
Anonymous Referee #1 

1. Don’t use “we” and “they” in the manuscript, “the authors” has a suitable replacement for 

these. Revise whole of the text with this correction. 

 The replacements have been made in several places, as suggested. We have avoided 

extensive changes and refer to the seminal text book of Day and Gastel (2012), who 

advocate use of the first person in paper writing to provide direct sentences in an active 

voice. 

 Day, R., Gastel, B.: How to write and publish a scientific paper, 7th Edition, 

Cambridge University Press, Cambridge, UK, 2012. 

 

2. Add some of the most important quantitative results to the Abstract. 

 Quantitative results have been added in the Abstract as follows: “Monthly instantaneous 

TP and TN concentrations were generally not reproduced well (24% bias for TP, 27% 

bias for TN, and R2 < 0.1, NSE < 0 for both TP and TN), in contrast to SS concentrations 

(< 1% bias; R2 and NSE both > 0.75) during model validation. Comparison of simulated 

daily mean SS, TP and TN concentrations with daily mean discharge–weighted high–

frequency measurements during storm events indicated that model predictions during the 

high rainfall period considerably underestimated concentrations of SS (44% bias) and TP 

(70% bias), while TN concentrations were comparable (< 1% bias; R2  and NSE  both 

~0.5)”. 

 

3. Page 4317, line 12: Change “spatial and temporal” to “spatiotemporal”. Apply this for 

whole of the manuscript. 

 No change made. The term “spatial and temporal” appeared in the Introduction when 

Boyle et al. (2000) is cited and the term is used only once through the whole paper. The 

use of “spatiotemporal” would not reflect the fact that Boyle et al. (2000) wished to 

consistently differentiate between spatial variation and temporal variation.  

 

4. There are many useful and more new papers on auto-calibration in the different fields of 

hydrology which can increase reliability aspect of the methodology. Therefore, cite all of the 

below papers for this purpose: 

1) Critical Areas of Iran for Agriculture Water Management According to the Annual 

Rainfall 



2) Monthly Inflow Forecasting using Autoregressive Artificial Neural Network 

3) Long-term runoff study using SARIMA and ARIMA models in the United States 

4) Simulation of open- and closed-end border irrigation systems using SIRMOD 

5) Analysis of potential evapotranspiration using 11 modified temperature-based models 

6) A comprehensive study on irrigation management in Asia and Oceania 

7) Future of agricultural water management in Africa 

 No change made. We have considered each of the papers that the reviewer cites and we 

believe that they have limited relevance to our study; e.g., they do not refer to the model 

that we used (SWAT) and they do not consider water quality. Furthermore, although the 

papers relate to model applications that involve a calibration stage, the papers do not 

seem to focus on the topic of auto–calibration specifically. We are therefore unclear about 

which section of the manuscript the reviewer wishes us to cite these seven papers.  

 The auto–calibration approach that we used has been provided with more detailed 

descriptions and one more literature, i.e. Wu and Chen (2015), has been cited as follows: 

“The SUFI–2 procedure has been integrated into the SWAT Calibration and Uncertainty 

Program (SWAT–CUP). SUFI–2 is a procedure that efficiently quantifies and constrains 

parameter uncertainties/ranges from default ranges with the fewest number of iterations 

(Abbaspour et al., 2004), and has been shown to provide optimal results relative to the use 

of alternative algorithms (Wu and Chen, 2015)”. 

 

5. In this study, the authors measured the discharge every 15 minutes. In this case, why did 

the authors use daily scale instead hourly scale? 

 The version of the SWAT model used in this study (SWAT2009_rev488) runs on a daily 

time step. This has been added at the beginning of Section Model configuration as 

follows: “The SWAT model version used (SWAT2009_rev488) runs on a daily time 

step”. We provide additional reasoning for not using sub–daily time steps, as mentioned 

in Table 1 as follows: “measurements for important meteorological forcing variables (e.g., 

temperature, relative humidity and solar radiation) were available only at daily 

resolution”. 

 

6. The length of the calibration period is 5 years while, the length of the validation period is 4 

years. This leads to increase of uncertainty, because two-third of the data is commonly 

applied for calibration period. 



 No change made. We can cite many instances of studies which roughly balance the 

duration of the calibration and the validation periods, e.g., Santhi et al. (2001) and Cao et 

al. (2006; cited in the manuscript). 

 

7. The data used for validation period (1994-1997) occurred before calibration data (2004-

2008)! How do the authors justify this abnormal selection? 

 We agree that this is a somewhat unusual situation that reflects issues of data availability 

(discharge records) and the history of management operations that are specific to this 

catchment. We therefore ensured that we specifically discussed the rationale for this in 

the original manuscript on Page 4322, lines 17–22 and Page 4328, lines 27–29 continued 

to Page 4329, lines 1–2.  

 We have also revised the text on Page 4322, lines 17–22 more clearly as follows “A 

validation period that pre–dated the calibration period was chosen because discharge 

records were available for two separate periods (1994–1997 and post 2004). In addition, 

the operational regime for the wastewater irrigation has varied since operations began in 

1991, with a marked change occurring in 2002 when operations switched from applying 

the wastewater load to two blocks (rotated daily for a total of 14 blocks in a week; i.e., 

each block irrigated weekly), to 10–14 blocks each irrigated daily. This operational 

regime continues today and we therefore decided to assign the most recent (post 2002) 

period (2004–2008) to calibration to ensure that the model was configured to reflect 

current operations”. 

 

8. Why is there a gap between calibration and validation periods (1998-2003)? Is this due to 

lack of measuring? Why? 

 The FRI stream–gauge, where the measurements of discharge and nutrient concentrations 

were undertaken, was closed in mid 1997, then re–opened late 2004 (Environment Bay of 

Plenty, 2007). This is described on Page 4320, lines 19 to 20: “Discharge records during 

1998–2004 were intermittent and this precluded a detailed comparison of measured and 

simulated discharge during that period”. 

 

9. In Table 4, what is the criterion to this classification? For instance, why did the values of 

R-square more than 0.7 indicate a very good correlation? 

 The rationale for this is explicitly stated in the caption for this table: “Performance rating 

criteria are based on Moriasi et al. (2007)… Moriasi et al. (2007) derived these criteria 



based on extensive literature review and analysing the reported performance ratings for 

recommended model evaluation statistics”.  

 

10. Figure 3 underline poor performance of the model in peak and low points. I suggest to the 

authors to use a separate index for evaluation of the error of peak points as follows: 

 

Where, Xi and Yi are the ith observed and estimated values, respectively; X and Y are the 

average of Xi and Yi, Np is number of peak parameter greater than one-third of the mean 

peak parameter observed, Nl is number of low parameter lower than one-third of the mean 

low parameter observed and n is the total numbers of data. 

 A peak and low flow criterion (PLC) was introduced by Coulibaly et al. (2001) for ANN 

(artificial neural network) model evaluation. PLC was specified by two criteria. The peak 

value criterion (named PVC by Reviewer #1) originated from Ribeiro et al. (1998), while 

the low value criterion (named LVC by Reviewer #1) was modified from the PVC by 

Coulibaly et al. (2001).  

 As suggested by the reviewer, the statistics PVC and LVC have been calculated and 

the values have been tabulated (see below). However, the sample sizes (Np and Nl) are 

very low (1 to 10) for sediment and nutrient concentrations. Therefore, we decided not to 

use these statistics for model evaluation, at least for SS, TP and TN simulations.  

  Np PVC Nl LVC 

Q Calibration 39 0.23 191 0.1 

 Validation 53 0.29 65 0.14 

SS concentration Calibration 2 0.45 5 0.48 

 Validation 1 0.56 4 0.54 

TP concentration Calibration 2 0.68 4 0.36 

 Validation 1 0.80 10 0.27 

TN concentration Calibration 2 0.39 3 0.42 

 Validation 2 0.24 3 0.79 

 

11. A temporal evaluation of error indices could be useful for better understanding of 

performance the SWAT model. The authors can read and cite the below papers: (1) 

Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models 

in forecasting the monthly inflow of Dez dam reservoir; and (2) Parameters Estimate of 



Autoregressive Moving Average and Autoregressive Integrated Moving Average Models and 

Compare Their Ability for Inflow Forecasting. 

 Paper #1 and #2 (as indicated above by the reviewer) forecasted the inflow of one 

reservoir using two models: Auto Regression Moving Average (ARMA) and Auto 

Regression Integrated Moving Average (ARIMA). These two models are not used in this 

study; however, we agree that further consideration of how error indices vary temporally 

would provide valuable insight into model performance. Therefore, in addition to the 

combined flow statistics, we have calculated model performance statistics separately for 

base flow and quick flow constituents. These results are now presented in Table 6, which 

is reproduced below.  

 The following text has been added to the Results as follows: “Model performance 

statistics differed between the two flow regimes (Table 6). Simulations of discharge and 

constituent loads under quick flow were more closely related to the measurements (i.e., 

higher values of R2  and NSE) than simulations under base flow. Base flow TN load 

simulations during the validation period showed better model performance than 

simulations under quick flow. Additionally, measurements under quick flow were better 

reproduced by the model than the measurements for the whole simulation period. 

Simulations of contaminant loads matched measurements much better than for 

contaminant concentrations, as indicated by statistical values for model performance 

given in Table 5 and 6”.  

 Accordingly, further text has been added to the Discussion as follows: “The analysis 

of model performance based on datasets separated into base flow and quick flow 

constituents enabled uncertainties in the structure of hydrological models to be identified, 

denoted by different model performance between these two flow constituents”. 



Table 6. Model performance statistics for simulations of discharge (Q), and loads of suspended sediment (SS), total phosphorus (TP) and total 

nitrogen (TN). Statistics were calculated for both overall and separated simulations. Qall and Lall indicate the overall simulations; Qb and Lb 

indicate the base flow simulations; Qq and Lq indicate the quick flow simulations. 

Model performance Statistics 
Q SS TP TN 

Qb Qq Qall Lb Lq Lall Lb Lq Lall Lb Lq Lall 

Calibration (2004–2008) 

R2 0.84 0.84 0.77 0.66 0.68 0.61 0.24 0.65 0.39 0.72 0.97 0.95 

NSE 0.6 0.71 0.73 0.33 0.33 0.27 -6.2 0.09 -0.17 0.5 0.89 0.85 

±PBIAS% 7.5 8.7 7.8 7.57 -23.4 -3.6 45.4 40.1 43.6 0.8 6.6 2.7 

Validation (1994–1997) 

R2 0.87 0.81 0.68 0.36 0.98 0.95 0.27 0.27 0.06 0.79 0.33 0.58 

NSE 0.56 0.62 0.62 -0.03 0.43 0.85 -1.9 0.04 -0.64 0.58 -0.07 0.33 

±PBIAS% 11.3 -1.2 8.8 34.5 -79.7 11.1 45.8 -9.3 37 -7.6 14.3 -2.5 

R2: coefficient of determination; NSE: Nash–Sutcliffe efficiency; PBIAS: percent bias 
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12. How did the authors calculate evapotranspiration as an input parameters for 

the SWAT model? 

 This has been explained in the text as follows: “The Penman–Monteith 

method (Monteith, 1965) was used to calculate evapotranspiration”. 

 

13. In the Conclusion, discuss on the most important factors which are effective 

on variations of the base and quick flow in the study area. 

 On Page 4332, lines15–17, relevant text was discussed in Conclusions as 

follows: “Parameters relating to main channel processes were more sensitive 

when estimating variables (particularly Q and SS) during base flow, while 

those relating to overland processes were more sensitive for simulating 

variables associated with quick flow”. 

 

References: 

Coulibaly, P., Bobée, B., Anctil. F.: Improving extreme hydrologic events 

forecasting using a new criterion for ANN selection, Hydrol Process, 15, 

1533–1536, doi:10.1002/hyp.445, 2001. 

Monteith, J.L.: Evaporation and the environment. p. 205–234. In The state and 

movement of water in living organisms, XIXth Symposium. Soc. For Exp. 

Biol., Swansea, Cambridge University Press, 1965. 

Ribeiro, J., Lauzon, N., Rousselle, J., Trung, H.T., Salas, J.D.: Comparaison de 

deux mode`les pour la pre´vision journalie`re en temps re´el des apports 

naturels, Can. J. Civil Engng 25, 291–304, 1998. 

Santhi, C., Arnold, J.G., Williams, J. R., Dugas, W.A., Srinivasan, R., and Hauck, 

L.M.: Validation of the SWAT model on a large river basin with point and 

nonpoint sources, J. American Water Resources Assoc., 37, 1169-1188, 

2001. 

Wu, H., Chen, B. 2015. Evaluating uncertainty estimates in distributed 

hydrological modeling for the Wenjing River watershed in China by 

GLUE, SUFI-2, and ParaSol methods. Ecological Engineering 76: 110–

121.  
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Anonymous Referee #2 

We thank the reviewer for the positive feedback made at the start of the general comments 

section. Other general comments were as followed:  

“Making all the text more fluent and easy to follow, consider re-organizing a few topics of 

the paper…” 

 In response, we have edited and re–organised a few topics of the manuscript, which are: 

(a) Sections 2.1 ‘Study area’ and 2.2 ‘Model configuration’ have been separated, (b) the 

Section ‘Parameter calibration’ has been renamed to ‘Model calibration and validation’, 

(c) the Section ‘Sensitivity analysis’ has been incorporated into the Section ‘Hydrograph 

and contaminant load separation’, (d) the Section ‘Model evaluation’ has been moved 

down to the end of Section 2 ‘Methods’, (e) model uncertainty analysis has been added 

into the Section ‘Model evaluation’, (f) a general summary has been placed at the 

beginning of  Section 4 ‘Discussion’, (g) a new Section ‘Key uncertainties’ has been 

added between the two Sections ‘Temporal dynamics of model performance’ and 

‘Temporal dynamics of parameter sensitivity’. 

 Additional text has been added in both Sections ‘Results’ and ‘Discussion’ including 

1) calibrated parameter values (have been added to Results); 2) values of model 

performances statistics have been added to the Results for simulations of discharge and 

contaminant loads, separated for the two flow regimes. Brief text has been added to the 

Discussion in relation to these results; 3) details of model uncertainties, based on 95% 

confidence intervals and 95% prediction intervals have been added to the Results; and 4) 

relative sensitivity analysis of parameters by randomly generating combinations of values 

for model parameters for each individual variable before the one–at a–time analysis of 

parameter sensitivities have been quantified in the Results for the separated flow 

constituents. 

 

“…and also the authors should address better “the need of a robust calibration and validation, 

and that a calibration of a particular situation may lead to a greater uncertainty on scenario 

analyses”, and in this sense, it is important to clarify better how the particular case study 

calibration was conducted and what parameter values were obtained.” 

 We have edited the Section ‘Model calibration and validation’ to provide additional 

details of the calibration and validation processes. We have also added the calibrated 

parameter values to Table 3.  
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 “As well as, if not quantify uncertainties for this paper, but to introduce some discussion 

regarding the uncertainties and limitations of the methodology used, the monitored data, and 

separation of the hydrograph contributions (base and quick flows), and concentrations. And 

also pass the key findings to the reader in the end.” 

 To address this comment, we have added a new section to the Discussion entitled ‘Key 

uncertainties’. This reads: “Lindenschmidt et al. (2007) found sources of uncertainty in a 

river water quality modelling system in terms of estimated parameter values, model input 

data, and model equations used to calculate processes. Model uncertainty in this study 

may, therefore, arise from four main factors: 1) model parameters; 2) forcing data; 3) in 

measurements used for evaluation of model fit, and; 4) model structure or algorithms. The 

values of most parameters assigned for model calibration, although specific to different 

soil types (e.g. soil parameters), were lumped across land uses and slopes in this study. 

They integrated spatial and temporal variations and therefore provided an uncertainty for 

the real values that may widely vary in representing different characteristics of the study 

catchment. In terms of forcing data, it appeared reasonable to assume the spring discharge 

rate be invariant. However, the assumption of constant values of nutrient concentrations 

that inadequately reflected temporal variances might be one factor causing to model 

uncertainty, although as a relatively minor source of model error. Most measured water 

quality data used for model calibration were monthly instantaneous samples taken during 

base flow. The use of those measurements for model calibration would lead to a 

considerable underestimate of constituent concentrations if the study area endures quite a 

high frequency of rainfall events. Inadequate representation of groundwater processes in 

the model structure is another key factor causing to the underestimates of model 

uncertainty by affecting nitrogen simulations”. Another discussion on Page 4329, lines 

19–26 said: “Furthermore, the disparity in goodness–of–fit statistics between discharge 

(typically “good” or “very good”) and nutrient variables (often “unsatisfactory”) 

highlights the potential for catchment models which inadequately represent contaminant 

cycling processes (manifest in unsatisfactory concentration estimates) to nevertheless 

produce satisfactorily load predictions (e.g., compare model performance statistics for 

prediction of nutrient concentrations in Table 5 with statistics for prediction of loads in 

Table 6). This highlights the potential for model uncertainty to be underestimated in 

studies which aim to predict the effects of scenarios associated with changes in 

contaminant cycling, such as increases in fertiliser application rates”. 
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 As described in the response to comment #20, key findings have been added in the 

Section ‘Temporal dynamics of parameter sensitivity’ in the Discussion as follows: “This 

study has important implications for modelling studies of similar catchments that exhibit 

short–term temporal fluctuations in stream flow. In particular these include small 

catchments with relatively steep terrain, low order streams and moderate to high rainfall”. 

 

Specific Comments:  

1. The title could express better the main question and discussion of the paper; 

 The title has been revised to read: “Effects of hydrologic conditions on SWAT model 

performance and parameter sensitivity for a small, mixed land use catchment in New 

Zealand”. 

 

2. Abstract is clear and it catches the reader attention for the paper, but should also 

incorporate the main findings of the application on the watershed studied and possible 

implications; 

 We have included additional text to capture the main findings of the study.  Please see our 

response to Referee #1, comment #2: “Monthly instantaneous TP and TN concentrations 

were generally not reproduced well (24% bias for TP, 27% bias for TN, and R2 < 0.1, 

NSE < 0 for both TP and TN), in contrast to SS concentrations (< 1% bias; R2 and NSE 

both > 0.75) during model validation. Comparison of simulated daily mean SS, TP and 

TN concentrations with daily mean discharge–weighted high–frequency measurements 

during storm events indicated that model predictions during the high rainfall period 

considerably underestimated concentrations of SS (44% bias) and TP (70% bias), while 

TN concentrations were comparable (< 1% bias; R2 and NSE both ~0.5). Several SWAT 

parameters were found to have different sensitivities between base flow and quick flow. 

Parameters relating to main channel processes were more sensitive for the base flow 

estimates, while those relating to overland processes were more sensitive for the quick 

flow estimates”.  

 

3. The methods section: Although the authors discuss more about the watershed’s conditions 

on the discussion section, it would be valuable for the reader to be able to understand it 

before, to follow better the discussion. As what are the main processes, average precipitation, 
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slope, characteristics, land uses, soil types, etc. What would be typical base flow, quick flow, 

lateral flow contributions. 

 We now provide a more detailed description of watershed characteristics in Section 2.1 

‘Study area’. Additional text is as follows: “The catchment is situated in the central North 

Island of New Zealand, which has a warm temperate climate. Annual mean temperature 

at Rotorua Airport (Fig. 1a) is 15±4 °C and annual mean evapotranspiration is 714 mm yr-

1 (1993–2012; National Climatic Data Centre; available at http://cliflo.niwa.co.nz/). 

Annual mean precipitation at Kaituna rain gauge (Fig. 1a) is 1500 mm yr-1 (1993–2012; 

Bay of Plenty Regional Council). The catchment is relatively steep (mean slope = 9%; 

Bay of Plenty Regional Council) with predominantly pumice soils that have high 

macroporosity, resulting in high infiltration rates and substantial sub–surface lateral flow 

contributions to stream channels. Two cold–water springs (Waipa Spring and Hemo 

Spring) and one geothermal spring (Fig. 1b) are located in the LTS. Two cold–water 

springs have annual mean discharge of ~0.19 m3 s-1 (Rotorua District Council) and one 

geothermal spring has annual mean discharge of ~0.12 m3 s-1 (White et al., 2004)”.  

 We note that we have already provided details of the land use composition of the 

catchment on Page 4320, lines 4–15, hence, no further information about land use 

characteristics have been included.  

 After we introduced the FRI gauge on Page 4320, lines 16–21, a detailed text is added 

as follows: “Annual mean discharge at this site is 2.0 m3 s-1 (1994–1997 and 2004–2008; 

Bay of Plenty Regional Council). The Puarenga Stream receives a high proportion of flow 

from groundwater stores and has only moderate seasonality in discharge. On average, the 

lowest mean daily discharge is during summer (December to February; 1.7 m3 s-1) and the 

highest mean daily discharge is during winter (June to August; 2.4 m3 s-1)”. 

  

4. The same goes for the SWAT model application, it is not clear for the reader, if the authors 

used the default configuration with default equations, or if different methods within SWAT 

were used. As for example, which method was used to calculate PET? Which for curve 

number? Which for routing? Also it is not clear in this section if the authors used the hourly 

input and ran SWAT with hourly data, using Green & Ampt, or if the data was aggregated on 

daily beforehand, and SCS method was used. Or for example what was the warm up period 

used? It would be important to write the chosen methods of the model in the methods section. 

 In response to the reviewer’s comments, the following text has been added in the Model 

configuration section: “Hourly rainfall estimates were used as hydrologic forcing data. 
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The Penman–Monteith method (Monteith, 1965) was used to calculate evapotranspiration 

(ET) and potential ET. The Green and Ampt (1911) method was used to calculate 

infiltration, rather than the SCS curve number method. Therefore, the hourly 

rainfall/Green & Ampt infiltration/daily routing method (Neitsch et al., 2011) was chosen 

to simulate upland and in–stream processes”. And in the Model calibration and validation 

section it has been added as follows: “One year (1993) was used for model warmup…”. 

 

5. The paper has a great amount of information for this section, as for example plant 

parameters, wastewater applications, etc. Tables 1 and 2 were good to concise a lot of this 

information. And of course this is not the main point of the paper, but it has to be sufficient 

for reproduction. So we advise a better description of model configuration, and also of the 

calibration process; 

 Please see the section Model configuration which is now more comprehensive. Additional 

text has been added to this section as follows: “The DEM was used to delineate 

boundaries of the whole catchment and individual sub–catchments, with a stream map 

used to ‘burn–in’ channel locations to create accurate flow routings. Hourly rainfall 

estimates were used as hydrologic forcing data. The Penman–Monteith method (Monteith, 

1965) was used to calculate evapotranspiration (ET) and potential ET. The Green and 

Ampt (1911) method was used to calculate infiltration, rather than the SCS curve number 

method. Therefore, the hourly rainfall/Green & Ampt infiltration/daily routing method 

(Neitsch et al., 2011) was chosen to simulate upland and in–stream processes. Ten sub–

catchments were represented in the Puarenga Stream catchment, each comprising 

numerous Hydrologic Response Units (HRUs). Each HRU aggregates cells with the same 

combination of land cover, soil, and slope. A total of 404 HRUs was defined in the model. 

Runoff and nutrient transport were predicted separately within SWAT for each HRU, 

with predictions summed to obtain the total for each sub–catchment”.  

 

6. In the calibration: (1) please cite more literature, and although the algorithm and software 

(SUFI-2 and SWAT-CUP) are mentioned, there is a need to explain how the calibration 

process was. (2) Was flow calibrated first? And then suspended sediment? And then water 

quality related parameters? Was it all at once? (3) Why the authors calibrated TP manually 

and the others with SUFI-2? (4) No Sensitivity analysis was done prior to calibration, why? 

What was the Objective function used? 
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 (i) A further reference, i.e. Wu and Chen (2015), has been added to the background text 

as follows: “The SUFI–2 procedure has been integrated into the SWAT Calibration and 

Uncertainty Program (SWAT–CUP). SUFI–2 is a procedure that efficiently quantifies 

and constrains parameter uncertainties/ranges from default ranges with the fewest number 

of iterations (Abbaspour et al., 2004), and has been shown to provide optimal results 

relative to the use of alternative algorithms (Wu and Chen, 2015)”. 

 

(ii) Parameters were calibrated in the following order: discharge (Q), SS, TP and TN. The 

sequence of calibration is described (Page 4322, lines 13–16) as follows: “Daily mean 

discharge was firstly calibrated based on daily mean values of 15–minute measurements. 

Water quality variables were then calibrated in the sequence: SS, TP and TN. Modelled 

mean daily concentrations were compared with concentrations measured during monthly 

grab sampling, with monthly measurements assumed equal to daily mean concentrations”.  

 

(iii) The reason why TP was calibrated manually is explained in the text on Page 4328, 

lines 14–22 as follows: “The ORGP fraction that is simulated in SWAT includes both 

organic and inorganic forms of particulate phosphorus, however, the representation of 

particulate phosphorus cycling only focusses on organic phosphorus cycling, with limited 

consideration of interactions between inorganic streambed sediments and dissolved 

reactive phosphorus in the overlying water (White et al., 2014). This contrasts with 

phosphorus cycling in the study stream where it has been shown that dynamic sorption 

processes between the dissolved and particulate inorganic phosphorus pools exert major 

control on phosphorus cycling (Abell and Hamilton, 2013)”.  

 

(iv) Sensitivity analysis was done prior to calibration using the SUFI–2 procedure. It 

helped to gain insight into the variances in parameter sensitivities for different flow 

regime components using ‘one–at a–time’ (OAT) routine. A detailed description has been 

added after the background of Latin hypercube sampling (LHS) as follows: “The SUFI–2 

procedure analyses relative sensitivities of parameters by randomly generating 

combinations of values for model parameters (Abbaspour et al., 2014). A sample size of 

1000 was chosen for each iteration of LHS, resulting in 1000 combinations of parameters 

and 1000 simulations. Model performance was quantified for each simulation based on 

the Nash–Sutcliffe efficiency (𝑁𝑆𝐸 ). An objective function was defined as a linear 

regression of a combination of parameter values generated by each LHS against the 𝑁𝑆𝐸 
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value calculated from each simulation. Each compartment was not given weight to 

formulate the objective function because only one variable was specifically focused on at 

each time. A parameter sensitivity matrix was then computed based on the changes in the 

objective function after 1000 simulations. Parameter sensitivity was quantified based on 

the p value from a Student’s t–test, which was used to compare the mean of simulated 

values with the mean value of measurements (Rice, 2006). A parameter was deemed 

sensitive by if p ≤ 0.05 after 1000 simulations (one iteration). Numerous iterations of 

LHS were conducted. Values of p from numerous iterations were averaged for each 

parameter, and the frequency of iterations where a parameter was deemed sensitive was 

summed. Rankings of relative sensitivities of parameters were developed based on how 

frequently the sensitive parameter was identified and the averaged value of p calculated 

from several iterations. The most sensitive parameter was determined based on the 

frequency that the parameter was deemed sensitive, and the smallest average p–value 

from all iterations”  

 A new table has also been added in the text to show the ranking of relative 

sensitivities of hydrological and water quality parameters derived from the SUFI–2 

procedure. The text has been added in Method as follows: “A one–at a–time (OAT) 

routine proposed by Morris (1991) was applied to investigate how parameter sensitivity 

varied between the two flow regimes (base flow and quick flow), based on the ranking of 

relative sensitivities of parameters that were identified by randomly generating 

combinations of values for model parameters for each individual variable using the 

SUFI–2 procedure”. The text has also been added in Results as follows: “Based on the 

ranking of relative sensitivities of hydrological and water quality parameters derived from 

the SUFI–2 procedure (see Table 7), the OAT sensitivity analysis undertaken separately 

for base flow and quick flow identified…”. 
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Table 7 Rankings of relative sensitivities of parameters (from most to least) for variables (header row) of Q (discharge), SS (suspended 

sediment), MINP (mineral phosphorus), ORGN (organic nitrogen), NH4–N (ammonium–nitrogen), and NO3–N (nitrate–nitrogen). Relative 

sensitivities were identified by randomly generating combinations of values for model parameters and comparing modelled and measured data 

with a Student’s t test (p ≤ 0.05). Bold text denotes that a parameter was deemed sensitive relative to more than one simulated variable. Shaded 

text denotes that parameter deemed insensitive to any of the two flow components (base and quick flow; see Figure 7) using one–at a–time 

sensitivity analysis. Definitions and units for each parameter are shown in Table 3. 

Q SS MINP ORGN NH4–N NO3–N 

SLSOIL LAT_SED CH_OPCO CH_ONCO CH_ONCO NPERCO 

CH_K2 CH_N2 BC4 BC3 BC1 CDN 

HRU_SLP SLSUBBSN RS5 SOL_CBN(1) CDN ERORGN 

LAT_TTIME SPCON ERORGP RS4 RS3 CMN 

SOL_AWC(1) ESCO PPERCO RCN RCN RCN 

RCHRG_DP OV_N RS2 N_UPDIS 
 

RSDCO 

GWQMN SLSOIL PHOSKD USLE_P 
  

GW_REVAP LAT_TTIME GWSOLP SDNCO 
  

GW_DELAY SOL_AWC(1) LAT_ORGP SOL_NO3(1) 
  

CH_COV1 EPCO 
 

CMN 
  

CH_COV2 CANMX 
 

HLIFE_NGW 
  

EPCO CH_K2 
 

RSDCO 
  

SPEXP GW_DELAY 
 

USLE_K(1) 
  

CANMX ALPHA_BF 
    

CH_N1 GW_REVAP 
    

PRF CH_COV1 
    

SURLAG  
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7. I believe the section 2.1, 2.2 and 2.3 can be better organized. In the end of section 2.2 there 

is some description of the model used - SWAT, and in model evaluation a small description 

of calibration and validation, please revise. 

 We have re-organised these three sections and the new structure is: 2.1 Study area, 2.2 

Model configuration, 2.3 Model calibration and validation. The description of the SWAT 

model has been moved into Section 2.2. The description of calibration and validation has 

been moved into Section 2.3. The section relating to model evaluation has been moved 

down to the end of Section 2. 

 

8. Table 1: (1) Please state clearly that the 15 min data was aggregated; the acronyms SS, TP 

and TN are in Table 1, but they were not presented in the text that is before Table1; (2) please 

also explain in here why there are the two validation periods with a short sentence as a 

footnote, for example, just to be clear. (3) Consider separating into two sections the point 

sources, in the contributions: spring, etc; and the abstractions, with related sources. (4) Also, 

why were the spring discharges constant, if there was measured data, if it was not enough for 

a daily series, how were they “based” on the measured data? 

 (i) The relevant text has been adjusted in Row #2 Column #3 as follows: “FRI: 15–min 

stream discharge data were aggregated as daily mean values …, monthly grab samples for 

determination of suspended sediment (SS), total phosphorus (TP) and total nitrogen (TN) 

concentrations …”.  

 

(ii) A footnote has been added to Table 1 as follows: “Model validation was undertaken 

using two different datasets. The monthly measurements (1994–1997) were 

predominantly collected when base flow was the dominant contributor to stream 

discharge. Data from high–frequency sampling during rain events (2010–2012) were also 

used to validate model performance during periods when quick flow was high”.  

 

(iii) The section of point sources has been separated into two sections “Spring discharge 

and nutrient loads” and “Water abstraction volumes” with their relative sources.  

 

(iv) Regarding the constant spring discharge, the flow data and nutrient concentrations 

were reported as mean values in the relevant sources (see Table 1). Therefore constant 

daily mean discharge and nutrient concentrations were assigned in this study.  
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9. Table1: (1) Soil characteristics, make it clear if all the SWAT needed parameters were 

directly from data, or how they “were determined using key physical properties” were pedo-

transfer functions used? (2) Meteorological data section: include the airport station as source; 

(3) for the “Agricultural management practices” would be nice to subdivide to attribute what 

is source of what, if feasible. 

 (i) Thanks for pointing out this inaccurate sentence. Characteristics of functional horizons 

from top to bottom of the soil profile (e.g. the thickness and the soil texture contents of 

each horizon) were derived from digital soil maps; however, the soil maps provided 

limited information on physical properties, a few of which were only represented as a 

mean value for the whole soil profile. Some other studies measured some soil property 

variables (e.g. saturated hydraulic conductivity) at different predetermined functional 

horizons, which were then used in regression analysis to estimate values for each of the 

horizons. This has been clarified in Table 1 as follows: “Properties were quantified based 

on measurements (if available) or estimated using regression analysis to estimate 

properties for unmeasured functional horizons”. 

 

(ii) The source of the airport station has been included in Table 1 as follows: “Rotorua 

Airport Automatic Weather Station, National Climate Database (available at 

http://cliflo.niwa.co.nz/)”.  

 

(iii) The section of Agricultural management practices has been subdivided to three sub–

sections according to their relevant citations: 1) stock density (Statistics New Zealand, 

2006; Ledgard and Thorrold, 1998); 2) applications of urea and di–ammonium phosphate 

(Statistics New Zealand, 2006; Fert Research, 2009); and 3) applications of manure–

associated nutrients (Dairying Research Corporation, 1999). 

 

10. The phrase starting with “A validation period was chosen that pre-dated the calibration 

period because wastewater irrigation has occurred daily since 2002, compared with weekly 

during the validation period (1994–1997)” in the 2.3 section is not clear, specially the 

“compared with weekly”, please revise. 

 We agree that this is a somewhat unusual situation that reflects issues of data availability 

(discharge records) and the history of management operations that are specific to this 

catchment.  

http://cliflo.niwa.co.nz/)
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 Please see our response to Reviewer #1, comment #7. We have revised the text more 

clearly as follows “A validation period that pre–dated the calibration period was chosen 

because discharge records were available for two separate periods (1994–1997 and post 

2004). In addition, the operational regime for the wastewater irrigation has varied since 

operations began in 1991, with a marked change occurring in 2002 when operations 

switched from applying the wastewater load to two blocks (rotated daily for a total of 14 

blocks in a week; i.e., each block irrigated weekly), to 10–14 blocks each irrigated daily. 

This operational regime continues today and we therefore decided to assign the most 

recent (post 2002) period (2004–2008) to calibration to ensure that the model was 

configured to reflect current operations”. 

 

11. Calibration – (1) Table 3: Please include calibrated values, (2) and how the parameters 

were changed within the given range; For example was CANMX changed for all crops? (3) 

CN2 and slope parameters etc were changed as relative parameters, or were they changed 

arbitrarily within the given range? (4) Were the physical characteristics of the catchment 

considered, how? 

 (i) This has been added in the text as follows: “The parameters that provided the best 

statistical outcomes (i.e, best match to observed data) are given in Table 3”.  

 

(ii) The parameter CANMX was not changed for all crops because the main land use in 

the catchment is plantation forest, therefore the value for parameter CANMX was 

assigned as constant for the land use type (Pinus radiata).  

 

(iii) Parameters were changed by absolute values within the given ranges. The statement 

has been added in the text as follows: “Auto–calibrated parameters for simulations of Q, 

SS, and TN were changed by absolute values within the given ranges. Some of those 

given ranges were restricted based on the optimum values calibrated in similar studies”.  

 Optimal parameter set was also constrained by the analysis of model uncertainty with 

consideration of two criteria, i.e., optimal parameter set was derived from when > 90% of 

measured data was bracketed by simulated output (termed P–factor) and the average 

thickness of the 95PPU band divided by the standard deviation of measured data (termed 

R–factor) was close to one. Therefore, it could avoid the homogeneity of the same model 

performance statistic (e.g. NSE ) estimated from different parameter values that were 

changed by absolute values from different parameter ranges. 
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 Regarding the manual calibration for TP simulations, we considered the information 

on the auto–calibrated parameter values for MINP simulations. The statement has been 

added in the text as follows: “Parameter values for TP simulations were manually–

calibrated based on the relative percent deviation from the predetermined values of those 

auto–calibrated parameters for MINP simulations, given by the objective functions (e.g. 

NSE)”. 

 

(iv) This has been added in the text as follows: “Parameters related to the physical 

characteristics of the catchment were not changed because their values were considered to 

be representative of the catchment characteristics”. 

 

12. Calibration – Table 3: There are some parameter values here that seem very high. As for 

example CANMX, LAT_TTIME (1800?) etc, please revise, and justify; 

 We have checked the values presented in this table and confirm that the values given are 

indeed the SWAT default ranges (Neitsch et al., 2011), as described in column heading. 

 

13. Do we need any of these 3 formulas? Formula 1 is a weighted average; formula 2 and 3 

are the same, just changing the left side, and are mass balance. Consider leaving only citation, 

especially since they are also on Figure 2. 

 Equation #1 (named formula 1 by the reviewer) is necessary to keep in because it was 

used to calculate discharge–weighted mean concentrations based on the high–frequency 

measured data.   

 We believe that the initial numbered Equation #5 (named formula #2 by the reviewer) 

is also necessary because it is central to the concept of separately considering loads 

associated with base flow and quick flow, which is an important focus of the study. This 

equation is now numbered as Eq. (2) in the manuscript. 

 The initial numbered Equation #6 (named formula #3 by the reviewer) has been 

removed because it was rearranged from Eq. (2). 

 

14. Figure 2 is nice, but please include the citations/sources in the figure for the methods used. 

Also please revise the phrase on text that calls figure 2: “Methods used to quantify parameter 

sensitivity…”, since figure 2, explains all this methods, including the previous described 

separations of section 2.4; 
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 References have been added in Figure 2 using footnotes. Specifically: “Web–based 

Hydrograph Analysis Tool (Lim et al. 2005)”; Define concentrations in base flow (Cb) 

and quick flow (Cq) components (cf. Rimmer and Hartmann, 2014); and the natural 

logarithm (Krause et al., 2005)”. 

 The caption has been changed slightly to read “Figure 2. Flow chart of methods used 

to separate hydrograph and contaminant loads and to quantify parameter sensitivities 

for…”.  

 

15. In the text of section 3.1 please cite the performance rating criteria used directly from 

Moriasi et al., 2007 (yes, I know Table 4 brings all information), but reading the text only 

should be clear the source. 

 Performance rating criteria have been included in the text as follows “… model 

performance ratings (cf. Moriasi et al., 2007) of ‘very good’ and ‘good’ (Table 4).” 

 

16. What about the statistics for the separated quick and base flows? 

 A temporal evaluation for model performance of simulations for the separated quick and 

base flow components has been added. These results are now presented in Table 6, which 

is reproduced below. Accordingly, further text has been added to the Section Results and 

Discussion.  

 The following text has been added to the Section Results as follows: “Model 

performance statistics differed between the two flow regimes (Table 6). Simulations of 

discharge and constituent loads under quick flow were more closely related to the 

measurements (i.e., higher values of R2 and NSE) than simulations under base flow. Base 

flow TN load simulations during the validation period showed better model performance 

than simulations under quick flow. Additionally, measurements under quick flow were 

better reproduced by the model than the measurements for the whole simulation period. 

Simulations of contaminant loads matched measurements much better than for 

contaminant concentrations, as indicated by statistical values for model performance 

given in Table 5 and 6”.  

 Accordingly, further text has been added to the Discussion as follows: “The analysis 

of model performance based on datasets separated into base flow and quick flow 

constituents enabled uncertainties in the structure of hydrological models to be identified, 

denoted by different model performance between these two flow constituents”. 
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Table 6. Model performance statistics for simulations of discharge (Q), and loads of suspended sediment (SS), total phosphorus (TP) and total 

nitrogen (TN). Statistics were calculated for both overall and separated simulations. Qall and Lall indicate the overall simulations; Qb and Lb 

indicate the base flow simulations; Qq and Lq indicate the quick flow simulations. 

Model performance Statistics 
Q SS TP TN 

Qb Qq Qall Lb Lq Lall Lb Lq Lall Lb Lq Lall 

Calibration (2004–2008) 

R2 0.84 0.84 0.77 0.66 0.68 0.61 0.24 0.65 0.39 0.72 0.97 0.95 

NSE 0.6 0.71 0.73 0.33 0.33 0.27 -6.2 0.09 -0.17 0.5 0.89 0.85 

±PBIAS% 7.5 8.7 7.8 7.57 -23.4 -3.6 45.4 40.1 43.6 0.8 6.6 2.7 

Validation (1994–1997) 

R2 0.87 0.81 0.68 0.36 0.98 0.95 0.27 0.27 0.06 0.79 0.33 0.58 

NSE 0.56 0.62 0.62 -0.03 0.43 0.85 -1.9 0.04 -0.64 0.58 -0.07 0.33 

±PBIAS% 11.3 -1.2 8.8 34.5 -79.7 11.1 45.8 -9.3 37 -7.6 14.3 -2.5 

R2: coefficient of determination; NSE: Nash–Sutcliffe efficiency; PBIAS: percent bias 
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17. Please revise and make clearer the section 3.2. It does bring a nice discussion. 

Would also suggest changing the phrase: “Those sensitive flow 

parameters..: : :particularly sensitive” 

 On reflection, we now believe that the sentence is unnecessary so we have 

removed it altogether. 

  

18. Discuss why use log 10 Nash here, and not before or in both analyses? 

 Krause et al. (2005) stated in section 2.5 that “The logarithmic form of E 

[Nash–Sutcliffe efficiency] is widely used to overcome the oversensitivity to 

extreme values”, and in section 2.6 “it can be expected that the relative forms 

are more sensitive on systematic over– or underprediction, in particular during 

low flow conditions”. We took this latter statement to mean that: “the 

logarithmic form of the Nash–Sutcliffe efficiency (NSE) value provided more 

information on the sensitivity of model performance for discharge simulations 

during storm events, while the relative form of NSE was better for base flow 

periods” (see page 4318 lines 11–14). Therefore the natural logarithm was 

used by Krause et al. (2005) and therefore the standard deviation (𝑆𝑇𝐷) of the 

ln–transformed NSE were used to indicate parameter sensitivity for the two 

flow regimes. 

 The normalised format of NSE was used to rate model performance.   

 

19. It is interesting and it would be expected that since the model was calibrated 

when wastewater was being applied that in the previous years used for validation 

the water quality components would be underestimated. But therefore a deeper 

discussion on the calibrated parameters may play an important role, since, are the 

parameters changed, so the physical meaning has also been decreased and 

therefore if no application is done, it underestimates, or is the model and 

algorithms, not replying well to different forcings? Therefore is it a limitation of 

the calibrated set of parameters only or/and method? 

 Forcing data were changed throughout the simulation period but the 

parameters were not changed. Wastewater was applied during both the 

calibration and validation periods. However, as we discuss (from Page 4328, 

lines 27–29 to Page 4329, lines 1–2), “Our decision to deliberately select a 

validation period (1994–1997) during which the boundary conditions of the 
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system (specifically anthropogenic nutrient loading) differed considerably 

from the calibration period allowed us to rigorously assess the capability of 

SWAT to accurately predict water quality under an altered management 

scenario (i.e. the purpose of most SWAT applications)”.  

 

20. Section 4.2 is very valuable and dense, a final “closure” with key findings in 

the section 4.2 is advised; as maybe a small discussion of how regional the 

sensitivity analysis results are, or how they could be extrapolated to base flow and 

quick flow, it is difficult, but would be valuable. 

 Additional text has been added in the Conclusions section as follows: “This 

study has important implications for modelling studies of similar catchments 

that exhibit short–term temporal fluctuations in stream flow. In particular 

these include small catchments with relatively steep terrain and lower order 

streams with moderate to high rainfall”. 

   

21. In the 4.2 section: would also like to see what is the average percentages of 

lateral flow to the flow contribution on the region both simulated and from local 

knowledge; 

 Additional result has been added in Section ‘Results’ as follows: “Annual 

mean percentages of lateral flow recharge, shallow aquifer recharge and deep 

aquifer recharge to total water yield were predicted by SWAT as 30%, 10%, 

58%, respectively”.  

 Additional text has also been added in Section ‘Discussion’ as follows: 

“The modelled estimates of deep aquifer recharge (58%) and combined lateral 

flow and shallow aquifer recharge (40%) were comparable with estimates 

derived by Rutherford et al. (2011), who used an alternative catchment model 

to derive respective estimates of 30% and 70% for these two fluxes”.  

 

References:  
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Anonymous Referee #3 

The reviewer provides complementary comments on the quality of the paper but also 

indicates “…the authors test design and discussions are not adequate to derive the intended 

conclusions. The model configuration, calibration process are not adequately reported. 

Uncertainty analysis is missing. My general comment is that the study can be accepted if the 

authors are able to address the following shortcomings in sufficient detail and only after a 

major revision.” 

 In our revisions we have attempted to address the above issues raised by the reviewer. 

Additional text has been added to the Results and Discussion sections so that the reader 

can better understand how we reached our conclusions. We have also provided an 

extended text on the model configuration and calibration process, and have provided 

further details about the uncertainty analysis. Further responses are given in comments 

(below) in which we demonstrate specific changes made to the paper. 

 

Specific comments:  

a) Abstract 

1. Page 4316, line 10, “comparison of simulated daily mean discharge… allowed the error in 

the model prediction to be quantified”. The authors failed to properly address the claim they 

raised here, in the main body of paper. 

 Discharge has been removed from the comparison. We were not able to do a comparison 

of observed high–frequency, event–based discharge measurements (2010–2012) against 

modelled daily mean simulations of discharge because the observed measurements at the 

FRI stream–gauge for the period 2010-2012 were not available. In July 2010, the gauge 

was repositioned 720 m downstream to the State Highway 30 (SH 30) bridge (Page 4320, 

lines 20–21). 

 

2. (1) The authors suggested hiring higher frequencies of observation in order to overcome 

the base and quick flow dependent regimes limitations in current model. (Page 4316, line 15). 

(2) Please explain how this improve the model performance? (3) Do you also consider sub–

daily simulations? Please clarify that in the proper section in the main text. 

 (i) The statement has been added in the text as follows: “We did not use the high–

frequency observations to calibrate the model, because of the limited number of high–

frequency (1–2 h) samples (nine events for SS and 14 events for TP and TN in 2010–
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2012). The use of the high–frequency observations for model validation allowed to 

examine how the model performed during short (1–3 day) high flow periods”.  

 

(ii) To describe how the model reproduced the data derived from the high–frequency 

observations, we have showed simulated results as follows: “Monthly instantaneous TN 

concentrations used for model calibration and validation were generally not reproduced 

well in simulations (R2 < 0.1 and NSE < 0). The model showed satisfactory performance 

(R2and NSE both ~0.5) in reproducing daily mean discharge–weighted TN concentrations 

derived from high–frequency measurements (1–2 h) taken over 14 storm events of 

duration 24–73 h”. Therefore, we have stated as follows: “To address this, we recommend 

that high–frequency, event–based monitoring data are used to support calibration and 

validation”.  

 

(iii) In relation to sub–daily simulations, please see the response to Reviewer #1, comment 

#5: We did not consider sub–daily simulations. The version of the SWAT model used in 

this study (SWAT2009_rev488) runs on a daily time step. This has been added at the 

beginning of Section Model configuration as follows: “The SWAT model version used 

(SWAT2009_rev488) runs on a daily time step”. We provide additional reasoning for not 

using sub–daily time steps, as mentioned in Table 1 as follows: “measurements for 

important meteorological forcing variables (e.g., temperature, relative humidity and solar 

radiation) were available only at daily resolution”. 

 

3. Abstract, page 4316, line 17, again you are thronging an idea that your study has 

implications in identifying uncertainties but you are very inexact in explaining how?  

 We have revised the text in the Abstract to better explain the identification of 

uncertainties, as follows: “This study has important implications for identifying 

uncertainties in parameter sensitivity and performance of hydrological models applied to 

catchments with large fluctuations in stream flow, and in cases where models are used to 

examine scenarios that involve substantial changes to the existing flow regime”. 

 

4. Please be very specific of the outcome of this study in your abstract. Make 2-3 bullet 

points of what you achieved during this study. 

 Please see our response to Reviewer #1, comment #2 and Reviewer #2, comment #2. We 

have not put bullet points in the Abstract as this would not conform to the usual format of 
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an abstract. However, we have included additional text to capture the main findings of the 

study as follows: “Monthly instantaneous TP and TN concentrations were generally not 

reproduced well (24% bias for TP, 27% bias for TN, and R2 < 0.1, NSE < 0 for both TP 

and TN), in contrast to SS concentrations (< 1% bias; R2 and NSE both > 0.75) during 

model validation. Comparison of simulated daily mean SS, TP and TN concentrations 

with daily mean discharge–weighted high–frequency measurements during storm events 

indicated that model predictions during the high rainfall period considerably 

underestimated concentrations of SS (44% bias) and TP (70% bias), while TN 

concentrations were comparable (< 1% bias; R2  and NSE  both ~0.5). Several SWAT 

parameters were found to have different sensitivities between base flow and quick flow. 

Parameters relating to main channel processes were more sensitive for the base flow 

estimates, while those relating to overland processes were more sensitive for the quick 

flow estimates”. 

 

b) Introduction 

5. Page 4318, line 10, “They found that the logarithmic form of the Nash-Sutcliffe efficiency 

(NSE) value provided more information on the sensitivity of model performance for 

simulations of discharge during storm events, while the relative form of NSE was better for 

base flow periods.” this is not what Krause et al (2005) had been reported. In their paper they 

clearly stated that: “To reduce the problem of the squared differences and the resulting 

sensitivity to extreme values the Nash-Sutcliffe efficiency E is often calculated with 

logarithmic values of O and P. Through the logarithmic transformation of the runoff values 

the peaks are flattened and the low flows are kept more or less at the same level. As a result 

the influence of the low flow values is increased in comparison to the flood peaks resulting in 

an increase in sensitivity of ln E to systematic model over- or underprediction”. Beside they 

used natural logarithm and not log 10. I also couldn’t find the justification for the threshold 

number “0.1”. Please clarify this. 

 Krause et al. (2005) stated in section 2.5 that “The logarithmic form of E [Nash–Sutcliffe 

efficiency] is widely used to overcome the oversensitivity to extreme values”, and in 

section 2.6 “it can be expected that the relative forms are more sensitive on systematic 

over– or underprediction, in particular during low flow conditions”. We took this latter 

statement to mean that: “the logarithmic form of the Nash–Sutcliffe efficiency (NSE) 

value provided more information on the sensitivity of model performance for discharge 
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simulations during storm events, while the relative form of NSE was better for base flow 

periods” (see page 4318 lines 11–14). Therefore the natural logarithm was used by 

Krause et al. (2005) and therefore the standard deviation (𝑆𝑇𝐷) of the ln–transformed 

NSE were used to indicate parameter sensitivity for the two flow regimes. 

We have clarified the justification for the threshold in the paper text as follows: “The 

threshold value of “0.2” was chosen in this study, based on the median value derived 

from the calculations of the 𝑆𝑇𝐷 of ln–transformed NSE”.  

 

c) Parameter calibration (I would call it model calibration!) 

6. Page 4321, line 9. Latin hypercube method is a sampling method that insures the samples 

cover the entire parameter space and that the optimum solution is not a local minimum. LH is 

not quantifying uncertainties… please correct for that.  

 The heading has been changed to state model calibration and validation, as suggested.  

 With regard to the Latin hypercube sampling method, we have not altered the 

sentence on Page 4321, lines 10–11 but have added text that the reviewer suggested as 

follows: “Latin hypercube sampling (LHS) is a method that generates a sample of 

plausible parameter values from a multidimensional distribution and ensures that samples 

cover the entire parameter space, therefore ensuring that the optimum solution is not a 

local minimum (Marino et al., 2008)”. 

 

7. The calibration process is very vague to a non-swat user. Please give adequate information 

on calibration steps. You jumped from LH to R factor and P factor…describe your calibration 

procedure in short but sufficiently. Your calibration set up is unclear.  

 (1) Did you calibrate discharge and sediment and nitrate all together or one after the 

other?  

 (2) How did you select your parameters at first place?  

 (3) Did you perform some sensitivity analysis prior to calibration?  

 (4) Page 4321, line 16, “produce narrower parameter range”, how?  

 (5) How many simulations you had? How many iterations?  

 (6) Page 4321, line 17, “optimal value..” how do you know? ref?  

 (7) What are the fitted value for the selected parameter after calibration (best 

parameter set)?  
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 We have altered the manuscript in the sub–section Model calibration and validation in 

response to the need to provide information on the calibration steps:  

(i) The sequence of calibration is described on Page 4322, lines 13–16 and the text has 

been better clarified by rearranging as follows: “Daily mean discharge was firstly 

calibrated based on daily mean values of 15–minute measurements. Water quality 

variables were then calibrated in the sequence: SS, TP and TN. Modelled mean daily 

concentrations were compared with concentrations measured during monthly grab 

sampling, with monthly measurements assumed equal to daily mean concentrations”.  

 

(ii) We selected parameter values as follows (Page 4320, lines 26–27 and Page 4321, 

lines 1–2): “Values of SWAT parameters were assigned based on: i) measured data (e.g. 

some of the soil parameters; Table 1); ii) literature values from published studies of 

similar catchments (e.g. parameters for dominant land uses; Table 2); or iii) by calibration 

where parameters were not otherwise prescribed”.  

 

(iii) Please see Reviewer #2, Comment #6 (iv). Steps and equations used in the SUFI–2 

procedure to analyse parameter sensitivity are outlined by Abbaspour et al., (2004). The 

procedure of sensitivity analysis has been briefly described in new text as follows: “The 

SUFI–2 procedure analyses relative sensitivities of parameters by randomly generating 

combinations of values for model parameters (Abbaspour et al., 2014). A sample size of 

1000 was chosen for each iteration of LHS, resulting in 1000 combinations of parameters 

and 1000 simulations. Model performance was quantified for each simulation based on 

the Nash–Sutcliffe efficiency (𝑁𝑆𝐸 ). An objective function was defined as a linear 

regression of a combination of parameter values generated by each LHS against the 𝑁𝑆𝐸 

value calculated from each simulation. Each compartment was not given weight to 

formulate the objective function because only one variable was specifically focused on at 

each time. A parameter sensitivity matrix was then computed based on the changes in the 

objective function after 1000 simulations. Parameter sensitivity was quantified based on 

the p value from a Student’s t–test, which was used to compare the mean of simulated 

values with the mean value of measurements (Rice, 2006). A parameter was deemed 

sensitive by if p ≤ 0.05 after 1000 simulations (one iteration). Numerous iterations of 

LHS were conducted. Values of p from numerous iterations were averaged for each 

parameter, and the frequency of iterations where a parameter was deemed sensitive was 
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summed. Rankings of relative sensitivities of parameters were developed based on how 

frequently the sensitive parameter was identified and the averaged value of p calculated 

from several iterations. The most sensitive parameter was determined based on the 

frequency that the parameter was deemed sensitive, and the smallest average p–value 

from all iterations”.  

 A new table has also been added in the text to show the ranking of relative 

sensitivities of hydrological and water quality parameters derived from the SUFI–2 

procedure. The text has been added in Method as follows: “A one–at a–time (OAT) 

routine proposed by Morris (1991) was applied to investigate how parameter sensitivity 

varied between the two flow regimes (base flow and quick flow), based on the ranking of 

relative sensitivities of parameters that were identified by randomly generating 

combinations of values for model parameters for each individual variable using the 

SUFI–2 procedure”. The text has also been added in Results as follows: “Based on the 

ranking of relative sensitivities of hydrological and water quality parameters derived from 

the SUFI–2 procedure (see Table 7), the OAT sensitivity analysis undertaken separately 

for base flow and quick flow identified…”. 
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Table 7 Rankings of relative sensitivities of parameters (from most to least) for variables (header row) of Q (discharge), SS (suspended 

sediment), MINP (mineral phosphorus), ORGN (organic nitrogen), NH4–N (ammonium–nitrogen), and NO3–N (nitrate–nitrogen). Relative 

sensitivities were identified by randomly generating combinations of values for model parameters and comparing modelled and measured data 

with a Student’s t test (p ≤ 0.05). Bold text denotes that a parameter was deemed sensitive relative to more than one simulated variable. Shaded 

text denotes that parameter deemed insensitive to any of the two flow components (base and quick flow; see Figure 7) using one–at a–time 

sensitivity analysis. Definitions and units for each parameter are shown in Table 3. 

Q SS MINP ORGN NH4–N NO3–N 

SLSOIL LAT_SED CH_OPCO CH_ONCO CH_ONCO NPERCO 

CH_K2 CH_N2 BC4 BC3 BC1 CDN 

HRU_SLP SLSUBBSN RS5 SOL_CBN(1) CDN ERORGN 

LAT_TTIME SPCON ERORGP RS4 RS3 CMN 

SOL_AWC(1) ESCO PPERCO RCN RCN RCN 

RCHRG_DP OV_N RS2 N_UPDIS 
 

RSDCO 

GWQMN SLSOIL PHOSKD USLE_P 
  

GW_REVAP LAT_TTIME GWSOLP SDNCO 
  

GW_DELAY SOL_AWC(1) LAT_ORGP SOL_NO3(1) 
  

CH_COV1 EPCO 
 

CMN 
  

CH_COV2 CANMX 
 

HLIFE_NGW 
  

EPCO CH_K2 
 

RSDCO 
  

SPEXP GW_DELAY 
 

USLE_K(1) 
  

CANMX ALPHA_BF 
    

CH_N1 GW_REVAP 
    

PRF CH_COV1 
    

SURLAG  
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(iv) Steps and equations used in the SUFI–2 procedure to constrain parameter 

ranges are outlined by Abbaspour et al., (2004). The method to produce 

narrower parameter ranges has been briefly described in new text in the paper 

as follows: “A range was first defined for each parameter based on a synthesis 

of ranges from similar studies or from the SWAT default range. Parameter 

ranges were updated after each iteration based on the computation of upper 

and lower 95% confidence limits. The 95% confidence interval and the 

standard deviation of a parameter value were derived from the diagonal 

elements of the covariance matrix, which was calculated from the sensitivity 

matrix and the variance of the objective function. Steps and equations used in 

the SUFI–2 procedure to constrain parameter ranges are outlined by 

Abbaspour et al. (2004)”. 

 

(v) The number of simulations and iterations has been described in the Method 

as follows: “A sample size of 1000 was chosen for each iteration of LHS, 

resulting in 1000 combinations of parameters and 1000 simulations. 

Numerous iterations (each comprising 1000 samples) of LHS were conducted. 

The total numbers of iterations performed for each simulated variable (Q, SS, 

MINP, ORGN, NH4–N and NO3–N) reflected the numbers required to ensure 

that > 90% of measured data were bracketed by simulated output and the R–

factor was close to one.” 

 The relevant text has also been added in the Results as follows: 

“Numerous rounds (each comprising 1000 iterations) of LHS were conducted 

for each simulated variable until the performance criteria were satisfied. The 

total number of rounds of LHS for each simulated variable was as follows 

(number in parentheses): Q (7), SS (7), MINP (11), ORGN (10), NH4–N (4) 

and NO3–N (4)”.  

 

(vi) The process for derivation of the optimal parameter values has been 

described in new text as follows: “The ‘optimal’ parameter value was obtained 

when the Nash–Sutcliffe efficiency (NSE) criterion was satisfied (NSE > 0.5; 

Moriasi et al., 2007)”. 
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 (vii) The statement has been added in the text as follows: “The parameters 

that provided the best statistical outcomes (i.e, best match to observed data) 

are given in Table 3”. 

  

8. You referred to R–factor and P–factor but you didn’t perform uncertainty 

analysis or at least you didn’t report it! This indices are not used later on in the 

text! How wide is the uncertainty range? What are the possible explanation for 

that? 

 SUFI–2 considers two criteria to constrain parameter ranges in each iteration 

(Abbaspour, 2014). One is the P–factor, the percentage of measured data 

bracketed by 95% prediction uncertainty (95PPU). Another is the R–factor, 

the average thickness of the 95PPU band divided by the standard deviation of 

measured data. The text added in the Methods reads: “Model uncertainty was 

evaluated by two criteria; R–factor and P–factor (see Section 2.3). They were 

used to constrain parameter ranges during the calibration using measured Q 

and loads of SS, MINP, ORGN, NH4–N and NO3–N in the SUFI–2 

procedure”. The values of the R–factor and P–factor were automatically 

updated in SUFI–2 during the auto–calibration and their final results have 

been reported in the text as follows: “Two criteria (R–factor and P–factor) 

were used to show model uncertainties for simulations of discharge and 

contaminant loads, with values as follows: Q (0.97, 0.43), SS (0.48, 0.19), 

MINP (2.64, 0.14), ORGN (0.47, 0.17), NH4–N (1.16, 0.56) and NO3–N (1.2, 

0.29)”. 

 We compared the measured and simulated SS and TN concentrations 

using the auto–calibrated parameters. We used manual calibration based on 

the measured TP concentration. Additionally, we have also analysed model 

uncertainties by graphically showing the 95% confidence interval for 

measurements and the 95% prediction interval for model simulations of Q and 

SS, TP and TN concentrations. The text added in the Methods reads: “The R 

software was used to graphically show the 95% confidence and prediction 

intervals for measurement data (Neyman, 1937) and model prediction 

intervals (Seymour, 1993) for Q and concentrations of SS, TP and TN during 

the calibration period (2004–2008)”. The text added in the Results reads: 
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“Model uncertainties for simulations of Q and SS, TP and TN concentrations 

are shown in Fig. 6”. 

 

Figure 6. Regression of measured and simulated (a) discharge (Q), 

concentrations of (b) suspended sediment (SS), (c) total phosphorus (TP), and 

(d) total nitrogen (TN) including lower and upper 95% confidence limits (LCL 

and UCL) and lower and upper 95% prediction limits (LPL and UPL). Note 

that the “choppy” shape of confidence limits shown in figures b–d were 

resulted from the few data points (< 50) in the regressions of measured and 

simulated SS, TP and TN concentrations. 

 

 Explanation of model uncertainty has been added in the Discussion as 

follows: “Model uncertainty in this study may arise from four main factors: 1) 

model parameters; 2) forcing data; 3) in measurements used for evaluation of 

model fit, and; 4) model structure or algorithms (Lindenschmidt et al., 2007). 

The values of most parameters assigned for model calibration, although 
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specific to different soil types (e.g. soil parameters), were lumped across land 

uses and slopes in this study. They integrated spatial and temporal variations, 

thus neglecting any variability throughout the study catchment. In terms of 

forcing data, the assumption of constant values of spring discharge rate and 

nutrient concentrations may inadequately reflect the temporal variability and 

therefore increase model uncertainty, although this should contribute little to 

the model error term. Most water quality data used for model calibration 

comprised monthly instantaneous samples taken during base flow conditions. 

The use of those measurements for model calibration would likely lead to 

considerable underestimation of constituent concentrations (notably SS and 

TP) due to failure to account for short–term high flow events. Inadequate 

representation of groundwater processes in the model structure is another key 

factor that is likely to affect model uncertainty, particularly for nitrogen 

simulations. The analysis of model performance based on datasets separated 

into base flow and quick flow constituents enabled uncertainties in the 

structure of hydrological models to be identified, denoted by different model 

performance between these two flow constituents”. Another discussion on 

Page 4329, lines 19–26 said: “Furthermore, the disparity in goodness–of–fit 

statistics between discharge (typically ‘good’ or ‘very good’) and nutrient 

variables (often ‘unsatisfactory’) highlights the potential for catchment models 

which inadequately represent contaminant cycling processes (manifest in 

unsatisfactory concentration estimates) to nevertheless produce satisfactorily 

load predictions (e.g., compare model performance statistics for prediction of 

nutrient concentrations in Table 5 with statistics for prediction of loads in 

Table 6). This highlights the potential for model uncertainty to be 

underestimated in studies which aim to predict the effects of scenarios 

associated with changes in contaminant cycling, such as increases in fertiliser 

application rates”. 

 

d) Model evaluation 

9. Page 4322, line 1-10, (1) SWAT accounts for initial amount of Nitrate in 

shallow groundwater and the corresponding parameter is NO3 sh,o. (2) To the 

extent of my knowledge you can also set your background N in soil layers. (3) 

“Model general underestimation” is not a valid justification to add 0.44 mg N L-1 
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to your model simulation. You need either to adjust your input or have stronger 

argument for doing so. 

 (i) In SWAT documentation, there is indication that the initial nitrate 

concentration in the shallow groundwater has been considered, but there is no 

command to input a value and run the model.  

 

(ii) It would not be appropriate to add this parameter value into the initial soil 

nitrogen as suggested, because the transport processes are different.  

 

(iii) This argument has been added in the text as follows: “Over the period of 

the first five years of wastewater irrigation, nitrate concentrations in shallow 

groundwater draining the Waipa Stream sub–catchment were estimated to 

have increased by c. 0.44 mg L-1 (Paku, 2001). SWAT has no capability to 

dynamically adjust the groundwater concentration during a simulation run. 

Therefore we added 0.44 mg N L-1 to all model simulations of TN 

concentration assuming that groundwater concentrations had equilibrated with 

the applied wastewater nitrogen”. 

 

10. Page 4323, line 1, (1) again there is very little information on your model set 

up, time steps, methods used to calculate surface runoff, routing, etc… (2) here 

you stated that you had hourly measurements. Why compare it to daily mean 

simulations then? (3) Did you run your model sub-daily? Would that be an option? 

 (i) In response to the lack of information on model setup, a description has 

been added in the Model configuration section as follows: “The DEM was 

used to delineate boundaries of the whole catchment and individual sub–

catchments, with a stream map used to ‘burn–in’ channel locations to create 

accurate flow routings. Hourly rainfall estimates were used as hydrologic 

forcing data. The Penman–Monteith method (Monteith, 1965) was used to 

calculate evapotranspiration (ET) and potential ET. The Green and Ampt 

(1911) method was used to calculate infiltration, rather than the SCS curve 

number method. Therefore, the hourly rainfall/Green & Ampt infiltration/daily 

routing method (Neitsch et al., 2011) was chosen to simulate upland and in–

stream processes”.  
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(ii) The reason why those data were compared with daily mean simulations 

has been added in the text as follows: “The use of the high–frequency 

observations for model validation allowed to examine how the model 

performed during short (1–3 day) high flow periods”.  

 

(iii) Please see the response to Comment #2. We did not run sub–daily 

simulations, because measurements for important meteorological forcing 

variables (e.g., temperature, relative humidity and solar radiation) were 

available only at daily resolution.  

 

11. The efficiency criteria presented in table 4 are widely known. You don’t need 

this table. Besides, you presented what is considered as satisfactory and 

unsatisfactory in table 5. 

 We wish to keep the efficiency criteria presented in Table 4 because the values 

are referred to extensively throughout the manuscript to evaluate the model fit. 

 

e) Hydrograph and contaminant load separation 

12. All the three water quality constituents are load separated with base and peak 

flow. Is the characteristics of all three elements the same? Are they all following 

the river discharge regime? Can you elaborate on that?  

 The text has been added as follows: “The characteristics of concentration–

discharge relationships for SS and TP are different to that for TN (Abell et al., 

2013). In quick flow, there is a positive relationship between Q and 

concentrations of SS and TP, reflecting mobilisation of sediments and 

associated particulate P. Total nitrogen concentrations declined slightly in 

quick flow, reflecting the dilution of nitrate from groundwater”. 

 

Sensitivity analysis 

13. Why log 10, why the threshold of 0.1? Page 4324, line 15, and figure 2 need a 

proper reference.  

 Please see the response to comment #5 regarding how the natural logarithm is 

now used and clarification for the threshold value of 0.2 that is chosen to 

decide which parameters are most sensitive.    



 

38 
 

 References have been added in Figure 2 using footnotes. Specifically: 

“Web–based Hydrograph Analysis Tool (Lim et al. 2005)”; Define 

concentrations in base flow (Cb) and quick flow (Cq) components (cf. Rimmer 

and Hartmann, 2014); and the natural logarithm (Krause et al., 2005)”.  

 

Results 

f) Model performance 

14. Please add efficiency criteria to all 8 figures in figure 3 both for calibration 

and validation periods. It is much easier to have them on the graphs rather than in 

table 5. 

 Efficiency criteria are already presented in Table 5. The purpose of the graphs 

is to provide a visual example of model goodness–of–fit”. 

 

15. Page 4326, line 1-10.(1)  Figure 4 and the explanation are very unclear. (2) 

The symbols used in the figure are not distinguishable. (3) I am not sure what the 

main point of this paragraph and the figure is! What is the main idea of “discharge 

weighted daily mean concentration” and then comparing them to simulated mean? 

(4) What did this analysis reveal? 

 (i) The caption of Figure 4 has been revised to read: “Example of a storm 

event showing derivation of discharge (Q)–weighted daily mean 

concentrations (dashed horizontal line) based on hourly measured 

concentrations (black dots) of suspended sediment (SS), total phosphorus (TP) 

and total nitrogen (TN) over two days (a–c). Comparisons of Q–weighted 

daily mean concentrations with simulated daily mean estimates of SS, TP and 

TN (scatter plot, d–f). The horizontal bars show the ranges in hourly 

measurements during each storm event in 2010–2012”.  

 

(ii) In Figure 4 a–c, we removed the black horizontal line showing the 

simulated daily mean. No more changes were made as the symbols in the 

publisher’s version appear to be clear. 

 

(iii) Please see the response to Comment #10 (ii). The main point/idea was to 

compare discharge weighted daily mean concentration with simulated daily 
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mean, to examine how the model performed during short (1–3 day) high flow 

periods. 

 

(iv) This analysis reveals that model uncertainty could be considerably 

underestimated if monthly instantaneous samples undertaken during base flow 

were predominantly used for model calibration. Accordingly, further text has 

been added to the Discussion as follows: “Most water quality data used for 

model calibration comprised monthly instantaneous samples taken during base 

flow conditions. The use of those measurements for model calibration would 

likely lead to considerable underestimation of constituent concentrations 

(notably SS and TP) due to failure to account for short–term high flow events”. 

 

16. In general the model provides poor results in water quality representation. It is 

always easy to blame the model not to represent the process adequately! There 

might be processes that are going on in the catchment and you are not including 

them in the model. e.g. fertilizer application… Maybe you need to revisit your 

conceptual model. That’s exactly why you need uncertainty analysis!  

 Fertilizer application was included in the model, though it is one of the inputs 

that will have a moderate to high level of uncertainty. We accept that there 

may have been activities or processes which were not included in the input 

data to the model. In general we consider that we have captured the major 

inputs, and have added suitable text in the Discussion; please see the response 

to comment #8. 

 

Parameter sensitivity  

17. Figure 5 “Simulations for base flow and quick flow” is impossible to read. (1) 

You need to change the symbols. (2) There is absolutely no explanation on this 

figure in the text. (3) What are you trying to convey by presenting this figure? 

Again, what are the key points? 

 (i) The symbols have been made clear and this should help to convey our main 

point about differentiating water quality constituents based on hydrograph 

separation.  
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(ii) The following text has been added to the Section Results to support Fig. 5: 

“Model performance statistics differed between the two flow regimes (Table 

6). Simulations of discharge and constituent loads under quick flow were more 

closely related to the measurements (i.e., higher values of R2 and NSE) than 

simulations under base flow. Base flow TN load simulations during the 

validation period showed better model performance than simulations under 

quick flow. Additionally, measurements under quick flow were better 

reproduced by the model than the measurements for the whole simulation 

period. Simulations of contaminant loads matched measurements much better 

than for contaminant concentrations, as indicated by statistical values for 

model performance given in Table 5 and 6”.  

 

(iii) Accordingly, further text has been added to the Discussion as follows: 

“The analysis of model performance based on datasets separated into base 

flow and quick flow constituents enabled uncertainties in the structure of 

hydrological models to be identified, denoted by different model performance 

between these two flow constituents”. 

 

18. Figure 7 (previous Figure 6) “Parameter sensitivity” and the corresponding 

text: you need to explain the method better. It is very unclear right now.  

 We have revised the text for the caption of Figure 7 to read: “The standard 

deviation (STD) of the ln–transformed Nash–Sutcliffe efficiency (NSE) used 

to indicate parameter sensitivity based on one–at a–time (OAT) sensitivity 

analysis for separate base and quick flow components: (a) Q (discharge); (b) 

SS (suspended sediment); (c) MINP (mineral phosphorus); (d) NO3–N 

(nitrate–nitrogen); (e) ORGN (organic nitrogen); (f) NH4–N (ammonium–

nitrogen). A median value (0.2) derived from the STD of ln–transformed NSE 

was chosen as a threshold above which parameters were deemed to be 

‘sensitive’. Definitions of each parameter are shown in Table 3”. 

 

Discussion 

g) Temporal dynamics of model performance 
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19. In general, I would suggest that you combine result and discussion. This way 

you have more space to provide more in depth analysis and you avoid repeating 

yourself. 

 We consider that separation of the Results and Discussion provides a better 

and more conventional way of presenting information. 

 

20. Page 4329, line 5, please clarify how your results show that “Our results also 

highlight a discrepancy between the static nature of the groundwater nitrogen pool 

represented in SWAT and the reality that groundwater nutrient concentrations 

change dynamically in a lagged response (Bain et al., 2012) to changes to sources 

in modified catchments”. 

 We have added the following on Page 4325, lines 6–9: “Modelled and 

measured TN concentrations were generally better aligned during base flow 

(Fig. 3d), apart from a mismatch prior to 1996 when monthly measured TN 

concentrations were substantially lower than model predictions, although the 

concentrations gradually increased (Fig. 3h) during the validation period 

(1994–1997)”; and on Page 4328, lines 23–27: “Overestimation of TN 

concentrations prior to 1996 reflects higher NO3–N concentrations in 

groundwater during the calibration period (2004–2008) due to the wastewater 

irrigation operation. Nitrate concentrations appeared to reach a new quasi–

steady state as wastewater loads and in–stream attenuation came into balance”.  

 Additional text has been added as follows: “SWAT may not adequately 

represent the dynamics of groundwater nutrient concentrations (Bain et al., 

2012) particularly in the presence of changes in catchment inputs (e.g., with 

start–up of wastewater irrigation). The groundwater delay parameter was set 

to five years (cf. Rotorua District Council, 2006), but this did not appear to 

capture adequately the lag in response to increases in stream nitrate 

concentrations following wastewater irrigation from 1991”. 

 

21. Page 4329, line 21, is process under-representation the only reason? What 

about input uncertainties (for example)? That’s exactly where uncertainty analysis 

come to play! 
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 We agree and have included text to indicate that uncertainty that could be 

contributed from uncertainties in input data or process representation in the 

model. Please see the response to comment #8 for the additional text. 

 

h) Temporal dynamics of parameter sensitivity 

22. Page 4331, line 3, if you are not using SCS curve number method, why the 

parameter is in your calibrating parameter list then? Of course the model will be 

insensitive to it! 

 The parameter curve number (CN2) has been removed from the parameter list 

in Table 3, because the Green and Ampt (1911) method was used to calculate 

infiltration, rather than the SCS curve number method.  

 

23. Page 4331, line 3, “was not found to be sensitive” ! was found to be 

insensitive  

 The corrected text reads: “The curve number (CN2) parameter was found to 

be insensitive in both this study and Shen et al. (2012) …”. 

 

24. It would be very interesting to see how the model performance changes in 

high flow and low flow while feed in different parameter set at the two stages. 

The main question will be then: does a temporal dynamic parameterization 

improve model performance? So far, you showed that the model is sensitive to 

different parameters in high and low flow which is also valuable. 

 Yes, we did not attempt to vary the parameters with discharge. This would be 

a new undertaking for which in our case there may be limited data to attempt 

validation. 

 

25. The title can be shortened and become more informative of the main research 

question. 

 Please see the response to Reviewer #2, comment #1. The title has been 

revised to read: “Effects of hydrologic conditions on SWAT model 

performance and parameter sensitivity for a small, mixed land use catchment 

in New Zealand”. 
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Comments from Editor 

The Article is potentially of interest for the SWAT users community and for the broader 

hydrological audience, but it needs significant revisions. The reviewers offer important 

suggestions, which I recommend to follow attentively. In addition, I provide some additional 

points below. 

1. A plus of the paper is that it attempts to model transport in addition to flow. The results of 

transport simulation, however, are not so encouraging. There is a strong difference between 

calibration and validation performance, with much better model performance during the 

validation period. I would recommend a split sample approach, where the calibration and 

validation period are inverted, so to check the consistency of results. 

 The editor stated that “model performance during the validation period showed much 

better than performance during the calibration period”. However, the model performance 

ratings in Table 5 revealed that simulations of discharge and concentrations of TP and TN 

during model calibration indicated better model performance than validation performance, 

represented by statistical indices R2, NSE, PBIAS.  

 We decided not to invert the current calibration (2004–2008) and validation (1994–

1997) periods into the counter way, of which the reason has been found in the response to 

Reviewer #2, Comment #10. They were also demonstrated more clearly in the text as 

follows: “the operational regime for the wastewater irrigation has varied since operations 

began in 1991, with a marked change occurring in 2002 when operations switched from 

applying the wastewater load to two blocks (rotated daily for a total of 14 blocks in a 

week; i.e., each block irrigated weekly), to 10–14 blocks each irrigated daily. This 

operational regime continues today and we therefore decided to assign the most recent 

(post 2002) period (2004–2008) to calibration to ensure that the model was configured to 

reflect current operations”. 

 

2. Can the bad performance for transport simulation during the calibration period be due to 

too short warmup period? What is the warmup period, and can it be increased? 

 One year (1993) was used for model warmup. We believe that the length of the warmup 

period is not related to the poor performance of some aspects of the model. Instead, we 

believe that inadequate representation of groundwater processes is a key factor that 

affected nitrogen simulation, as we discuss in our response to Reviewer #3, Comment #20. 

Additional text has been added as follows: “SWAT may not adequately represent the 

dynamics of groundwater nutrient concentrations (Bain et al., 2012) particularly in the 
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presence of changes in catchment inputs (e.g., with start–up of wastewater irrigation). The 

groundwater delay parameter was set to five years (cf. Rotorua District Council, 2006), 

but this did not appear to capture adequately the lag in response to increases in stream 

nitrate concentrations following wastewater irrigation from 1991”.  

 

3. The authors seem to compare observed instantaneous concentration data (measured once 

per month) with modelled monthly averages. They should compared observed averaged with 

simulated averages, or observed instantaneous values with simulated instantaneous values. 

Please clarify this aspect and correct the manuscript if necessary. 

 We compared simulated daily (not monthly) mean concentrations with concentrations 

measured on respective days. The measured data are ‘instantaneous’ in that they relate to 

grab samples that were collected at monthly frequency. In addition, we also compare 

simulated daily mean concentrations with discharge–weighted mean daily concentrations 

that were calculated based on samples collected every 1–2 h during high flow events. 

These measurements are more representative of ‘real’ daily mean values than single 

instantaneous samples collected during separate days. Thus, a key focus of our paper is to 

examine the uncertainties that are associated with using concentration data that are 

infrequent relative to discharge to calibrate hydrologic models of small catchments; 

something that is common practice in catchment modelling. This has been clarified as we 

discuss in our response to Reviewer #3, Comment #7 (i): “Daily mean discharge was 

firstly calibrated based on daily mean values of 15–minute measurements. Water quality 

variables were then calibrated in the sequence: SS, TP and TN. Modelled mean daily 

concentrations were compared with concentrations measured during monthly grab 

sampling, with monthly measurements assumed equal to daily mean concentrations”. 

 

4. The paper structure could be improved. (1) “study area and model configuration” should be 

2 separate paragraphs. (2) The model configuration section needs more details. E.g. how 

many HRUs does the catchment have? How were they defined? (3) How many parameters in 

total?, etc. 

 Thanks for the suggestion.  

(i) Please see the response to Reviewer #2, Comment #7 that Sections 2.1 ‘Study area’ and 

2.2 ‘Model configuration’ have been separated. 
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(ii) Please see the response to Reviewer #2, Comment #5 that the section Model 

configuration is now more comprehensive as follows: “The DEM was used to delineate 

boundaries of the whole catchment and individual sub–catchments, with a stream map used to 

‘burn–in’ channel locations to create accurate flow routings. Hourly rainfall estimates were 

used as hydrologic forcing data. The Penman–Monteith method (Monteith, 1965) was used to 

calculate evapotranspiration (ET) and potential ET. The Green and Ampt (1911) method was 

used to calculate infiltration, rather than the SCS curve number method. Therefore, the hourly 

rainfall/Green & Ampt infiltration/daily routing method (Neitsch et al., 2011) was chosen to 

simulate upland and in–stream processes. Ten sub–catchments were represented in the 

Puarenga Stream catchment, each comprising numerous Hydrologic Response Units (HRUs). 

Each HRU aggregates cells with the same combination of land cover, soil, and slope. A total 

of 404 HRUs was defined in the model. Runoff and nutrient transport were predicted 

separately within SWAT for each HRU, with predictions summed to obtain the total for each 

sub–catchment”. 

 

(iii) There were a total of 197 parameters involved for the model configuration of this study. 

This has added (see Model configuration) in the text: “There were a total of 197 model 

parameters. Values of SWAT parameters were assigned based on…”. 

 

5. Tables 2 and 3: can the parameters corresponding to hydrology, chemistry and sediment 

transport simulations be clearly separated. 

 Table 2 shows prior–estimated parameter values for three dominant types of land–cover 

in the Puarenga Stream catchment. 

 Table 3 can be separated for discharge and sediment in more details of their exclusive 

parameters. Please see a revised version below. Phosphorus and nitrogen parameters have 

been separated already. 
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Parameter Definition Unit Default range 

Q 
   

EVRCH.bsn Reach evaporation adjustment factor 
 

0.5–1 

SURLAG.bsn Surface runoff lag coefficient 
 

0.05–24 

ALPHA_BF.gw Base flow alpha factor (0–1) 
 

0.0071–0.0161 

GW_DELAY.gw Groundwater delay d 0–500 

GW_REVAP.gw Groundwater “revap” coefficient 
 

0.02–0.2 

GW_SPYLD.gw Special yield of the shallow aquifer m3 m-3 0–0.4 

GWHT.gw Initial groundwater height m 0–25 

GWQMN.gw Threshold depth of water in the shallow aquifer required for return flow to occur mm 0–5000 

RCHRG_DP.gw Deep aquifer percolation fraction 
 

0–1 

REVAPMN.gw Threshold depth of water in the shallow aquifer required for “revap” to occur mm 0–500 

CANMX.hru Maximum canopy storage mm 0–100 

EPCO.hru Plant uptake compensation factor 
 

0–1 

ESCO.hru Soil evaporation compensation factor 
 

0–1 

HRU_SLP.hru Average slope steepness m m-1 0–0.6 

LAT_TTIME.hru Lateral flow travel time d 0–180 

RSDIN.hru Initial residue cover kg ha-1 0–10000 

SLSOIL.hru Slope length for lateral subsurface flow m 0–150 

CH_K2.rte Effective hydraulic conductivity in the main channel alluvium mm h-1 0–500 

CH_N2.rte Manning's N value for the main channel 
 

0–0.3 

CH_K1.sub Effective hydraulic conductivity in the tributary channel alluvium mm h-1 0–300 

CH_N1.sub Manning's N value for the tributary channel 
 

0.01–30 

    

SS    

CH_COV1.rte Channel erodibility factor 
 

0–0.6 

CH_COV2.rte Channel cover factor 
 

0–1 

LAT_SED.hru Sediment concentration in lateral flow and groundwater flow mg L-1 0–5000 

PRF.bsn Peak rate adjustment factor for sediment routing in the main channel 
 

0–2 
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SPCON.bsn 
Linear parameter for calculating the maximum amount of sediment that can be re–

entrained during channel sediment routing  
0.0001–0.01 

SPEXP.bsn Exponent parameter for calculating sediment re–entrained in channel sediment routing 
 

1–1.5 

OV_N.hru Manning's N value for overland flow 
 

0.01–30 

SLSUBBSN.hru Average slope length m 10–150 

USLE_P.mgt USLE equation support practice factor 
 

0–1 
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 14 

Abstract 15 

The Soil Water Assessment Tool (SWAT) was configured for the Puarenga 16 

Stream catchment (77 km2), Rotorua, New Zealand. The catchment land use is 17 

mostly plantation forest, some of which is spray–irrigated with treated wastewater. 18 

A Sequential Uncertainty Fitting (SUFI–2) procedure was used to auto–calibrate 19 

unknown parameter values in the SWAT model. which was applied to the 20 

Puarenga catchment. Discharge, sediment, and nutrient variablesloads were then 21 

partitioned into two components (base flow and quick flow) based on hydrograph 22 

separation. A manual procedure (one–at a–time sensitivity analysis) was then used 23 

to quantify parameter sensitivity for the two hydrologically–separated regimes.  24 

Model validation was performed using two datasets: 1) monthly instantaneous 25 

measurements of suspended sediment (SS), total phosphorus (TP) and total 26 

nitrogen (TN) concentrations; and 2) high–frequency (1–2 h) data measured 27 

during rainfall events. Monthly instantaneous TP and TN concentrations were 28 

generally not reproduced well (24% bias for TP, 27% bias for TN, and R2 < 0.1, 29 

NSE < 0 for both TP and TN), in contrast to SS concentrations (< 1% bias; R2 and 30 
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NSE both > 0.75) during model validation. Comparison of simulated daily mean 1 

discharge, sediment SS, TP and nutrient TN concentrations with daily mean 2 

discharge–weighted high–frequency, event–based measurements during storm 3 

events indicated that model predictions during the high rainfall period 4 

considerably underestimated concentrations of SS (44% bias) and TP (70% bias), 5 

while TN concentrations were comparable (< 1% bias; R2  and NSE both ~0.5). 6 

allowed the error in model predictions to be quantified. This comparison 7 

highlighted the potential for model error associated with quick–flow fluxes in 8 

flashy lower–order streams to be underestimated compared with low–frequency 9 

(e.g. monthly) measurements derived predominantly from base flow 10 

measurements. To address this, To overcome this problem wWwe 11 

advocaterecommend that high–frequency, event–based monitoring data are used  12 

to support calibration and validation.the use of high–frequency, event–based 13 

monitoring data during calibration and dynamic parameter values with some 14 

dependence on discharge regime. Simulated discharge, SS, TP and TN loads were 15 

partitioned into two components (base flow and quick flow) based on hydrograph 16 

separation. A manual procedure (one–at a–time sensitivity analysis) was used to 17 

quantify parameter sensitivity for the two hydrologically–separated regimes. 18 

Several SWAT parameters were found to have different sensitivities between base 19 

flow and quick flow. Parameters relating to main channel processes were more 20 

sensitive for the base flow estimates, while those relating to overland processes 21 

were more sensitive for the quick flow estimates. This study has important 22 

implications for identifying uncertainties in parameter sensitivity and performance 23 

of hydrological models applied to catchments with large fluctuations in stream 24 

flow, and in cases where models are used to examine scenarios that involve 25 

substantial changes to the existing flow regime.quantifying uncertainty in 26 

hydrological models, particularly for studies where model simulations are used to 27 

simulate responses of stream discharge and composition to changes in irrigation 28 

and land management.  29 

 30 

1 Introduction 31 

Catchment models are valuable tools for understanding natural processes 32 

occurring at basin scales and for simulating the effects of different management 33 
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regimes on soil and water resources (e.g. Cao et al., 2006). Model applications 1 

may have uncertainties as a result of errors associated with the forcing variables, 2 

measurements used for calibration, and conceptualisation of the model itself 3 

(Lindenschmidt et al., 2007). The ability of catchment models to simulate 4 

hydrological processes and pollutant loads can be assessed through analysis of 5 

uncertainty or errors during a calibration process that is specific to the application 6 

domain (White and Chaubey, 2005).  7 

 The Soil and Water Assessment Tool (SWAT) model is increasingly used 8 

to predict discharge, sediment and nutrient loads on a temporally resolved basis, 9 

and to quantify material fluxes from a catchment to the downstream receiving 10 

environment such as a lake (e.g. Nielsen et al., 2013). The SWAT model is 11 

physically–based and provides distributed descriptions of hydrologic processes at 12 

sub–basin scale (Arnold et al., 1998; Neitsch et al., 2011). It has numerous 13 

parameters, some of which can be fixed on the basis of pre–existing catchment 14 

data (e.g. soil maps) or knowledge gained in other studies. However, values for 15 

other parameters need to be assigned during a calibration process as a result of 16 

complex spatial and temporal variations that are not readily captured either 17 

through measurements or within the model algorithms themselves (Boyle et al., 18 

2000). Such parameter values assigned during calibration are therefore lumped, 19 

i.e., they integrate variations in space and/or time and thus provide an 20 

approximation for real values which often vary widely within a study catchment. 21 

Model calibration is an iterative process whereby parameters are adjusted to the 22 

system of interest by refining model predictions to fit closely with observations 23 

under a given set of conditions (Moriasi et al., 2007). Manual calibration depends 24 

on the system used for model application, the experience of the modellers, and 25 

knowledge of the model algorithms. It tends to be subjective and time–consuming. 26 

By contrast, auto–calibration provides a less labour–intensive approach by using 27 

optimisation algorithms (Eckhardt and Arnold, 2001). The Sequential Uncertainty 28 

Fitting (SUFI–2) procedure has previously been applied to auto–calibrate 29 

discharge parameters in a SWAT application for the Thur River, Switzerland 30 

(Abbaspour et al., 2007), as well as for groundwater recharge, evapotranspiration 31 

and soil storage water considerations in West Africa (Schuol et al., 2008). Model 32 

validation is subsequently performed using measured data that are independent of 33 

those used for calibration (Moriasi et al., 2007). 34 
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 Values for hydrological parameter values in the SWAT model can vary 1 

temporally. Cibin et al. (2010) found that the optimum calibrated values for 2 

hydrological parameters varied with different flow regimes (low, medium and 3 

high), thus suggesting that SWAT model performance can be optimised by 4 

assigning parameter values based on hydrological characteristics. Other work has 5 

similarly demonstrated benefits from assigning separate parameter values to low, 6 

medium, and high discharge periods (Yilmaz et al., 2008), or based on whether a 7 

catchment is in a dry, drying, wet or wetting state (Choi and Beven, 2007). Such 8 

temporal dependence of model parameterisation on hydrologic conditions has 9 

implications for model performance. Krause et al. (2005) compared different 10 

statistical metrics of hydrological model performance separately for base–flow 11 

periods and storm events to evaluate the performance. They The authors found 12 

that the logarithmic form of the Nash–Sutcliffe efficiency (NSE) value provided 13 

more information on the sensitivity of model performance for simulations of 14 

discharge simulations during storm events, while the relative form of NSE was 15 

better for base flow periods. Similarly, Guse et al. (2014) investigated temporal 16 

dynamics of sensitivity of hydrological parameters and SWAT model 17 

performance using Fourier amplitude sensitivity test (Reusser et al., 2011) and 18 

cluster analysis (Reusser et al., 2009). The authors They found that three 19 

groundwater parameters were highly sensitive during quick flow, while one 20 

evaporation parameter was most sensitive during base flow, and model 21 

performance was also found to vary significantly for the two flow regimes. Zhang 22 

et al. (2011) calibrated SWAT hydrological parameters for periods separated on 23 

the basis of six climatic indexes. Model performance improved when different 24 

values were assigned to parameters based on six hydroclimatic periods. Similarly, 25 

Pfannerstill et al. (2014) found that assessment of model performance was 26 

improved by considering an additional performance statistic for very low–flow 27 

simulations amongst five hydrologically–separated regimes.   28 

 To date, analysis of temporal dynamics of SWAT parameters has 29 

predominantly focussed on simulations of discharge rather than water quality 30 

constituents. This partly reflects the paucity of comprehensive water quality data 31 

for many catchments; near–continuous discharge data can readily be collected but 32 

this is not the case for water quality parameters such as suspended sediment or 33 

nutrient concentrations. Data collected in monitoring programmes that involve 34 
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sampling at regular time intervals (e.g. monthly) are often used to calibrate water 1 

quality models, but these are unlikely to fully represent the range of hydrologic 2 

conditions in a catchment (Bieroza et al., 2014). In particular, water quality data 3 

collected during storm–flow periods are rarely available for SWAT calibration, 4 

thus prohibiting opportunities to investigate how parameter sensitivity varies 5 

under conditions which can contribute disproportionately to nutrient or sediment 6 

transport, particularly in lower–order catchments (Chiwa et al., 2010; Abell et al., 7 

2013). Failure to fully consider storm–flow processes could therefore result in 8 

overestimation of model performance. Thus, further research is required to 9 

examine how water quality parameters vary during different flow regimes and to 10 

understand how model uncertainty may vary under future climatic conditions that 11 

affect discharge regimes (Brigode et al., 2013).  12 

 In this study, the SWAT model was configured to a relatively small, mixed 13 

land use catchment in New Zealand that has been the subject of an intensive water 14 

quality sampling programme designed to target a wide range of hydrologic 15 

conditions. A catchment–wide set of parameters was calibrated using the SUFI–2 16 

procedure which is integrated into the SWAT Calibration and Uncertainty 17 

Program (SWAT–CUP). The objectives of this study were to: (1) quantify the 18 

performance of the model in simulating discharge and fluxes of suspended 19 

sediments and nutrients at the catchment outlet; (2) rigorously evaluate model 20 

performance by comparing daily simulation output with monitoring data collected 21 

under a range of hydrologic conditions; and (3) quantify whether parameter 22 

sensitivity varies between base flow and quick flow conditions. 23 

 24 

2 Methods 25 

2.1 Study area and model configuration 26 

The Puarenga Stream is the second–largest surface inflow (2.03 m3 s-1) to Lake 27 

Rotorua (Bay of Plenty, New Zealand) and drains a catchment of 77 km2. The 28 

catchment is situated in the central North Island of New Zealand, which has a 29 

warm temperate climate. Annual mean temperature at Rotorua Airport (Fig. 1a) is 30 

15±4 °C and annual mean evapotranspiration is 714 mm yr-1 (1993–2012; 31 

National Climatic Data Centre; available at http://cliflo.niwa.co.nz/). Annual 32 

mean precipitation at Kaituna rain gauge (Fig. 1a) is 1500 mm yr-1 (1993–2012; 33 
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Bay of Plenty Regional Council). The catchment is relatively steep (mean slope = 1 

9%; Bay of Plenty Regional Council) with predominantly pumice soils that have 2 

high macroporosity, resulting in high infiltration rates and substantial sub–surface 3 

lateral flow contributions to stream channels. Two cold–water springs (Waipa 4 

Spring and Hemo Spring) and one geothermal spring (Fig. 1b) are located in the 5 

LTS. Two cold–water springs haves annual mean discharge of ~0.19 m3 s-1 6 

(Rotorua District Council) and one geothermal spring has annual mean discharge 7 

of ~0.12 m3 s-1 (White et al., 2004).  8 

 The predominant land use (47%) is exotic forest (Pinus radiata). 9 

Approximately 26% is managed pastoral farmland, 11% mixed scrub and 9% 10 

indigenous forest. Since 1991, treated wastewater has been pumped from the 11 

Rotorua Wastewater Treatment Plant and spray–irrigated over 16 blocks of total 12 

area of 1.93 km2 in the Whakarewarewa Forest (Fig. 1a). Following this, it took 13 

approximately four years before elevated nitrate concentrations were measured in 14 

the receiving waters of the Puarenga Stream (Lowe et al., 2007). Prior to 2002, the 15 

irrigation schedule entailed applying wastewater to two blocks per day so that 16 

each block was irrigated approximately weekly. Since 2002, 10 to 14 blocks have 17 

been irrigated simultaneously at daily frequency. Over the entire period of 18 

irrigation, nutrient concentrations in the irrigated water have gradually decreased 19 

as improvements in treatment of the wastewater have been made (Lowe et al., 20 

2007). 21 

 Measurements from the Forest Research Institute (FRI) stream–gauge (1.7 22 

km upstream of Lake Rotorua; Fig. 1b) were considered representative of the 23 

downstream/outlet conditions of the Puarenga Stream. The FRI stream–gauge was 24 

closed in mid 1997, then reopened late in 2004 (Environment Bay of Plenty, 25 

2007). Annual mean discharge at this site is 2.0 m3 s-1 (1994–1997 and 2004–26 

2008; Bay of Plenty Regional Council). The Puarenga Stream receives a high 27 

proportion of flow from groundwater stores and has only moderate seasonality in 28 

discharge. On average, the lowest mean daily discharge is during summer 29 

(December to February; 1.7 m3 s-1) and the highest mean daily discharge is during 30 

winter (June to August; 2.4 m3 s-1). Discharge records during 1998–2004 were 31 

intermittent and this precluded a detailed comparison of measured and simulated 32 

discharge during that period. In July 2010, the gauge was repositioned 720 m 33 

downstream to the State Highway 30 (SH 30) bridge (Fig. 1b).  34 
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2.2 Model configuration  1 

SWAT input data requirements included a digital elevation model (DEM), 2 

meteorological records, records of springs and water abstraction, soil 3 

characteristics, land use classification, and management schedules for key land 4 

uses (pastoral farming, wastewater irrigation, and timber harvesting). The SWAT 5 

model version used (SWAT2009_rev488) runs on a daily time step.  6 

 The DEM was used to delineate boundaries of the whole catchment and 7 

individual sub–catchments, with a stream map used to ‘burn–in’ channel locations 8 

to create accurate flow routings. Hourly rainfall estimates were used as hydrologic 9 

forcing data. The Penman–Monteith method (Monteith, 1965) was used to 10 

calculate evapotranspiration (ET) and potential ET. The Green and Ampt (1911) 11 

method was used to calculate infiltration, rather than the SCS curve number 12 

method. Therefore, the hourly rainfall/Green & Ampt infiltration/daily routing 13 

method (Neitsch et al., 2011) was chosen to simulate upland and in–stream 14 

processes. Ten sub–catchments were represented in the Puarenga Stream 15 

catchment, each comprising numerous Hydrologic Response Units (HRUs). Each 16 

HRU aggregates cells with the same combination of land cover, soil, and slope. A 17 

total of 404 HRUs was defined in the model. Runoff and nutrient transport were 18 

predicted separately bywithin SWAT for each HRU, with predictions summed to 19 

obtain the total for each sub–catchment. 20 

 Descriptions and sources of the data used to configure the SWAT model 21 

are given in Table 1. There were a total of 197 model parameters. Values of 22 

SWAT required parameters were assigned based on: i) measured data (e.g. 23 

somemost of the soil parameters; Table 1); ii) literature values from published 24 

studies of similar catchments (e.g. parameters for dominant land uses; Table 2); or 25 

iii) by calibrationed where parameters were not otherwise prescribed values if 26 

other information was lacking. 27 

 SWAT simulates loads of ‘mineral phosphorus’ (MINP) and ‘organic 28 

phosphorus’ (ORGP) of which the sum is total phosphorus (TP). The MINP 29 

fraction represents soluble P either in mineral or in organic form, while ORGP 30 

refers to particulate P bound either by algae or by sediment (White et al., 2014). 31 

Soluble P may be uptaken up during algae growth, or be released from benthic 32 

sediment. Either fraction can be transformed to particulate P contained in algae or 33 

sediment. 34 
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   1 

 SWAT simulates loads of nitrate–nitrogen (NO3–N), ammonium–nitrogen 2 

(NH4–N) and organic nitrogen (ORGN), the sum of which is total nitrogen (TN). 3 

Nitrogen parameters were auto–calibrated for each N fraction. The SWAT model 4 

does not account for the initial nitrate concentration in shallow aquifers, an issue 5 

as also noted by Conan et al. (2003). Ekanayake and Davie (2005) indicated that 6 

SWAT underestimated N loading from groundwater and suggested a modification 7 

by adding a background concentration of nitrate in streamflow to represent 8 

groundwater nitrate contributions. Over the period of the first five years of 9 

wastewater irrigation, nitrate concentrations in shallow groundwater draining the 10 

Waipa Stream sub–catchment were estimated to have increased by c. 0.44 mg L-1 11 

(Paku, 2001). SWAT has no capability to dynamically adjust the groundwater 12 

concentration during a simulation run. Therefore Wwe added 0.44 mg N L-1 to all 13 

model estimatesimulations of TN concentration assuming that groundwater 14 

concentrations had equilibrated with the applied wastewater nitrogen. 15 

, based on groundwater composition data from Paku (2001). 16 

2.3 Parameter Model calibration and validation 17 

Unknown parameter values (Table 3) were assigned based on either automated or 18 

manual calibration. Manual calibration was undertaken for 11 parameters related 19 

to total phosphorus (TP), while a Sequential Uncertainty Fitting (SUFI–2) 20 

procedure was applied to auto–calibrate 31 parameters for simulations of 21 

discharge and suspended sediment (SS), and 17 parameters related to total 22 

nitrogen (TN). Discharge measured every 15 minutes and water quality data 23 

collected monthly by Bay of Plenty Regional Council at the FRI stream gauge 24 

(Fig. 1b), were used for model evaluation. Daily mean discharge (from 15–minute 25 

measurements) was firstly comparedcalibrated based on with daily mean 26 

simulated dischargevalues of 15–minute measurements. Water quality variables 27 

were then calibrated in the sequence: SS, TP and TN. Modelled mean daily 28 

concentrations were compared with concentrations measured during monthly grab 29 

sampling, with monthly measurements assumed equal to daily mean 30 

concentrations. Concentrations of SS, TP and TN measured monthly were 31 

compared with the respective simulated monthly values (derived from daily mean 32 

outputs). One year (1993) was used for model warmup. The calibration period 33 
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was from 2004 to 2008 and the validation period was from 1994 to 1997. A 1 

validation period was chosen that pre–dated the calibration period was chosen 2 

because discharge records were available for two separate periods (1994–1997 3 

and post 2004). In addition, the operational regime for the wastewater irrigation 4 

has varied since operations began in 1991, with a marked change occurring in 5 

2002 when operations switched from applying the wastewater load to two blocks 6 

(rotated daily for a total of 14 blocks in a week; i.e., each block irrigated weekly), 7 

to 10–14 blocks each irrigated daily. This operational regime continues today and 8 

we therefore decided to assign the most recent (post 2002) period (2004–2008) to 9 

calibration to ensure that the model was configured to reflect current 10 

operationsbecause . 11 

 wastewater irrigation has occurred daily since 2002, compared with 12 

weekly during the validation period (1994–1997). Therefore, because the 13 

groundwater nutrient pool is not dynamically modelled in SWAT, we chose to 14 

calibrate the model to reflect current operations so that it can later be used to 15 

examine how changes to land management may affect current water quality. 16 

Unknown pParameter values values that were not derived from measurements or 17 

the literature (Table 3) were assigned based on either automated or manual 18 

calibration (Table 3). Manual calibration was undertaken for 11 parameters related 19 

to total phosphorus (TP), while a Sequential Uncertainty Fitting (SUFI–2) 20 

procedure was applied to auto–calibrate 3121 parameters for simulations of 21 

discharge simulations,and nine parameters for SS simulationssuspended sediment 22 

(SS), and 17 parameters related to total nitrogen (TN). The SUFI–2 procedure has 23 

been integrated into the SWAT Calibration and Uncertainty Program (SWAT–24 

CUP). SUFI–2 is a procedure that efficiently quantifies and constrains parameter 25 

uncertainties/ranges from default ranges with the fewest number of iterations 26 

(Abbaspour et al., 2004), and has been shown to provide optimal results relative to 27 

the use of alternative algorithms (Wu and Chen, 2015). SUFI–2 involves Latin 28 

hypercube sampling (LHS), which is a method that efficiently quantifies and 29 

constrains parameter uncertainties from default ranges with the fewest number of 30 

iterations. It generates a sample of plausible parameter values from 31 

a multidimensional distribution and is widely applied in uncertainty analysis 32 

ensures that samples cover the entire parameter space, therefore ensuring that the 33 

optimum solution is not a local minimum (Marino et al., 2008).  34 
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The SUFI–2 procedure analyses relative sensitivities of parameters by 1 

randomly generating combinations of values for model parameters (Abbaspour et 2 

al., 2014). A sample size of 1000 was chosen for each iteration of LHS, resulting 3 

in 1000 combinations of parameters and 1000 simulations. Model performance 4 

was quantified for each simulation based on the Nash–Sutcliffe efficiency (𝑁𝑆𝐸). 5 

An objective function was defined as a linear regression of a combination of 6 

parameter values generated by each LHS against the 𝑁𝑆𝐸 value calculated from 7 

each simulation. Each compartment was not given weight to formulate the 8 

objective function because only one variable was specifically focused on at each 9 

time. A parameter sensitivity matrix was then computed based on the changes in 10 

the objective function after 1000 simulations. Parameter sensitivity was quantified 11 

based on the p value from a Student’s t–test, which was used to compare the mean 12 

of simulated values with the mean value of measurements (Rice, 2006). A 13 

parameter was deemed sensitive by if p ≤  0.05 after 1000 simulations (one 14 

iteration). Numerous iterations of LHS were conducted. Values of p from 15 

numerous iterations were averaged for each parameter, and the frequency of 16 

iterations where a parameter was deemed sensitive was summed. Rankings of 17 

relative sensitivities of parameters were developed based on how frequently the 18 

sensitive parameter was identified and the averaged value of p calculated from 19 

several iterations. The most sensitive parameter was determined based on the 20 

frequency that the parameter was deemed sensitive, and the smallest average p–21 

value from all iterations. 22 

SUFI–2 considers two criteria to constrain uncertainty in each iteration. 23 

One is the P–factor, the percentage of measured data bracketed by 95% prediction 24 

uncertainty (95PPU). Another is the R–factor, the average thickness of the 95PPU 25 

band divided by the standard deviation of measured data. A range was first 26 

defined for each parameter based on a synthesis of ranges from similar studies or 27 

from the SWAT default range. Parameter ranges were updated after each iteration 28 

based on the computation of upper and lower 95% confidence limits. The 95% 29 

confidence interval and the standard deviation of a parameter value were derived 30 

from the diagonal elements of the covariance matrix, which was calculated from 31 

the sensitivity matrix and the variance of the objective function. Steps and 32 
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equations used in the SUFI–2 procedure to constrain parameter ranges are 1 

outlined by Abbaspour et al. (2004). 2 

 The total numbers of iterations performed for each simulated 3 

variable (Q, SS, MINP, ORGN, NH4–N and NO3–N) reflected the numbers 4 

required to ensure that > 90% of measured data were bracketed by simulated 5 

output and the R–factor was close to one. The ‘optimal’ parameter value was 6 

obtained when the Nash–Sutcliffe efficiency (NSE) criterion was satisfied (NSE > 7 

0.5; Moriasi et al., 2007). Auto–calibrated parameters for simulations of Q, SS, 8 

and TN were changed by absolute values within the given ranges. Some of those 9 

given ranges were restricted based on the optimalum values calibrated in similar 10 

studies. Parameter values for TP simulations were manually–calibrated based ona 11 

the relative percent deviation from the predetermined values of those auto–12 

calibrated parameters for MINP simulations, given by the objective functions (e.g. 13 

NSE). Parameters related to the physical characteristics of the catchment were not 14 

changed because their values were considered to be representative of the 15 

catchment characteristics. 16 

Subsequent iterations were undertaken to produce narrower parameter 17 

ranges. Optimal parameter values were considered to occur when > 90% of 18 

measured data was bracketed by simulated output and the R–factor was close to 19 

one. Spatial distribution of parameters was not considered in this study as a result 20 

of the small study area size (77 km2). Steps in the SUFI–2 application are outlined 21 

by Abbaspour et al. (2004) who integrated the SUFI–2 procedure into the SWAT 22 

Calibration and Uncertainty program (SWAT–CUP) and linked SWAT–CUP to 23 

the SWAT model.  24 

SWAT simulates loads of ‘mineral phosphorus’ (MINP) and ‘organic phosphorus’ 25 

(ORGP) of which the sum is total phosphorus (TP). The MINP fraction represents 26 

soluble P either in mineral or in organic form, while ORGP refers to particulate P 27 

bound either by algae or by sediment (White et al., 2014). Soluble P may be 28 

uptaken during algae growth, or be released from benthic sediment. Either 29 

fraction can be transformed to particulate P contained in algae or sediment. 30 

 SWAT simulates loads of nitrate–nitrogen (NO3–N), ammonium–nitrogen 31 

(NH4–N) and organic nitrogen (ORGN), the sum of which is total nitrogen (TN). 32 

Nitrogen parameters were auto–calibrated for each N fraction. The SWAT model 33 

does not account for the initial nitrate concentration in shallow aquifers, an issue 34 
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also noted by Conan et al. (2003). Ekanayake and Davie (2005) indicated that 1 

SWAT underestimated N loading from groundwater and suggested a modification 2 

by adding a background concentration of nitrate in streamflow to represent 3 

groundwater nitrate contributions. We added 0.44 mg N L-1 to all model estimates 4 

of TN concentration, based on groundwater composition data from Paku (2001). 5 

2.3 Model evaluation  6 

Discharge measured every 15 minutes and water quality data collected monthly 7 

by Bay of Plenty Regional Council at the FRI stream gauge (Fig. 1b), were used 8 

for model evaluation. Daily mean discharge (from 15–minute measurements) was 9 

compared with daily mean simulated discharge. Concentrations of SS, TP and TN 10 

measured monthly were compared with the respective simulated monthly values 11 

(derived from daily mean outputs). The calibration period was from 2004 to 2008 12 

and the validation period was from 1994 to 1997. A validation period was chosen 13 

that pre–dated the calibration period because wastewater irrigation has occurred 14 

daily since 2002, compared with weekly during the validation period (1994–1997). 15 

Therefore, because the groundwater nutrient pool is not dynamically modelled in 16 

SWAT, we chose to calibrate the model to reflect current operations so that it can 17 

later be used to examine how changes to land management may affect current 18 

water quality. 19 

 In addition, high–frequency (1–2 h) water quality sampling was 20 

undertaken at the FRI stream–gauge during 2010–2012 to derive estimates of 21 

daily mean contaminant loads during storm events. Samples were analysed for SS 22 

(nine events), TP and TN (both 14 events) over sampling periods of 24–73 h. The 23 

sampling programme was designed to encompass pre–event base flow, storm 24 

generated quick flow and post–event base flow (Abell et al., 2013). These data 25 

permitted calculation of daily discharge–weighted (Q–weighted) mean 26 

concentrations to compare with modelled daily mean estimates. We did not use 27 

the high–frequency observations to calibrate the model, because of the limited 28 

number of high–frequency (1–2 h) samples (nine events for SS and 14 events for 29 

TP and TN in 2010–2012). The use of the high–frequency observations for model 30 

validation allowed to examine how the model performed during short (1–3 day) 31 

high flow periods. The Q–weighted mean concentrations 𝐶QWMwere calculated as:  32 

𝐶QWM =
∑ 𝐶i𝑄i

n
i=1

∑ 𝑄i
n
i=1

                                                                                    (1) 33 
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where n is number of samples, 𝐶i is contaminant concentration measured at time i, 1 

and 𝑄i is discharge measured at time i. 2 

 Model goodness–of–fit was assessed graphically and quantified using 3 

coefficient of determination (R2), Nash–Sutcliffe efficiency (NSE) and percent 4 

bias (PBIAS; Table 4). R2  (range 0 to 1) and NSE (range -∞ to 1) values are 5 

commonly used to evaluate SWAT model performance at daily time step 6 

(Gassman et al., 2007). PBIAS value indicates the average tendency of simulated 7 

outputs to be larger or smaller than observations (Gupta et al., 1999).  8 

2.4 Hydrograph and contaminant load separation 9 

The Web–based Hydrograph Analysis Tool (Lim et al., 2005) was applied to 10 

partition both measured and simulated discharges into base flow (𝑄b) and quick 11 

flow (𝑄q). An Eckhardt filter parameter of 0.98 and ratio of base flow to total 12 

discharge of 0.8 were assumed (cf. Lim et al., 2005). There were a total of 60 days 13 

without quick flow during the calibration period (2004–2008) and 1379 days for 14 

which hydrograph separation defined both base flow and quick flow. 15 

 Contaminant (SS, TP and TN) concentrations (𝐶sep) were partitioned into 16 

base flow (𝐶b

′
) and quick flow components (𝐶q

′
; cf. Rimmer and Hartmann, 2014) 17 

to separately examine the sensitivity of water quality parameters during base flow 18 

and quick flow: 19 

𝐶sep =
𝑄q×𝐶q

′
+𝑄b×𝐶

b

′

𝑄q+𝑄b
                                                                             (52) 20 

 𝐶b

′
 for each contaminant was estimated as the average concentration for 21 

the 60 days with no quick flow. 𝐶q
′

 for each contaminant was calculated by 22 

rearranging Eq. (52). as:  23 

𝐶q
′

=
(𝑄q+𝑄b)×𝐶sep−𝑄b×𝐶

b

′

𝑄q
                                                                     (6) 24 

 To retain Eq. (6) rational,ensure that 𝐶q
′

 is must be positive, therefore 𝐶b

′
 25 

is constrained to be the minimum between of 𝐶sep
̅̅ ̅̅ ̅  and 𝐶sep . Measured and 26 

simulated base flow and quick flow contaminant loads were then calculated. 27 
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2.5 Sensitivity analysis 1 

 A one–at a–time (OAT) routine proposed by Morris (1991) was applied to 2 

investigate how parameter sensitivity varied between the two flow regimes (base 3 

flow and quick flow), based on the ranking of relative sensitivities of parameters 4 

that were identified by randomly generating combinations of values for model 5 

parameters for each individual variable using the SUFI–2 procedure. OAT 6 

sensitivity analysis was then employed by varying the parameter of interest 7 

among ten equidistant values within the default range. The natural logarithm was 8 

used by Krause et al. (2005) and therefore the standard deviation (𝑆𝑇𝐷) of the ln–9 

transformed NSE  were used to indicate parameter sensitivity for the two flow 10 

regimes. The standard deviation (STD ) of log10–transformed NSE  values was 11 

calculated from the sensitivity analysis for each variable and for the two flow 12 

regimes (base flow and quick flow).  13 

 Parameters were ranked from most to least sensitive on the basis of the 14 

sensitivity metric (𝑆𝑇𝐷 of log10ln–transformed NSE), using a value of 0.1 2 as a 15 

threshold above which parameters were deemed particularly ‘sensitive’. The 16 

threshold value of “0.2” was chosen in this study, based on the median value 17 

derived from the calculations of the 𝑆𝑇𝐷 of ln–transformed NSE. Methods used to 18 

separate the two flow constituents and to quantify parameter sensitivity are 19 

illustrated in Fig. 2. 20 

2.35 Model evaluation  21 

Model goodness–of–fit was assessed graphically and quantified using coefficient 22 

of determination (R2), Nash–Sutcliffe efficiency (NSE) and percent bias (PBIAS; 23 

Table 4). R2 (range 0 to 1) and NSE (range -∞ to 1) values are commonly used to 24 

evaluate SWAT model performance at daily time step (Gassman et al., 2007). 25 

PBIAS value indicates the average tendency of simulated outputs to be larger or 26 

smaller than observations (Gupta et al., 1999).  27 

 Model uncertainty was evaluated by two criteria; R–factor and P–factor 28 

(see Section 2.3). They were used to constrain parameter ranges during the 29 

calibration using measured Q and loads of SS, MINP, ORGN, NH4–N and NO3–N 30 

in the SUFI–2 procedure. The R software was used to graphically show the 95% 31 

confidence and prediction intervals for measurement data (Neyman, 1937) and 32 
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model prediction intervals (Seymour, 1993) for Q and concentrations of SS, TP 1 

and TN during the calibration period (2004–2008). 2 

 3 

3 Results 4 

3.1 Model performance and uncertainty 5 

Numerous rounds (each comprising 1000 iterations) of LHS were conducted for 6 

each simulated variable until the performance criteria were satisfied. The total 7 

number of rounds of LHS for each simulated variable was as follows (number in 8 

parentheses): Q (7), SS (7), MINP (11), ORGN (10), NH4–N (4) and NO3–N (4). 9 

The parameters that provided the best statistical outcomes (i.e, best match to 10 

observed data) are given in Table 3. Two criteria (R–factor and P–factor) were 11 

used to show model uncertainties for simulations of discharge and contaminant 12 

loads, with values as follows: Q (0.97, 0.43), SS (0.48, 0.19), MINP (2.64, 0.14), 13 

ORGN (0.47, 0.17), NH4–N (1.16, 0.56) and NO3–N (1.2, 0.29). Model 14 

uncertainties for simulations of Q and SS, TP and TN concentrations are shown in 15 

Fig. 6. 16 

 Modelled and measured base flow showed high correspondence, although 17 

measured daily mean discharge during storm peaks was often underestimated (Fig. 18 

3a and 3e). Annual mean percentages of lateral flow recharge, shallow aquifer 19 

recharge and deep aquifer recharge to total water yield were predicted by SWAT 20 

as 30%, 10%, 58%, respectively. Modelled SS concentrations overestimated 21 

measurements of monthly grab samples by an average of 18.3% during calibration 22 

and 0.32% during validation (Fig. 3b and 3f). Measured TP concentrations in 23 

monthly grab samples were underestimated by 23.8% during calibration (Fig. 3c) 24 

and 24.5% during validation (Fig. 3g). Similarly, measured TP loads were 25 

underestimated by 34.5% and 38.4%, during calibration and validation, 26 

respectively. Modelled and measured TN concentrations were generally better 27 

aligned during base flow (Fig. 3d), apart from a mismatch prior to 1996 when 28 

monthly measured TN concentrations were substantially lower than model 29 

predictions, although they the concentrations gradually increased (Fig. 3h) during 30 

the validation period (1994–1997). The average measured TN load increased from 31 

134 kg N d-1 prior to 1996, to 190 kg N d-1 post 1996. The comparable increase in 32 

modelled TN load was 167 kg N d-1 to 205 kg N d-1, respectively. 33 
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 Statistical evaluations of goodness–of–fit are shown in Table 5. The R2 1 

values for discharge were 0.77 for calibration and 0.68 for validation, 2 

corresponding to model performance ratings (cf. Moriasi et al., 2007) of ‘very 3 

good’ and ‘good’ (cf. Table 4). Similarly, the NSE values for discharge were 0.73 4 

(good) for calibration and 0.62 (satisfactory) for validation. Positive PBIAS (7.8% 5 

for calibration and 8.8% for validation) indicated a tendency for underestimation 6 

of daily mean discharge, however, the low magnitude of PBIAS  values 7 

corresponded to a performance rating of ‘very good’. The R2 values for SS were 8 

0.42 (unsatisfactory) for calibration and 0.80 for validation (very good). Similarly, 9 

the NSE values for SS were -0.08 (unsatisfactory) for calibration and 0.76 (very 10 

good) for validation. The model did not simulate trends well for monthly 11 

measured TP and TN concentrations. The R2 values for TP and TN were both < 12 

0.1 (unsatisfactory) during calibration and validation and NSE values were both < 13 

0 (unsatisfactory). Values of PBIAS  corresponded to ‘good’ or ‘very good’ 14 

performance ratings for TP and TN. 15 

 Observed Q–weighted daily mean concentrations derived from hourly 16 

measurements and simulated daily mean concentrations of SS, TP and TN during 17 

an example two–day storm event are shown in Fig. 4a–4c. The simulation of SS 18 

and TN concentrations was somewhat better than for TP. Comparisons of Q–19 

weighted daily mean concentrations (𝐶QWM) during storm events from 2010 to 20 

2012 are shown in Fig. 4d–4f for SS (nine events), TP and TN (both 14 events). 21 

The 𝐶QWM of TP exceeded the simulated daily mean by between 0.02 and 0.2 mg 22 

P L-1, and on average, the model underestimated measurements by 69.4% (Fig. 4e). 23 

Although R2 and NSE values for 𝐶QWM of TN were unsatisfactory (Table 5), they 24 

were both close to the threshold for satisfactory performance (0.5). For 𝐶QWM of 25 

SS and TP, R2  and NSE  values indicated that the model performance was 26 

unsatisfactory. The PBIAS value of -0.87 for 𝐶QWM of TN corresponded to model 27 

performance ratings of ‘very good’, while the PBIAS values for 𝐶QWM of SS and 28 

TP were 43.9 and 69.4, respectively, indicating satisfactory model performance.  29 

 Measured and simulated discharge and contaminant concentrationloads 30 

separated for the two flow regimes (base flow and quick flow),  are shown in Fig. 31 

5. Model performance statistics differed between the two flow regimes (Table 6). 32 

Simulations of discharge and constituent loads under quick flow were more 33 

Commented [MW51]: Reviewer #2, Comment #15 



 

65 
 

closely related to the measurements (i.e., higher values of R2  and NSE ) than 1 

simulations under base flow. Base flow TN load simulations during the validation 2 

period showed better model performance than simulations under quick flow. 3 

Additionally, measurements under quick flow were better reproduced by the 4 

model than the measurements for the whole simulation period. Simulations of 5 

contaminant loads matched measurements much better than for contaminant 6 

concentrations, as indicated by statistical values for model performance given in 7 

Table 5 and 6. 8 

3.2 Separated Pparameter sensitivity 9 

Measured and simulated discharge and contaminant concentrations for the two 10 

flow regimes (base flow and quick flow), are shown in Fig. 5.  11 

Based on the ranking of relative sensitivities of hydrological and water quality 12 

parameters derived from the SUFI–2 procedure (see Table 7), Tthe OAT 13 

sensitivity analysis undertaken separately for base flow and quick flow identified 14 

three parameters that most influenced the quick flow estimates, and five 15 

parameters that most influenced the base flow estimates (parameters above the 16 

dashed line in Fig. 6a7a). Those sensitive flow parameters specifically relate to 17 

the relevant flow components, providing a mechanistic basis for the finding that 18 

they were particularly sensitive. Channel hydraulic conductivity (CH_K2) is used 19 

to estimate the peak runoff rate (Lane, 1983). Lateral flow slope length (SLSOIL) 20 

and lateral flow travel time (LAT_TIME) have an important controlling effect on 21 

the amount of lateral flow entering the stream reach during quick flow. Both slope 22 

(HRU_SLP) and soil available water content (SOL_AWC) were particularly 23 

sensitive for the base flow simulation because they affect lateral flow within the 24 

kinematic storage model in SWAT (Sloan and Moore, 1984). The aquifer 25 

percolation coefficient (RCHRG_DP) and the base flow alpha factor 26 

(ALPHA_BF) strongly influenced base flow calculations (Sangrey et al., 1984), 27 

as did the channel Manning’s N value (CH_N2) which is used to estimate channel 28 

flow (Chow, 2008).  29 

 For SS loads, 12 and four parameters, respectively, were identified as 30 

sensitive in relation to the simulations of base flow and quick flow (parameters 31 

above the dashed line in Fig. 6b7b). Parameters that control main channel 32 

processes (e.g. CH_K2 and CH_N2) and subsurface water transport processes (e.g. 33 
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LAT_TIME and SLSOIL) were found to be much more sensitive for base flow SS 1 

load estimations. Exclusive parameters for SS estimations, such as SPCON (linear 2 

parameter), PRF (peak rate adjustment factor), SPEXP (exponent parameter), 3 

CH_COV1 (channel erodibility factor), and CH_COV2 (channel cover factor) 4 

were found to be much more sensitive in base flow SS load, while LAT_SED (SS 5 

concentration in lateral flow and groundwater flow) was more sensitive in quick 6 

flow SS load. Parameters that control overland processes, e.g. CN2 (the curve 7 

number), OV_N (overland flow Manning’s N value) and SLSUBBSN (sub–basin 8 

slope length), were found to be much more sensitive for quick flow SS load 9 

estimations. 10 

 Of the sensitive parameters, BC4 (ORGP mineralization rate) was 11 

particularly sensitive for the simulation of base flow MINP load (Fig. 6c7c). RCN 12 

(nitrogen concentration in rainfall) related specifically to the dynamics of the base 13 

flow NO3–N load and NPERCO (nitrogen percolation coefficient) significantly 14 

affected quick flow NO3–N load (Fig. 6d7d). Parameter CH_ONCO (channel 15 

ORGN concentration) similarly affected both flow components of ORGN load 16 

(Fig. 6e7e) and SOL_CBN (organic carbon content) was most sensitive for the 17 

simulations of quick flow ORGN and NH4–N loads. Parameter BC1 (nitrification 18 

rate in reach) was particularly sensitive for the simulation of base flow NH4–N 19 

load (Fig. 6f7f). 20 

 21 

4 Discussion 22 

4.1 Temporal dynamics of model performance 23 

This study examined temporal dynamics of model performance and parameter 24 

sensitivity in a SWAT model application that was configured for a small, 25 

relatively steep and lower order stream catchment in New Zealand. This country 26 

faces increasing pressures on freshwater resources (Parliamentary Commissioner 27 

for the Environment, 2013) and models such as SWAT potentially offer valuable 28 

tools to inform management of water resources although, to date, the SWAT 29 

model has received limited consideration in New Zealand (Cao et al., 2006). 30 

Model evaluation on the basis of the data collected during an extended monitoring 31 

programme enabled a detailed examination of how model performance varied 32 

during different flow regimes. It also permitted error in daily mean estimates of 33 
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contaminant loads to be quantified with relative precision, allowing assessment of 1 

the ability of SWAT model to simulate contaminant loads during storm events 2 

when lower–order streams typically exhibit considerable sub–daily variability in 3 

both discharge and contaminant concentrations (Zhang et al., 2010). Separating 4 

discharge and loads of sediments and nutrients into those associated with base 5 

flow and quick flow for separate OAT sensitivity analyses provided important 6 

insights into the varying dependency of parameter sensitivity on hydrologic 7 

conditions. 8 

4.1 Temporal dynamics of model performance 9 

The modelled estimates of deep aquifer recharge (58%) and combined lateral flow 10 

and shallow aquifer recharge (40%) were comparable with estimates derived by 11 

Rutherford et al. (2011), who used an alternative catchment model to derive 12 

respective estimates of 30% and 70% for these two fluxes. Our decision to 13 

deliberately select a validation period (1994–1997) during which the boundary 14 

conditions of the system (specifically anthropogenic nutrient loading) differed 15 

considerably from the calibration period allowed us to rigorously assess the 16 

capability of SWAT to accurately predict water quality under an altered 17 

management scenario (i.e. the purpose of most SWAT applications). 18 

 The poor fit between simulated daily mean TP concentrations and monthly 19 

instantaneous measurements may partly reflect a mismatch between the dominant 20 

processes affecting phosphorus cycling in the stream and those represented in 21 

SWAT. The ORGP fraction that is simulated in SWAT includes both organic and 22 

inorganic forms of particulate phosphorus, however, the representation of 23 

particulate phosphorus cycling only focusses on organic phosphorus cycling with 24 

limited consideration of interactions between inorganic streambed sediments and 25 

dissolved reactive phosphorus in overlying water (White et al., 2014). This 26 

contrasts with phosphorus cycling in the study stream where it has been shown 27 

that dynamic sorption processes between the dissolved and particulate inorganic 28 

phosphorus pools exert major control on phosphorus cycling (Abell and Hamilton, 29 

2013). 30 

 Overestimation of TN concentrations prior to 1996 (PBIAS  = -26.7%) 31 

reflects the fact higher that NO3–N concentrations in groundwater were likely 32 

higher during the calibration period (PBIAS = -0.05%; 2004–2008) due to the 33 
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wastewater irrigation operation.s, Nitrate concentrations appeared to and had 1 

reached a new quasi–steady state as between wastewater loads and in–stream 2 

attenuation came into balance. Our decision to deliberately select a validation 3 

period (1994–1997) during which the boundary conditions of system 4 

(anthropogenic nutrient loading) differed considerably from the calibration period 5 

allowed us to rigorously assess the capability of SWAT to accurately predict 6 

water quality under an altered management scenario (i.e. the purpose of most 7 

SWAT applications). Our results also highlight a discrepancy between the static 8 

nature of the groundwater nitrogen pool represented in SWAT and the reality that 9 

groundwater nutrient concentrations change dynamically in a lagged response to 10 

changes to sources in modified catchments (Bain et al., 2012). SWAT may not 11 

adequately represent the dynamics of groundwater nutrient concentrations (Bain 12 

et al., 2012) particularly in the presence of changes in catchment inputs (e.g., with 13 

start–up of wastewater irrigation). The groundwater delay parameter was set to 14 

five years (cf. Rotorua District Council, 2006), but this did not appear to capture 15 

adequately the lag in response to increases in stream nitrate concentrations 16 

following wastewater irrigation from 1991. 17 

 The poor fit between simulated daily mean TP concentrations and monthly 18 

instantaneous measurements may partly reflect a mismatch between the dominant 19 

processes affecting phosphorus cycling in the stream and those represented in 20 

SWAT. The ORGP fraction that is simulated in SWAT includes both organic and 21 

inorganic forms of particulate phosphorus, however, the representation of 22 

particulate phosphorus cycling only focusses on organic phosphorus cycling, with 23 

limited consideration of interactions between inorganic streambed sediments and 24 

dissolved reactive phosphorus in the overlying water (White et al., 2014). This 25 

contrasts with phosphorus cycling in the study stream where it has been shown 26 

that dynamic sorption processes between the dissolved and particulate inorganic 27 

phosphorus pools exert major control on phosphorus cycling (Abell and Hamilton, 28 

2013). 29 

 Our finding that measured Q–weighted mean concentrations (𝐶QWM) of TP 30 

and SS during storm events (2010–2012) were greatly underestimated relative to 31 

simulated daily mean TP ( PBIAS  = 69.4%) and SS ( PBIAS  = 43.9%) 32 

concentrations has important implications for studies that examine effects of 33 

altered flow regimes on contaminant transport. For example, studies which 34 
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simulate scenarios comprising more frequent large rainfall events (associated with 1 

climate change predictions for many regions; IPCC, 2013) may considerably 2 

underestimate projected future loads of SS and associated particulate nutrients if 3 

only base flow water quality measurements (i.e. those predominantly collected 4 

during ‘state of environment’ monitoring) are used for calibration/validation (see 5 

Radcliffe et al., 2009 for a discussion of this issue in relation to phosphorus). This 6 

is also reflected by the two model performance statistics relating to validation of 7 

modelled SS concentrations using monthly grab samples (predominantly base 8 

flow; ‘very good’) and 𝐶QWM estimated during storm sampling (‘unsatisfactory’) 9 

based on R2  and NSE  values. Furthermore, the disparity in goodness–of–fit 10 

statistics between discharge (typically ‘good’ or ‘very good’) and nutrient 11 

variables (often ‘unsatisfactory’) highlights the potential for catchment models 12 

which inadequately represent contaminant cycling processes (manifest in 13 

unsatisfactory concentration estimates) to nevertheless produce satisfactorily load 14 

predictions. This highlights the potential for model uncertainty to be 15 

underestimated in studies which aim to predict the effects of scenarios associated 16 

with changes in contaminant cycling such as increases in fertiliser application 17 

rates. 18 

4.2 Key uncertainties 19 

Lindenschmidt et al. (2007) Model uncertainty in this study may arise from four 20 

main factors: 1) model parameters; 2) forcing data; 3) in measurements used for 21 

evaluation of model fit, and; 4) model structure or algorithms (Lindenschmidt et 22 

al. (, 2007) . The values of most parameters assigned for model calibration, 23 

although specific to different soil types (e.g. soil parameters), were lumped across 24 

land uses and slopes in this study. They integrated spatial and temporal variations, 25 

thus neglecting any variability throughout the study catchment. In terms of forcing 26 

data, the assumption of constant values of spring discharge rate and nutrient 27 

concentrations may inadequately reflect the temporal variability and therefore 28 

increase model uncertainty, although this should contribute little to the model 29 

error term. Most water quality data used for model calibration comprised monthly 30 

instantaneous samples taken during base flow conditions. The use of those 31 

measurements for model calibration would likely lead to considerable 32 

underestimation of constituent concentrations (notably SS and TP) due to failure 33 
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to account for short–term high flow events. Inadequate representation of 1 

groundwater processes in the model structure is another key factor that is likely to 2 

affect model uncertainty, particularly for nitrogen simulations. The analysis of 3 

model performance based on datasets separated into base flow and quick flow 4 

constituents enabled uncertainties in the structure of hydrological models to be 5 

identified, denoted by different model performance between these two flow 6 

constituents. Furthermore, the disparity in goodness–of–fit statistics between 7 

discharge (typically ‘good’ or ‘very good’) and nutrient variables (often 8 

‘unsatisfactory’) highlights the potential for catchment models which inadequately 9 

represent contaminant cycling processes (manifest in unsatisfactory concentration 10 

estimates) to nevertheless produce satisfactorily load predictions (e.g., compare 11 

model performance statistics for prediction of nutrient concentrations in Table 5 12 

with statistics for prediction of loads in Table 6). This highlights the potential for 13 

model uncertainty to be underestimated in studies which aim to predict the effects 14 

of scenarios associated with changes in contaminant cycling, such as increases in 15 

fertiliser application rates.  16 

4.2 3 Temporal dynamics of parameter sensitivity 17 

To date, studies of temporal variability of parameters have focused on 18 

hydrological parameters, rather than on water quality parameters. The 19 

characteristics of concentration–discharge relationships for SS and TP are 20 

different to that for TN (Abell et al., 2013). In quick flow, there is a positive 21 

relationship between Q and concentrations of SS and TP, reflecting mobilisation 22 

of sediments and associated particulate P. Total nitrogen concentrations declined 23 

slightly in quick flow, reflecting the dilution of nitrate from groundwater. 24 

Defining separate contaminant concentrations in base flow and quick flow 25 

enabled us to examine how the sensitivity of water quality parameters varied 26 

depending on hydrologic conditions.  27 

 In a study of a lowland catchment (481 km2), Guse et al. (2014) found that 28 

three groundwater parameters, RCHRG_DP (aquifer percolation coefficient), 29 

GW_DELAY (groundwater delay) and ALPHA_BF (base flow alpha factor) were 30 

highly sensitive in relation to simulating discharge during quick flow, while 31 

ESCO (soil evaporation compensation factor) was most sensitive during base flow. 32 

This is counter to the findings of this study for which the base–flow discharge 33 
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simulation was sensitive to RCHRG_DP and ALPHA_BF. This result may reflect 1 

that, relative to our study catchment, the catchment studied by Guse et al. (2014) 2 

had moderate precipitation (884 mm y-1) with less forest cover and flatter 3 

topography. Although the GW_DELAY parameter reflects the time lag that it 4 

takes water in the soil water to enter the shallow aquifers, its lack of sensitivity 5 

under both base flow and quick flow conditions in this study is a reflection of 6 

higher water infiltration rates and steeper slopes. The ESCO parameter controls 7 

the upwards movement of water from lower soil layers to meet evaporative 8 

demand (Neitsch et al., 2011). Its lack of sensitivity in our study may reflect 9 

relatively high and seasonally–consistent rainfall (1500 mm y-1), in addition to 10 

extensive forest cover in the Puarenga Stream catchment, which reduces soil 11 

evaporative demand by shading. Soil texture is also likely a contributor to this 12 

result. The predominant soil horizon type in the Puarenga Stream catchment was 13 

A, indicating high macroporosity which promotes high water infiltration rate and 14 

inhibits upward transport of water by capillary action (Neitsch et al., 2011). The 15 

variability in the sensitivity of the parameter SURLAG (surface runoff lag 16 

coefficient) between this study (relatively insensitive) and that of Cibin et al. 17 

(2010; relatively sensitive) likely reflects differences in catchment size. The 18 

Puarenga Stream catchment (77 km2) is much smaller than the study catchment 19 

(St Joseph River; 2800 km2) of Cibin et al. (2010) and, consequently, distances to 20 

the main channel are much shorter, with less potential for attenuation of surface 21 

runoff in off–channel storage sites. The curve number (CN2) parameter was not 22 

found to be sensitive insensitive in both this study and Shen et al. (2012), because 23 

surface runoff was simulated based on the Green and Ampt method (1911) 24 

requiring the hourly rainfall inputs, rather than the curve number equation which 25 

is an empirical model. By contrast, the most sensitive parameters in our study are 26 

those that determine the extent of lateral flow, an important contributor to 27 

streamflow in the catchment, due to a general lack of ground cover under 28 

plantation trees and formation of gully networks on steep terrain.  29 

 30 

  Parameters that control surface water transport processes (e.g. 31 

LAT_TIME and SLSOIL) were found to be much more sensitive for base flow SS 32 

load estimation than parameters that control groundwater processes (e.g. 33 

ALPHA_BF and RCHRG_DP), reflecting the importance of surface flow 34 
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processes for sediment transport. Sensitive parameters for quick flow SS load 1 

estimation related to overland flow processes (e.g. OV_N and SLSUBBSN), thus 2 

reflecting the fact that sediment transport is largely dependent on rainfall–driven 3 

processes, as is typical of steep and lower–order catchments. Modelled base flow 4 

NO3–N loads were most sensitive to the nitrogen concentration in rainfall (RCN) 5 

because of rainfall as a predominant contributor to recharging base flow. The 6 

nitrogen percolation coefficient (NPERCO) was more influential for quick flow 7 

NO3–N load estimation, probably indicating that the quick flow NO3–N load is 8 

more influenced by the mobilisation of concentrated nitrogen sources associated 9 

with agriculture or treated wastewater distribution. High sensitivity of the organic 10 

carbon content (SOL_CBN) for quick flow ORGN load estimates likely reflects 11 

mobilisation of N associated with organic material following rainfall. The finding 12 

that base flow NH4–N load was more sensitive to nitrification rate in reach (BC1) 13 

likely reflects that base flow provides more favourable conditions to complete this 14 

oxidation reaction, as NH4–N is less readily leached and transported. Similarly, 15 

the ORGP mineralization rate (BC4) strongly influenced base flow MINP load 16 

estimation, reflecting that base flow phosphorus transport is relatively more 17 

influenced by cycling from channel bed stores, whereas quick flow phosphorus 18 

transport predominantly reflects the transport of phosphorus that originated from 19 

sources distant from the channel.  20 

 21 

 22 

 23 

5 Conclusions 24 

The performance of a SWAT model was quantified for different hydrologic 25 

conditions in a small catchment with mixed land use. Discharge–weighted mean 26 

concentrations of TP and SS measured during storm events were greatly 27 

underestimated by SWAT, highlighting the potential for uncertainty to be greatly 28 

underestimated in catchment model applications that are validated using a sample 29 

of contaminant load measurements that is over–represented by measurements 30 

made during base flow conditions. Accurate simulation of nitrogen concentrations 31 

was constrained by the non–steady state of groundwater nitrogen concentrations 32 

due to historic variability in anthropogenic nitrogen applications to land. The 33 
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sensitivity of many parameters varied depending on the relative dominance of 1 

base flow and quick flow, while curve number, soil evaporation compensation 2 

factor, surface runoff lag coefficient, and groundwater delay were largely 3 

invariant to the two flow regimes. Parameters relating to main channel processes 4 

were more sensitive when estimating variables (particularly Q and SS) during 5 

base flow, while those relating to overland processes were more sensitive for 6 

simulating variables associated with quick flow. Temporal dynamics of both 7 

parameter sensitivity and model performance due to dependence on hydrologic 8 

conditions should be considered in further model applications. Monitoring 9 

programmes which collect high–frequency and event–based data have an 10 

important role in supporting the robust calibration and validation of SWAT model 11 

applications. This study has important implications for modelling studies of 12 

similar catchments that exhibit short–term temporal fluctuations in stream flow. In 13 

particular these include small catchments with relatively steep terrain and lower 14 

order streams with moderate to high rainfall.  15 

 16 

 17 
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Table 1. Description of data used to configure and calibrate the SWAT model. 1 

Data Application Data description and configuration details Source 

Digital elevation 

model (DEM) & 

digitized stream 

network 

Sub–basin 

delineation (Fig. 

1b) 

25 m resolution. Used to define five slope classes: 0–4%, 

4–10%, 10–17%, 17–26% and >26%. 

Bay of Plenty Regional Council 

(BoPRC) 

Stream discharge 

and water quality 

measurements 

Calibration 

(2004–2008) 

and validation1 

(1994–1997; 

2010–2012)  

FRI: 15–min stream discharge data were aggregated as 

daily mean values (1994–1997; 2004–2008), monthly 

grab samples for determination of instantaneous 

suspended sediment (SS), total phosphorus (TP) and total 

nitrogen (TN) concentrations (1994–1997; 2004–2008), 

high–frequency event–based samples for concentrations 

of SS (nine events), TP and TN (both 14 events) at 1–2 h 

frequency (2010–2012).  

BoPRC; Abell et al., 2013 

Spring discharge, 

and nutrient loads, 

and water 

abstraction 

volumes 

Point source 

(Fig. 1b) and 

water use 

Constant daily discharge and nutrient concentrations 

assigned to two cold–water springs (Waipa Spring and 

Hemo Spring) and one geothermal spring. based on spot 

measurements. Constant nutrient concentrations assigned 

to Waipa Spring and Hemo Spring and the geothermal 

spring based on samples collected between August 1984 

and June 2004. Monthly water abstraction assigned to 

two cold–water springs. 

Kusabs and Shaw, 2008; White 

et al., 2004; Proffit, 2009 

(Unpublished Site Visit Report); 

Paku, 2001; Mahon, 1985; 

Glover, 1993; Jowett, 2008; 

Rotorua District Council (pers. 

comm.) 

Water abstraction 

volumes 
Water use 

Monthly water abstraction assigned to two cold–water 

springs. 

Kusabs and Shaw, 2008; Jowett, 

2008 

Land use  HRU definition 
25 m resolution, 10 basic land–cover categories. Some 

particular land–cover parameters were prior–estimated 

New Zealand Land Cover 

Database Version 2; BoPRC 

                                                           
1 Model validation was undertaken using two different datasets. The monthly measurements (1994–1997) were predominantly 

collected when base flow was the dominant contributor to stream discharge. Data from high–frequency sampling during rain events 

(2010–2012) were also used to validate model performance during periods when quick flow was high. 
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(Table 2). 

Soil characteristics HRU definition 

Properties of 22 soil types. Properties were quantified 

based on measurements (if available) or estimated using 

regression analysis to estimate properties for unmeasured 

functional horizons. were determined using the key 

physical properties and the characteristics of functional 

horizons provided by soil map  

New Zealand Land Resource 

Inventory & digital soil map 

(available at 

http://smap.landcareresearch.co.n

z) 

Meteorological 

data 

Meteorological 

forcing 

Daily maximum and minimum temperature, daily mean 

relative humidity, daily global solar radiation, daily (9 

am) surface wind speed and hourly precipitation. 

Rotorua Airport Automatic 

Weather Station, National 

Climate Database National 

Climatic Data Centre (available 

at http://cliflo.niwa.co.nz/); 

Kaituna rain gauge (Fig. 1a) 

Agricultural 

management 

practices 

Agricultural 

management 

schedules 

Farm–specific stocking density, fertilizer application 

rates and farming practices (1993–2012). Simulated 

applications of urea (twice in winter/spring; four times in 

summer/autumn) and di–ammonium phosphate (once or 

twice in spring/autumn). Application of manure–

associated nutrients to paddocks was simulated as a 

function of stock numbers and literature values for the 

average N and P content of excreta.Stock density 

Statistics New Zealand, 2006; 

Fert Research, 2009; Ledgard 

and Thorrold, 1998; Dairying 

Research Corporation, 1999 

Applications of urea and di–ammonium phosphate 
Statistics New Zealand, 2006; 

Fert Research, 2009 

Applications of manure–associated nutrients 
Dairying Research Corporation, 

1999 

Nutrient loading 

by wastewater 

application 

Nonpoint–

source from land 

treatment 

irrigation 

Wastewater application rates and effluent composition 

(TN and TP concentration) for 16 spray blocks from 

1996–2012. Each spray block was assigned an individual 

management schedule specifying daily application rates.  

Rotorua District Council, 2006 

Forest stand map 

and harvest dates 

Forestry 

planting and 

harvesting 

Planting and harvesting data for 472 ha forestry stands. 

Prior to 2007 we assumed stands were cleared one–year 

prior to the establishment year. Post 2007, harvesting 

Timberlands Limited, Rotorua, 

New Zealand (pers. comm.) 
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operations date was assigned to the first day of harvesting month. 
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Table 2. Prior–estimated parameter values for three dominant types of land–cover in the Puarenga Stream catchment. Values of other 1 

land use parameters were based on the default values in the SWAT database. 2 

Land–cover type Parameter Definition Value Source 

PINE 

(Pinus radiata) 

HVSTI Percentage of biomass harvested 0.65 (Ximenes et al., 2008) 

T_OPT (℃) Optimal temperature for plant growth  15 (Kirschbaum and Watt 2011) 

T_BASE (℃) Minimum temperature for plant growth  4 (Kirschbaum and Watt 2011) 

MAT_YRS 
Number of years to reach full 

development 
30 (Kirschbaum and Watt 2011) 

BMX_TREES (tonnes ha-1) Maximum biomass for a forest 400 (Bi et al., 2010) 

GSI (m s-1) Maximum stomatal conductance 0.00198 (Whitehead et al., 1994) 

BLAI (m2 m-2) Maximum leaf area index 5.2 (Watt et al., 2008) 

BP3 Proportion of P in biomass at maturity 0.000163 (Hopmans and Elms 2009) 

BN3 Proportion of N in biomass at maturity 0.00139 (Hopmans and Elms 2009) 

FRSE 

(Evergreen forest ) 

HVSTI Percentage of biomass harvested 0 – 

BMX_TREES (tonnes ha-1) Maximum biomass for a forest 372 (Hall et al., 2001) 

MAT_YRS (years) 
Number of years for tree to reach full 

development 
100 – 

PAST 

(Pastoral farm) 

T_OPT (℃) Optimal temperature for plant growth 25 (McKenzie et al., 1999) 

T_BASE (℃) Minimum temperature for plant growth 5 (McKenzie et al., 1999) 
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Table 3. Summary of calibrated SWAT parameters. Discharge (Q), suspended sediment (SS) and total nitrogen (TN) parameter 1 

values were assigned using auto–calibration, while total phosphorus (TP) parameters were manually calibrated. SWAT default ranges 2 

and input file extensions are shown for each parameter. 3 

Parameter Definition Unit Default range 
Calibrated 

value 

Q and SS 
   

 

EVRCH.bsn Reach evaporation adjustment factor 
 

0.5–1 0.9 

PRF.bsn Peak rate adjustment factor for sediment routing in the main channel 
 

0–2 

SPCON.bsn 
Linear parameter for calculating the maximum amount of sediment 

that can be re–entrained during channel sediment routing  
0.0001–0.01 

SPEXP.bsn 
Exponent parameter for calculating sediment re–entrained in channel 

sediment routing  
1–1.5 

SURLAG.bsn Surface runoff lag coefficient 
 

0.05–24 15 

ALPHA_BF.gw Base flow alpha factor (0–1) 
 

0.0071–

0.0161 
0.01 

GW_DELAY.gw Groundwater delay d 0–500 500 

GW_REVAP.gw Groundwater “revap” coefficient 
 

0.02–0.2 0.08 

GW_SPYLD.gw Special yield of the shallow aquifer m3 m-3 0–0.4 0.13 

GWHT.gw Initial groundwater height m 0–25 14 

GWQMN.gw 
Threshold depth of water in the shallow aquifer required for return 

flow to occur 
mm 0–5000 372 

RCHRG_DP.gw Deep aquifer percolation fraction 
 

0–1 0.87 

REVAPMN.gw 
Threshold depth of water in the shallow aquifer required for “revap” 

to occur 
mm 0–500 260 

CANMX.hru Maximum canopy storage mm 0–100 0.6 

EPCO.hru Plant uptake compensation factor 
 

0–1 0.34 

ESCO.hru Soil evaporation compensation factor 
 

0–1 0.9 

HRU_SLP.hru Average slope steepness m m-1 0–0.6 0.5 

LAT_SED.hru Sediment concentration in lateral flow and groundwater flow mg L-1 0–5000 
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LAT_TTIME.hru Lateral flow travel time d 0–180 3 

OV_N.hru Manning's N value for overland flow 
 

0.01–30 

RSDIN.hru Initial residue cover kg ha-1 0–10000 1 

SLSOIL.hru Slope length for lateral subsurface flow m 0–150 40 

SLSUBBSN.hru Average slope length m 10–150 

CH_COV1.rte Channel erodibility factor 
 

0–0.6 

CH_COV2.rte Channel cover factor 
 

0–1 

CH_K2.rte Effective hydraulic conductivity in the main channel alluvium mm h-1 0–500 20 

CH_N2.rte Manning's N value for the main channel 
 

0–0.3 0.16 

CH_K1.sub Effective hydraulic conductivity in the tributary channel alluvium mm h-1 0–300 100 

CH_N1.sub Manning's N value for the tributary channel 
 

0.01–30 20 

CN2.mgt Initial SCS runoff curve number for moisture condition   35–89 

     

SS     

USLE_P.mgt USLE equation support practice factor 
 

0–1 0.5 

PRF.bsn Peak rate adjustment factor for sediment routing in the main channel 
 

0–2 1.9 

SPCON.bsn 
Linear parameter for calculating the maximum amount of sediment 

that can be re–entrained during channel sediment routing  
0.0001–0.01 0.001 

SPEXP.bsn 
Exponent parameter for calculating sediment re–entrained in channel 

sediment routing  
1–1.5 1.26 

LAT_SED.hru Sediment concentration in lateral flow and groundwater flow mg L-1 0–5000 5.7 

OV_N.hru Manning's N value for overland flow 
 

0.01–30 28 

SLSUBBSN.hru Average slope length m 10–150 92 

CH_COV1.rte Channel erodibility factor 
 

0–0.6 0.17 

CH_COV2.rte Channel cover factor 
 

0–1 0.6 

     

TP 
   

 

P_UPDIS.bsn Phosphorus uptake distribution parameter 
 

0–100 0.5 

PHOSKD.bsn Phosphorus soil partitioning coefficient 
 

100–200 174 

PPERCO.bsn Phosphorus percolation coefficient 
 

10–17.5 14 
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PSP.bsn Phosphorus sorption coefficient  
 

0.01–0.7 0.5 

GWSOLP.gw Soluble phosphorus concentration in groundwater loading  mg P L-1 0–1000 0.063 

LAT_ORGP.gw Organic phosphorus in the base flow mg P L-1 0–200 0.01 

ERORGP.hru Organic phosphorus enrichment ratio 
 

0–5 2.5 

CH_OPCO.rte Organic phosphorus concentration in the channel mg P L-1 0–100 0.02 

BC4.swq 
Rate constant for mineralization of organic phosphorus to dissolved 

phosphorus in the reach at 20 ℃ 
d-1 0.01–0.7 0.3 

RS2.swq 
Benthic (sediment) source rate for dissolved phosphorus in the reach 

at 20 ℃   

mg m-2 

d-1 
0.001–0.1 0.02 

RS5.swq Organic phosphorus settling rate in the reach at 20 ℃ d-1 0.001–0.1 0.05 

     

TN 
   

 

RSDCO.bsn Residue decomposition coefficient 
 

0.02–0.1 0.09 

CDN.bsn Denitrification exponential rate coefficient 
 

0–3 0.3 

CMN.bsn Rate factor for humus mineralization of active organic nitrogen 
 

0.001–0.003 0.002 

N_UPDIS.bsn Nitrogen uptake distribution parameter 
 

0–100 0.5 

NPERCO.bsn Nitrogen percolation coefficient 
 

0–1 0.0003 

RCN.bsn Concentration of nitrogen in rainfall mg N L-1 0–15 0.34 

SDNCO.bsn Denitrification threshold water content 
 

0–1 0.02 

HLIFE_NGW.gw Half–life of nitrate–nitrogen in the shallow aquifer d 0–200 195 

LAT_ORGN.gw Organic nitrogen in the base flow mg N L-1 0–200 0.055 

SHALLST_N.gw Nitrate–nitrogen concentration in the shallow aquifer mg N L-1 0–1000 1 

ERORGN.hru Organic nitrogen enrichment ratio 
 

0–5 3 

CH_ONCO.rte Organic nitrogen concentration in the channel mg N L-1 0–100 0.01 

BC1.swq 
Rate constant for biological oxidation of ammonium–nitrogen to 

nitrite–nitrogen in the reach at 20 ℃ 
d-1 0.1–1 1 

BC2.swq 
Rate constant for biological oxidation of nitrite–nitrogen to nitrate–

nitrogen in the reach at 20 ℃ 
d-1 0.2–2 0.7 

BC3.swq 
Rate constant for hydrolysis of organic nitrogen to ammonium–

nitrogen in the reach at 20 ℃ 
d-1 0.2–0.4 0.4 
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RS3.swq 
Benthic (sediment) source rate for ammonium–nitrogen in the reach 

at 20 ℃  

mg m-2 

d-1 
0–1 0.2 

RS4.swq Rate coefficient for organic nitrogen settling in the reach at 20 ℃  d-1 0.001–0.1 0.05 
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Table 4. Criteria for model performance. Note: 𝒐𝐧 is the 𝒏𝐭𝐡 observed datum, 𝒔𝐧 is the 𝒏𝐭𝐡 simulated datum, �̅� is the observed mean 1 

value, �̅� is the simulated daily mean value, and 𝐍 is the total number of observed data. Performance rating criteria are based on 2 

Moriasi et al. (2007) for Q: discharge, SS: suspended sediment, TP: total phosphorus and TN: total nitrogen. Moriasi et al. (2007) 3 

derived these criteria based on extensive literature review and analysing the reported performance ratings for recommended model 4 

evaluation statistics. 5 

Statistic equation Constituent 
Performance ratings 

Unsatisfactory Satisfactory Good Very good 

R2 =
{∑ [(𝑠n−s̅)(𝑜n−o̅)]N

n=1 }2

∑ (𝑜n − o̅)2 × ∑ (𝑠n − s̅)2N
n=1

N
n=1

    (23) All < 0.5 0.5 – 0.6 0.6 – 0.7 0.7 – 1 

NSE = 1 −
∑ (𝑜n − 𝑠n)iN

n=1

∑ (𝑜n − o̅)iN
n=1

    i = 2    (34) All < 0.5 0.5 – 0.65 0.65 – 0.75 0.75 – 1 

±PBIAS% =
∑ (𝑜n−𝑠n)N

n=1

∑ 𝑜n
N
n=1

× 100    (45) 

Q > 25 15 – 25 10 – 15 < 10 

SS > 55 30 – 55 15 – 30 < 15 

TP, TN > 70 40 – 70 25 – 40 < 25 

R2: coefficient of determination 6 

NSE: Nash–Sutcliffe efficiency 7 

PBIAS: percent bias 8 

9 
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Table 5. Model performance ratings for simulations of discharge (Q), concentrations of suspended sediment (SS), total phosphorus 1 

(TP) and total nitrogen (TN) simulations. n indicates the number of measurements. Q–weighted mean concentrations were calculated 2 

using Eq. (1).  3 

Model performance Statistics Q SS TP TN 

Calibration with 

instantaneous measurements 

(2004–2008) 

 n = 1439 n = 43 n = 45 n = 39 

R2 
0.77 

(Very good) 

0.42 

(Unsatisfactory) 

0.02 

(Unsatisfactory) 

0.08 

(Unsatisfactory) 

NSE 
0.73 

(Good) 

-0.08 

(Unsatisfactory) 

-1.31 

(Unsatisfactory) 

-0.30 

(Unsatisfactory) 

±PBIAS% 
7.8 

(Very good) 

-18.3 

(Very good) 

23.8 

(Very good) 

-0.05 

(Very good) 

Validation with 

instantaneous measurements 

(1994–1997) 

 n = 1294 n = 37 n = 37 n = 36 

R2 
0.68 

(Good) 

0.80 

(Very good) 

0.01 

(Unsatisfactory) 

0.01 

(Unsatisfactory) 

NSE 
0.62 

(Satisfactory) 

0.76 

(Very good) 

-0.97 

(Unsatisfactory) 

-2.67 

(Unsatisfactory) 

±PBIAS% 
8.8 

(Very good) 

-0.32 

(Very good) 

24.5 

(Very good) 

-26.7 

(Good) 

Validation with 

Q–weighted mean concentrations 

(2010–2012) 

 – n = 12 n = 18 n = 18 

R2 – 
0.38 

(Unsatisfactory) 

0.06 

(Unsatisfactory) 

0.46 

(Unsatisfactory) 

NSE – 
-0.03 

(Unsatisfactory) 

-4.88 

(Unsatisfactory) 

0.42 

(Unsatisfactory) 

±PBIAS% – 
43.9 

(Satisfactory) 

69.4 

(Satisfactory) 

-0.87 

(Very good) 

4 
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Table 6. Model performance statistics for simulations of discharge (Q), and loads of suspended sediment (SS), total phosphorus (TP) and total 1 

nitrogen (TN). Statistics were calculated for both overall and separated simulations. Qall and Lall indicate the overall simulations; Qb and Lb 2 

indicate the base flow simulations; Qq and Lq indicate the quick flow simulations. 3 

Model performance Statistics 
Q SS TP TN 

Qb Qq Qall Lb Lq Lall Lb Lq Lall Lb Lq Lall 

Calibration (2004–2008) 

R2 0.84 0.84 0.77 0.66 0.68 0.61 0.24 0.65 0.39 0.72 0.97 0.95 

NSE 0.6 0.71 0.73 0.33 0.33 0.27 -6.2 0.09 -0.17 0.5 0.89 0.85 

±PBIAS% 7.5 8.7 7.8 7.57 -23.4 -3.6 45.4 40.1 43.6 0.8 6.6 2.7 

Validation (1994–1997) 

R2 0.87 0.81 0.68 0.36 0.98 0.95 0.27 0.27 0.06 0.79 0.33 0.58 

NSE 0.56 0.62 0.62 -0.03 0.43 0.85 -1.9 0.04 -0.64 0.58 -0.07 0.33 

±PBIAS% 11.3 -1.2 8.8 34.5 -79.7 11.1 45.8 -9.3 37 -7.6 14.3 -2.5 

R2: coefficient of determination; NSE: Nash–Sutcliffe efficiency; PBIAS: percent bias 4 Commented [MW86]: Reviewer #1, Comment #11 
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Table 7 Rankings of relative sensitivities of parameters (from most to least) for variables (header row) of Q (discharge), SS (suspended sediment), 1 

MINP (mineral phosphorus), ORGN (organic nitrogen), NH4–N (ammonium–nitrogen), and NO3–N (nitrate–nitrogen). Relative sensitivities 2 

were identified by randomly generating combinations of values for model parameters and comparing modelled and measured data with a 3 

Student’s t test (p ≤ 0.05). Bold text denotes that a parameter was deemed sensitive relative to more than one simulated variable. Shaded text 4 

denotes that parameter deemed insensitive to any of the two flow components (base and quick flow; see Figure 7) using one–at a–time sensitivity 5 

analysis. Definitions and units for each parameter are shown in Table 3. 6 

Q SS MINP ORGN NH4–N NO3–N 

SLSOIL LAT_SED CH_OPCO CH_ONCO CH_ONCO NPERCO 

CH_K2 CH_N2 BC4 BC3 BC1 CDN 

HRU_SLP SLSUBBSN RS5 SOL_CBN(1) CDN ERORGN 

LAT_TTIME SPCON ERORGP RS4 RS3 CMN 

SOL_AWC(1) ESCO PPERCO RCN RCN RCN 

RCHRG_DP OV_N RS2 N_UPDIS 
 

RSDCO 

GWQMN SLSOIL PHOSKD USLE_P 
  

GW_REVAP LAT_TTIME GWSOLP SDNCO 
  

GW_DELAY SOL_AWC(1) LAT_ORGP SOL_NO3(1) 
  

CH_COV1 EPCO 
 

CMN 
  

CH_COV2 CANMX 
 

HLIFE_NGW 
  

EPCO CH_K2 
 

RSDCO 
  

SPEXP GW_DELAY 
 

USLE_K(1) 
  

CANMX ALPHA_BF 
    

CH_N1 GW_REVAP 
    

PRF CH_COV1 
    

SURLAG  
    

7 
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Figure captions 1 

Figure 1. (a) Location of Puarenga Stream surface catchment in New Zealand, 2 

Kaituna rain gauge, climate station and managed land areas for which 3 

management schedules were prescribed in SWAT, and (b) location of the 4 

Puarenga Stream, major tributaries, monitoring stream–gauges, two cold–water 5 

springs and the Whakarewarewa geothermal contribution. 6 

Figure 2. Flow chart of methods used to separate hydrograph and contaminant 7 

loads and to quantify for parameter sensitivitiesy analysis in sequence of each 8 

individual variable for: Q (discharge), SS (suspended sediment), MINP (mineral 9 

phosphorus), ORGN (organic nitrogen), NH4–N (ammonium–nitrogen), and NO3–10 

N (nitrate–nitrogen). NSE: Nash–Sutcliffe efficiency. 11 

Figure 3. Measurements and daily mean simulated values of discharge, suspended 12 

sediment (SS), total phosphorus (TP) and total nitrogen (TN) during calibration 13 

(a–d) and validation (e–h). Measured daily mean discharge was calculated from 14 

15–min observations and measured concentrations of SS, TP and TN correspond 15 

to monthly grab samples. 16 

Figure 4. Example of a storm event showing derivation of hourly measurements, 17 

calculated discharge (Q)–weighted daily mean concentrations (dashed horizontal 18 

line) from thebased on hourly measured and simulated daily mean concentrations 19 

(black dots) of suspended sediment (SS), total phosphorus (TP) and total nitrogen 20 

(TN) for over two days during one storm event (a–c). Comparisons includes of Q–21 

weighted daily mean concentrations with simulated daily mean estimates of SS, 22 

TP and TN (scatter plot, d–f). for 24–h periods (The horizontal bars show the 23 

range of s in hourly measurements) during each storm events (in 2010–2012) and 24 

simulated daily mean estimates of SS, TP and TN (d–f). 25 

Figure 5. Measurements and simulations derived using the calibrated set of 26 

parameter values. Data are shown separately for base flow and quick flow. (a) 27 

Daily mean base flow and quick flow; (b) suspended sediment (SS) load; (c) total 28 

phosphorus (TP) load; (d) total nitrogen (TN) load. Vertical lines in b–d show the 29 

contaminant load in quick flow. Time series relate to calibration (2004–2008) and 30 
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validation (1994–1997) periods (note time discontinuity). Measured instantaneous 1 

loads of SS, TP, and TN correspond to monthly grab samples. 2 

Figure 6. Regression of measured and simulated (a) discharge (Q), concentrations 3 

of (b) suspended sediment (SS), (c) total phosphorus (TP), and (d) total nitrogen 4 

(TN) including lower and upper 95% confidence limits (LCL and UCL) and lower 5 

and upper 95% prediction limits (LPL and UPL). Note that the “choppy” shape of 6 

confidence limits shown in figures b–d were resulted from the few data points (< 7 

50) in the regressions of measured and simulated SS, TP and TN concentrations. 8 

Figure 67. The standard deviation (STD) of the natural logln–transformed Nash–9 

Sutcliffe efficiency (NSE) used to indicate Pparameter sensitivity partitioned into 10 

for base flow and quick flow constituents based on one–at a–time (OAT) 11 

sensitivity analysis for each modelled and observedseparate base and quick flow 12 

componentssimulated variable: (a) Q (discharge); (b) SS (suspended sediment); (c) 13 

MINP (mineral phosphorus); (d) NO3–N (nitrate–nitrogen); (e) ORGN (organic 14 

nitrogen); (f) NH4–N (ammonium–nitrogen). Parameter sensitivity is quantified as 15 

the variation in standard deviation (STD) of log10–transformed Nash–Sutcliffe 16 

efficiency (NSE) A median value (0.2) derived from the STD of ln–transformed 17 

NSE was chosen arbitrarily as a threshold above which parameters were deemed 18 

to be ‘sensitive’with a sensitivity threshold assigned as 0.1 (see Section 2.5). 19 

Definitions of each parameter are shown in Table 3. 20 
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 No changes in Figure 1. 
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 References have been added in Figure 2 using footnotes. Specifically: “Web–

based Hydrograph Analysis Tool (Lim et al. 2005)”; Define concentrations in 

base flow (Cb) and quick flow (Cq) components (cf. Rimmer and Hartmann, 

2014); and the natural logarithm (Krause et al., 2005)”. Commented [MW92]: Reviewer #2, Comment #14 
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 No changes in Figure 3. 
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 In Figure 4 a–c, we removed the black horizontal line showing the simulated 

daily mean. No more changes were made as the symbols in the publisher’s 

version appear to be clear. Commented [MW93]: Reviewer #3, Comment #15 (i) 
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 The symbols have been made clear in Figure 5. Commented [MW94]: Reviewer #3, Comment #17 (i) 
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 Figure 6 has been added to show model uncertainties for simulations of discharge (Q) 

and suspended sediment (SS), total phosphorus (TP) and total nitrogen (TN) 

concentrations. Commented [MW95]: Reviewer #3, Comment #8 
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 The standard deviation (𝑆𝑇𝐷) of the ln–transformed NSE were used to indicate 

parameter sensitivity for the two flow regimes in Figure 7. The threshold 

value of “0.2” was then chosen based on the median value derived from the 

calculations of the 𝑆𝑇𝐷 of ln–transformed NSE”.  Commented [MW96]: Reviewer #3, Comment #18 


