotranspiration) method leads to increase of uncertainty. Therefore, it is 

necessary to cite some of the newest (2014 & 2015) successful application of 

potential/reference evapotranspiration to justify the methodology and indicate the 

advantages of this approach. For this purpose, cite all of the below papers: 

1) Analysis of potential evapotranspiration using 11 modified temperature-based 

models 

2) Evaluation of radiation methods to study potential evapotranspiration of 31 

provinces 
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3) Comparative evaluation of radiation-based methods for estimation of potential 

evapotranspiration  

4) Study of different climatic conditions to assess the role of solar radiation in 

reference crop evapotranspiration equations  

5) Investigation of Valiantzas’ evapotranspiration equation in Iran  

6) Temperature analysis of reference evapotranspiration models 

 We have considered each of the papers that the reviewer has provided above.  

However, none of these papers has direct relevance to our study. 
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Anonymous Referee #2 

The authors from the paper entitled: “Effects of hydrologic conditions on SWAT 

model performance and 1 parameter sensitivity for a small, mixed land use 

catchment in New Zealand” performed a major revision making the manuscript 

more clear and better. The organization of the paper is better as well as the 

description of the model set up, sensitivity analysis and calibration procedures. 

They attended all of the major points made by the reviewers and editor. There are 

a few small topics that I wish they take into consideration prior to publication: 

1. Line 26, Page 5 : what is LTS? Was it explained before? 

 LTS has been removed and the text corrected on Page 5, line 27 as follows: 

“Two cold–water springs (Waipa Spring and Hemo Spring) and one 

geothermal spring (Fig. 1b) are located in the catchment area”.  

 

2. In lines 27-28 of page 6: “The SWAT model version used (SWAT2009_rev488) 

runs on a daily time step”, but then on lines 31-32: “Hourly rainfall estimates 

were used as hydrologic forcing data” and lines2-4 of page 7 “Therefore, the 

hourly rainfall/Green & Ampt infiltration/daily routing method (Neitsch et al., 

2011) was chosen to simulate upland and in–stream processes.” These arguments 

go against each. The SWAT model runs with hourly data if your input is hourly 

data and Green & Ampt, but you are using the exported results of daily data, right? 

Please clarify this on the text saying that the model was run on hourly time step, 

but daily results were used for the paper; 

 Thank you for pointing this out. The text has been modified on Page 6, lines 

28–29 as follows: “The SWAT model (version SWAT2009_rev488) was run 

on an hourly time step, but daily mean simulation outputs were used for this 

study”. 

 

3. Also make sure you were running on Green & Ampt with daily routing: as 

before there was an error on the text material of the SWAT model, and that the 

Green and Ampt method is used for hourly precipitation and hourly routing as 

well. As you can see this was clarified in the current version of SWAT in the 

IEVENT: there is the SCS option and the Subdaily rainfall data/Runoff estimated 

with Green & Ampt method/Hourly stream routing. I know you used a previous 

version, but please check if routing was really conducted in daily scale in the 
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model, not only in the model text description. I had some issues running on this 

format and by checking with the developers this last year, they clarified that it was 

not running on that format and left only these two options of IEVENT. 

 Thank you for pointing this out. The text has been modified on Page 7, line 3 

as follows: “Therefore, the hourly rainfall/Green & Ampt infiltration/hourly 

routing method (Neitsch et al., 2011) was chosen to simulate upland and in–

stream processes”. 
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 12 

Abstract 13 

The Soil Water Assessment Tool (SWAT) was configured for the Puarenga 14 

Stream catchment (77 km2), Rotorua, New Zealand. The catchment land use is 15 

mostly plantation forest, some of which is spray–irrigated with treated wastewater. 16 

A Sequential Uncertainty Fitting (SUFI–2) procedure was used to auto–calibrate 17 

unknown parameter values in the SWAT model. Model validation was performed 18 

using two datasets: 1) monthly instantaneous measurements of suspended 19 

sediment (SS), total phosphorus (TP) and total nitrogen (TN) concentrations; and 20 

2) high–frequency (1–2 h) data measured during rainfall events. Monthly 21 

instantaneous TP and TN concentrations were generally not reproduced well (24% 22 

bias for TP, 27% bias for TN, and R2 < 0.1, NSE < 0 for both TP and TN), in 23 

contrast to SS concentrations (< 1% bias; R2 and NSE both > 0.75) during model 24 

validation. Comparison of simulated daily mean SS, TP and TN concentrations 25 

with daily mean discharge–weighted high–frequency measurements during storm 26 

events indicated that model predictions during the high rainfall period 27 

considerably underestimated concentrations of SS (44% bias) and TP (70% bias), 28 

while TN concentrations were comparable (< 1% bias; R2  and NSE both ~0.5). 29 

This comparison highlighted the potential for model error associated with quick–30 
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flow fluxes in flashy lower–order streams to be underestimated compared with 1 

low–frequency (e.g. monthly) measurements derived predominantly from base 2 

flow measurements. To address this, we recommend that high–frequency, event–3 

based monitoring data are used to support calibration and validation. Simulated 4 

discharge, SS, TP and TN loads were partitioned into two components (base flow 5 

and quick flow) based on hydrograph separation. A manual procedure (one–at a–6 

time sensitivity analysis) was used to quantify parameter sensitivity for the two 7 

hydrologically–separated regimes. Several SWAT parameters were found to have 8 

different sensitivities between base flow and quick flow. Parameters relating to 9 

main channel processes were more sensitive for the base flow estimates, while 10 

those relating to overland processes were more sensitive for the quick flow 11 

estimates. This study has important implications for identifying uncertainties in 12 

parameter sensitivity and performance of hydrological models applied to 13 

catchments with large fluctuations in stream flow, and in cases where models are 14 

used to examine scenarios that involve substantial changes to the existing flow 15 

regime. 16 

 17 

1 Introduction 18 

Catchment models are valuable tools for understanding natural processes 19 

occurring at basin scales and for simulating the effects of different management 20 

regimes on soil and water resources (e.g. Cao et al., 2006). Model applications 21 

may have uncertainties as a result of errors associated with the forcing variables, 22 

measurements used for calibration, and conceptualisation of the model itself 23 

(Lindenschmidt et al., 2007). The ability of catchment models to simulate 24 

hydrological processes and pollutant loads can be assessed through analysis of 25 

uncertainty or errors during a calibration process that is specific to the application 26 

domain (White and Chaubey, 2005).  27 

 The Soil and Water Assessment Tool (SWAT) model is increasingly used 28 

to predict discharge, sediment and nutrient loads on a temporally resolved basis, 29 

and to quantify material fluxes from a catchment to the downstream receiving 30 

environment such as a lake (e.g. Nielsen et al., 2013). The SWAT model is 31 

physically–based and provides distributed descriptions of hydrologic processes at 32 

sub–basin scale (Arnold et al., 1998; Neitsch et al., 2011). It has numerous 33 
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parameters, some of which can be fixed on the basis of pre–existing catchment 1 

data (e.g. soil maps) or knowledge gained in other studies. However, values for 2 

other parameters need to be assigned during a calibration process as a result of 3 

complex spatial and temporal variations that are not readily captured either 4 

through measurements or within the model algorithms themselves (Boyle et al., 5 

2000). Such parameter values assigned during calibration are therefore lumped, 6 

i.e., they integrate variations in space and/or time and thus provide an 7 

approximation for real values which often vary widely within a study catchment. 8 

Model calibration is an iterative process whereby parameters are adjusted to the 9 

system of interest by refining model predictions to fit closely with observations 10 

under a given set of conditions (Moriasi et al., 2007). Manual calibration depends 11 

on the system used for model application, the experience of the modellers, and 12 

knowledge of the model algorithms. It tends to be subjective and time–consuming. 13 

By contrast, auto–calibration provides a less labour–intensive approach by using 14 

optimisation algorithms (Eckhardt and Arnold, 2001). The Sequential Uncertainty 15 

Fitting (SUFI–2) procedure has previously been applied to auto–calibrate 16 

discharge parameters in a SWAT application for the Thur River, Switzerland 17 

(Abbaspour et al., 2007), as well as for groundwater recharge, evapotranspiration 18 

and soil storage water considerations in West Africa (Schuol et al., 2008). Model 19 

validation is subsequently performed using measured data that are independent of 20 

those used for calibration (Moriasi et al., 2007). 21 

 Values for hydrological parameter values in the SWAT model can vary 22 

temporally. Cibin et al. (2010) found that the optimum calibrated values for 23 

hydrological parameters varied with different flow regimes (low, medium and 24 

high), thus suggesting that SWAT model performance can be optimised by 25 

assigning parameter values based on hydrological characteristics. Other work has 26 

similarly demonstrated benefits from assigning separate parameter values to low, 27 

medium, and high discharge periods (Yilmaz et al., 2008), or based on whether a 28 

catchment is in a dry, drying, wet or wetting state (Choi and Beven, 2007). Such 29 

temporal dependence of model parameterisation on hydrologic conditions has 30 

implications for model performance. Krause et al. (2005) compared different 31 

statistical metrics of hydrological model performance separately for base–flow 32 

periods and storm events to evaluate the performance. The authors found that the 33 

logarithmic form of the Nash–Sutcliffe efficiency (NSE) value provided more 34 
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information on the sensitivity of model performance for discharge simulations 1 

during storm events, while the relative form of NSE was better for base flow 2 

periods. Similarly, Guse et al. (2014) investigated temporal dynamics of 3 

sensitivity of hydrological parameters and SWAT model performance using 4 

Fourier amplitude sensitivity test (Reusser et al., 2011) and cluster analysis 5 

(Reusser et al., 2009). The authors found that three groundwater parameters were 6 

highly sensitive during quick flow, while one evaporation parameter was most 7 

sensitive during base flow, and model performance was also found to vary 8 

significantly for the two flow regimes. Zhang et al. (2011) calibrated SWAT 9 

hydrological parameters for periods separated on the basis of six climatic indexes. 10 

Model performance improved when different values were assigned to parameters 11 

based on six hydroclimatic periods. Similarly, Pfannerstill et al. (2014) found that 12 

assessment of model performance was improved by considering an additional 13 

performance statistic for very low–flow simulations amongst five hydrologically–14 

separated regimes.   15 

 To date, analysis of temporal dynamics of SWAT parameters has 16 

predominantly focussed on simulations of discharge rather than water quality 17 

constituents. This partly reflects the paucity of comprehensive water quality data 18 

for many catchments; near–continuous discharge data can readily be collected but 19 

this is not the case for water quality parameters such as suspended sediment or 20 

nutrient concentrations. Data collected in monitoring programmes that involve 21 

sampling at regular time intervals (e.g. monthly) are often used to calibrate water 22 

quality models, but these are unlikely to fully represent the range of hydrologic 23 

conditions in a catchment (Bieroza et al., 2014). In particular, water quality data 24 

collected during storm–flow periods are rarely available for SWAT calibration, 25 

thus prohibiting opportunities to investigate how parameter sensitivity varies 26 

under conditions which can contribute disproportionately to nutrient or sediment 27 

transport, particularly in lower–order catchments (Chiwa et al., 2010; Abell et al., 28 

2013). Failure to fully consider storm–flow processes could therefore result in 29 

overestimation of model performance. Thus, further research is required to 30 

examine how water quality parameters vary during different flow regimes and to 31 

understand how model uncertainty may vary under future climatic conditions that 32 

affect discharge regimes (Brigode et al., 2013).  33 
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 In this study, the SWAT model was configured to a relatively small, mixed 1 

land use catchment in New Zealand that has been the subject of an intensive water 2 

quality sampling programme designed to target a wide range of hydrologic 3 

conditions. A catchment–wide set of parameters was calibrated using the SUFI–2 4 

procedure which is integrated into the SWAT Calibration and Uncertainty 5 

Program (SWAT–CUP). The objectives of this study were to: (1) quantify the 6 

performance of the model in simulating discharge and fluxes of suspended 7 

sediments and nutrients at the catchment outlet; (2) rigorously evaluate model 8 

performance by comparing daily simulation output with monitoring data collected 9 

under a range of hydrologic conditions; and (3) quantify whether parameter 10 

sensitivity varies between base flow and quick flow conditions. 11 

 12 

2 Methods 13 

2.1 Study area 14 

The Puarenga Stream is the second–largest surface inflow to Lake Rotorua (Bay 15 

of Plenty, New Zealand) and drains a catchment of 77 km2. The catchment is 16 

situated in the central North Island of New Zealand, which has a warm temperate 17 

climate. Annual mean temperature at Rotorua Airport (Fig. 1a) is 15±4 °C and 18 

annual mean evapotranspiration is 714 mm yr-1 (1993–2012; National Climatic 19 

Data Centre; available at http://cliflo.niwa.co.nz/). Annual mean precipitation at 20 

Kaituna rain gauge (Fig. 1a) is 1500 mm yr-1 (1993–2012; Bay of Plenty Regional 21 

Council). The catchment is relatively steep (mean slope = 9%; Bay of Plenty 22 

Regional Council) with predominantly pumice soils that have high macroporosity, 23 

resulting in high infiltration rates and substantial sub–surface lateral flow 24 

contributions to stream channels. Two cold–water springs (Waipa Spring and 25 

Hemo Spring) and one geothermal spring (Fig. 1b) are located in the 26 

LTScatchment area. Two cold–water springs have annual mean discharge of 27 

~0.19 m3 s-1 (Rotorua District Council) and one geothermal spring has annual 28 

mean discharge of ~0.12 m3 s-1 (White et al., 2004).  29 

 The predominant land use (47%) is exotic forest (Pinus radiata). 30 

Approximately 26% is managed pastoral farmland, 11% mixed scrub and 9% 31 

indigenous forest. Since 1991, treated wastewater has been pumped from the 32 

Rotorua Wastewater Treatment Plant and spray–irrigated over 16 blocks of total 33 
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area of 1.93 km2 in the Whakarewarewa Forest (Fig. 1a). Following this, it took 1 

approximately four years before elevated nitrate concentrations were measured in 2 

the receiving waters of the Puarenga Stream (Lowe et al., 2007). Prior to 2002, the 3 

irrigation schedule entailed applying wastewater to two blocks per day so that 4 

each block was irrigated approximately weekly. Since 2002, 10 to 14 blocks have 5 

been irrigated simultaneously at daily frequency. Over the entire period of 6 

irrigation, nutrient concentrations in the irrigated water have gradually decreased 7 

as improvements in treatment of the wastewater have been made (Lowe et al., 8 

2007). 9 

 Measurements from the Forest Research Institute (FRI) stream–gauge (1.7 10 

km upstream of Lake Rotorua; Fig. 1b) were considered representative of the 11 

downstream/outlet conditions of the Puarenga Stream. The FRI stream–gauge was 12 

closed in mid 1997, then reopened late in 2004 (Environment Bay of Plenty, 13 

2007). Annual mean discharge at this site is 2.0 m3 s-1 (1994–1997 and 2004–14 

2008; Bay of Plenty Regional Council). The Puarenga Stream receives a high 15 

proportion of flow from groundwater stores and has only moderate seasonality in 16 

discharge. On average, the lowest mean daily discharge is during summer 17 

(December to February; 1.7 m3 s-1) and the highest mean daily discharge is during 18 

winter (June to August; 2.4 m3 s-1). Discharge records during 1998–2004 were 19 

intermittent and this precluded a detailed comparison of measured and simulated 20 

discharge during that period. In July 2010, the gauge was repositioned 720 m 21 

downstream to the State Highway 30 (SH 30) bridge (Fig. 1b).  22 

2.2 Model configuration  23 

SWAT input data requirements included a digital elevation model (DEM), 24 

meteorological records, records of springs and water abstraction, soil 25 

characteristics, land use classification, and management schedules for key land 26 

uses (pastoral farming, wastewater irrigation, and timber harvesting). The SWAT 27 

model (version used (SWAT2009_rev488) was runs on an hourlya daily time step, 28 

but daily mean simulation outputs were used for this study. 29 

 The DEM was used to delineate boundaries of the whole catchment and 30 

individual sub–catchments, with a stream map used to ‘burn–in’ channel locations 31 

to create accurate flow routings. Hourly rainfall estimates were used as hydrologic 32 

forcing data. The Penman–Monteith method (Monteith, 1965) was used to 33 
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calculate evapotranspiration (ET) and potential ET. The Green and Ampt (1911) 1 

method was used to calculate infiltration, rather than the SCS curve number 2 

method. Therefore, the hourly rainfall/Green & Ampt infiltration/daily hourly 3 

routing method (Neitsch et al., 2011) was chosen to simulate upland and in–4 

stream processes. Ten sub–catchments were represented in the Puarenga Stream 5 

catchment, each comprising numerous Hydrologic Response Units (HRUs). Each 6 

HRU aggregates cells with the same combination of land cover, soil, and slope. A 7 

total of 404 HRUs was defined in the model. Runoff and nutrient transport were 8 

predicted separately within SWAT for each HRU, with predictions summed to 9 

obtain the total for each sub–catchment. 10 

 Descriptions and sources of the data used to configure the SWAT model 11 

are given in Table 1. There were a total of 197 model parameters. Values of 12 

SWAT parameters were assigned based on: i) measured data (e.g. some of the soil 13 

parameters; Table 1); ii) literature values from published studies of similar 14 

catchments (e.g. parameters for dominant land uses; Table 2); or iii) by calibration 15 

where parameters were not otherwise prescribed. 16 

 SWAT simulates loads of ‘mineral phosphorus’ (MINP) and ‘organic 17 

phosphorus’ (ORGP) of which the sum is total phosphorus (TP). The MINP 18 

fraction represents soluble P either in mineral or in organic form, while ORGP 19 

refers to particulate P bound either by algae or by sediment (White et al., 2014). 20 

Soluble P may be taken up during algae growth, or released from benthic 21 

sediment. Either This fraction can be transformed to particulate P contained in 22 

algae or sediment.  23 

 SWAT simulates loads of nitrate–nitrogen (NO3–N), ammonium–nitrogen 24 

(NH4–N) and organic nitrogen (ORGN), the sum of which is total nitrogen (TN). 25 

Nitrogen parameters were auto–calibrated for each N fraction. The SWAT model 26 

does not account for the initial nitrate concentration in shallow aquifers, as also 27 

noted by Conan et al. (2003). Ekanayake and Davie (2005) indicated that SWAT 28 

underestimated N loading from groundwater and suggested a modification by 29 

adding a background concentration of nitrate in streamflow to represent 30 

groundwater nitrate contributions. Over the period of the first five years of 31 

wastewater irrigation, nitrate concentrations in shallow groundwater draining the 32 

Waipa Stream sub–catchment were estimated to have increased by c. 0.44 mg L-1 33 

(Paku, 2001). SWAT has no capability to dynamically adjust the groundwater 34 
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concentration during a simulation run. Therefore we added 0.44 mg N L-1 to all 1 

model simulations of TN concentration assuming that groundwater concentrations 2 

had equilibrated with the applied wastewater nitrogen. 3 

2.3 Model calibration and validation 4 

Daily mean discharge was firstly calibrated based on daily mean values of 15–5 

minute measurements (Table 3). Water quality variables were then calibrated in 6 

the sequence: SS, TP and TN. Modelled mean daily concentrations were 7 

compared with concentrations measured during monthly grab sampling, with 8 

monthly measurements assumed equal to daily mean concentrations (Table 3). 9 

One year (1993) was used for model warmup. The calibration period was from 10 

2004 to 2008 and the validation period was from 1994 to 1997. A validation 11 

period that pre–dated the calibration period was chosen because discharge records 12 

were available for two separate periods (1994–1997 and post 2004). In addition, 13 

the operational regime for the wastewater irrigation has varied since operations 14 

began in 1991, with a marked change occurring in 2002 when operations switched 15 

from applying the wastewater load to two blocks (rotated daily for a total of 14 16 

blocks in a week; i.e., each block irrigated weekly), to 10–14 blocks each irrigated 17 

daily. This operational regime continues today and we therefore decided to assign 18 

the most recent (post 2002) period (2004–2008) to calibration to ensure that the 19 

model was configured to reflect current operations.   20 

 Parameter values that were not derived from measurements or the 21 

literature were assigned based on either automated or manual calibration (Table 22 

34). Manual calibration was undertaken for 11 parameters related to TP, while a 23 

Sequential Uncertainty Fitting (SUFI–2) procedure was applied to auto–calibrate 24 

21 parameters for discharge simulations, nine parameters for SS simulations, and 25 

17 parameters related to TN. The SUFI–2 procedure has been integrated into the 26 

SWAT Calibration and Uncertainty Program (SWAT–CUP). SUFI–2 is a 27 

procedure that efficiently quantifies and constrains parameter uncertainties/ranges 28 

from default ranges with the fewest number of iterations (Abbaspour et al., 2004), 29 

and has been shown to provide optimal results relative to the use of alternative 30 

algorithms (Wu and Chen, 2015). SUFI–2 involves Latin hypercube sampling 31 

(LHS), which is a method that generates a sample of plausible parameter values 32 

from a multidimensional distribution and ensures that samples cover the entire 33 
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parameter space, therefore ensuring that the optimum solution is not a local 1 

minimum (Marino et al., 2008).  2 

The SUFI–2 procedure analyses relative sensitivities of parameters by 3 

randomly generating combinations of values for model parameters (Abbaspour et 4 

al., 2014). A sample size of 1000 was chosen for each iteration of LHS, resulting 5 

in 1000 combinations of parameters and 1000 simulations. Model performance 6 

was quantified for each simulation based on the Nash–Sutcliffe efficiency (𝑁𝑆𝐸). 7 

An objective function was defined as a linear regression of a combination of 8 

parameter values generated by each LHS against the 𝑁𝑆𝐸 value calculated from 9 

each simulation. Each compartment was not given weight to formulate the 10 

objective function because only one variable was specifically focused on at each 11 

time. A parameter sensitivity matrix was then computed based on the changes in 12 

the objective function after 1000 simulations. Parameter sensitivity was quantified 13 

based on the p value from a Student’s t–test, which was used to compare the mean 14 

of simulated values with the mean value of measurements (Rice, 2006). A 15 

parameter was deemed sensitive by if p ≤  0.05 after 1000 simulations (one 16 

iteration). Numerous iterations of LHS were conducted. Values of p from 17 

numerous iterations were averaged for each parameter, and the frequency of 18 

iterations where a parameter was deemed sensitive was summed. Rankings of 19 

relative sensitivities of parameters were developed based on how frequently the 20 

sensitive parameter was identified and the averaged value of p calculated from 21 

several iterations. The most sensitive parameter was determined based on the 22 

frequency that the parameter was deemed sensitive, and the smallest average p–23 

value from all iterations. 24 

SUFI–2 considers two criteria to constrain uncertainty in each iteration. 25 

One is the P–factor, the percentage of measured data bracketed by 95% prediction 26 

uncertainty (95PPU). Another is the R–factor, the average thickness of the 95PPU 27 

band divided by the standard deviation of measured data. A range was first 28 

defined for each parameter based on a synthesis of ranges from similar studies or 29 

from the SWAT default range. Parameter ranges were updated after each iteration 30 

based on the computation of upper and lower 95% confidence limits. The 95% 31 

confidence interval and the standard deviation of a parameter value were derived 32 

from the diagonal elements of the covariance matrix, which was calculated from 33 
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the sensitivity matrix and the variance of the objective function. Steps and 1 

equations used in the SUFI–2 procedure to constrain parameter ranges are 2 

outlined by Abbaspour et al. (2004). 3 

 The total numbers of iterations performed for each simulated variable (Q, 4 

SS, MINP, ORGN, NH4–N and NO3–N) reflected the numbers required to ensure 5 

that > 90% of measured data were bracketed by simulated output and the R–factor 6 

was close to one. The ‘optimal’ parameter value was obtained when the Nash–7 

Sutcliffe efficiency (NSE) criterion was satisfied (NSE > 0.5; Moriasi et al., 2007). 8 

Auto–calibrated parameters for simulations of Q, SS, and TN were changed by 9 

absolute values within the given ranges. Some of those given ranges were 10 

restricted based on the optimum values calibrated in similar studies. Parameter 11 

values for TP simulations were manually–calibrated based on the relative percent 12 

deviation from the predetermined values of those auto–calibrated parameters for 13 

MINP simulations, given by the objective functions (e.g., NSE ). Parameters 14 

related to the physical characteristics of the catchment were not changed because 15 

their values were considered to be representative of the catchment characteristics.16 

 In addition, high–frequency (1–2 h) water quality sampling was 17 

undertaken at the FRI stream–gauge during 2010–2012 (Table 3) to derive 18 

estimates of daily mean contaminant loads during storm events. Samples were 19 

analysed for SS (nine events), TP and TN (both 14 events) over sampling periods 20 

of 24–73 h. The sampling programme was designed to encompass pre–event base 21 

flow, storm generated quick flow and post–event base flow (Abell et al., 2013). 22 

These data permitted calculation of daily discharge–weighted (Q–weighted) mean 23 

concentrations to compare with modelled daily mean estimates. We did not use 24 

the high–frequency observations to calibrate the model, because of the limited 25 

number of high–frequency (1–2 h) samples (nine events for SS and 14 events for 26 

TP and TN in 2010–2012). The use of the high–frequency observations for model 27 

validation allowed to examine how the model performed during short (1–3 day) 28 

high flow periods. The Q–weighted mean concentrations 𝐶QWMwere calculated as:  29 

𝐶QWM =
∑ 𝐶i𝑄i

n
i=1

∑ 𝑄i
n
i=1

                                                                                    (1) 30 

where n is number of samples, 𝐶i is contaminant concentration measured at time i, 31 

and 𝑄i is discharge measured at time i. 32 
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2.4 Hydrograph and contaminant load separation 1 

The Web–based Hydrograph Analysis Tool (Lim et al., 2005) was applied to 2 

partition both measured and simulated discharges into base flow (𝑄b) and quick 3 

flow (𝑄q). An Eckhardt filter parameter of 0.98 and ratio of base flow to total 4 

discharge of 0.8 were assumed (cf. Lim et al., 2005). There were was a total of 60 5 

days without quick flow during the calibration period (2004–2008) and 1379 days 6 

for which hydrograph separation defined both base flow and quick flow. 7 

 Contaminant (SS, TP and TN) concentrations (𝐶sep) were partitioned into 8 

base flow (𝐶b

′
) and quick flow components (𝐶q

′
; cf. Rimmer and Hartmann, 2014) 9 

to separately examine the sensitivity of water quality parameters during base flow 10 

and quick flow: 11 

𝐶sep =
𝑄q×𝐶q

′
+𝑄b×𝐶

b

′

𝑄q+𝑄b
                                                                             (2) 12 

 𝐶b

′
 for each contaminant was estimated as the average concentration for 13 

the 60 days with no quick flow. 𝐶q
′

 for each contaminant was calculated by 14 

rearranging Eq. (2). 15 

 To ensure that 𝐶q
′

 is positive, 𝐶b

′
 is constrained to be the minimum of 16 

𝐶sep
̅̅ ̅̅ ̅ and 𝐶sep. Measured and simulated base flow and quick flow contaminant 17 

loads were then calculated. 18 

 A one–at a–time (OAT) routine proposed by Morris (1991) was applied to 19 

investigate how parameter sensitivity varied between the two flow regimes (base 20 

flow and quick flow), based on the ranking of relative sensitivities of parameters 21 

that were identified by randomly generating combinations of values for model 22 

parameters for each individual variable using the SUFI–2 procedure. OAT 23 

sensitivity analysis was then employed by varying the parameter of interest 24 

among ten equidistant values within the default range. The natural logarithm was 25 

used by Krause et al. (2005) and therefore the standard deviation (𝑆𝑇𝐷) of the ln–26 

transformed NSE were was used to indicate parameter sensitivity for the two flow 27 

regimes.  28 

 Parameters were ranked from most to least sensitive on the basis of the 29 

sensitivity metric ( 𝑆𝑇𝐷  of ln–transformed NSE ), using a value of 0.2 as a 30 

threshold above which parameters were deemed particularly ‘sensitive’. The 31 
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threshold value of “0.2” was chosen in this study, based on the median value 1 

derived from the calculations of the 𝑆𝑇𝐷 of ln–transformed NSE. Methods used to 2 

separate the two flow constituents and to quantify parameter sensitivity are 3 

illustrated in Fig. 2. 4 

2.5 Model evaluation  5 

Model goodness–of–fit was assessed graphically and quantified using coefficient 6 

of determination (R2), Nash–Sutcliffe efficiency (NSE) and percent bias (PBIAS; 7 

Table 45). R2 (range 0 to 1) and NSE (range -∞ to 1) values are commonly used 8 

to evaluate SWAT model performance at daily time step (Gassman et al., 2007). 9 

PBIAS value indicates the average tendency of simulated outputs to be larger or 10 

smaller than observations (Gupta et al., 1999).  11 

 Model uncertainty was evaluated by two criteria; : R–factor and P–factor 12 

(see Section 2.3). They were used to constrain parameter ranges during the 13 

calibration using measured Q and loads of SS, MINP, ORGN, NH4–N and NO3–N 14 

in the SUFI–2 procedure. The R software (R Development Core Team) was used 15 

to graphically show the 95% confidence and prediction intervals for measurement 16 

data (Neyman, 1937) and model prediction intervals (Seymour, 1993) for Q and 17 

concentrations of SS, TP and TN during the calibration period (2004–2008). 18 

 19 

3 Results 20 

3.1 Model performance and uncertainty 21 

Numerous rounds (each comprising 1000 iterations) of LHS were conducted for 22 

each simulated variable until the performance criteria were satisfied. The total 23 

number of rounds of LHS for each simulated variable was as follows (number in 24 

parentheses): Q (7), SS (7), MINP (11), ORGN (10), NH4–N (4) and NO3–N (4). 25 

The parameters that provided the best statistical outcomes (i.e, best match to 26 

observed data) are given in Table 34. Two criteria (R–factor and P–factor) were 27 

used to show model uncertainties for simulations of discharge and contaminant 28 

loads, with values as follows: Q (0.97, 0.43), SS (0.48, 0.19), MINP (2.64, 0.14), 29 

ORGN (0.47, 0.17), NH4–N (1.16, 0.56) and NO3–N (1.2, 0.29). Model 30 

uncertainties for simulations of Q and SS, TP and TN concentrations are shown in 31 

Fig. 6. 32 
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 Modelled and measured base flow showed high correspondence, although 1 

measured daily mean discharge during storm peaks was often underestimated (Fig. 2 

3a and 3e). Annual mean percentages of lateral flow recharge, shallow aquifer 3 

recharge and deep aquifer recharge to total water yield were predicted by SWAT 4 

as 30%, 10%, 58%, respectively. Modelled SS concentrations overestimated 5 

measurements of monthly grab samples by an average of 18.3% during calibration 6 

and 0.32% during validation (Fig. 3b and 3f). Measured TP concentrations in 7 

monthly grab samples were underestimated by 23.8% during calibration (Fig. 3c) 8 

and 24.5% during validation (Fig. 3g). Similarly, measured TP loads were 9 

underestimated by 34.5% and 38.4%, during calibration and validation, 10 

respectively. Modelled and measured TN concentrations were generally better 11 

aligned during base flow (Fig. 3d), apart from a mismatch prior to 1996 when 12 

monthly measured TN concentrations were substantially lower than model 13 

predictions, although the concentrations gradually increased (Fig. 3h) during the 14 

validation period (1994–1997). The average measured TN load increased from 15 

134 kg N d-1 prior to 1996, to 190 kg N d-1 post 1996. The comparable increase in 16 

modelled TN load was 167 kg N d-1 to 205 kg N d-1, respectively. 17 

 Statistical evaluations of goodness–of–fit are shown in Table 56. The R2 18 

values for discharge were 0.77 for calibration and 0.68 for validation, 19 

corresponding to model performance ratings (cf. Moriasi et al., 2007) of ‘very 20 

good’ and ‘good’ (Table 45). Similarly, the NSE values for discharge were 0.73 21 

(good) for calibration and 0.62 (satisfactory) for validation. Positive PBIAS (7.8% 22 

for calibration and 8.8% for validation) indicated a tendency for underestimation 23 

of daily mean discharge, however, the low magnitude of PBIAS  values 24 

corresponded to a performance rating of ‘very good’. The R2 values for SS were 25 

0.42 (unsatisfactory) for calibration and 0.80 for validation (very good). Similarly, 26 

the NSE values for SS were -0.08 (unsatisfactory) for calibration and 0.76 (very 27 

good) for validation. The model did not simulate trends well for monthly 28 

measured TP and TN concentrations. The R2 values for TP and TN were both < 29 

0.1 (unsatisfactory) during calibration and validation and NSE values were both < 30 

0 (unsatisfactory). Values of PBIAS  corresponded to ‘good’ or ‘very good’ 31 

performance ratings for TP and TN. 32 



20 
 

 Observed Q–weighted daily mean concentrations derived from hourly 1 

measurements and simulated daily mean concentrations of SS, TP and TN during 2 

an example two–day storm event are shown in Fig. 4a–4c. The simulations of SS 3 

and TN concentrations was were somewhat better than for TP. Comparisons of 4 

Q–weighted daily mean concentrations (𝐶QWM) during storm events from 2010 to 5 

2012 are shown in Fig. 4d–4f for SS (nine events), TP and TN (both 14 events). 6 

The 𝐶QWM of TP exceeded the simulated daily mean by between 0.02 and 0.2 mg 7 

P L-1, and on average, the model underestimated measurements by 69.4% (Fig. 4e). 8 

Although R2  and NSE  values for 𝐶QWM  of TN were unsatisfactory (Table 56), 9 

they were both close to the threshold for satisfactory performance (0.5). For 𝐶QWM 10 

of SS and TP, R2  and NSE  values indicated that the model performance was 11 

unsatisfactory. The PBIAS value of -0.87 for 𝐶QWM of TN corresponded to model 12 

performance ratings of ‘very good’, while the PBIAS values for 𝐶QWM of SS and 13 

TP were 43.9 and 69.4, respectively, indicating satisfactory model performance.  14 

 Measured and simulated discharge and contaminant loads separated for the 15 

two flow regimes (base flow and quick flow) are shown in Fig. 5. Model 16 

performance statistics differed between the two flow regimes (Table 67). 17 

Simulations of discharge and constituent loads under quick flow were more 18 

closely related to the measurements (i.e., higher values of R2  and NSE ) than 19 

simulations under base flow. Base flow TN load simulations during the validation 20 

period showed better model performance than simulations under quick flow. 21 

Additionally, measurements under quick flow were better reproduced by the 22 

model than the measurements for the whole simulation period. Simulations of 23 

contaminant loads matched measurements much better than for contaminant 24 

concentrations, as indicated by statistical values for model performance given in 25 

Table 5 6 and 67. 26 

3.2 Separated parameter sensitivity 27 

Based on the ranking of relative sensitivities of hydrological and water quality 28 

parameters derived from the SUFI–2 procedure (see Table 78), the OAT 29 

sensitivity analysis undertaken separately for base flow and quick flow identified 30 

three parameters that most influenced the quick flow estimates, and five 31 

parameters that most influenced the base flow estimates (parameters above the 32 

dashed line in Fig. 7a). Channel hydraulic conductivity (CH_K2) is used to 33 
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estimate the peak runoff rate (Lane, 1983). Lateral flow slope length (SLSOIL) 1 

and lateral flow travel time (LAT_TIME) have an important controlling effect on 2 

the amount of lateral flow entering the stream reach during quick flow. Both slope 3 

(HRU_SLP) and soil available water content (SOL_AWC) were particularly 4 

sensitive for the base flow simulation because they affect lateral flow within the 5 

kinematic storage model in SWAT (Sloan and Moore, 1984). The aquifer 6 

percolation coefficient (RCHRG_DP) and the base flow alpha factor 7 

(ALPHA_BF) strongly influenced base flow calculations (Sangrey et al., 1984), 8 

as did the channel Manning’s N value (CH_N2) which is used to estimate channel 9 

flow (Chow, 2008).  10 

 For SS loads, 12 and four parameters, respectively, were identified as 11 

sensitive in relation to the simulations of base flow and quick flow (parameters 12 

above the dashed line in Fig. 7b). Parameters that control main channel processes 13 

(e.g. CH_K2 and CH_N2) and subsurface water transport processes (e.g. 14 

LAT_TIME and SLSOIL) were found to be much more sensitive for base flow SS 15 

load estimations. Exclusive parameters for SS estimations, such as SPCON (linear 16 

parameter), PRF (peak rate adjustment factor), SPEXP (exponent parameter), 17 

CH_COV1 (channel erodibility factor), and CH_COV2 (channel cover factor) 18 

were found to be much more sensitive in base flow SS load, while LAT_SED (SS 19 

concentration in lateral flow and groundwater flow) was more sensitive in quick 20 

flow SS load. Parameters that control overland processes, e.g. CN2 (the curve 21 

number), OV_N (overland flow Manning’s N value) and SLSUBBSN (sub–basin 22 

slope length), were found to be much more sensitive for quick flow SS load 23 

estimations. 24 

 Of the sensitive parameters, BC4 (ORGP mineralization rate) was 25 

particularly sensitive for the simulation of base flow MINP load (Fig. 7c). RCN 26 

(nitrogen concentration in rainfall) related specifically to the dynamics of the base 27 

flow NO3–N load and NPERCO (nitrogen percolation coefficient) significantly 28 

affected quick flow NO3–N load (Fig. 7d). Parameter CH_ONCO (channel ORGN 29 

concentration) similarly affected both flow components of ORGN load (Fig. 7e) 30 

and SOL_CBN (organic carbon content) was most sensitive for the simulations of 31 

quick flow ORGN and NH4–N loads. Parameter BC1 (nitrification rate in reach) 32 

was particularly sensitive for the simulation of base flow NH4–N load (Fig. 7f). 33 

 34 
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4 Discussion 1 

This study examined temporal dynamics of model performance and parameter 2 

sensitivity in a SWAT model application that was configured for a small, 3 

relatively steep and lower order stream catchment in New Zealand. This country 4 

faces increasing pressures on freshwater resources (Parliamentary Commissioner 5 

for the Environment, 2013) and models such as SWAT potentially offer valuable 6 

tools to inform management of water resources although, to date, the SWAT 7 

model has received limited consideration in New Zealand (Cao et al., 2006). 8 

Model evaluation on the basis of the data collected during an extended monitoring 9 

programme enabled a detailed examination of how model performance varied 10 

during different flow regimes. It also permitted error in daily mean estimates of 11 

contaminant loads to be quantified with relative precision, allowing assessment of 12 

the ability of the SWAT model to simulate contaminant loads during storm events 13 

when lower–order streams typically exhibit considerable sub–daily variability in 14 

both discharge and contaminant concentrations (Zhang et al., 2010). Separating 15 

discharge and loads of sediments and nutrients into those associated with base 16 

flow and quick flow for separate OAT sensitivity analyses provided important 17 

insights into the varying dependency of parameter sensitivity on hydrologic 18 

conditions. 19 

4.1 Temporal dynamics of model performance 20 

The modelled estimates of deep aquifer recharge (58%) and combined lateral flow 21 

and shallow aquifer recharge (40%) were comparable with estimates derived by 22 

Rutherford et al. (2011), who used an alternative catchment model to derive 23 

respective estimates of 30% and 70% for these two fluxes. Our decision to 24 

deliberately select a validation period (1994–1997) during which the boundary 25 

conditions of the system (specifically anthropogenic nutrient loading) differed 26 

considerably from the calibration period allowed us to rigorously assess the 27 

capability of SWAT to accurately predict water quality under an altered 28 

management scenario (i.e. the purpose of most SWAT applications). 29 

 Overestimation of TN concentrations prior to 1996 reflects higher NO3–N 30 

concentrations in groundwater during the calibration period (2004–2008) due to 31 

the wastewater irrigation operation. Nitrate concentrations appeared to reach a 32 

new quasi–steady state as wastewater loads and in–stream attenuation came into 33 
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balance. SWAT may not adequately represent the dynamics of groundwater 1 

nutrient concentrations (Bain et al., 2012) particularly in the presence of changes 2 

in catchment inputs (e.g., with start–up of wastewater irrigation). The 3 

groundwater delay parameter was set to five years (cf. Rotorua District Council, 4 

2006), but this did not appear to capture adequately the lag in response to 5 

increases in stream nitrate concentrations following wastewater irrigation from 6 

1991. 7 

 The poor fit between simulated daily mean TP concentrations and monthly 8 

instantaneous measurements may partly reflect a mismatch between the dominant 9 

processes affecting phosphorus cycling in the stream and those represented in 10 

SWAT. The ORGP fraction that is simulated in SWAT includes both organic and 11 

inorganic forms of particulate phosphorus, however, the representation of 12 

particulate phosphorus cycling only focusses on organic phosphorus cycling, with 13 

limited consideration of interactions between inorganic streambed sediments and 14 

dissolved reactive phosphorus in the overlying water (White et al., 2014). This 15 

contrasts with phosphorus cycling in the study stream where it has been shown 16 

that dynamic sorption processes between the dissolved and particulate inorganic 17 

phosphorus pools exert major control on phosphorus cycling (Abell and Hamilton, 18 

2013). 19 

 Our finding that measured Q–weighted mean concentrations (𝐶QWM) of TP 20 

and SS during storm events (2010–2012) were greatly underestimated relative to 21 

simulated daily mean TP and SS concentrations has important implications for 22 

studies that examine effects of altered flow regimes on contaminant transport. For 23 

example, studies which simulate scenarios comprising more frequent large rainfall 24 

events (associated with climate change predictions for many regions; IPCC, 2013) 25 

may considerably underestimate projected future loads of SS and associated 26 

particulate nutrients if only base flow water quality measurements (i.e. those 27 

predominantly collected during ‘state of environment’ monitoring) are used for 28 

calibration/validation (see Radcliffe et al., 2009 for a discussion of this issue in 29 

relation to phosphorus). This is also reflected by the two model performance 30 

statistics relating to validation of modelled SS concentrations using monthly grab 31 

samples (predominantly base flow; ‘very good’) and 𝐶QWM  estimated during 32 

storm sampling (‘unsatisfactory’) based on R2 and NSE values.  33 
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4.2 Key uncertainties 1 

Model uncertainty in this study may arise from four main factors: 1) model 2 

parameters; 2) forcing data; 3) in measurements used for evaluation of model fit, 3 

and; 4) model structure or algorithms (Lindenschmidt et al., 2007). The values of 4 

most parameters assigned for model calibration, although specific to different soil 5 

types (e.g. soil parameters), were lumped across land uses and slopes in this study. 6 

They integrated spatial and temporal variations, thus neglecting any variability 7 

throughout the study catchment. In terms of forcing data, the assumption of 8 

constant values of spring discharge rate and nutrient concentrations may 9 

inadequately reflect the temporal variability and therefore increase model 10 

uncertainty, although this should contribute little to the model error term. Most 11 

water quality data used for model calibration comprised monthly instantaneous 12 

samples taken during base flow conditions. The use of those measurements for 13 

model calibration would likely lead to considerable underestimation of constituent 14 

concentrations (notably SS and TP) due to failure to account for short–term high 15 

flow events. Inadequate representation of groundwater processes in the model 16 

structure is another key factor that is likely to affect model uncertainty, 17 

particularly for nitrogen simulations. The analysis of model performance based on 18 

datasets separated into base flow and quick flow constituents enabled 19 

uncertainties in the structure of hydrological models to be identified, denoted by 20 

different model performance between these two flow constituents. Furthermore, 21 

the disparity in goodness–of–fit statistics between discharge (typically ‘good’ or 22 

‘very good’) and nutrient variables (often ‘unsatisfactory’) highlights the potential 23 

for catchment models which inadequately represent contaminant cycling 24 

processes (manifest in unsatisfactory concentration estimates) to nevertheless 25 

produce satisfactorily load predictions (e.g., compare model performance statistics 26 

for prediction of nutrient concentrations in Table 5 6 with statistics for prediction 27 

of loads in Table 67). This highlights the potential for model uncertainty to be 28 

underestimated in studies which aim to predict the effects of scenarios associated 29 

with changes in contaminant cycling, such as increases in fertiliser application 30 

rates.  31 



25 
 

4.3 Temporal dynamics of parameter sensitivity 1 

To date, studies of temporal variability of parameters have focused on 2 

hydrological parameters, rather than on water quality parameters. The 3 

characteristics of concentration–discharge relationships for SS and TP are 4 

different to that for TN (Abell et al., 2013). In quick flow, there is a positive 5 

relationship between Q and concentrations of SS and TP, reflecting mobilisation 6 

of sediments and associated particulate P. Total nitrogen concentrations declined 7 

slightly in quick flow, reflecting the dilution of nitrate from groundwater. 8 

Defining separate contaminant concentrations in base flow and quick flow 9 

enabled us to examine how the sensitivity of water quality parameters varied 10 

depending on hydrologic conditions.  11 

 In a study of a lowland catchment (481 km2), Guse et al. (2014) found that 12 

three groundwater parameters, RCHRG_DP (aquifer percolation coefficient), 13 

GW_DELAY (groundwater delay) and ALPHA_BF (base flow alpha factor) were 14 

highly sensitive in relation to simulating discharge during quick flow, while 15 

ESCO (soil evaporation compensation factor) was most sensitive during base flow. 16 

This is counter to the findings of this study for which the base–flow discharge 17 

simulation was sensitive to RCHRG_DP and ALPHA_BF. This result may reflect 18 

that, relative to our study catchment, the catchment studied by Guse et al. (2014) 19 

had moderate precipitation (884 mm y-1) with less forest cover and flatter 20 

topography. Although the GW_DELAY parameter reflects the time lag that it 21 

takes water in the soil water to enter the shallow aquifers, its lack of sensitivity 22 

under both base flow and quick flow conditions in this study is a reflection of 23 

higher water infiltration rates and steeper slopes. The ESCO parameter controls 24 

the upwards movement of water from lower soil layers to meet evaporative 25 

demand (Neitsch et al., 2011). Its lack of sensitivity in our study may reflect 26 

relatively high and seasonally–consistent rainfall (1500 mm y-1), in addition to 27 

extensive forest cover in the Puarenga Stream catchment, which reduces soil 28 

evaporative demand by shading. Soil texture is also likely a contributor to this 29 

result. The predominant soil horizon type in the Puarenga Stream catchment was 30 

A, indicating high macroporosity which promotes high water infiltration rate and 31 

inhibits upward transport of water by capillary action (Neitsch et al., 2011). The 32 

variability in the sensitivity of the parameter SURLAG (surface runoff lag 33 

coefficient) between this study (relatively insensitive) and that of Cibin et al. 34 
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(2010; relatively sensitive) likely reflects differences in catchment size. The 1 

Puarenga Stream catchment (77 km2) is much smaller than the study catchment 2 

(St Joseph River; 2800 km2) of Cibin et al. (2010) and, consequently, distances to 3 

the main channel are much shorter, with less potential for attenuation of surface 4 

runoff in off–channel storage sites. The curve number (CN2) parameter was found 5 

to be insensitive in both this study and Shen et al. (2012), because surface runoff 6 

was simulated based on the Green and Ampt method (1911) requiring the hourly 7 

rainfall inputs, rather than the curve number equation which is an empirical model. 8 

By contrast, the most sensitive parameters in our study are those that determine 9 

the extent of lateral flow, an important contributor to streamflow in the catchment, 10 

due to a general lack of ground cover under plantation trees and formation of 11 

gully networks on steep terrain.  12 

 Parameters that control surface water transport processes (e.g. LAT_TIME 13 

and SLSOIL) were found to be much more sensitive for base flow SS load 14 

estimation than parameters that control groundwater processes (e.g. ALPHA_BF 15 

and RCHRG_DP), reflecting the importance of surface flow processes for 16 

sediment transport. Sensitive parameters for quick flow SS load estimation related 17 

to overland flow processes (e.g. OV_N and SLSUBBSN), thus reflecting the fact 18 

that sediment transport is largely dependent on rainfall–driven processes, as is 19 

typical of steep and lower–order catchments. Modelled base flow NO3–N loads 20 

were most sensitive to the nitrogen concentration in rainfall (RCN) because of 21 

rainfall as a predominant contributor to recharging base flow. The nitrogen 22 

percolation coefficient (NPERCO) was more influential for quick flow NO3–N 23 

load estimation, probably indicating that the quick flow NO3–N load is more 24 

influenced by the mobilisation of concentrated nitrogen sources associated with 25 

agriculture or treated wastewater distribution. High sensitivity of the organic 26 

carbon content (SOL_CBN) for quick flow ORGN load estimates likely reflects 27 

mobilisation of N associated with organic material following rainfall. The finding 28 

that base flow NH4–N load was more sensitive to nitrification rate in reach (BC1) 29 

likely reflects that base flow provides more favourable conditions to complete this 30 

oxidation reaction, as NH4–N is less readily leached and transported. Similarly, 31 

the ORGP mineralization rate (BC4) strongly influenced base flow MINP load 32 

estimation, reflecting that base flow phosphorus transport is relatively more 33 

influenced by cycling from channel bed stores, whereas quick flow phosphorus 34 
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transport predominantly reflects the transport of phosphorus that originated from 1 

sources distant from the channel.  2 

 3 

5 Conclusions 4 

The performance of a SWAT model was quantified for different hydrologic 5 

conditions in a small catchment with mixed land use. Discharge–weighted mean 6 

concentrations of TP and SS measured during storm events were greatly 7 

underestimated by SWAT, highlighting the potential for uncertainty to be greatly 8 

underestimated in catchment model applications that are validated using a sample 9 

of contaminant load measurements that is over–represented by measurements 10 

made during base flow conditions. Monitoring programmes which collect high–11 

frequency and event–based data have an important roleshould be considered 12 

further to in supporting themore robust calibration and validation of SWAT model 13 

applications. Accurate simulation of nitrogen concentrations was constrained by 14 

the non–steady state of groundwater nitrogen concentrations due to historic 15 

variability in anthropogenic nitrogen applications to land. Improved 16 

representation of groundwater processes in the model structure would reduce this 17 

aspect of model uncertainty. The sensitivity of many parameters varied depending 18 

on the relative dominance of base flow and quick flow, while curve number, soil 19 

evaporation compensation factor, surface runoff lag coefficient, and groundwater 20 

delay were largely invariant to the two flow regimes. Parameters relating to main 21 

channel processes were more sensitive when estimating variables (particularly Q 22 

and SS) during base flow, while those relating to overland processes were more 23 

sensitive for simulating variables associated with quick flow. Temporal dynamics 24 

of both parameter sensitivity and model performance due to dependence on 25 

hydrologic conditions should be considered in further model applications. 26 

Monitoring programmes which collect high–frequency and event–based data have 27 

an important role in supporting the robust calibration and validation of SWAT 28 

model applications. This study has important implications for modelling studies of 29 

similar catchments that exhibit short–term temporal fluctuations in stream flow. In 30 

particular these include small catchments with relatively steep terrain and lower 31 

order streams with moderate to high rainfall.  32 

 33 
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Table 1. Description of data used to configure and calibrate the SWAT model. 1 

Data Application Data description and configuration details Source 

Digital elevation 

model (DEM) & 

digitized stream 

network 

Sub–basin 

delineation (Fig. 

1b) 

25 m resolution. Used to define five slope classes: 0–4%, 

4–10%, 10–17%, 17–26% and >26%. 

Bay of Plenty Regional Council 

(BoPRC) 

Stream discharge 

and water quality 

measurements 

Calibration 

(2004–2008) 

and validation2 

(1994–1997; 

2010–2012)  

FRI: 15–min stream discharge data were aggregated as 

daily mean values (1994–1997; 2004–2008), monthly 

grab samples for determination of suspended sediment 

(SS), total phosphorus (TP) and total nitrogen (TN) 

concentrations (1994–1997; 2004–2008), high–frequency 

event–based samples for concentrations of SS (nine 

events), TP and TN (both 14 events) at 1–2 h frequency 

(2010–2012).  

BoPRC; Abell et al., 2013 

Spring discharge 

and nutrient loads  

Point source 

(Fig. 1b)  

Constant daily discharge and nutrient concentrations 

assigned to two cold–water springs (Waipa Spring and 

Hemo Spring) and one geothermal spring.  

White et al., 2004; Proffit, 2009 

(Unpublished Site Visit Report); 

Paku, 2001; Mahon, 1985; 

Glover, 1993; Rotorua District 

Council (pers. comm.) 

Water abstraction 

volumes 
Water use 

Monthly water abstraction assigned to two cold–water 

springs. 

Kusabs and Shaw, 2008; Jowett, 

2008 

Land use  HRU definition 

25 m resolution, 10 basic land–cover categories. Some 

particular land–cover parameters were prior–estimated 

(Table 2). 

New Zealand Land Cover 

Database Version 2; BoPRC 

Soil characteristics HRU definition 
22 soil types. Properties were quantified based on 

measurements (if available) or estimated using regression 

New Zealand Land Resource 

Inventory & digital soil map 

                                                           
2 Model validation was undertaken using two different datasets. The monthly measurements (1994–1997) were predominantly 

collected when base flow was the dominant contributor to stream discharge. Data from high–frequency sampling during rain events 

(2010–2012) were also used to validate model performance during periods when quick flow was high. 
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analysis to estimate properties for unmeasured functional 

horizons.  

(available at 

http://smap.landcareresearch.co.n

z) 

Meteorological 

data 

Meteorological 

forcing 

Daily maximum and minimum temperature, daily mean 

relative humidity, daily global solar radiation, daily (9 

am) surface wind speed and hourly precipitation. 

Rotorua Airport Automatic 

Weather Station, National 

Climate Database (available at 

http://cliflo.niwa.co.nz/); Kaituna 

rain gauge (Fig. 1a) 

Agricultural 

management 

practices 

Agricultural 

management 

schedules 

Stock density 
Statistics New Zealand, 2006; 

Ledgard and Thorrold, 1998 

Applications of urea and di–ammonium phosphate 
Statistics New Zealand, 2006; 

Fert Research, 2009 

Applications of manure–associated nutrients 
Dairying Research Corporation, 

1999 

Nutrient loading 

by wastewater 

application 

Nonpoint–

source from land 

treatment 

irrigation 

Wastewater application rates and effluent composition 

(TN and TP concentration) for 16 spray blocks from 

1996–2012. Each spray block was assigned an individual 

management schedule specifying daily application rates.  

Rotorua District Council, 2006 

Forest stand map 

and harvest dates 

Forestry 

planting and 

harvesting 

operations 

Planting and harvesting data for 472 ha forestry stands. 

Prior to 2007 we assumed stands were cleared one–year 

prior to the establishment year. Post 2007, harvesting 

date was assigned to the first day of harvesting month. 

Timberlands Limited, Rotorua, 

New Zealand (pers. comm.) 
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Table 2. Prior–estimated parameter values for three dominant types of land–cover in the Puarenga Stream catchment. Values of other 1 

land use parameters were based on the default values in the SWAT database. 2 

Land–cover type Parameter Definition Value Source 

PINE 

(Pinus radiata) 

HVSTI Percentage of biomass harvested 0.65 (Ximenes et al., 2008) 

T_OPT (℃) Optimal temperature for plant growth  15 (Kirschbaum and Watt 2011) 

T_BASE (℃) Minimum temperature for plant growth  4 (Kirschbaum and Watt 2011) 

MAT_YRS 
Number of years to reach full 

development 
30 (Kirschbaum and Watt 2011) 

BMX_TREES (tonnes ha-1) Maximum biomass for a forest 400 (Bi et al., 2010) 

GSI (m s-1) Maximum stomatal conductance 0.00198 (Whitehead et al., 1994) 

BLAI (m2 m-2) Maximum leaf area index 5.2 (Watt et al., 2008) 

BP3 Proportion of P in biomass at maturity 0.000163 (Hopmans and Elms 2009) 

BN3 Proportion of N in biomass at maturity 0.00139 (Hopmans and Elms 2009) 

FRSE 

(Evergreen forest ) 

HVSTI Percentage of biomass harvested 0 – 

BMX_TREES (tonnes ha-1) Maximum biomass for a forest 372 (Hall et al., 2001) 

MAT_YRS (years) 
Number of years for tree to reach full 

development 
100 – 

PAST 

(Pastoral farm) 

T_OPT (℃) Optimal temperature for plant growth 25 (McKenzie et al., 1999) 

T_BASE (℃) Minimum temperature for plant growth 5 (McKenzie et al., 1999) 



40 
 

Table 3. Description of data used to calibrate the SWAT model. Data were measured at the Forest Research Institute (FRI) stream–1 

gauge and were considered representative of the downstream/outlet conditions of the Puarenga Stream. 2 

Data Application Measurement data details Source 

Stream discharge 

measurements 

Calibration 

(2004–2008) 

Validation 

(1994–1997)  

15–min stream discharge data were measured at FRI stream–

gauge (Fig. 1b) within the catchment and aggregated as daily 

mean values (1994–1997; 2004–2008).  

BoPRC; Abell et al., 2013 

Stream water quality 

measurements 

Calibration 

(2004–2008) 

Validation3 

(1994–1997; 

2010–2012)  

Monthly grab samples for determination of suspended 

sediment (SS), total phosphorus (TP) and total nitrogen (TN) 

concentrations (1994–1997; 2004–2008), and high–

frequency event–based samples for concentrations of SS 

(nine events), TP and TN (both 14 events) at 1–2 h frequency 

(2010–2012), were also measured at FRI stream–gauge (Fig. 

1b) within the catchment. 

BoPRC; Abell et al., 2013 

                                                           
3 Model validation was undertaken using two different datasets. The monthly measurements (1994–1997) were predominantly 

collected when base flow was the dominant contributor to stream discharge. Data from high–frequency sampling during rain events 

(2010–2012) were also used to validate model performance during periods when quick flow was high. 
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Table 34. Summary of calibrated SWAT parameters. Discharge (Q), suspended sediment (SS) and total nitrogen (TN) parameter 1 

values were assigned using auto–calibration, while total phosphorus (TP) parameters were manually calibrated. SWAT default ranges 2 

and input file extensions are shown for each parameter. 3 

Parameter Definition Unit Default range 
Calibrated 

value 

Q 
   

 

EVRCH.bsn Reach evaporation adjustment factor 
 

0.5–1 0.9 

SURLAG.bsn Surface runoff lag coefficient 
 

0.05–24 15 

ALPHA_BF.gw Base flow alpha factor (0–1) 
 

0.0071–

0.0161 
0.01 

GW_DELAY.gw Groundwater delay d 0–500 500 

GW_REVAP.gw Groundwater “revap” coefficient 
 

0.02–0.2 0.08 

GW_SPYLD.gw Special yield of the shallow aquifer m3 m-3 0–0.4 0.13 

GWHT.gw Initial groundwater height m 0–25 14 

GWQMN.gw 
Threshold depth of water in the shallow aquifer required for return 

flow to occur 
mm 0–5000 372 

RCHRG_DP.gw Deep aquifer percolation fraction 
 

0–1 0.87 

REVAPMN.gw 
Threshold depth of water in the shallow aquifer required for “revap” 

to occur 
mm 0–500 260 

CANMX.hru Maximum canopy storage mm 0–100 0.6 

EPCO.hru Plant uptake compensation factor 
 

0–1 0.34 

ESCO.hru Soil evaporation compensation factor 
 

0–1 0.9 

HRU_SLP.hru Average slope steepness m m-1 0–0.6 0.5 

LAT_TTIME.hru Lateral flow travel time d 0–180 3 

RSDIN.hru Initial residue cover kg ha-1 0–10000 1 

SLSOIL.hru Slope length for lateral subsurface flow m 0–150 40 

CH_K2.rte Effective hydraulic conductivity in the main channel alluvium mm h-1 0–500 20 

CH_N2.rte Manning's N value for the main channel 
 

0–0.3 0.16 
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CH_K1.sub Effective hydraulic conductivity in the tributary channel alluvium mm h-1 0–300 100 

CH_N1.sub Manning's N value for the tributary channel 
 

0.01–30 20 

     

SS     

USLE_P.mgt USLE equation support practice factor 
 

0–1 0.5 

PRF.bsn Peak rate adjustment factor for sediment routing in the main channel 
 

0–2 1.9 

SPCON.bsn 
Linear parameter for calculating the maximum amount of sediment 

that can be re–entrained during channel sediment routing  
0.0001–0.01 0.001 

SPEXP.bsn 
Exponent parameter for calculating sediment re–entrained in channel 

sediment routing  
1–1.5 1.26 

LAT_SED.hru Sediment concentration in lateral flow and groundwater flow mg L-1 0–5000 5.7 

OV_N.hru Manning's N value for overland flow 
 

0.01–30 28 

SLSUBBSN.hru Average slope length m 10–150 92 

CH_COV1.rte Channel erodibility factor 
 

0–0.6 0.17 

CH_COV2.rte Channel cover factor 
 

0–1 0.6 

     

TP 
   

 

P_UPDIS.bsn Phosphorus uptake distribution parameter 
 

0–100 0.5 

PHOSKD.bsn Phosphorus soil partitioning coefficient 
 

100–200 174 

PPERCO.bsn Phosphorus percolation coefficient 
 

10–17.5 14 

PSP.bsn Phosphorus sorption coefficient  
 

0.01–0.7 0.5 

GWSOLP.gw Soluble phosphorus concentration in groundwater loading  mg P L-1 0–1000 0.063 

LAT_ORGP.gw Organic phosphorus in the base flow mg P L-1 0–200 0.01 

ERORGP.hru Organic phosphorus enrichment ratio 
 

0–5 2.5 

CH_OPCO.rte Organic phosphorus concentration in the channel mg P L-1 0–100 0.02 

BC4.swq 
Rate constant for mineralization of organic phosphorus to dissolved 

phosphorus in the reach at 20 ℃ 
d-1 0.01–0.7 0.3 

RS2.swq 
Benthic (sediment) source rate for dissolved phosphorus in the reach 

at 20 ℃   

mg m-2 

d-1 
0.001–0.1 0.02 

RS5.swq Organic phosphorus settling rate in the reach at 20 ℃ d-1 0.001–0.1 0.05 
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TN 
   

 

RSDCO.bsn Residue decomposition coefficient 
 

0.02–0.1 0.09 

CDN.bsn Denitrification exponential rate coefficient 
 

0–3 0.3 

CMN.bsn Rate factor for humus mineralization of active organic nitrogen 
 

0.001–0.003 0.002 

N_UPDIS.bsn Nitrogen uptake distribution parameter 
 

0–100 0.5 

NPERCO.bsn Nitrogen percolation coefficient 
 

0–1 0.0003 

RCN.bsn Concentration of nitrogen in rainfall mg N L-1 0–15 0.34 

SDNCO.bsn Denitrification threshold water content 
 

0–1 0.02 

HLIFE_NGW.gw Half–life of nitrate–nitrogen in the shallow aquifer d 0–200 195 

LAT_ORGN.gw Organic nitrogen in the base flow mg N L-1 0–200 0.055 

SHALLST_N.gw Nitrate–nitrogen concentration in the shallow aquifer mg N L-1 0–1000 1 

ERORGN.hru Organic nitrogen enrichment ratio 
 

0–5 3 

CH_ONCO.rte Organic nitrogen concentration in the channel mg N L-1 0–100 0.01 

BC1.swq 
Rate constant for biological oxidation of ammonium–nitrogen to 

nitrite–nitrogen in the reach at 20 ℃ 
d-1 0.1–1 1 

BC2.swq 
Rate constant for biological oxidation of nitrite–nitrogen to nitrate–

nitrogen in the reach at 20 ℃ 
d-1 0.2–2 0.7 

BC3.swq 
Rate constant for hydrolysis of organic nitrogen to ammonium–

nitrogen in the reach at 20 ℃ 
d-1 0.2–0.4 0.4 

RS3.swq 
Benthic (sediment) source rate for ammonium–nitrogen in the reach 

at 20 ℃  

mg m-2 

d-1 
0–1 0.2 

RS4.swq Rate coefficient for organic nitrogen settling in the reach at 20 ℃  d-1 0.001–0.1 0.05 



44 
 

Table 45. Criteria for model performance. Note: 𝑜n is the 𝑛th observed datum, 𝑠n is the 𝑛th simulated datum, o̅ is the observed mean 1 

value, s̅ is the simulated daily mean value, and N is the total number of observed data. Performance rating criteria are based on 2 

Moriasi et al. (2007) for Q: discharge, SS: suspended sediment, TP: total phosphorus and TN: total nitrogen. Moriasi et al. (2007) 3 

derived these criteria based on extensive literature review and analysing the reported performance ratings for recommended model 4 

evaluation statistics. 5 

Statistic equation Constituent 
Performance ratings 

Unsatisfactory Satisfactory Good Very good 

R2 =
{∑ [(𝑠n−s̅)(𝑜n−o̅)]N

n=1 }2

∑ (𝑜n − o̅)2 × ∑ (𝑠n − s̅)2N
n=1

N
n=1

    (3) All < 0.5 0.5 – 0.6 0.6 – 0.7 0.7 – 1 

NSE = 1 −
∑ (𝑜n − 𝑠n)iN

n=1

∑ (𝑜n − o̅)iN
n=1

    i = 2    (4) All < 0.5 0.5 – 0.65 0.65 – 0.75 0.75 – 1 

±PBIAS% =
∑ (𝑜n−𝑠n)N

n=1

∑ 𝑜n
N
n=1

× 100    (5) 

Q > 25 15 – 25 10 – 15 < 10 

SS > 55 30 – 55 15 – 30 < 15 

TP, TN > 70 40 – 70 25 – 40 < 25 

R2: coefficient of determination 6 

NSE: Nash–Sutcliffe efficiency 7 

PBIAS: percent bias 8 
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Table 56. Model performance ratings for simulations of discharge (Q), concentrations of suspended sediment (SS), total phosphorus 1 

(TP) and total nitrogen (TN). n indicates the number of measurements. Q–weighted mean concentrations were calculated using Eq. 2 

(1). 3 

Model performance Statistics Q SS TP TN 

Calibration with 

instantaneous measurements 

(2004–2008) 

 n = 1439 n = 43 n = 45 n = 39 

R2 
0.77 

(Very good) 

0.42 

(Unsatisfactory) 

0.02 

(Unsatisfactory) 

0.08 

(Unsatisfactory) 

NSE 
0.73 

(Good) 

-0.08 

(Unsatisfactory) 

-1.31 

(Unsatisfactory) 

-0.30 

(Unsatisfactory) 

±PBIAS% 
7.8 

(Very good) 

-18.3 

(Very good) 

23.8 

(Very good) 

-0.05 

(Very good) 

Validation with 

instantaneous measurements 

(1994–1997) 

 n = 1294 n = 37 n = 37 n = 36 

R2 
0.68 

(Good) 

0.80 

(Very good) 

0.01 

(Unsatisfactory) 

0.01 

(Unsatisfactory) 

NSE 
0.62 

(Satisfactory) 

0.76 

(Very good) 

-0.97 

(Unsatisfactory) 

-2.67 

(Unsatisfactory) 

±PBIAS% 
8.8 

(Very good) 

-0.32 

(Very good) 

24.5 

(Very good) 

-26.7 

(Good) 

Validation with 

Q–weighted mean concentrations 

(2010–2012) 

 – n = 12 n = 18 n = 18 

R2 – 
0.38 

(Unsatisfactory) 

0.06 

(Unsatisfactory) 

0.46 

(Unsatisfactory) 

NSE – 
-0.03 

(Unsatisfactory) 

-4.88 

(Unsatisfactory) 

0.42 

(Unsatisfactory) 

±PBIAS% – 
43.9 

(Satisfactory) 

69.4 

(Satisfactory) 

-0.87 

(Very good) 

4 
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Table 67. Model performance statistics for simulations of discharge (Q), and loads of suspended sediment (SS), total phosphorus (TP) and total 1 

nitrogen (TN). Statistics were calculated for both overall and separated simulations. Qall and Lall indicate the overall simulations; Qb and Lb 2 

indicate the base flow simulations; Qq and Lq indicate the quick flow simulations. 3 

Model performance Statistics 
Q SS TP TN 

Qb Qq Qall Lb Lq Lall Lb Lq Lall Lb Lq Lall 

Calibration (2004–2008) 

R2 0.84 0.84 0.77 0.66 0.68 0.61 0.24 0.65 0.39 0.72 0.97 0.95 

NSE 0.6 0.71 0.73 0.33 0.33 0.27 -6.2 0.09 -0.17 0.5 0.89 0.85 

±PBIAS% 7.5 8.7 7.8 7.57 -23.4 -3.6 45.4 40.1 43.6 0.8 6.6 2.7 

Validation (1994–1997) 

R2 0.87 0.81 0.68 0.36 0.98 0.95 0.27 0.27 0.06 0.79 0.33 0.58 

NSE 0.56 0.62 0.62 -0.03 0.43 0.85 -1.9 0.04 -0.64 0.58 -0.07 0.33 

±PBIAS% 11.3 -1.2 8.8 34.5 -79.7 11.1 45.8 -9.3 37 -7.6 14.3 -2.5 

R2: coefficient of determination; NSE: Nash–Sutcliffe efficiency; PBIAS: percent bias 4 
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Table 7 8 Rankings of relative sensitivities of parameters (from most to least) for variables (header row) of Q (discharge), SS (suspended 1 

sediment), MINP (mineral phosphorus), ORGN (organic nitrogen), NH4–N (ammonium–nitrogen), and NO3–N (nitrate–nitrogen). Relative 2 

sensitivities were identified by randomly generating combinations of values for model parameters and comparing modelled and measured data 3 

with a Student’s t test (p ≤ 0.05). Bold text denotes that a parameter was deemed sensitive relative to more than one simulated variable. Shaded 4 

text denotes that parameter deemed insensitive to any of the two flow components (base and quick flow; see Figure 7) using one–at a–time 5 

sensitivity analysis. Definitions and units for each parameter are shown in Table 34. 6 

Q SS MINP ORGN NH4–N NO3–N 

SLSOIL LAT_SED CH_OPCO CH_ONCO CH_ONCO NPERCO 

CH_K2 CH_N2 BC4 BC3 BC1 CDN 

HRU_SLP SLSUBBSN RS5 SOL_CBN(1) CDN ERORGN 

LAT_TTIME SPCON ERORGP RS4 RS3 CMN 

SOL_AWC(1) ESCO PPERCO RCN RCN RCN 

RCHRG_DP OV_N RS2 N_UPDIS 
 

RSDCO 

GWQMN SLSOIL PHOSKD USLE_P 
  

GW_REVAP LAT_TTIME GWSOLP SDNCO 
  

GW_DELAY SOL_AWC(1) LAT_ORGP SOL_NO3(1) 
  

CH_COV1 EPCO 
 

CMN 
  

CH_COV2 CANMX 
 

HLIFE_NGW 
  

EPCO CH_K2 
 

RSDCO 
  

SPEXP GW_DELAY 
 

USLE_K(1) 
  

CANMX ALPHA_BF 
    

CH_N1 GW_REVAP 
    

PRF CH_COV1 
    

SURLAG  
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1 
Figure 1. (a) Location of Puarenga Stream surface catchment in New Zealand, 2 

Kaituna rain gauge, climate station and managed land areas for which 3 

management schedules were prescribed in SWAT, and (b) location of the 4 

Puarenga Stream, major tributaries, monitoring stream–gauges, two cold–water 5 

springs and the Whakarewarewa geothermal contribution. Measurement data 6 

(Table 3) used to calibrate the SWAT model were from the Forest Research 7 

Institute (FRI) stream–gauge and were considered representative of the 8 

downstream/outlet conditions of the Puarenga Stream. 9 
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1 
Figure 2. Flow chart of methods used to separate hydrograph and contaminant 2 

loads and to quantify parameter sensitivities for: Q (discharge), SS (suspended 3 

sediment), MINP (mineral phosphorus), ORGN (organic nitrogen), NH4–N 4 

(ammonium–nitrogen), and NO3–N (nitrate–nitrogen). NSE: Nash–Sutcliffe 5 

efficiency. 6 
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1 
Figure 3. Measurements and daily mean simulated values of discharge, suspended 2 

sediment (SS), total phosphorus (TP) and total nitrogen (TN) during calibration 3 

(a–d) and validation (e–h). Measured daily mean discharge was calculated from 4 

15–min observations and measured concentrations of SS, TP and TN correspond 5 

to monthly grab samples. 6 
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1 
Figure 4. Example of a storm event showing derivation of discharge (Q)–weighted 2 

daily mean concentrations (dashed horizontal line) based on hourly measured 3 

concentrations (black dots) of suspended sediment (SS), total phosphorus (TP) 4 

and total nitrogen (TN) over two days (a–c). Comparisons of Q–weighted daily 5 

mean concentrations with simulated daily mean estimates of SS, TP and TN 6 

(scatter plot, d–f). The horizontal bars show the ranges in hourly measurements 7 

during each storm event in 2010–2012. 8 
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1 
Figure 5. Measurements and simulations derived using the calibrated set of 2 

parameter values. Data are shown separately for base flow and quick flow. (a) 3 

Daily mean base flow and quick flow; (b) suspended sediment (SS) load; (c) total 4 

phosphorus (TP) load; (d) total nitrogen (TN) load. Vertical lines in b–d show the 5 

contaminant load in quick flow. Time series relate to calibration (2004–2008) and 6 

validation (1994–1997) periods (note time discontinuity). Measured instantaneous 7 

loads of SS, TP, and TN correspond to monthly grab samples. 8 
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1 
Figure 6. Regression of measured and simulated (a) discharge (Q), concentrations 2 

of (b) suspended sediment (SS), (c) total phosphorus (TP), and (d) total nitrogen 3 

(TN) including lower and upper 95% confidence limits (LCL and UCL) and lower 4 

and upper 95% prediction limits (LPL and UPL). Note that the “choppy” shape of 5 

confidence limits shown in figures b–d were resulted from the few data points (< 6 

50) in the regressions of measured and simulated SS, TP and TN concentrations. 7 
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1 
Figure 7. The standard deviation (STD) of the ln–transformed Nash–Sutcliffe 2 

efficiency (NSE) used to indicate parameter sensitivity based on one–at a–time 3 

(OAT) sensitivity analysis for separate base and quick flow components: (a) Q 4 

(discharge); (b) SS (suspended sediment); (c) MINP (mineral phosphorus); (d) 5 

NO3–N (nitrate–nitrogen); (e) ORGN (organic nitrogen); (f) NH4–N (ammonium–6 

nitrogen). A median value (0.2) derived from the STD of ln–transformed NSE was 7 

chosen as a threshold above which parameters were deemed to be ‘sensitive’. 8 

Definitions of each parameter are shown in Table 34. 9 


