
 

Author response: “Uncertainty in Hydrological Signatures” by I. K. 
Westerberg and H. K. McMillan  
 

We thank all referees for their constructive comments that helped to improve our paper. The 

referee comments are given in blue text below with our responses in black. Changes made to the 

original manuscript are detailed in italics in the responses, and in the track-changes version of the 

manuscript included in the end of this document. 

Response to Referee 1, A. Viglione 
The paper shows how uncertainties in catchment rainfall and runoff measurement, interpolation and 
extrapolation propagate into uncertainties in hydrologic signatures, which are widely used in 
hydrology. The Authors use a methodology for uncertainty propagation based on Monte Carlo 
simulations. They consider sources of uncertainty and uncertainty models proposed in the literature. 
The methodology is applied to two small catchments in England and New Zealand.  

I really liked reading this paper, which is well written and inspiring. I definitively see the need for 
more publications of this kind in order to build up a more generalised understanding of the 
uncertainties in the data (and in how the data are used) which are at the basis of hydrologic studies. I 
am therefore supportive for the publication of the paper in HESS.  

Response: We thank Alberto Viglione for his helpful review and his positive comments about 
our paper. 

I just have a couple of suggestions which may help to improve the paper and which require little 
additional work for the Authors:  

- The amount of information provided in the paper is a lot and it would be nice to summarise it in 
tables. As in Table 1 the signatures are explained, it would be nice to have a table that lists all sources 
of uncertainty considered and the references in the literature where they have been discussed. More 
importantly, it would be nice to have a final table that summarises the major (dominant) sources of 
uncertainty for each signature as well as the relative uncertainty ranges found for the two catchments 
under study.   

Response: Thank you for this suggestion, we agree that it is a good idea to have an overview of 
the uncertainty sources with references to the literature. We have included a new table (Table 1, 
referred to in the first paragraph in Section 3.1 in the revised manuscript,) that shows the 
sources of uncertainty we considered in this paper, the methods used to estimate them and 
literature references for the methods where applicable.  

Table 1. Sources of uncertainty considered in this study, and the methods used for estimation. 

Variable/Signature Uncertainty component Estimation method Reference if applicable 

Rainfall Point uncertainty Normal distribution with 

σ a function of rain rate. 
Ciach (2003) 

 Interpolation uncertainty Subsampling from a 

dense network of rain 

 



gauges 

 Equipment malfunction Rainfall data 

with/without QC 

Wood et al. (2000) 

Flow Discharge uncertainty in 

gaugings 

Analysis of stations with 

stable ratings 

Coxon et al. (2015) 

 Stage uncertainty in 

gaugings 

Uniform distribution ±5 

mm 

McMillan et al. (2012) 

 Rating-curve uncertainty Voting Point likelihood 

method 

McMillan and 

Westerberg (2015) 

Recession analysis Flow data time step Tested hourly vs daily  

 Seasonality of response Tested using all data or 

split by season 

Shaw and Riha (2012) 

Rainfall-runoff 

threshold 

Effects of baseflow Tested with/without 

baseflow separation 

Gustard et al. (1992) 

 Rainfall event definition Tested with/without 

inclusion of smaller 

events 

 

 

We have also included a final table (Table 3 in the revised manuscript) at the end of the results 
section that summaries the dominant uncertainty sources and the uncertainty magnitudes and 
characteristics (see also next response below). We included a new subsection (4.3) to describe 
the table and summarise the findings, see below. 

4.3 Summary of the signature uncertainties 

To summarise our results, we tabulated examples of each signature type together with their dominant 
uncertainty sources and summary statistics of the total uncertainty distribution, for each catchment 
(Table 3). Our aim is to allow easy comparison of the signature uncertainties in our study, with those 
of other studies. We therefore chose commonly used distribution statistics, i.e. the first three 
distribution moments (mean, standard deviation, skewness); and the half-width of the 5–95 percentile 
range, which is commonly quoted in uncertainty studies (e.g. McMillan et al, 2012). We hope that 
authors of future studies will consider using similar statistics, to enable the community to compile a 
generalised understanding of signature uncertainties across different catchments, scales and 
landscapes.   

Table 3 Dominant uncertainty sources and uncertainty characteristics 

Signature type 

C
at

ch
m

en
t1  Dominant uncertainty 

source
 

Uncertainty characteristics 

Half-width 

of 5–95 

percentile 

range (%) 

Mean 

(=bias) 

(%) 

Std. 

(%) 

Skew-

ness (-) 

F
lo

w
 d

is
tr

ib
u

ti
o

n
 

Average flow 

conditions 

(QMEAN) 

M Rating-curve uncertainty 11.1 -0.4 6.8 0.32 

B Rating-curve uncertainty 12.7 -2.4 7.7 -0.03 

Low flow 

percentiles 

(Q95) 

M Discharge gauging 

uncertainty  

23.8 -1.2 14.6 0.47 

B Rating-curve uncertainty 39.5 -1.1 23.8 0.45 

High flow 

percentiles 

(Q0.1) 

M Rating-curve uncertainty 22.8 -8.3 16.6 1.54 

B Rating-curve uncertainty 

19.6 0.0 12.0 0.13 



E
v

e
n

ts
 

Event 

frequency and 

duration (QHD) 

M Threshold value, which 

depends on rating-curve 

uncertainty 

6.9 2.3 3.3 1.30 

B Threshold value, which 

depends on rating-curve 

uncertainty 

21.6 -5.1 13.1 0.57 

F
lo

w
 d

y
n

a
m

ic
s 

Base Flow 

Index (BFI) 

M Rating-curve uncertainty  11.6 3.4 7.1 -0.11 

B Rating-curve uncertainty  8.5 -2.3 5.1 -0.19 

Slope of Flow 

Duration Curve 

(SFDC) 

M Rating-curve breakpoint 

location 28.8 16.9 17.4 0.46 

B Rating-curve uncertainty 6.0 -3.2 3.7 -0.18 

Variability of 

extreme flows 

(QHV) 

M Rating-curve uncertainty 41.9 -1.0 30.4 2.30 

B Rating-curve uncertainty 37.0 6.5 23.0 0.75 

Recession 

analysis (b  

hourly) 

M Calculation time step 9.9 -3.1 6.3 0.38 

B Rating-curve uncertainty 14.9 5.1 8.9 0.72 

R
a

in
fa

ll
-r

u
n

o
ff

 

Total runoff 

ratio (RR
2
) 

M Rating-curve uncertainty 14.6 -0.3 9.0 0.26 

B Rating-curve uncertainty 13.3 -2.0 8.1 0.02 

Rainfall-runoff 

threshold 

(threshold 

location
3
) 

M Rainfall interpolation 

uncertainty  

17.3 16.3 17.2 5.88 

B - - - - - 

R
a

in
fa

ll
 

Mean annual 

precipitation 

(PMA
2
) 

M Interpolation uncertainty 10.0 0.3 5.7 0.22 

B Interpolation uncertainty. 

(Equipment malfunction) 

4.6 -0.4 2.7 0.34 

Standard 

deviation of 

precipitation 

(PSTD
2
) 

M Interpolation uncertainty 8.0 9.5 4.4 1.55 

B Interpolation uncertainty. 

(Equipment malfunction) 

4.9 4.6 2.9 0.67 

1
 M = Mahurangi, B = Brue 

2
 These signatures were calculated using 1 gauge/45 km

2
 and including point error 

3
 This signature was calculated for the total uncertainty scenario in Fig. 10 

 
 
- Reading the title of the paper I would have expected more discussion on generalisation of results. I 
was involved in editing a book on runoff prediction in ungauged basins (Blöschl et al., 2013, already 
cited in the paper), where an assessment of uncertainty of regionalisation methods was attempted 
based on a literature review of many studies around the world. Let’s assume that in the next years 
many researches will perform similar studies on uncertainty in hydrologic signatures and that the 
Authors will be asked to synthetise these works (and try to understand the effect of climate, catchment 
scale, dominant hydrologic processes, antropogenic influence, etc...). What information would the 
Authors like to find in these papers? How this information should be organised and presented? This 
may be discussed in the conclusion and the final table referred to in the previous point could be an 
example of what the Authors would like to find in other papers on the subject. In other words, I 
believe that this paper could aim at setting a standard for studies on uncertainty in hydrologic 
signatures.  



Response: Thank you for this good suggestion. Observational uncertainties are in general highly 
dependent on local site conditions and measurement methods, therefore it is important to 
include such information (measurement equipment, metadata about station characteristics, out-
of-bank levels, temporal changes in site characteristics, etc.) together with information about 
catchment size, scale, human impacts, dominant hydrologic processes, etc (as suggested). The 
place-specific nature of the uncertainties will likely impede the possibilities to draw general 
conclusions about some influencing factors; however, we believe that such generalisation 
attempts are important and that valuable insights could be gained in future review studies.  

Regarding information about the magnitudes of the uncertainties we believe that is important to 
not only report information about upper/lower uncertainty bounds, but also information about 
the shape of the estimated uncertainty distributions, e.g. by using histograms or boxplots as in 
this study. Therefore we have calculated four summary statistics (mean, std, skewness and 
halfwidth of the 5-95 percentile range) describing the uncertainty distributions and reported 
them together with the dominant uncertainty sources in the new summary results table  
described in the previous response  (Table 3 in the revised manuscript). We reported the 
uncertainty magnitudes for one representative signature per category and catchment, to keep 
the table compact in terms of summarising the findings. We have noted that other papers could 
follow this example in reporting signature uncertainties, recommending that statistics 
describing the shape of the uncertainty distributions are always reported (see new text and table 
in the previous response). 

Minor comments:  

Page 4237, lines 21 and 24: I get confused here. “The main aim of this paper was...” refers to Juston et 
al. (2014) while “The objectives of this paper were:” refers to the present paper. Am I right? Maybe a 
rewording could help the reader here.  

Response: The first part about the main aim of our paper we included to say up front that the 
results will be sensitive to the uncertainty estimation technique and the understanding of the 
uncertainty sources (also discussed by Juston et al). We have reworded the first part to clarify 
this: 

This paper was focused on signature uncertainty rather than data uncertainty; we stress that 

alternative data uncertainty assessment methods could be used where the perceptual understanding 

of the uncertainty sources is different. 

We have also introduced a new paragraph in the discussion in section 5.2 about the sensitivity of 
the results relating to the uncertainty estimation methods, as also suggested by the other 
referees (see response to Referee 2, H. Gupta below). 

Page 4238 line 15 and page 4239 line 6: why missing precipitation values have been infilled with two 
different procedures in the two catchments? I guess the reason is because that was done in previous 
works but the text doesn’t state it. Moreover, methods of infilling rainfall data are not considered in 
the uncertainty analysis, why?  

Response: Yes, in the New Zealand catchment they had already been infilled in a previous 
project, and we have noted this in the text (Section 2.1).  



Missing rainfall values were available from a previous study that had infilled them using linear 

correlation with a nearby site. 

Methods for infilling rainfall data could also have been considered, although we believe this 
would have had a small impact on the results since there were small differences between the 
different methods we tried. 

Page 4251, lines 9-12: I do not understand why events defined using a threshold related to the mean or 
median flow are more sensitive to rating curve uncertainty than events defined using a flow percentile 
threshold. What percentile is preferable? In the end the median is also a percentile, why isn’t it good?  

Response: It is when the threshold is defined using a multiplier of the median value, instead of 
the actual flow percentile (or median) value itself, that it becomes sensitive to the rating-curve 
uncertainty. This is because the (uncertain) gradient of the rating curve greatly impacts on the 
flow percentile equivalent to the threshold value. We explained this in better wording in the 
results section on P4247 Line 1-7, but have now revised the text in both sections to make sure 
that this is clear.  We have revised the end of section 4.2.1 to: 

Signatures describing the frequency and duration of high and low flow events (QHF, QHD, QLF, and 
QLD) had large uncertainties in both catchments (±10–35%). This arises because the event threshold 
is defined as a multiplier of the mean or median flow, and so the (uncertain) gradient of the rating 
curve greatly impacts on the flow percentile equivalent to the threshold value. Frequency and 
duration signatures have alternatively had the event threshold defined directly as a flow percentile 
(Kennard et al., 2010; Olden and Poff, 2003); we suggest this is preferable as those signatures were 
insensitive to the uncertainties analysed here, apart from sometimes small effects when using daily 
averages.   

The beginning of the last paragraph of section 5.1 in the discussion was revised to: 

Signatures can be designed to be robust to some data uncertainty sources. A clear example is for 

signatures describing the frequency and duration of high and low flow events. If these events are 

defined using a threshold defined as a multiplier of the mean or median flow, they are highly 

sensitive to rating curve uncertainty. If instead, the events are directly defined using a flow percentile 

threshold, they were little affected by rating curve uncertainty (see Section 4.2.1). 

Figs. 1 and 2: I think that the reader would get more understanding on the two study areas if the 
Authors would add a sample of the hydrograph in the figures (or in an additional one). This would 
show how the runoff responses differ in the two catchments (e.g., difference in flashiness). I am 
thinking to something like Figure 1 in http://www.hydrol-earth-syst-sci.net/17/2263/2013/hess-17-
2263-2013.pdf  

Best regards, Alberto Viglione 

Response: Thank you for this useful suggestion, we have added a figure (Fig. 7 in the revised 
manuscript, see below) describing the two hydrographs and the runoff response, as well as more 
text describing the differences in runoff response in the end of Section 4.1.2, see below: 

Mahurangi has a fast rainfall-runoff response with little base flow and peak flow events that are 

infrequent but have large magnitudes (up to 11 mm/h, Fig. 7a, right inset plot). Brue, by contrast, 

has higher base flow and more peak flow events of longer duration and lower magnitudes (up to 1 

http://www.hydrol-earth-syst-sci.net/17/2263/2013/hess-17-2263-2013.pdf
http://www.hydrol-earth-syst-sci.net/17/2263/2013/hess-17-2263-2013.pdf


mm/h, Fig 7b, right inset plot). Large high-flow uncertainty is likely in catchments such as the 

Mahurangi where peak flows occur seldom and last only a few hours – this makes reliable high-flow 

gauging practically difficult and rating-curve extrapolation often necessary. The larger high-flow 

rating-curve uncertainty in Mahurangi (Fig. 6a) is reflected in a wider peak flow uncertainty 

distribution (Fig. 7a, left inset plot). In Brue the whole flow range is gauged and the high-flow rating-

curve uncertainty is smaller (Fig. 6c), the peak flow distribution has higher kurtosis with heavier tails 

(Fig. 7b, left inset plot). 

 

 

Fig. 7 Discharge calculated using the optimal rating curve for 1998 for Mahurangi (a) and for 1994–
1995 for Brue (b). The left inset plots show the discharge time series uncertainty distribution at an 

hourly scale for a peak flow event in each catchment. The right inset plots show the flow-duration 

curves for the full time series for each catchment. The y-axis variable and unit is discharge in mm/h in 

all plots. 

 

 



Response to Referee 2, H. Gupta 
Referee Comments (Hoshin Gupta) on “Uncertainty in hydrological signatures by IK Westerberg and 
HK McMillan" submitted to HESS  

I. Contributions of the Paper  

A) Goals: (1) To contribute to awareness of signature uncertainty, including typical sources, 
magnitudes and methods for assessment. (2) To propose a general method for estimating signature 
uncertainty. (3) To demonstrate how typical uncertainty estimates translate to magnitude and 
distribution of signature uncertainty in two example catchments. 

B) Summary: A diagnostic hydrological signature quantifies information from observed data as an 
index value. Uncertainties in the observed data, and subjective choices in the calculation method, 
propagate into the signature values and reduce their information content. However, uncertainty 
sources and distributions are application-specific, making a general analytic solution for signature 
uncertainty difficult. This paper reviews the uncertainties relevant to different signatures in rainfall 
and flow data, and proposes that a Monte Carlo simulation can provide a generally applicable and 
flexible method, by sampling equally likely possible realizations of the true data values, conditioned 
on the observed data (where multiple data sources are needed, grouped samples are used). Each 
realization is then used to calculate the signature value, and the values collated to give the signature 
distribution. Results are demonstrated for two catchments.  

C) Findings: 1) Uncertainties are often large (±10–40% relative uncertainty) and highly variable 
between signatures. 2) Greater uncertainty in signatures that use highfrequency responses, small data 
subsets, or subsets prone to measurement errors. 3) Lower uncertainty in signatures that use spatial or 
temporal averages. 4) Some signatures are sensitive to particular uncertainty types such as rating-
curve form.  

D) Conclusions: Signatures can be designed to be robust to some uncertainty sources. Signature 
uncertainties of the magnitudes found have the potential to change the conclusions of hydrological 
and ecohydrological analyses, such as cross-catchment comparisons or inferences about dominant 
processes.  

II. Referee Comments (Hoshin Gupta): This is a very well conceived and written paper. The 
organization and presentation are excellent. The subject matter is both timely and addressed in a clear 
and comprehensive manner. I recommend publication with no reservations.  

Since I am not very well versed in the sources and nuances of observation/data uncertainty, I focused 
my review my attention mainly on the methodology applied. In general I concur that the Monte-Carlo 
approach is a suitable way to approach the problem of estimating signature uncertainty (and is more 
generally applicable in the context of data assimilation – i.e., estimating attributes of a dynamical 
systems model from data). The key sensitivity of the results will, of course, be to the choice of 
sampling distribution, and a certain amount of subjectivity is necessarily involved therein.  

I commend the authors on another noteworthy paper (in their growing list of excellent contributions to 
the literature). I wonder only if they might choose to comment on (perhaps in the conclusions) in 
more detail on how the inevitable subjectivity involved in choice/construction of the sampling 
distribution might influence any interpretations, and whether (perhaps) the use of maximal entropy 
forms of sampling distributions (conditional, of course, on the actual data and what is qualitatively 
known), might help in this regard. 



Response: We thank Hoshin Gupta for his very positive and kind comments about our paper. 
There is certainly some subjectivity in the choice of the uncertainty estimation methods and 
these should be motivated by the perceptual understanding of the uncertainty sources. We agree 
that this is an important consideration and are currently involved in a comparison study that 
aims to compare and better understand the effects of assumptions and methodological choices 
when it comes to estimating discharge uncertainty. We mentioned this issue briefly at the end of 
the introduction (P4237, line 13-23) to draw attention to this at the start of the paper. However, 
we agree with all the reviewers that it would be good to have some further discussion at the end 
of the paper and have therefore introduce an extra paragraph in the discussion in section 5.2 
(see below). 

With regards to the choice of sampling distribution, an example is the specification of the prior 
parameter distributions for the rating-curve parameters that can influence the results in the 
estimation of rating-curve uncertainty with the MCMC Voting Point method. This occurs 
primarily when the rating curve is extrapolated to ungauged flow levels, in particular if there 
are few gaugings in the high-flow section of the rating curve so that the prior distribution plays 
a larger role. In effect the prior distribution is playing the role of a perceptual model that brings 
information to the estimation problem, as Hoshin Gupta has discussed in recent papers – we 
have noted this in the discussion. This addresses an epistemic type of uncertainty related to lack 
of knowledge about the true stage-discharge relation that might be reduced by introducing new 
information (e.g. about the river cross-section and its characteristics) to constrain the 
uncertainty magnitudes. We have included some further discussion about this in the revised 
discussion (see new discussion paragraph below) 

We recognise that the inferred distributions of signature uncertainty will be sensitive to the 
assumptions and methods used to estimate distributions of data uncertainty. This introduces some 
subjectivity into the uncertainty estimation and it is therefore important to make the assumptions 
explicit and motivate method choices by the perceptual understanding of the uncertainty sources. For 
example, the optimal methods for estimating rating curve uncertainty under typical time-varying, 
poorly-specified errors remain an active debate in the hydrological community. The use of an 
informal likelihood, as we did, rather than a formal statistical likelihood can be more robust to 
multiple epistemic error sources, but can also be criticised for not obeying a formal statistical 
framework (as discussed by McMillan and Westerberg (2015) and Smith et al. (2008)). Future 
progress in understanding how perceptual models and data jointly contribute to system identification 
may help to resolve this dichotomy (Gupta and Nearing, 2014). At present, we recognise that 
uncertainty distributions are more subjective in signatures that emphasise poorly-described aspects of 
data uncertainty such as out-of-bank flows. 

Response to Referee 3, N. Le Vine  
The paper considers uncertainty in hydrological signatures due to errors/uncertainties in rainfall and 
discharge time series: 1) point measurement, spatial interpolation and equipment malfunctioning 
errors for rainfall (no systematic errors), and 2) uncertainty in stage-discharge relation (no stage time 
series uncertainty). MCMC sampling is employed to estimate signature uncertainties based on the 
time series uncertainty. The findings illustrate individual and combined contributions of the above 
rainfall and discharge uncertainties to the extent of signature uncertainty; and show that each 
uncertainty source, except for the rainfall point measurement uncertainty, contributes to a sizable 
signature uncertainty (for the selected signatures). 



The paper is well thought-through and addresses an existing gap in uncertainty assessment for 
hydrological time series and its propagation into hydrological signatures. One important aspect that, in 
my opinion, the authors need to acknowledge and discuss is that the ‘posterior’ distribution of the 
rating curves is not strictly a statistical distribution, since the Voting Point likelihood it is based on is 
not a formal statistical likelihood. This has implications on the use of the MCMC sampling method as 
well as on the interpretation of the corresponding signature values as draws from probabilistic 
distributions.  

Response: We thank Nataliya Le Vine for the review and the positive comments about our 
paper. We have clarified the section in the end of the introduction, before the paragraph 
presenting the objectives of the paper (P4237, line 20-23 in the original manuscript) 

This paper was focused on signature uncertainty rather than data uncertainty; we stress that 

alternative data uncertainty assessment methods could be used where the perceptual understanding 

of the uncertainty sources is different. 

We have also included a section in the discussion about the choice of uncertainty estimation 
methods, including a comment on the use of formal/informal likelihoods (see new text in the 
response to Referee 2, Hoshin Gupta above). Here, we have also referred to the further 
motivation for the choice and development of the Voting Point likelihood found in the technical 
note where the Voting Point method was first presented (McMillan and Westerberg, 2015, as 
referred in the paper). 

Further, I would suggest specifying in the title which hydrological signature uncertainty is considered 
in the manuscript, as there are other uncertainty sources, e.g. due to the time period selection, due to 
regionalization in ungauged basins. 

Response: We appreciate the suggestion, but prefer to keep the more simple title of the paper, 
as it would become rather complex to specify exactly which uncertainty sources are considered. 
See the new Table 1 described in the response to Referee 1, Alberto Viglione, for a summary of 
uncertainty sources to assist the reader. 
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 10 

Abstract 11 

Information about rainfall–runoff processes is essential for hydrological analyses, modelling 12 

and water-management applications. A hydrological, or diagnostic, signature quantifies such 13 

information from observed data as an index value. Signatures are widely used, including for 14 

catchment classification, model calibration and change detection. Uncertainties in the 15 

observed data – including measurement inaccuracy and representativeness as well as errors 16 

relating to data management – propagate to the signature values and reduce their information 17 

content. Subjective choices in the calculation method are a further source of uncertainty. 18 

We review the uncertainties relevant to different signatures based on rainfall and flow data. 19 

We propose a generally applicable method to calculate these uncertainties based on Monte 20 

Carlo sampling and demonstrate it in two catchments for common signatures including 21 

rainfall-runoff thresholds, recession analysis and basic descriptive signatures of flow 22 

distribution and dynamics. Our intention is to contribute to awareness and knowledge of 23 

signature uncertainty, including typical sources, magnitude and methods for its assessment. 24 

We found that the uncertainties were often large (i.e. typical intervals of ±10–40% relative 25 

uncertainty) and highly variable between signatures. There was greater uncertainty in 26 

signatures that use high-frequency responses, small data subsets, or subsets prone to 27 

measurement errors. There was lower uncertainty in signatures that use spatial or temporal 28 

averages. Some signatures were sensitive to particular uncertainty types such as rating-curve 29 



2 
 

 

 

form. We found that signatures can be designed to be robust to some uncertainty sources. 1 

Signature uncertainties of the magnitudes we found have the potential to change the 2 

conclusions of hydrological and ecohydrological analyses, such as cross-catchment 3 

comparisons or inferences about dominant processes. 4 

 5 

1 Introduction 6 

1.1 Hydrological signatures and observational uncertainty 7 

Information about rainfall–runoff processes in a catchment is essential for hydrological 8 

analyses, modelling and water-management applications. Such information derived as an 9 

index value from observed data series (rainfall, flow and/or other variables) is known as a 10 

hydrological or diagnostic signature, and these are widely used in both hydrology 11 

(Hrachowitz et al., 2013) and ecohydrology (Olden and Poff, 2003). The reliability of 12 

signature values depends on uncertainties in the data and calculation method, and some 13 

signatures may be particularly susceptible to uncertainty. Signature uncertainties have so far 14 

received little attention in the literature; therefore guidance on how to assess uncertainty, and 15 

typical uncertainty magnitudes would be valuable. 16 

Signatures are used to identify dominant processes and to determine the strength, speed and 17 

spatiotemporal variability of the rainfall-runoff response. Common signatures describe the 18 

flow regime (e.g. Flow Duration Curve, FDC, and recession characteristics), and the water 19 

balance (e.g. runoff ratio and catchment elasticity, Harman et al., 2011). Field studies have 20 

identified drivers of catchment function, such as a threshold response to antecedent wetness 21 

(Graham et al., 2010b; Penna et al., 2011; Tromp-van Meerveld and McDonnell, 2006a), 22 

which have been captured as signatures (McMillan et al., 2014). Signatures often incorporate 23 

multiple data types, including soft data (Seibert and McDonnell, 2002; Winsemius et al., 24 

2009). 25 

There is a long history of using flow signatures in eco-hydrology to assess instream habitat 26 

including the seasonal streamflow pattern, and the timing, frequency and duration of extreme 27 

flows (e.g. Jowett and Duncan, 1990). Signatures are used to detect hydrological change, e.g. 28 

Archer and Newson (2002) used flow signatures to assess the impacts of upland afforestation 29 

and drainage.  Signatures can define hydrological similarity between catchments (McDonnell 30 
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and Woods, 2004; Sawicz et al., 2011; Wagener et al., 2007), and assist prediction in 1 

ungauged basins (Bloeschl et al., 2013). Model calibration criteria using signatures are useful 2 

because they preserve information in measured data (Gupta et al., 2008; Refsgaard and 3 

Knudsen, 1996; Sugawara, 1979). Signatures used in calibration include the FDC 4 

(Westerberg et al., 2011), flow entropy (Pechlivanidis et al., 2012), the spectral density 5 

function (Montanari and Toth, 2007), or combinations of multiple signatures (Pokhrel et al., 6 

2012). By using signatures that target individual modelling decisions, model components can 7 

be tested for compatibility with observed data (Clark et al., 2011; Coxon et al., 2013; 8 

Hrachowitz et al., 2014; Kavetski and Fenicia, 2011; Li and Sivapalan, 2011; McMillan et al., 9 

2011). Hydrological signatures have been regionalised to ungauged basins and then used to 10 

constrain a model for the ungauged basin (Kapangaziwiri et al., 2012; Westerberg et al., 11 

2014; Yadav et al., 2007). 12 

Some previous authors have considered the effect of data uncertainty on hydrological 13 

signatures (Kauffeldt et al., 2013), particularly in model calibration. Blazkova and Beven 14 

(2009) incorporate uncertainties in signatures used as limits of acceptability to constrain 15 

hydrological models. Juston et al. (2014) investigate the impact of rating-curve uncertainty on 16 

FDCs and change detection for a Kenyan basin. They show that uncertainty in extrapolated 17 

high flows creates significant uncertainty in the FDC and the total annual flow. Kennard et al. 18 

(2010) discuss the uncertainties affecting ecohydrological flow signatures from measurement 19 

error, data retrieval and preprocessing, data quality, and the hydrologic metric estimation.  20 

1.2 Uncertainty considerations relevant for hydrological signatures 21 

We present a short description of data uncertainties relevant to hydrological signatures (see 22 

McMillan et al. (2012), for a longer review). In general, data uncertainties stem from 1) 23 

measurement uncertainty (e.g. instrument inaccuracy or malfunction), 2) measurement 24 

representativeness for the variable under study (e.g. point rainfall compared to catchment 25 

average rainfall), and 3) data management uncertainty (e.g. data entry errors, filling of 26 

missing values or station coordinate errors). Errors from data management, equipment 27 

malfunction or human errors can often be detected and corrected in quality control 28 

(Bengtsson and Milloti, 2010; Eischeid et al., 1995; Viney and Bates, 2004; Westerberg et al., 29 

2010). But some data errors, e.g. poorly calibrated or off-level raingauges, are difficult to 30 

correct post hoc (Sieck et al., 2007). The calculation of some signatures requires subjective 31 
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decisions that introduce extra uncertainty, for example storm identification criteria, data time 1 

step, and whether to split the data by month/season (e.g. Stoelzle et al., 2013).  2 

Each uncertainty component requires an error model that specifies the error distribution and 3 

dependencies (e.g. errors may be heteroscedastic and/or autocorrelated). It is essential that the 4 

error model accurately reflects the uncertainty, rather than simply adding random noise, as 5 

hydrological uncertainties are typically highly structured.  Some measurement uncertainties 6 

can be estimated by repeated sampling, whereas representativeness errors are difficult to 7 

estimate. The latter are often epistemic due to lack of knowledge at unmeasured 8 

locations/time periods (e.g. rainfall distant from rain gauges). The most appropriate method 9 

to assess data uncertainty depends on the information available and the hydrologist’s 10 

knowledge of the catchment. For example, the choice of likelihood function may depend on 11 

characteristics of the data errors and the measurement site. Uncertainty estimation depends on 12 

the perceptual understanding of the uncertainty sources as well as the studied system and 13 

there is potential for a false sense of certainty about uncertainty where strong error model 14 

assumptions are made (Brown, 2004). Juston et al. (2014) refer to uncertainty2 and show how 15 

interpretation of  uncertainties as random vs systematic affects hydrologic change detection. 16 

Thise main aim of this paper was to studyfocused on signature uncertainty rather than data 17 

uncertainty; we stress that alternative data uncertainty assessment methods could be used 18 

where the perceptual understanding of the uncertainty sources is different. 19 

The objectives of this paper were: (1) to contribute to the community's awareness and 20 

knowledge of observational uncertainty in hydrologic signatures, (2) to propose a general 21 

method for estimating signature uncertainty, and (3) to demonstrate how typical uncertainty 22 

estimates translate to magnitude and distribution of signature uncertainty in two example 23 

catchments. 24 

2 Catchments and data 25 

We used two catchments: the Brue catchment in the UK, and the Mahurangi catchment in 26 

New Zealand. This enabled us to compare signature uncertainties in different locations and 27 

with different uncertainty sources. Both catchments have excellent raingauge networks that 28 

allowed us to quantify uncertainty in rainfall data, and there is some existing knowledge of 29 

the dominant hydrological processes.  30 
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2.1 The Mahurangi catchment 1 

The Mahurangi is a 50 km² catchment in the North Island of New Zealand. It has a warm and 2 

humid climate, with mean annual rainfall of 1600 mm yr-1. The catchment has hills and 3 

gently rolling lowlands, and land use is a mixture of pasture, native forest and pine plantation. 4 

The soils are clay loams, less than 1 m deep. Extensive datasets of rainfall and flow were 5 

collected during the Mahurangi River Variability Experiment 1997–2001 (Woods et al., 6 

2001). We used hourly data from the 13 tipping bucket rain gauges and the catchment outlet 7 

flow gauge for 1 January 1998–31 December 2000 (Fig.1). Missing rainfall values were 8 

available from a previous study that had infilled them using linear correlation with a nearby 9 

site. The flow gauge has a two-part triangular weir for low to medium flows, and a rated 10 

section with confining wooded banks for high flows. During the study period, the maximum 11 

recorded stage was 3.8 m, but the highest gauged stage is 2.7 m. 12 

2.2 The Brue catchment 13 

The predominantly rural 135 km2 Brue catchment in south-west England has low grassland 14 

hills of up to 300 m above sea level (Fig. 2). Clay soils overlay alternating bands of 15 

permeable and impermeable rocks. An extensive precipitation dataset consisting of 49 16 

tipping-bucket raingauges and radar data with 15-min resolution was created by the HYREX 17 

(Hydrological Radar Experiment) project (Moore, 2000; Wood et al., 2000). We used the 18 

data from 1 January 1994 to 31 December 1997, with a mean annual precipitation of 820 mm 19 

yr-1. The extensive quality control described by Wood et al. (2000) included analyses of 20 

monthly cumulative rainfall totals and correlation analyses of timing errors. Errors included 21 

instrument malfunctions such as funnels blocked by debris and mouse damage to electrical 22 

cables. There were thus substantial periods of missing data resulting after quality control 23 

(Fig. 2), even for these carefully maintained rain gauges. We interpolated the missing 24 

precipitation values with inverse-distance weighting to obtain a complete dataset for 25 

subsampling analysis. 26 

The Lovington discharge station has a crump profile weir for low flows and a rated section 27 

above 2.2 m3/s. The whole stage range was gauged and the water was below bankfull level 28 

for the chosen period. The stage-discharge relationship is affected by downstream summer 29 

weed growth resulting in scatter in the low-flow part of the rating curve.  30 
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3 Method: Estimation of uncertainty in hydrological signatures 1 

Uncertainty sources and distributions are application-specific, so a general analytic solution 2 

for the signature uncertainty is not available. We suggest that Monte Carlo simulation 3 

provides a generally applicable and flexible method, by sampling equally likely possible 4 

realisations of the true data values (e.g. rainfall or flow series), conditioned on the observed 5 

data. Where multiple data sources are needed (e.g. calculation of runoff ratio), paired samples 6 

are used. Each sampled data series is used to calculate the signature value, and the values 7 

collated to give the signature distribution. This technique has previously been used to 8 

determine uncertainty in discharge (McMillan et al., 2010; Pappenberger et al., 2006) and 9 

rainfall (Villarini and Krajewski, 2008).  10 

We applied the Monte Carlo (MC) approach to estimate uncertainty in signatures of different 11 

complexity. We used signatures that require rainfall and/or streamflow data only. Our method 12 

is described in Fig. 3 and has four steps: 1) identification of uncertainty sources in the data 13 

and from subjective decisions in signature calculation, 2) specification of uncertainty models 14 

for each uncertainty source either from the literature or catchment-specific analyses, 3) 15 

Monte Carlo sampling from the different uncertainty models and calculation of signature 16 

values for each sample, and 4) analyses of the estimated signature distributions, their 17 

dependence on individual uncertainty sources and comparisons between catchments. We 18 

analysed both the absolute and relative uncertainty distributions, where the relative 19 

uncertainties were defined using the signature value from the best-estimate discharge and 20 

precipitation. 21 

3.1 Method: Data uncertainty sources and their estimation 22 

We first describe the error models for uncertainties relating to rainfall and flow. Further 23 

uncertainty sources that are specific to a particular signature are described separately in 24 

Section 3.2. Table 1 presents a summary of all uncertainty sources together with literature 25 

references for the uncertainty estimation methods. 26 

3.1.1 Catchment average rainfall 27 

Identification of uncertainty sources  28 

We considered catchment average rainfall estimated from a network of rain gauges, with 29 

three main uncertainty sources: point measurement uncertainty, spatial interpolation 30 
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uncertainty and equipment malfunction uncertainty (e.g. unrecognised blocked gauges). Point 1 

uncertainty includes random errors such as turbulent airflow around the gauge (Ciach, 2003), 2 

and is usually assessed using co-located gauges. Systematic point errors are also common 3 

(e.g. undercatch due to wind loss, wetting loss, splash-in/out). In theory, systematic errors can 4 

be corrected for, but this is difficult and the site-specific information required is not always 5 

available (Sieck et al., 2007). In this study, we considered random point uncertainty but not 6 

systematic components. Interpolation errors occur when estimating catchment average 7 

rainfall from the point measurements at the gauges and depend on rainfall spatial variability 8 

(affected by topography, rain rate and storm type), density of gauges and network design. 9 

Uncertainty estimation method 10 

Point uncertainty was calculated using the formula derived by Ciach (2003) from a study of 11 

15 co-located tipping bucket rain gauges over 12 weeks: 12 

r2.00035.0 +=σ         (1) 13 

Where r is the rainfall rate in mm/hr and σ is the standard deviation of the relative error in 1 14 

hour measurements. No information about the distribution of the errors was given; we 15 

assumed a Gaussian distribution with zero mean. Interpolation uncertainty was estimated by 16 

sub-sampling from the gauge network. We subsampled using 1–13 (1–49) gauges for 17 

Mahurangi (Brue) for the basic signatures. For the combined rainfall-runoff signatures, 3 18 

gauge densities were used: 1 gauge/45km2, 1 gauge/10km2 and 1 gauge/5km2, which equalled 19 

1 (3), 5 (14) and 10 (28) gauges in Mahurangi (Brue) respectively. We also used the single 20 

gauge case for Brue. Each subsampled dataset was used to estimate areal average rainfall at 21 

each time step using Theissen polygon interpolation. Equipment malfunction uncertainty was 22 

investigated for Brue, where a quality-assured set of reliable periods was available (Section 23 

2.2). We repeated our analyses using both the raw and quality-controlled data sets. 24 

3.1.2 Discharge data 25 

Identification of uncertainty sources 26 

We considered discharge as estimated from a measured stage series and a rating curve that 27 

relates stage to discharge. This is the most common method, and is used at both our case 28 

study sites. The main uncertainty sources are: 29 
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(1) Uncertainty in the gaugings (i.e. the measurements of stage and discharge used to fit the 1 

rating curve). Discharge uncertainty is typically larger, but during high flow gaugings, 2 

stage can change rapidly and its average may be difficult to estimate. 3 

(2) Approximation of the true stage-discharge relation by the rating curve. This is usually the 4 

dominant uncertainty (McMillan et al., 2012), especially when the stage-discharge 5 

relation changes over time. In both catchments, low to medium flows are contained 6 

within a weir, which constrains the uncertainty. However, for Brue considerable low-flow 7 

uncertainty remains as a consequence of seasonal vegetation growth.  8 

Uncertainty in the stage time series was not assessed apart from correcting obvious outliers. 9 

For Brue, occasional periods where stage data had been interpolated linearly from lower-10 

frequency measurements were excluded from the recession analysis.  11 

Uncertainty estimation method 12 

We used the Voting Point likelihood method to estimate discharge uncertainty by sampling 13 

multiple feasible rating curves (McMillan and Westerberg, 2015). In brief, discharge gauging 14 

uncertainty was approximated by logistic distribution functions based on an analysis of 26 15 

UK flow gauging stations with stable rating sections (Coxon et al., In review2015). This 16 

analysis gave 95% relative error bounds of 13–14 % for high flow to 30–40% for low flow 17 

(noting that the logistic distribution is heavy-tailed). Stage gauging uncertainty was 18 

approximated by a uniform distribution of ±5 mm, a mid-range value based on previous 19 

studies (McMillan et al., 2012). 20 

Rating-curve uncertainties, including extrapolation and temporal variability, were jointly 21 

estimated using Markov Chain Monte Carlo (MCMC) sampling of the posterior distribution 22 

of rating curves consistent with the uncertain gaugings. The Voting Point likelihood draws on 23 

previous methods that account for multiple sources of discharge uncertainty (Juston et al., 24 

2014; Krueger et al., 2010; McMillan et al., 2010; Pappenberger et al., 2006). The rating 25 

curve forms were based on the official curves, where Mahurangi had a 3-segment power law 26 

curve and Brue a 2-segment (for the range of flows analysed here). The power law 27 

parameters and the breakpoints were treated as parameters for estimation. 28 
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3.2 Method: Calculation of hydrological signatures with uncertainty 1 

3.2.1 Basic signatures 2 

A set of signatures describing different aspects of the rainfall-runoff behaviour were 3 

calculated (Table 21). We used signatures describing flow distribution, event characteristics, 4 

flow dynamics and rainfall; flow timing would be less affected by the data uncertainties 5 

studied here. Only data uncertainty (i.e. no subjective decisions) was considered for the basic 6 

signatures.  7 

3.2.2 Recession analysis 8 

Recession analysis is widely used to study the storage-discharge relationship of a catchment 9 

(Hall, 1968; Tallaksen, 1995), which gives insights into the size, heterogeneity and release 10 

characteristics of catchment water stores (Clark et al., 2011; Staudinger et al., 2011). We used 11 

the established method of characterising the relationship between flow and its time-12 

derivative. In the theoretical case where flow Q is a power function of storage, and 13 

evaporation is negligible, the relationship is: 14 

0

ˆˆ TQdtQd b
−=         (2) 15 

Where 0

ˆ QQQ =
 is flow scaled by the median flow Q0. T0 and b are found by plotting -dQ/dt 16 

against Q on logarithmic axes. T0 is the characteristic recession time at the median flow. b 17 

indicates nonlinearity of response: b = 1 implies a linear reservoir, b >1 implies greater 18 

nonlinearity or multiple water stores with different drainage rates (Clark et al., 2009; Harman 19 

et al., 2009).  20 

Subjective decisions in recession analysis include how recession periods are defined, the 21 

delay after rainfall used to eliminate quickflow, the data time step, and whether to extend 22 

time steps during low flows to improve flow derivative accuracy (Rupp and Selker, 2006). A 23 

moving average can be used to smooth diurnal flow fluctuations. Options to estimate T0 and b 24 

include linear regression, total least squares regression to allow for errors in both variables 25 

(Brutsaert and Lopez, 1998), or regression on binned data values (Kirchner, 2009). If water 26 

distributions vary seasonally, the results are sensitive to whether recessions are fitted using all 27 

data combined – or split by season, month or event (Shaw and Riha, 2012). 28 
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We assessed subjective uncertainty in recession analysis by comparing the distributions of 1 

recession parameters b and T0 in the following cases, which in our experience have the most 2 

potential to affect recession parameter values: (1) using hourly vs daily flow data, and (2) 3 

calculating recession parameters using all data combined vs calculating parameters by season 4 

and taking the mean. 5 

3.2.3 Thresholds in rainfall-runoff response 6 

Threshold behaviour in the relationship between rainfall depth and flow contributes to 7 

hydrological complexity (Ali et al., 2013) and exerts a strong control on model predictions. 8 

Threshold identification depends on both rainfall and flow data, making it a good candidate 9 

to test the effect of multiple uncertainty sources. Rainfall-runoff thresholds have been found 10 

in many catchments (Graham et al., 2010b; Tromp-van Meerveld and McDonnell, 2006a, b) 11 

including the Mahurangi (McMillan et al., 2011; McMillan et al., 2014). We only studied 12 

threshold signatures in the Mahurangi, as the Brue did not display any rainfall-runoff 13 

threshold. 14 

The signatures that we used were threshold location (in mm of rain per event) and threshold 15 

strength. We quantified threshold strength based on the method of McMillan et al. (2014). 16 

Storm events were identified and event rainfall was plotted against event runoff. Strong 17 

threshold behaviour was defined as an abrupt increase in slope of the event rainfall-runoff 18 

relationship. This attribute was tested by fitting each data set with two intersecting lines (a 19 

‘broken stick’ fit), using total least squares to optimise the slopes and intersect. The 20 

corresponding null hypothesies was that the two lines have equal slopes. This test returns a z-21 

statistic which quantifies the strength of evidence for the alternative hypothesis: where the 22 

absolute value exceeds 1.96, the null hypothesis can be rejected at the 5% level.  23 

We defined events based on McMillan et al. (2011), such that events require at least 2 24 

mm/hour or 10 mm/day of precipitation, and are deemed to end either when a new event 25 

begins, or five days after the last rainfall. Events are distinct if they are separated by 12 dry 26 

hours. We assessed uncertainty due to subjective decisions by using or not using baseflow 27 

separation, and by changing the event definition to include smaller events, where at least 1 28 

mm/hour or 5 mm/day of precipitation fell. We used the baseflow separation method of 29 

Gustard et al. (1992), which interpolates linearly between 5-day flow minima to create the 30 

baseflow series. 31 
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4 Results 1 

4.1 Estimated uncertainty in rainfall and discharge data  2 

4.1.1 Rainfall data 3 

The standard deviation of the error in catchment average rainfall resulting from different 4 

numbers of subsampled stations was calculated. It was plotted as a function of hourly rain 5 

rate using the moving-average window method of Villarini and Krajewski (2008), with a 6 

bandwidth equal to 0.7 times the rain rate at the centre of the window (results for the Brue in 7 

Fig. 4). The errors decreased with rain rate and there was a large initial decrease in the error 8 

when the number of sub-sampled stations increased from 1 to around 5. The point uncertainty 9 

only had a small effect on the error standard deviation.  10 

The number of gauges had a large effect on the estimated mean annual precipitation; if only 11 

one rain gauge was used, there was a range of 200–300 mm yr-1 that would clearly affect 12 

catchment water balance analyses (Fig. 5). One rain gauge in a catchment of this size is still 13 

well above the WMO recommended station density of 1 gauge per 575 km2 in hilly terrain 14 

(WMO, 2008). Here there was also a large initial decrease in the range when the number of 15 

gauges increased to around five. But, even when three or four gauges were used (1 gauge per 16 

12–16 km2) for Mahurangi, there was a 1430–1660 mm yr-1 uncertainty range in mean annual 17 

precipitation. When the non-quality controlled dataset was used for the Brue (Fig. 5a), there 18 

was a decrease in both mean annual values and standard deviation. At the same time the 19 

range in standard deviation increased because stations with erroneously high or missing 20 

precipitation values were retained (blocked rain gauges were a particular problem in this 21 

catchment; Wood et al., 2000). The estimated precipitation standard deviation was uncertain 22 

for one subsampled gauge in the Mahurangi (Fig. 5c), where gauges were located in both the 23 

wettest and driest parts of the catchment. 24 

4.1.2 Discharge data 25 

The estimated rating-curve uncertainty is shown in Fig. 6, with the corresponding flow 26 

percentile uncertainty summarised using boxplots. The 5–95 percentile uncertainty bounds 27 

enclose almost all of the uncertain gaugings, apart from a small number of outliers. Low flow 28 

uncertainty is larger in Brue where vegetation growth affects the stability of the stage-29 

discharge relation. High flow uncertainty is larger in Mahurangi where fewer, more scattered 30 
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high flow gaugings cause a wider range in the extrapolated flows. Mahurangi has a fast 1 

rainfall-runoff response with little base flow and peak flow events that are infrequent but 2 

have large magnitudes (up to 11 mm/h, Fig. 7a, right inset plot). Brue, by contrast, has higher 3 

base flow and more peak flow events of longer duration and lower magnitudes (up to 1 4 

mm/h, Fig 7b, right inset plot). Large high-flow uncertainty is likely in catchments such as 5 

the Mahurangi where peak flows occur seldom and last only a few hours – this makes reliable 6 

high-flow gauging practically difficult and rating-curve extrapolation likely necessary. The 7 

larger high-flow rating-curve uncertainty in Mahurangi (Fig. 6a) is reflected in a wider peak 8 

flow uncertainty distribution (Fig. 7a, left inset plot). In Brue the whole flow range is gauged 9 

and the high-flow rating-curve uncertainty is smaller (Fig. 6c), the peak flow distribution has 10 

higher kurtosis with heavier tails (Fig. 7b, left inset plot). 11 

4.2 Estimated uncertainty in the hydrological signatures 12 

4.2.1 Basic signatures 13 

Flow percentile uncertainties mirrored those of the rating curves, with larger uncertainties in 14 

high-flow percentiles for Mahurangi and larger uncertainties in low-flow percentiles for Brue 15 

(Fig. 6). Uncertainty in mean discharge was around ±10% for both catchments; this is the 5–16 

95 percentile interval, the distributions are shown in Fig. 87. Signatures describing the flow 17 

variability (SFDC, QCV, and QAC) had much higher uncertainties in Mahurangi (±20–50%), 18 

where there was a fast rainfall–runoff response and greater high-flow rating uncertainty. The 19 

uncertainty in the SFDC was particularly large for Mahurangi because the rating curve had a 20 

breakpoint in the 33–66 percentile interval used to calculate the slope. Signatures describing 21 

the frequency and duration of high and low flow events (QHF, QHD, QLF, and QLD) had large 22 

uncertainties in both catchments (±10–35%). This arises because the event  defined with a  23 

threshold is defined as a multiplier of the mean and or median flow, and so the (uncertain) 24 

gradient of the rating curve greatly impacts on the flow percentile equivalent to the threshold 25 

value had large uncertainties in both catchments (±10–35%). Frequency and duration 26 

signatures have alternatively been defined using had the event threshold defined directly as a 27 

flow percentile (Kennard et al., 2010; Olden and Poff, 2003); we suggest this is preferable as 28 

those signatures were insensitive to the uncertainties analysed here, apart from sometimes 29 

small effects when using daily averages.  30 
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4.2.2 Total Runoff Ratio 1 

For the total runoff ratio, we tested the contribution of each uncertainty source by including 2 

or excluding different sources. We calculated total uncertainty (Fig 87c-d, black bars) using 3 

different rain-gauge densities. Total uncertainty was approximately ±15% using a single rain 4 

gauge, decreasing slowly with more gauges. The distributions were largely unbiased when 5 

using quality-controlled data. The contribution of point precipitation uncertainty was 6 

minimal: excluding this source made no difference to the uncertainty distribution (Fig 87, 7 

green bars). Precipitation uncertainty is therefore due to interpolation, and was evaluated by 8 

excluding flow uncertainty and calculating the remaining uncertainty (Fig 87, blue bars). This 9 

uncertainty was noticeable (approximately ±10% Mahurangi, ±9% Brue) for one gauge but 10 

decreased quickly with more gauges and was negligible at a density of 1 gauge per 5 km2. 11 

Total uncertainty was dominated by discharge uncertainty (dark blue bars) which was greater 12 

than precipitation uncertainty (blue bars). In the Brue catchment the effect of using un-quality 13 

controlled data was assessed (red and purple bars) which increased and biased the 14 

uncertainty, particularly at low gauging densities. 15 

4.2.3 Recession analysis 16 

We tested the effect of data uncertainty on recession analysis results by plotting histograms of 17 

the recession parameters b (nonlinearity of recession shape) and T0 (recession slope at median 18 

flow). We considered subjective uncertainty by using data at daily or hourly time steps, and 19 

calculating parameters using all data together or splitting by season and then taking parameter 20 

averages (Fig. 98). 21 

Uncertainty in the recession descriptors was typically (1) greater for Brue than for 22 

Mahurangi, in particular for hourly flow data; (2) greater for hourly flow data than for daily 23 

flow data. Recessions are calculated from flow derivatives, and are therefore affected by 24 

relative changes in flow (e.g. channel shape). The linear regression used to calculate the 25 

recession parameters is particularly sensitive to uncertainties in extreme low or high flows. 26 

The low flow uncertainty at Brue resulting from summer weed growth creates higher 27 

uncertainties at that site. Daily flow values are based on an aggregation of measured values, 28 

and are therefore more robust to data uncertainty. However, using daily data in small 29 

catchments can mask details of the recession shape, as the slope can change markedly during 30 

a single day. In our case, this difference caused shifts in the parameter distributions between 31 
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hourly and daily data, and would therefore affect our ability to compare parameter values 1 

between catchments. For example, b values were similar in the two catchments when using 2 

daily data, but different when using hourly data; and the converse is true for T0. This was 3 

caused by differences in the hydrograph such as low flow fluctuations in the Brue and flashy 4 

peak-flow events in the Mahurangi. 5 

Recession parameters calculated per season were highly uncertain in the Brue for the T0 6 

parameter. This was due to some seasons having very few recession data points, and therefore 7 

the fitted regression relationships being sensitive to changes in these points. Recession 8 

parameters were highly sensitive to subjective decisions in defining recession periods, as also 9 

found by Stoelzle et al. (2013). Such definitions could result in particular recession periods 10 

being included or excluded from the analysis depending on the sampled rating curve. When 11 

the excluded periods included extreme high or low flow values, this could significantly skew 12 

the fitted parameters, and therefore give multimodal parameter distributions according to the 13 

particular set of valid recession periods. For the daily timescale, the starting hour used in 14 

calculating the daily averages could also have a large effect on the resulting recession 15 

parameters. 16 

4.2.4 Thresholds in rainfall-runoff response 17 

We tested for uncertainty in the estimated threshold in the event rainfall-runoff relationship in 18 

Mahurangi using box plots of the threshold location and strength under different uncertainty 19 

scenarios (Fig. 109). The threshold broken-stick fit is illustrated in Fig. 109a for the best-20 

estimate data (in blue) and for an example realisation with uncertainty (in grey). 21 

The threshold was 65 mm when using best-estimate rainfall and flow data. Total uncertainty 22 

was a largely unbiased distribution with a range of ~20 mm. Total uncertainty was a 23 

combination of flow uncertainty (slight low bias) with rainfall interpolation uncertainty 24 

(slight high bias). Point rainfall uncertainty was not important when using multiple gauges. 25 

Threshold location was highly sensitive to the number of rain gauges used: using only one 26 

gauge created a very wide uncertainty distribution. As with the rainfall uncertainty analysis, 27 

there was a large decrease in the uncertainty when increasing to five gauges (Section 4.1.1). 28 

The use of baseflow separation did not greatly change the median threshold, but did increase 29 

the range. Event definition parameters had little effect on the threshold uncertainty. 30 
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Threshold strength was defined using a change-in-slope statistic where higher values indicate 1 

a stronger threshold. Considering flow or rainfall uncertainty weakened the calculated 2 

threshold. For flow uncertainty this was due to the optimal rating curve having its first 3 

breakpoint and mid-section slope above the median values of the sampled rating curve 4 

distribution; both of which were associated with a stronger threshold. As with the SFDC this 5 

shows the strong impact of the rating curve breakpoint locations on signature uncertainty. For 6 

rainfall, uncertainty adds noise to the event rainfall depth and therefore corrupts the estimated 7 

rainfall-runoff relationship, weakening the threshold. Consequently, the number of rain 8 

gauges is an important control on estimated threshold strength, with fewer gauges causing a 9 

weakened threshold. As the underlying threshold was strong, the case of 1 rain gauge was the 10 

only scenario that could cause the threshold statistic not to be significant at the 5% level. 11 

However, in other catchments with weaker thresholds, lack of good rainfall data is likely to 12 

result in thresholds being missed. Using baseflow separation increased the derived threshold 13 

strength, as it typically reduced runoff depths for smaller events below the threshold. Event 14 

definition had only a small effect on derived threshold strength; when smaller events were 15 

included the threshold strength statistic increased, as the fit was based on a greater number of 16 

points. 17 

4.3 Summary of the signature uncertainties 18 

To summarise our results, we tabulated examples of each signature type together with their 19 

dominant uncertainty sources and summary statistics of the total uncertainty distribution, for 20 

each catchment (Table 3). Our aim is to allow easy comparison of the signature uncertainties 21 

in our study, with those of other studies. We therefore chose commonly used distribution 22 

statistics, i.e. the first three distribution moments (mean, standard deviation, skewness); and 23 

the half-width of the 5–95 percentile range, which is commonly quoted in uncertainty studies 24 

(e.g. McMillan et al, 2012). We hope that authors of future studies will consider using similar 25 

statistics, to enable the community to compile a generalised understanding of signature 26 

uncertainties across different catchments, scales and landscapes. 27 
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5 Discussion 1 

5.1 Uncertainty in different types of signatures 2 

Uncertainty distributions were highly variable between signatures and therefore the impact of 3 

the uncertainty depends on which signatures are used (Table 3). There was greater 4 

uncertainty in signatures that use high-frequency responses (e.g. variations over short 5 

timescales, thresholds based on event precipitation totals), subsets of data more prone to 6 

measurement errors (e.g. extreme high and low flows, QHV and Q99), and signatures based on 7 

small numbers of values (e.g. seasonal recession characteristics in the Brue). Signatures 8 

describing flow variability were uncertain in the Mahurangi catchment that has a flashy 9 

rainfall-runoff response and where stage significantly exceeded the highest gaugings leading 10 

to large discharge uncertainty at high flows. This is likely to be a common situation in small, 11 

fast-responding catchments with few high flow events, due to the practical difficulties of 12 

gauging during such short time-windows. There was lower uncertainty in signatures that use 13 

spatial or temporal averages (e.g. total runoff ratio and BFI). Uncertainty in signatures 14 

calculated from averages depends on the type of data uncertainty, e.g. random errors are 15 

reduced by averaging, but some systematic errors such as rainfall undercatch are not. Rating-16 

curve uncertainty is an intermediate case as it depends on error magnitudes that vary across 17 

the flow range. Some signatures are sensitive to particular types of data uncertainty. For 18 

example in Mahurangi, high uncertainty in SFDC relates to uncertainty in rating curve shape, 19 

and in Brue, high uncertainty in QLD relates to uncertainty of the low flow rating in 20 

combination with the shape of the hydrograph. Signatures that describe the rainfall–runoff 21 

relationship for individual events (e.g. threshold location and strength) were particularly 22 

sensitive to precipitation uncertainties for low gauging densities.  23 

Signatures can be designed to be robust to some data uncertainty sources. A clear example is 24 

for signatures describing the frequency and duration of high and low flow events. If these 25 

events are defined using a threshold related defined as a multiplier ofto the mean or median 26 

flow, they are highly sensitive to rating curve uncertainty. If instead, the events are directly 27 

defined using a flow percentile threshold, they were little affected by rating curve uncertainty 28 

(see Section 4.2.1). This simple change in signature definition reduces sensitivity to data 29 

uncertainty. We found that any cut-offs imposed in signature calculation, such as event or 30 

recession definition criteria, could have a strong and unpredictable effect on signature 31 
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uncertainty. For example, rainfall-runoff threshold strength calculations were particularly 1 

sensitive to large storm events, which control the gradient of the second line in the ‘broken 2 

stick’. If such events were conditionally excluded (e.g. classified as disinformative and 3 

removed when runoff exceeded rainfall; which depends on the rating curve and raingauge(s) 4 

selected), the resulting uncertainty could overwhelm any other uncertainty sources. We 5 

suggest that signatures including cut-off type definitions should be carefully evaluated, and 6 

the cut-offs removed if possible. 7 

5.2 Method limitations and future developments 8 

The quality of signature uncertainty estimates relies on accurate assessment of data 9 

uncertainty and therefore in turn on sufficient information. An example of insufficient 10 

uncertainty information would be for a gauge where out-of-bank flows occur, but there is no 11 

information on the out-of-bank rating. As discussed by Juston et al. (2014) for rating curve 12 

uncertainty, it is essential to understand whether data errors are random or systematic; 13 

aleatory or epistemic. In our study, point rainfall errors were not important in signature 14 

uncertainty, but there is scope to improve their representation as systematic or random (e.g. 15 

systematic wind-related undercatch, or random turbulence effects). However, quantification 16 

of these errors is not straightforward (Sieck et al., 2007). 17 

We recognise that the inferred distributions of signature uncertainty will be sensitive to the 18 

assumptions and methods used to estimate distributions of data uncertainty. This introduces 19 

some subjectivity into the uncertainty estimation and it is therefore important to make the 20 

assumptions explicit and motivate method choices by the perceptual understanding of the 21 

uncertainty sources. For example, the optimal methods for estimating rating curve uncertainty 22 

under typical time-varying, poorly-specified errors remain an active debate in the 23 

hydrological community. The use of an informal likelihood, as we did, rather than a formal 24 

statistical likelihood can be more robust to multiple epistemic error sources, but can also be 25 

criticised for not obeying a formal statistical framework (as discussed by McMillan and 26 

Westerberg (2015) and Smith et al. (2008)). Future progress in understanding how perceptual 27 

models and data jointly contribute to system identification may help to resolve this 28 

dichotomy (Gupta and Nearing, 2014). At present, we recognise that uncertainty distributions 29 

are more subjective in signatures that emphasise poorly-described aspects of data uncertainty 30 

such as out-of-bank flows. 31 
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For signatures calculated over a long time period, it may be appropriate to incorporate non-1 

stationary error characteristics, such as rating curve shifts or the example explored by 2 

Hamilton and Moore (2012) where the best-practice method for infilling discharge values 3 

under ice changed over time. The time period used is important if signatures are used for 4 

catchment classification: an unusual event such as a large flood may shift the signature values 5 

(Casper et al., 2012). Additional uncertainty sources can be important in other catchments, 6 

such as catchment boundary uncertainty and flow bypassing the gauge (Graham et al., 7 

2010a). 8 

5.3 Implications for use of signatures in hydrological analyses 9 

Our results are pertinent to any hydrological analysis that uses signatures to assess catchment 10 

behaviour. Examples of applications whose reliability could be affected by signature 11 

uncertainty include: testing bias correction of a climate model using signatures in a coupled 12 

hydrological model (Casper et al., 2012), predicting signatures in ungauged catchments 13 

(Zhang et al., 2014), classifying catchments using flow complexity signatures (Sivakumar et 14 

al., 2013), or assessing spatial variability of hydrological processes (McMillan et al., 2014).  15 

In some cases, absolute signatures values are not used, rather it is the pattern or gradient over 16 

the landscape, or trend over time that is important. Data uncertainties may obscure such 17 

patterns depending on the magnitude of the uncertainty in relation to the strength of the 18 

measured pattern. The range of signature values found by McMillan et al. (2014) across 19 

Mahurangi was large compared to the uncertainty magnitudes found in this study. This 20 

suggests that the conclusions regarding the signature patterns would still hold, assuming that 21 

the uncertainty at the catchment outlet is representative for the internal subcatchments. Some 22 

subjective uncertainty sources may not be relevant in catchment comparisons, as choices such 23 

as how to define recession periods or whether to do baseflow separation can be chosen 24 

consistently. However, subjective uncertainties can still change the conclusions drawn such 25 

as the cut-offs described above, and as discussed in section 4.2.3 where daily data suggested 26 

similar recession b parameters in Mahurangi and Brue, but hourly data showed strong 27 

differences. 28 

When signatures are used as a performance measure in model calibration (e.g. Blazkova and 29 

Beven, 2009) reliable uncertainty estimates are crucial so that the model is not overfitted. 30 

Previous studies have quantified data and signature uncertainty using upper and lower bounds 31 
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(e.g. fuzzy estimates used by Coxon et al., 2013; Hrachowitz et al., 2014; Westerberg et al., 1 

2011). However, this does not allow the straightforward estimation of uncertainty in all types 2 

of signatures that is made possible by our method of generating multiple feasible realisations 3 

of rainfall and discharge time series.  4 

6 Conclusions 5 

This study investigated the effect of uncertainties in data and calculation methods on 6 

hydrological signatures. We present a widely-applicable method to evaluate signature 7 

uncertainty, and show results for two example catchments. The uncertainties were often large 8 

(i.e. typical intervals of ±10–40% relative uncertainty) and highly variable between 9 

signatures. It is therefore important to consider uncertainty when signatures are used for 10 

hydrological and ecohydrological analyses and modelling. Uncertainties of these magnitudes 11 

could change the conclusions of analyses such as cross-catchment comparisons or inferences 12 

about dominant processes.  13 

Although we show that significant uncertainty can exist in hydrological signatures, we do not 14 

intend that this paper has a negative message. Consideration of uncertainty is equivalent to 15 

extracting the signal from noisy data, and not overestimating the information content in the 16 

data. As argued by Pappenberger and Beven (2006) and Juston et al. (2013), ignorance is not 17 

bliss when it comes to hydrological uncertainty; incorporation of uncertainty analysis leads to 18 

many advantages including more reliable and robust conclusions, reduction in predictive bias, 19 

and improved understanding. In particular, we hope that this paper encourages others to 20 

estimate data uncertainty in their catchments either individually or by reference to typical 21 

uncertainty magnitudes, to design diagnostic signatures and hypothesis testing techniques that 22 

are robust to data uncertainty, and to evaluate analysis results in the context of signature 23 

uncertainty.  24 
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Tables 1 

 2 

Table 1. Sources of uncertainty considered in this study, and the methods used for estimation. 3 

Variable/Signature Uncertainty sources Estimation method Reference if 

applicable 

Rainfall Point uncertainty Normal distribution 

with σ a function of 

rain rate. 

Ciach (2003) 

 Interpolation 

uncertainty 

Subsampling from a 

dense network of rain 

gauges 

 

 Equipment 

malfunction 

Rainfall data 

with/without QC 

Wood et al. (2000) 

Flow Discharge uncertainty 

in gaugings 

Analysis of stations 

with stable ratings 

Coxon et al. (2015) 

 Stage uncertainty in 

gaugings 

Uniform distribution 

±5 mm 

McMillan et al. 

(2012) 

 Rating-curve 

uncertainty 

Voting Point 

likelihood method 

McMillan and 

Westerberg (2015) 

Recession analysis Flow data time step Tested hourly vs daily  

 Seasonality of 

response 

Tested using all data 

or split by season 

Shaw and Riha 

(2012) 

Rainfall-runoff 

threshold 

Effects of baseflow Tested with/without 

baseflow separation 

Gustard et al. (1992) 

 Rainfall event 

definition 

Tested with/without 

inclusion of smaller 

events 

 

 4 
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Table 21. Basic rainfall–runoff signatures included in the study. All signatures are calculated 1 

on hourly data unless otherwise specified. 2 

Signature Name Description 
Unit 

Flow distribution    

QMEAN Mean flow Mean flow for the analysis period mm h-1 

Q0.01,Q0.1,Q1,Q5, 

Q50,Q85,Q95,Q99 

Flow percentiles Low and high flow exceedance 

percentiles from the FDC 

mm h-1 

Event frequency and duration   

QHF High flow event 

frequency 

Average number of daily high flow 

events per year, with a threshold of 9 

times the median daily flow  

(Clausen and Biggs, 2000) 

yr-1 

QHD High flow event 

duration 

Average duration of daily flow 

events higher than 9 times the 

median daily flow (Clausen and 

Biggs, 2000) 

days 

QLF Low flow event 

frequency 

Average number of daily low flow 

events per year, with a threshold of 

0.2 times the mean daily flow (Olden 

and Poff, 2003, they used a 5% 

threshold) 

yr-1 

QLD Low flow event 

duration 

Average duration of daily flow 

events lower than 0.2 times the mean 

daily flow (see QLF) 

days 

Flow dynamics    

BFI Base Flow Index Contribution of baseflow to total 

streamflow, calculated from daily 

flows using the Flood Estimation 

- 
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Handbook method (Gustard et al., 

1992) 

SFDC Slope of the 

normalised FDC 

Slope of the FDC between 33% and 

66% exceedance values of 

streamflow normalised by its mean 

(Yadav et al., 2007) 

- 

QCV Overall flow 

variability 

Coefficient of variation in 

streamflow, i.e. standard deviation 

divided by mean flow (Clausen and 

Biggs, 2000; Jowett and Duncan, 

1990) 

- 

QLV Low flow 

variability 

Mean of annual minimum flow 

divided by the median flow (Jowett 

and Duncan, 1990). 

- 

QHV High flow 

variability 

Mean of annual maximum flow 

divided by the median flow (Jowett 

and Duncan, 1990). 

- 

QAC Flow 

autocorrelation 

Autocorrelation for 1 day (24 hours). 

Used by (Euser et al., 2013) and 

(Winsemius et al., 2009). 

- 

Rainfall-runoff    

RR Total runoff ratio Total runoff divided by total 

precipitation 

- 

    

Rainfall    

PMA Mean annual 

precipitation 

Mean annual catchment average 

precipitation  

mm yr-1 

PSTD Standard deviation Standard deviation of catchment mm h-1 
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of hourly 

precipitation 

average precipitation 

 1 

Table 3 Dominant uncertainty sources and uncertainty characteristics 2 

Signature type 
C
a
tc
h
m
en
t1

 
Dominant uncertainty 

source
 

Uncertainty characteristics 

Half-width 

of 5–95 

percentile 

range (%) 

Mean 

(=bias

) (%) 

Std. 

(%) 

Skew-

ness (-

) 

F
lo
w
 d
is
tr
ib
u
ti
o
n
 

Average flow 

conditions 

(QMEAN) 

M Rating-curve uncertainty 11.1 -0.4 6.8 0.32 

B Rating-curve uncertainty 12.7 -2.4 7.7 -0.03 

Low flow 

percentiles 

(Q95) 

M Discharge gauging 

uncertainty  

23.8 -1.2 14.6 0.47 

B Rating-curve uncertainty 39.5 -1.1 23.8 0.45 

High flow 

percentiles 

(Q0.1) 

M Rating-curve uncertainty 22.8 -8.3 16.6 1.54 

B Rating-curve uncertainty 

19.6 0.0 12.0 0.13 

E
v
en
ts
 

Event 

frequency and 

duration 

(QHD) 

M Threshold value, which 

depends on rating-curve 

uncertainty 

6.9 2.3 3.3 1.30 

B Threshold value, which 

depends on rating-curve 

uncertainty 

21.6 -5.1 13.1 0.57 

F
lo
w
 d
y
n
a
m
ic
s 

Base Flow 

Index (BFI) 

M Rating-curve uncertainty  11.6 3.4 7.1 -0.11 

B Rating-curve uncertainty  8.5 -2.3 5.1 -0.19 

Slope of Flow 

Duration 

M Rating-curve breakpoint 

location 28.8 16.9 17.4 0.46 
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Curve (SFDC) B Rating-curve uncertainty 6.0 -3.2 3.7 -0.18 

Variability of 

extreme flows 

(QHV) 

M Rating-curve uncertainty 41.9 -1.0 30.4 2.30 

B Rating-curve uncertainty 37.0 6.5 23.0 0.75 

Recession 

analysis (b  

hourly) 

M Calculation time step 9.9 -3.1 6.3 0.38 

B Rating-curve uncertainty 14.9 5.1 8.9 0.72 

R
a
in
fa
ll
-r
u
n
o
ff
 

Total runoff 

ratio (RR2) 

M Rating-curve uncertainty 14.6 -0.3 9.0 0.26 

B Rating-curve uncertainty 13.3 -2.0 8.1 0.02 

Rainfall-

runoff 

threshold 

(threshold 

location3) 

M Rainfall interpolation 

uncertainty  

17.3 16.3 17.2 5.88 

B - - - - - 

R
a
in
fa
ll
 

Mean annual 

precipitation 

(PMA
2) 

M Interpolation uncertainty 10.0 0.3 5.7 0.22 

B Interpolation uncertainty. 

(Equipment malfunction) 

4.6 -0.4 2.7 0.34 

Standard 

deviation of 

precipitation 

(PSTD
2) 

M Interpolation uncertainty 8.0 9.5 4.4 1.55 

B Interpolation uncertainty. 

(Equipment malfunction) 

4.9 4.6 2.9 0.67 

1 M = Mahurangi, B = Brue 1 

2 These signatures were calculated using 1 gauge/45 km2
 and including point error 2 

3 This signature was calculated for the total uncertainty scenario in Fig. 10 3 

 4 

  5 
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Figures 1 

 2 

Fig.  1  The Mahurangi catchment in New Zealand and the location of the rain gauges and the 3 

outlet flow gauge.  4 

  5 
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 1 

Fig. 2 The Brue catchment in south-west England, and the location of the precipitation and 2 

discharge stations. The percent of missing values after quality control is given for each rain 3 

gauge. 4 

  5 
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 1 

Fig. 3 Schematic description of the method used for estimation of signature uncertainty 2 

  3 
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 1 

Fig. 4. Standard deviation of the rainfall error as a function of rain rate for different numbers 2 

of subsampled stations for 1000 Monte Carlo realisation for the Brue catchment, with and 3 

without point uncertainty. 4 

  5 
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 1 

Fig. 5 a) and c) standard deviation of hourly precipitation and, b) and d), mean annual 2 

precipitation for different numbers of subsampled stations. For the Mahurangi results are 3 

shown for the period without missing discharge values. Point measurement uncertainty was 4 

included and we used 4000 Monte Carlo realisations. 5 

  6 
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 1 

Fig. 6 Estimated rating curve uncertainty and uncertainty in flow percentiles for the 2 

Mahurangi (a and b) and Brue (c and d) catchments. Uncertainties are calculated relative to 3 

the optimal rating curve from the MCMC. For Brue the official rating curve is dissimilar to 4 

the optimal MCMC rating curve because it was calculated for a longer gauging dataset 5 

starting in the 1960’s, with considerably more variability. The rating curve is shown in linear 6 

space, with an inset plot in log space for the low-flow range. The flow percentiles for the 7 

official rating are given as hourly averages in mm h-1 in the bottom of the (b and d) figures. 8 

The boxplot whiskers extend to the 5 and 95 percentiles, and the box covers the interquartile 9 

range. 10 

  11 
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 1 

Fig. 7 Discharge calculated using the optimal rating curve for 1998 for Mahurangi (a) and for 2 

1994–1995 for Brue (b). The left inset plots show the discharge time series uncertainty 3 

distribution at an hourly scale for a peak flow event in each catchment. The right inset plots 4 

show the flow-duration curves for the full time series for each catchment. The y-axis variable 5 

and unit is discharge in mm/h in all plots. 6 

  7 
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 1 

Fig. 87 Relative uncertainty in basic signatures as a percentage of the signature values 2 

calculated with the optimal rating curve from the MCMC. The boxplot whiskers extend to the 3 

5 and 95 percentiles, and the box covers the interquartile range. 4 

  5 
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 1 

Fig. 98 Histograms of recession parameter distributions, where parameters are calculated 2 

using (1) daily flow data, (2) hourly flow data, and (3) hourly flow data where recession 3 

parameters are calculated per season and then averaged. Dotted lines show the parameter 4 

values from the optimal MCMC rating curve. Distributions are truncated at the 2.5 and 97.5 5 

percentiles. 6 

  7 
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 1 

Fig. 109 a) example of the threshold fitting procedure without (blue) and with (grey, one 2 

raingauge scenario) uncertainty. Box plots of b) threshold location and c) threshold strength 3 

in the Mahurangi catchment, under different data and subjective uncertainty scenarios. 4 

Horizontal grey lines show baseline signature values from the optimal rating curve and 5 

precipitation data. The orange line in Fig. 9c shows the value above which the change in 6 

slope of the rainfall-runoff relationship is significant at the 5% level. Boxplot whiskers for 7 

the uncertainty distribution in the 1 raingauge scenario are truncated for clarity. The total 8 

uncertainty scenario used 1 raingauge per 10 km2. 9 


