
This document contains our answers to the referees. Before each answer, the corresponding remark 

or issue raised by the referee is quoted in italics. All line numbers refer to the old manuscript (used 

for publication in HESSD), unless otherwise stated. A marked-up version of the manuscript, clearly 

showing the changes brought to the text in response to the referees’ comments, can be found at the 

end of this document.  

Answer to Anonymous Referee #1 

We wish to thank the referee for his/her comments that will contribute to improve the quality of our 

manuscript.  Below is our response to the remarks and issues raised by the referee. 

General Comments 

“Generally, the claim that the model is a net improvement over other regressions models is a bit of an 

overstatement. I see it more as a regression model for which the selection of predictors is based on 

known relationships between water temperature, climate, solar radiation and local 

physiography/hydrology.” 

We certainly acknowledge this comment and fully agree with the referee. The analytical solution to 

the heat-balance equation leads to an expression, certain terms of which cannot be readily 

evaluated. These terms are approximated using linear (and non-linear) regression expressions of 

known physiographic properties of the catchments, hereby introducing statistical aspects into the 

model. Moreover, among the different regression expressions used to approximate each unknown 

term, the best one is selected using the Akaike information criterion, which is a well-established 

statistical technique. To address the referee’s comment, we modified the general tone of the 

manuscript. We thus rewrote Sect. 1.5 and the first two paragraphs of the conclusion so as to 

describe our model as being statistical, but with a structure incorporating physical considerations. 

We also changed the denomination “physically-based model” into “physics-inspired statistical 

model”, and changed “regression model” (used for comparison with the physics-inspired model) into 

“standard regression model” to make the distinction clearer between the two. The assertion that our 

model avoids the typical limitations of statistical models (lines 228–229) was removed. 

“The authors claim (line 210) that the selection of predictor variables relies on the experience of the 

authors in statistical models. This is not always necessarily the case. Some authors have used 

objective or semiobjective methods for this selection. In the submitted manuscript, the selection of 

proxy variables for the net radiative flux is also based on experience and known relationships.” 

Although probably a bit overstated, our claim is, according to us, justified. We agree with the 

referee’s comment regarding the fact that objective or semi-objective methods can be used for 

variable selection. This is exactly what we did when selecting the best model among the different 

variants considered. However, these methods can only be applied to a predefined set of variables to 

be tested. And the definition of this latter set actually relies on the experience and understanding of 

the author. We added a few sentences in the text in order to clarify this point: 

“Although some objective methods can help to perform th[e predictor variable] selection 

(Burnham and Anderson, 2002), the original set of variables on which these methods act must 

initially be indicated by the user. In the end, the choice of predictor variables is necessarily 

affected to some extent by the training and experience of the authors, hereby introducing 



some diversity in the sets of predictor variables.” (lines 217–221 of the marked-up manuscript 

below) 

Moreover, the use of these automated techniques should, in our opinion, not be substituted to 

physical understanding whenever possible. Some variables may be selected which actually appear to 

incidentally have some correlation with the predictand, but do not have any physical relationship 

with it. One might rightfully argue that our discourse is ambiguous, criticizing the statistical 

techniques on the one hand, but relying on them on the other hand. In the present case, we are 

limited by the fact that we aim to develop a model for prediction in ungauged basins, and we are 

hereby limited to the use of the only variables which are available from classical spatial data sets. Not 

knowing the relationship between these regional scale variables and the unknown terms we wish to 

compute, we have to rely on statistical techniques. 

“Parcimony was only used for model variants, but when the author’s model is compared to the 

regression approach, parcimony is evacuated from the comparison.” 

From our understanding, the “model variants” mentioned by reviewer refer to the variants of the 

physics-inspired model (previously referred to as “physically-based model”). If this is indeed what 

was meant, we would like to kindly mention that this is actually not the case. As the referee pointed 

out in line 530 (see Specific Comments below), we limited the number of parameters also in the 

standard regression model. The maximum number of parameters was fixed to 6 in this model in 

order to match the maximum number of parameters in the physics-inspired model and hereby 

provide a more even comparison between the two models. This point was clarified in the text: 

“This limitation [of the number of parameters] was introduced in order to avoid over-

parametrization, but also to ensure that the number of parameters in the final standard 

regression model was about the same as in the physics-inspired model, hereby guarantying a 

more even comparison between the two.” (lines 757–759 of the marked-up manuscript below) 

Contrary to what we wrote in our first response to the referees, we thought that further discussion 

on parcimony was not needed in Section 6, since comparison between the two models is fair. 

Specific Comments 

“Line 78: Last sentence appears to be a strong statement, perhaps not fully substantiated.” 

The original statement,  

“As such, no significant decrease in the prediction errors should be awaited from a change in 

the statistical modeling technique” 

was modified into 

“These studies tend to suggest that no significant decrease in the prediction errors should be 

awaited from a change in the statistical modeling technique.” 

The new formulation insists more on the fact that the conclusion is drawn solely based on the 

reported studies and might not be generally valid. 

“Line 185: ‘for each group, they computed the characteristics of the thermal regime by river class…’ ” 

We used yet another formulation than the new one proposed by the referee: 



“They computed the characteristics of the typical thermal regime of each group.” (lines 197–

198 of the marked-up manuscript below). 

“Line 210: As stated earlier, not all statistical models are built using a subjective selection of 

predictors. For instance, multivariate analysis has been used in some cases.” 

See our response under General Comments above. 

“Line 236: Linear functions of available data are being used. Why linear? Is there proof of linearity in 

all cases?” 

As stated under General Comments, we completely rewrote Sect. 1.5. It is actually not true that we 

use only linear relationships of available quantities to approximate all unknown variables. As a 

matter of fact, a power function is tested to express the fraction of discharge originating from lateral 

inflow (Eq. (17)). We however decided not to enter into too much detail in the introduction, as this 

would distract the reader from our main point. We therefore decided to maintain the sentence 

stating that all unknown terms are approximated as multi-linear regression expressions of available 

data. We made clear that this choice was motivated by our lack of knowledge regarding the nature of 

the relationships between the predictand and the predictors (lines 269–270 of the marked-up 

manuscript below). We justified our choice with the fact that the main non-linearities may already 

have been captured by the general form of the model, namely by the analytical formula obtained by 

solving the heat balance equation. Such non-linearities appear mainly in the respective expressions 

of the weighting factors ω1, ω2, ω3 (Eqs. (9)–(14)), and in the definition of the distance-weighted 

averaging operator  (Eq. (A9)). Based on this, it might be assumed that the specific form of the 

expressions used to approximate the unknown terms have a minor effect compared to the general 

structure of the model. 

Additionally to Sect. 1.5, we also added a paragraph in the discussion to further comment on this 

point (lines 1175–1186 of the marked-up manuscript below). We mention there that alternative 

formulations to a linear expression have been tested for the term γφr accounting for the net heat flux 

at the air–water interface. A power-law function was considered, but could not be used because of 

convergence issues during model calibration. Similarly, a more physically-based expression was 

tested, which proved to decrease the model precision as compared to the linear expression. 

“Line 315: ‘All sources of the network are supposed to have the same discharge’. What are the 

potential repercussions of this simplification, especially in small drainage basins?” 

Contrary to our first response to the referee, we commented on this point in the discussion rather 

than in the section describing the simplifying assumptions: 

“Assumption (5) stating that all sources in a given catchment have the same discharge rate is 

also disputable. This is particularly true for small catchments, where the short distance to the 

outlet and the low number of sources do not allow the averaging effect to be significant 

enough to compensate for the introduced error.” 

“Line 404: Meteorological stations were selected based on the fact that they are located at 20 km or 

less from the outlet. What is the impact of this selection when Lc is larger than 20 km?” 

The referee raises an interesting point. While computing air temperature as a function of altitude in 

each catchment, we limited ourselves to meteorological stations located at less than 20km from the 



watershed outlet. On the other hand, Lc = 32km in the model used to estimate the standard deviation 

of water temperature (see Table 6). This apparent discrepancy is actually not considered to be a 

limitation, due to the fact that only 2 of the 26 selected catchments have an area extending beyond 

the 20km-radius disk centered on the catchment outlet. As such, increasing the range of considered 

meteorological stations would not improve the quality of the interpolation but in 2 cases. This point 

was added in the manuscript (see lines 384–387 of the marked-up manuscript below). Moreover, the 

stream networks in those last 2 catchments have a marked sinuosity, implying that all their stream 

segments at a streamwise distance less than 32 km from the outlet are actually located within the 

20-km-radius disk centered on the outlet point. The proposed methodology for air temperature 

interpolation is therefore not considered to be at odds with the rest of our work. 

“Line 421: Speaking of subjective selection: setting at least two of the coefficients to zero. At least? 

Were there more? Why two?” 

By “setting at least two […] to zero”, we meant that all linear functions involving any possible 

combination of either one or two of the predictors variables were considered for approximating the 

term γφr. The arbitrary choice to consider expressions with at most two terms (plus the intercept) 

was made in order to restrict the number of model parameters. We acknowledge the paragraph was 

not very clear and completely rewrote it following the advices of Anonymous Referee #2 (see lines 

602–666 of the marked-up manuscript below). We notably emphasized the fact that the restriction 

to a maximum of two terms is arbitrary. 

“Line 530: Number of terms in the model was fixed to six to prevent over-parameterization. Given 

that the final model is a multiple regression? Why not use a stepwise approach?” 

While determining the structure of the multilinear model, we restricted ourselves to a maximum of 6 

predictor variables. This choice was made in order to avoid over-parametrization, but also to ensure 

that the number of parameters in both models (the physics-inspired one and the standard regression 

one) were about the same. This guaranteed a more even comparison between the two modeling 

techniques. As mentioned under General Comments, this point was clarified in the manuscript. We 

also discarded the step-wise approach, since it may fail to identify the best set of predictor variables 

(Miller, 2002) and is subject to some criticism (Harrell, 2001). 

“Line 595 (and elsewhere): ‘…data are…’ ” 

We thank the referee for the correction, which we applied in the whole manuscript. 

“Line 620: Threshold of 30°C. Although this is a high value, might it not be feasible that some rivers 

occasionally reach this temperature in shallow, open areas?” 

In response to this comment, we added the following lines in the manuscript: 

“Although the limit of 30°C might be naturally reached in shallow areas, some temperature 

series showed clear evidence that such temperature was recorded as a result of the sensor 

being out of water. As a consequence, it was decided to remove all data points above 30°C, 

potentially discarding correct data.” (lines 364–367 of the marked-up manuscript below) 

“Line 669: Subjective selection of 5 of the 26 catchments. Why not do a bootstrap on the stations 

excluded?” 



The following lines were added in the manuscript to answer the referee’s comment: 

“A bootstrap on the validation stations was not possible because of too high computational 

requirements. Indeed, Burnham and Anderson (2002) recommend using at least 10'000 

bootstrap samples, which led to a prohibitively high number of model evaluations in our case.” 

(lines 898–901 of the marked-up manuscript below) 

“Line 713: Why not show AIC separately for calibration and validation?” 

We actually followed Burnham and Anderson (2002) in computing the value of the corrected Akaike 

information criterion over the entire data set (calibration + validation sets). The reference was cited a 

few sentences above in the paragraph, but we acknowledge it was not clear that we followed their 

recommendation in doing so. We explicitly cited their work in the sentence to make it clear. 

“Lines 1015–1020 read more like a discussion than a conclusion.” 

We actually suppressed lines 1015–1018, judging that they were not particularly relevant. Following 

the referee’s suggestion, we also moved lines 1018–1024 to the discussion (see lines 1181–1186 of 

the marked-up manuscript below). 

References 
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Answer to Anonymous Referee #2 

We wish to thank the referee for his/her comments that will help sharpening our manuscript, and for 

his/her interest in our work. Below is our response to the remarks and issues raised by the referee. 

“1. Section 1.1 and 2.1. I recommend that the authors broaden the context by referring to studies that 

have applied deterministic models at the scale of a medium-scale catchment, including SNTEMP 

(Bartholow, 1991; Mattax and Quigley, 1989), a model based on the HSPF (Hydrological Simulation 

Program – FORTRAN) model developed by the US Environmental Protection Agency and the US 

Geological Survey (Chen et al., 1998a, 1998b) and CEQUEAU (St.-Hilaire et al., 2000). These models all 

have the capacity to generate spatially distributed predictions of the annual cycle of stream 

temperature. Another study that should be referenced is Allen et al. (2004), who developed a 

deterministic model for spatially distributed stream temperature prediction. Although Allen et al. 

focused on summer maximum temperature, the approach could be adapted for year-round 

application.” 

We thank the referee for the list of references. We were actually already familiar with these studies, 

as we are currently working on the development and application of a spatially-distributed 

hydrological model with stream temperature prediction abilities. When presenting the results of our 



current work in a publication, we will certainly not omit to cite the suggested models. In the context 

of the present paper, we however think the focus should remain on stream prediction in ungauged 

basins using statistical techniques. This also fits with the revisions we brought to the paper, namely 

describe our work as a statistical model whose structure derives from physical principles, rather than 

as a physically-based model (see points 4 and 9 below, and our response to Anonymous Referee #1). 

“2. The review of stream temperature modelling in Switzerland seems a bit out of place in an 

international journal. I recommend that the authors add a sentence or two to set the Swiss experience 

into a broader international context. For example, what is different about Switzerland that sets it 

apart from other geographic settings in terms of what can be learned about stream temperature 

variability and modeling?” 

We acknowledge that a section about Switzerland seemed a bit awkward in the general introduction. 

We therefore broadened the scope of Sect. 1.4 to the entire European Alps, although very little 

information could not be added as compared to Switzerland alone, due to the scarcity of the 

publications on this subject. 

“3. Section 1.5. It should be mentioned that a major constraint on the inclusion of predictor variables 

is the availability and reliability of data sources. It is particularly challenging to quantify riparian 

shading based on the coarseness of vegetation data sets that are available in many jurisdictions, and 

the difficulty of representing the seasonally changing effects of deciduous vegetation. This point could 

also be reflected on in the discussion in the context of the model’s inability to distinguish among 

different buffer widths for characterizing riparian vegetation.” 

We thank the referee for this suggestion. While completely rewriting Sect. 1.5 in response to the 

comments of Anonymous Referee #1, we included the following lines: 

“It should be mentioned that th[e] diversity [of predictor variables] also largely results from 

the varying availability and reliability of data among different geographic areas. This is 

particularly true for riparian shading, which is never directly measured and can only be 

estimated based on the data at disposal. For example, Isaak et al. (2010) approximated 

riparian shading using a sophisticated combination of satellite orthoimages and ground 

hemispherical canopy pictures, whereas DeWeber and Wagner (2014) could only rely on 

country-wide landuse data.” (lines 233–239 of the marked-up manuscript below) 

We also added a sentence in the discussion: 

“This also points at the difficulty to adequately account for the effect of riparian vegetation 

using the available spatial data sets, which often lack important details such as the distinction 

between deciduous and coniferous forest.” (lines 1122–1125 of the marked-up manuscript 

below) 

“4. p. 4091, line 6ff.
1
 This reference to social science seems unnecessary. I would argue that the need 

to calibrate any model in any discipline is an admission of inadequate knowledge about a system or 

inability to characterize its boundary conditions. I recommend that the authors begin the paragraph 

with a statement that expresses the motivation for this work in the context of the relative strengths 

and weaknesses of statistical models (e.g., see my introductory comments, above).” 

                                                           
1
 The page and line numbers quoted by Anonymous Referee #2 refer to the online version of the discussion 

paper [note of the author] 



We acknowledge that the reference to Social Sciences was unnecessary. While rewriting Sect. 1.5, we 

however found it more logical to start with a description of the standard statistical methods used to 

predict stream temperature in ungauged catchments, rather than a general discussion of the 

“relative strengths and weaknesses of statistical models.” We however appreciated the idea of the 

referee, and slightly modified our general introduction in order to motivate our work according to 

his/her suggestions (see lines 36, 51–52, 54–55). 

“5. A number of assumptions are made that are likely not to be valid based on a priori reasoning. To 

what extent might the lack of validity of the assumptions have limited the model’s performance? 

Three examples follow. 

a. p. 4094, point (v). In fluvial geomorphology, stream width is commonly modeled as a power-law 

function of discharge, with a typical exponent of 0.5, which would generate different scaling than the 

assumed proportional relation between w and Q. 

b. The lateral inflow rate, q_l, would be expected to increase with elevation, especially during the 

spring, when upper elevations experience snowmelt while the lower elevations do not. This would 

introduce a covariance between q_l and T_l that would not be included in the spatial average along 

the stream network. 

c. The radiation term is a linear function of several components, but process-based reasoning 

indicates that there should be interactions (i.e., product terms).” 

We followed the referee’s advices by writing two new paragraphs in the discussion about the validity 

and limitations of each approximation (see lines 1159–1186 of the marked-up manuscript below). 

“6. The authors state that monthly net radiation is dominated by solar radiation (p. 4100, line 1ff). Is 

this true? For example, in a heavily shaded stream, I would expect incident longwave radiation to be 

larger than incident solar radiation at the stream surface even” 

We thank the referee for pointing out an erroneous statement. Citing the work of Johnson (2004), 

Webb et al. (2008) indeed report that in a watershed in Oregon, USA, “an open reach under full sun 

[was measured to] experience[…] a net energy gain of 580 Wm
–2

 but a reach under full shade […] a 

net loss of 149 Wm
–2

” at midday in July. We suppressed the erroneous sentence. 

“7. I like the authors’ approach to model testing, which, according to the hierarchical approach 

promoted by Vit Klemes (1986), could be termed ‘split sample,’ ‘proxy basin’ and ‘proxy basin split 

sample.’ The authors could consider including a differential split sample and a proxy basin differential 

split sample approach to provide a further assessment of model robustness. In the differential split 

sample approaches, the record is split based on climatic conditions. For example, the model could be 

calibrated for wet/cool conditions and then tested on dry/warm conditions. This test might be 

revealing about the relative merits of the analytical and empirical models.” 

We thank the referee for this proposition. It would indeed have been valuable to calibrate the 

models on a particular period of the year and evaluate it on another. However, this would have been 

relevant only for the physics-inspired model (previously referred to as “physically-based”), since the 

standard regression one simulates the entire annual curve of stream temperature at once. 

Calibrating the standard regression model on given months of the year would have introduced a 

strong bias in its estimation of the annual mean and standard deviation of the monthly mean stream 

temperature. As a consequence, this procedure would have penalized it because of its structure 



rather than reveal its actual performances, and might therefore have erroneously made the physics-

inspired model appear better in comparison. 

“8. The authors used all data for model selection, including the test data set (p. 4113, line 8). Would 

different models have been selected had only the calibration set been used in this first step?” 

The same question was asked by Anonymous Referee #1 in his specific comments. We actually 

followed Burnham and Anderson (2002) in using both calibration and validation data sets to select 

the best model. The citation was already present a few lines above in the manuscript, but we 

repeated it for the sake of clarity (see line 944 of the marked-up manuscript below). 

“9. The authors refer to their model as ‘physically-based.’ Given the high degree of parameterization 

and the many simplifying assumptions, it is probably more accurate to refer to the model as 

‘analytical.’ ” 

Anonymous Referee #1 raised the same issue in his general comments. We changed the 

denomination of the model from “physically-based” to “physics-derived statistical”. The “regression 

model” was also renamed “standard regression model” so as to clearly make the distinction between 

the two. 

“[10]a. p. 4093, line 3. The authors use sigma to represent the stream surface heat flux, and later for 

the standard deviation of monthly stream temperatures. I suggest using a different symbol for stream 

surface heat flux (e.g., phi, to be consistent with later usage).” 

We thank the referee for this suggestion, and followed his/her advice. 

“[10]b. I found it difficult to follow the description of the model and had to read it several times. For 

example, the authors refer to measured solar radiation but do not explain where it was measured or 

how it was processed, except by saying it was assumed to be a linear function of elevation. Also, the 

authors present Eq. (16) and then discuss parameter estimation before explaining how the variables 

were quantified. I recommend that the authors attempt to make the model description simpler to 

follow as they revise the manuscript, perhaps by changing the order of presentation (e.g., describe 

data sources prior to describing the models).” 

We acknowledge some parts of the model description were unclear. We followed the referee’s 

advice by first describing the data prior to presenting the models. We also added new a section 

describing the meteorological data used by the models (see lines 375–397 of the marked-up 

manuscript below). We also completely rewrote the paragraph referred to by the referee when 

mentioning unclear parts (see lines 602–666). 

“[10]c. p. 4410, line 22. The authors refer to groundwater "infiltrating" – "discharging" would be 

more appropriate.” 

We followed the referee’s advice. 
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Abstract. The development of stream temperature regression models at regional scales has regained

some popularity over the past years. These models are used to predict stream temperature in un-

gauged catchments to assess the impact of human activities or climate change on riverine fauna

over large spatial areas. A comprehensive literature review presented in this study shows that the

temperature metrics predicted by the majority of models correspond to yearly aggregates, such5

as the popular annual maximum weekly mean temperature (MWMT). As a consequence, current

models are often unable to predict the annual cycle of stream temperature, nor can the majority of

them forecast the interannual variation of stream temperature. This study presents a new
✿✿✿✿✿✿✿✿

statistical

model to estimate the monthly mean stream temperature of ungauged rivers over multiple years in

an Alpine country (Switzerland). Contrary to the
✿✿✿✿✿

similar
✿

models developed to date, which mostly10

rely upon statistical regression to express stream temperature as a function of physiographic and

climatic variables
✿✿✿

are
✿✿✿✿✿✿

mostly
✿✿✿✿✿

based
✿✿

on
✿✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿

regression
✿✿✿✿✿✿✿✿✿✿

approaches, this one rests upon
✿✿✿✿✿✿✿

attempts

✿

at
✿✿✿✿✿✿✿✿✿✿✿✿

incorporating
✿✿✿✿✿✿✿

physical
✿✿✿✿✿✿

aspects
✿✿✿

into
✿✿✿

its
✿✿✿✿✿✿✿✿

structure.
✿

It
✿✿

is
✿✿✿✿✿

based
✿✿

on
✿

the analytical solution to a simplified

version of the energy-balance equation over an entire stream network. This physically-based
✿✿✿✿✿

Some

✿✿✿✿

terms
✿✿✿

of
✿✿✿

this
✿✿✿✿✿✿✿

solution
✿✿✿✿✿✿

cannot
✿✿

be
✿✿✿✿✿✿

readily
✿✿✿✿✿✿✿✿

evaluated
✿✿

at
✿✿✿

the
✿✿✿✿✿✿✿

regional
✿✿✿✿✿

scale
✿✿✿

due
✿✿

to
✿✿✿

the
✿✿✿✿

lack
✿✿

of
✿✿✿✿✿✿✿✿✿✿

appropriate15

✿✿✿✿

data,
✿✿✿

and
✿✿✿

are
✿✿✿✿✿✿✿✿

therefore
✿✿✿✿✿✿✿✿✿✿✿

approximated
✿✿✿✿✿

using
✿✿✿✿✿✿✿

classical
✿✿✿✿✿✿✿✿

statistical
✿✿✿✿✿✿✿✿✿✿

techniques.
✿✿✿✿

This
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

physics-inspired ap-

proach presents some advantages: (1) the functional form linking stream temperature to the predictor

variables
✿✿

the
✿✿✿✿✿

main
✿✿✿✿✿✿

model
✿✿✿✿✿✿✿

structure
✿

is directly obtained from first principles, (2) the spatial extent

over which the predictor variables are averaged naturally arises during model development, and (3)

✿✿✿✿

most
✿✿

of
✿

the regression coefficients can be interpreted from a physical point of view—their values can20

therefore be constrained to remain within plausible bounds. The evaluation of the model over a new

1



freely available data set shows that the monthly mean stream temperature curve can be reproduced

with a root mean square error of ±1.3◦C
✿✿✿✿✿✿

±1.3 ◦C, which is similar in precision to the predictions

obtained with a multi-linear regression model. We illustrate through a simple example how the phys-

ical basis of the model
✿✿✿✿✿✿

aspects
✿✿✿✿✿✿✿✿

contained
✿✿

in
✿✿✿

the
✿✿✿✿✿✿

model
✿✿✿✿✿✿✿

structure
✿

can be used to gain more insight into25

the stream temperature dynamics at regional scales.

1 Introduction

Among the parameters affecting the ecological processes in streams, temperature occupies a pre-

dominant role. It influences the concentration of chemicals, such as dissolved oxygen, and may

increase the toxicity of dissolved substances (Langford, 1990). It also affects the life cycle of many30

fish species, particularly the salmonids whose rate of spawning, timing of birth and rate of death are

directly influenced by stream temperature (Caissie, 2006; Benyahya et al., 2007). Water temperature

is also a relevant factor for many thermal power plants which rely on cooling by river water, and

whose electricity production decreases when water temperature exceeds a certain limit (Haag and

Luce, 2008).35

Stream
✿✿✿

As
✿

a
✿✿✿✿✿

result
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

raising
✿✿✿✿✿✿✿

concern
✿✿✿✿✿

about
✿✿✿✿✿✿

climate
✿✿✿✿✿✿

change
✿✿✿✿

and
✿✿✿✿✿

water
✿✿✿✿✿✿✿✿✿✿✿

management
✿✿✿✿✿✿✿

impacts

✿✿

on
✿✿✿✿✿✿

aquatic
✿✿✿✿

life,
✿✿✿✿✿✿

stream temperature modeling has regained some interest over the past 10–15 years,

which led to
✿

.
✿✿✿✿

This
✿✿✿✿✿✿✿

fostered
✿

the development of many stochastic and deterministic models (e.g.

Mohseni et al., 1998; Segura et al., 2014; Chang and Psaris, 2013; DeWeber and Wagner, 2014;

Meier et al., 2003; Westhoff et al., 2007). The former type relies on a statistical analysis to empir-40

ically relate stream temperature to climatic and physiographic variables, such as air temperature,

discharge, altitude or channel width (see Benyahya et al., 2007, for a complete review of this sub-

ject). Deterministic models, on the other hand, rely on a physically-based formulation of the stream

energy conservation to compute water temperature (Caissie, 2006). Both model types have usually

been applied to a single stream reach or a limited number of catchments (e.g. Sinokrot and Stefan,45

1993; Roth et al., 2010; Caissie et al., 2001; Caldwell et al., 2013; Grbić et al., 2013). However
✿✿

As
✿✿

a

✿✿✿✿✿✿✿

response
✿✿

to
✿✿✿

the
✿✿✿✿

lack
✿✿

of
✿✿✿✿✿✿

stream
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿

data, some studies have recently attempted at developing

regionalized stream temperature models. This effort was certainly fostered
✿✿✿✿✿✿✿✿✿

encouraged by the incen-

tive of the International Association of Hydrological Sciences (IAHS), which set the focus of the

last decade on hydrological prediction in ungauged basins (Sivapalan et al., 2003; Hrachowitz et al.,50

2013). In the case of stream temperature, authors relied
✿✿

the
✿✿✿✿✿✿✿✿

difficulty
✿✿

to
✿✿✿✿✿

meet
✿✿✿

the
✿✿✿✿

data
✿✿✿✿✿✿✿✿✿✿✿

requirements

✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

physically-based
✿✿✿✿✿✿✿

models
✿✿✿

led
✿✿✿

the
✿✿✿✿✿✿✿

authors
✿✿

to
✿✿✿✿✿✿

mostly
✿✿✿✿

rely
✿

on statistical approaches to make

predictions in ungauged catchments; to the best of our knowledge, no study has investigated the

regionalization of a deterministic model to date. .
✿✿✿✿✿✿✿✿

However,
✿✿✿

the
✿✿✿✿✿✿✿

validity
✿✿

of
✿✿✿✿

these
✿✿✿✿✿✿✿

models
✿✿

for
✿✿✿✿✿✿✿✿

studying

✿✿✿✿✿✿

climate
✿✿✿✿✿✿

change
✿✿✿✿✿✿✿

impacts
✿✿

or
✿✿✿✿✿

water
✿✿✿✿✿✿✿✿✿✿✿

management
✿✿✿✿✿✿✿✿✿

techniques
✿

is
✿✿✿✿

not
✿✿✿✿✿✿✿

assessed
✿✿✿

yet.
✿

55
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In this paper, more than 30 studies describing regionalized statistical models for stream tempera-

ture estimation were reviewed to put our work in a larger context (see Table 1). The extensive intro-

duction below discusses several aspects of the reviewed literature which motivated the development

of the novel stream temperature model described in the next section.

1.1 Predictions with limited precision60

One recurring issue described in the reviewed literature is the difficulty to predict stream temperature

with a high level of precision. A typical example is the statistical model of Isaak et al. (2010) for the

estimation of mean summer stream temperature (15 July–15 September) in the Boise River Basin,

Idaho. Despite considering a significant number of predictor variables and two different modeling

approaches a priori, Isaak et al. could not reduce the root-mean-square error (RMSE) of their model65

below 1.5◦C. Prediction uncertainties of the same order of magnitude are reported e.g. by Wehrly

et al. (2009), Ruesch et al. (2012), Moore et al. (2013) or Hill et al. (2013).

In general, it seems that the model error originates partly from the lack of appropriate field data,

such as measures of riparian shading, groundwater infiltration or irrigation withdrawals (Moore et al.,

2013). As noted by Hill et al. (2013), “these types of data are not readily available everywhere and70

will take time to develop”. In the mean time, they can in some circumstances be accounted for

through indirect measures. For example, Tague et al. (2007) used the geological aquifer type as a

proxy for the presence or absence of groundwater infiltration. Similarly, Hrachowitz et al. (2010)

and Scott et al. (2002) estimated riparian shading based on riparian forest coverage, computed over

buffer areas of various widths and lengths around the streams. In the absence of such proxies, the75

model cannot represent some known processes and must concede some increase in its prediction

error (Moore et al., 2013). The size of the areas over which stream temperature is modeled—and

hereby the diversity of encountered climatic and geomorphologic conditions—constitutes another

factor potentially explaining the model uncertainties for some studies.

Regarding the
✿✿✿✿✿✿

impact
✿✿

of
✿✿✿

the
✿

modeling approach, Wehrly et al. (2009) investigated four differ-80

ent statistical model types and showed that their difference in prediction accuracy was relatively

small. The same conclusion was reached by Daigle et al. (2010), who compared four other modeling

approaches
✿✿✿✿✿✿✿✿✿

techniques. Isaak et al. (2010) found that networked kriging regression performed better

than multi-linear regression over the calibration data set, but this assertion became much less evident

over the validation set. Similarly, Pratt and Chang (2012) and Chang and Psaris (2013) concluded85

that geographically weighted regression is slightly more accurate than multi-linear regression, but

they did not validate their results on an independent data set. As such,
✿✿✿✿✿

These
✿✿✿✿✿✿

studies
✿✿✿✿

tend
✿✿

to
✿✿✿✿✿✿✿

suggest

✿✿✿

that no significant decrease in the prediction errors should be awaited from a change in the statistical

modeling technique.

Further comparisons between the different models reported in the literature is unfortunately hin-90

dered by the diversity of temperature metrics and error measures used by the authors. As mentioned
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in several studies already, we advocate here the systematic use of the different error measures that are

RMSE, bias and coefficient of determination R2 for the evaluation of the model precision, possibly

combined with a benchmark model (Schaefli and Gupta, 2007). It should be noted that R2 is also

referred to as Nash-Sutcliffe efficiency by the hydrological community (Nash and Sutcliffe, 1970),95

and is defined as one minus the ratio of the model error variance over the variance of the observed

data.

1.2 Few models can predict the stream temperature annual cycle

Inspecting Table 1, it can be seen that most regionalization efforts have concentrated on some par-

ticular periods of the year. For example, Jones et al. (2006), Isaak et al. (2010) and Chang and Psaris100

(2013) focused on the annual maximum of the 7-day moving average of the daily maximum temper-

ature (MWMT). Similarly, both Pratt and Chang (2012) and Hill et al. (2013) aimed at estimating

mean stream temperature in summer and winter. Very few studies have actually attempted at deriving

regional models to compute the complete annual cycle of stream temperature over several years.

Miyake and Takeuchi (1951) and Stefan and Preud’homme (1993) were probably the first authors105

to address this issue; they relied on linear regression against air temperature to simultaneously esti-

mate stream temperature at multiple sites. However, their respective works are restricted to a limited

number of rivers (20 and 11, respectively) and could probably not be applied to larger areas. In

an attempt at generalizing these models, Ozaki et al. (2003) and Kelleher et al. (2012) separately

regressed stream temperature against air temperature in each one of the catchments they consid-110

ered, and subsequently regionalized the slopes of the regression lines. However, both studies were

only partly successful in completing the regionalization step, since the modeled regression slopes

had large prediction errors. They would additionally have had to model the intercepts of the regres-

sion lines to completely regionalize the stream–air temperature relationship. In a similar fashion,

Johnson et al. (2014) relied on the logistic equation introduced by Mohseni et al. (1998) to relate115

stream temperature to air temperature in each catchment. Also they faced difficulties to regress the

equation parameters against geomorphological properties of the catchments. The two most complete

works on the regionalization of the linear stream–air temperature relationship were recently con-

ducted by Ducharne (2008) and Segura et al. (2014). These two studies attempted at regionalizing

both the slopes and intercepts of the regression lines between stream and air temperature. To this120

end, Ducharne grouped the streams according to their Strahler order and fitted a single line in each

group. Segura et al., on the other end, expressed the slopes and intercepts as linear combinations of

climatic and physiographic variables. The model of Ducharne had nominally a higher explanatory

power (R2 = 0.88–0.96 depending on the Strahler order) than Segura et al.’s model (R2 = 0.79), but

was effectively based on about 10 times fewer rivers.125

Instead of using air temperature as independent variable, Bogan et al. (2003) relied on equilibrium

temperature. This variable corresponds to the stream temperature at which the net energy flux at the
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air–water interface vanishes (e.g. Edinger et al., 1968). It was shown by Bogan et al. to be a fairly

good estimator of stream temperature for almost 600 rivers in the Eastern and Central United States,

with a prediction error of about 3◦C.130

As an alternative to the above-mentioned studies, the annual cycle of stream temperature has been

modeled by some authors as a function of time directly, rather than air or equilibrium temperature.

Hrachowitz et al. (2010), Imholt et al. (2013) and Rivers-Moore et al. (2012) expressed water tem-

perature as a linear combination of climatic and physiographic variables for each month of the year

separately. Their models were derived for a particular year, but can be transferred to other years by135

estimating stream temperature at a few measurement points using Mohseni’s logistic equation and

fitting the multi-linear regression model to the resulting values (Hrachowitz et al., 2010). Based on a

similar approach, Macedo et al. (2013) succeeded to derive one single regression model to estimate

daily mean stream temperature at 12 different sites in Brazil over 1.5 years. The performance of their

model was not tested using data from subsequent years, though.140

Johnson (1971) relied on a yet different technique to estimate the thermal regime of 6 rivers in

New Zealand. He first fitted the stream temperature annual cycles with sine curves. In a second

step, he identified the physiographic properties of the catchments which best correlated with the fit

coefficients. The focus of his study being on the investigation of these physiographic properties, he

did not evaluate the prediction error of his model. Although not intended for this purpose, the work of145

Garner et al. (2014) is based on a somewhat similar approach and may be used to get a first estimate

of the annual cycle of temperature in UK streams. The authors classified rivers into several groups

according to the shape and magnitude of their respective thermal regimes. Then, they investigated the

similarities and dissimilarities of some geomorphological properties among and between the groups.

This processing could be inverted to infer the thermal regime from the physiographic properties of150

the catchments.

Finally, some studies have evaluated the possibility of modeling the time evolution of stream

temperature using machine learning techniques. For example, DeWeber and Wagner (2014) trained

an artificial neural network to reproduce daily mean temperature values from May to October over

more than 30 years for 1080 streams in the Eastern United States. Their approach could be easily155

extended so as to model the complete annual cycle of stream temperature each year.

1.3 Space-averaging of the predictor variables

Some of the reviewed publications on regional stream temperature modeling addressed the question

of the spatial scale over which the predictor variables should be averaged. It is common knowl-

edge that stream temperature is not only affected by local environmental conditions, but also by the160

conditions prevailing upstream. However, the exact extent of the area controlling the stream energy-

balance at a given point is not clear (Moore et al., 2005).
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Due to this uncertainty, different approaches have been used in the literature to average the predic-

tor variables. Based on studies of the effect of forest harvesting on stream temperature (e.g. Moore

et al., 2005), some authors considered riparian buffer zones of various widths and lengths as aver-165

aging areas. This approach was usually applied to average the land-cover characteristics only, par-

ticularly forest coverage (e.g. Sponseller et al., 2001; Scott et al., 2002; Macedo et al., 2013; Segura

et al., 2014), but also in some cases to average most of the predictor variables, including elevation

or slope (Hrachowitz et al., 2010; Imholt et al., 2013). Other authors considered larger portions of

the catchments as averaging areas, sometimes extending far beyond the riparian zone. For example,170

Wehrly et al. (2009) used the whole area drained by the stream segment located directly upstream

of the temperature measurement point. Whereas most studies relied on simple spatial averaging, a

few of them applied a weighting scheme to give more emphasis to the conditions prevailing near

the gauging point. As such, Isaak et al. (2010) and Hill et al. (2013) applied a weight w decreasing

exponentially with the distance d to the catchment outlet, w = exp(−d/Lc), where the e-folding175

distance Lc controls the spatial extent of the averaging area.

In response to this diversity of methods, we could not find a general consensus in the reviewed lit-

erature concerning the extent of the spatial area which is relevant for stream temperature prediction.

While some studies conclude that this area should have a length of about 1–4 km (Isaak et al., 2010;

Hrachowitz et al., 2010; Chang and Psaris, 2013; Macedo et al., 2013), others tend to indicate that180

the catchment scale is the most appropriate one (Sponseller et al., 2001; Scott et al., 2002). Simi-

larly, values between 30 and 200 m are assumed for the width of the riparian buffer affecting stream

temperature at a given point (e.g. Jones et al., 2006; Scott et al., 2002; DeWeber and Wagner, 2014).

1.4 State-of-the-art in Switzerland
✿✿

the
✿✿✿✿✿✿✿✿✿

European
✿✿✿✿✿

Alps

Of all the regional models reported in Table 1, less than a third were developed for stream tem-185

perature prediction outside from North America, and none in Switzerland. The only
✿✿✿✿

only
✿✿✿✿✿✿✿✿

one—the

✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿

developed
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Arscott et al. (2001)—is
✿✿✿✿✿✿

applied
✿✿✿✿✿

over
✿

a
✿✿✿✿✿✿✿✿✿

European
✿✿✿✿✿✿

Alpine
✿✿✿✿✿✿

region.
✿✿✿

An
✿

unpub-

lished attempt at developing such a model over the Swiss territory
✿✿✿✿✿✿

another
✿✿✿✿✿✿

model
✿✿✿

for
✿✿

an
✿✿✿✿✿✿✿

Alpine

✿✿✿✿✿✿

country
✿✿✿✿✿✿✿✿✿✿✿✿

(Switzerland) was conducted by Rubin et al. (2012), who concentrated on the Canton de

Vaud (one of the 26 administrative regions composing Switzerland). They relied on the region-190

alization of the stream–air temperature relationship, but unfortunately did not evaluate the preci-

sion of their model. Other studies have sought to classify the thermal regimes of Swiss
✿✿✿✿✿✿

Alpine

rivers (Jakob, 2010; Müller, 2011), sometimes with minimal success (see Schädler, 2008, for a

review of the classification efforts before 2008). These authors grouped the streams according to

the physiographic characteristics of their associated watershed, such as mean basin altitude, water195

origin (lake, artificial reservoir, deep aquifer or shallow subsurface groundwater), channel width

or slope. For each group, they
✿✿✿✿

They computed the characteristics of the thermal regime that a

typical river in this class should have
✿✿✿✿✿✿

typical
✿✿✿✿✿✿✿

thermal
✿✿✿✿✿✿

regime
✿✿

of
✿✿✿✿

each
✿✿✿✿✿✿

group. However, inter-annual
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variations of the thermal regime cannot be accounted for by this method. The impact of climate

change on the temperature of some Swiss rivers was addressed by some studies based on linear200

time extrapolation (Beyeler, 2007; Hari and Zobrist, 2003; Hari and Güttinger, 2004; Jakob, 2010).

Finally, other authors relied on physically-based models to simulate water temperature dynamics in

single stream reaches or catchments (Meier et al., 2003; Roth et al., 2010; Magnusson et al., 2012; Carlier, 2013),

which is not the subject of the present study.

1.5 Investigation of a new modeling approach205

The above literature review revealed two subjective choices that are faced by all authors: (a) the

selection of the predictor variables, and (b) the choice of the statistical approach to link these
✿✿✿

All
✿✿✿

the

✿✿✿✿✿✿✿

reviewed
✿✿✿✿✿✿

models
✿✿✿✿

rely
✿✿

on
✿✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿

statistical
✿✿✿✿✿✿✿✿✿

techniques
✿✿

to
✿✿✿✿✿✿✿

estimate
✿✿✿✿✿✿

stream
✿✿✿✿✿✿✿✿✿✿

temperature.
✿✿✿✿

The
✿✿✿✿✿

range
✿✿

of

✿✿✿✿✿✿✿

methods
✿✿✿✿✿✿✿✿✿✿✿

encompasses
✿✿✿✿✿✿✿✿

traditional
✿✿✿✿✿✿✿✿✿✿

approaches
✿✿✿✿

such
✿✿

as
✿✿✿✿✿✿✿✿✿

multi-linear
✿✿✿✿✿✿✿✿✿

regression
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g. Arscott et al., 2001; Mayer, 2012; Imholt et al., 2013) or

✿✿✿✿✿

linear
✿✿✿✿✿

mixed
✿✿✿✿✿✿✿✿

modeling
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Macedo et al., 2013),
✿✿✿

but
✿✿✿

also
✿✿✿✿✿

more
✿✿✿✿✿✿✿✿

advanced
✿✿✿✿✿✿✿✿✿

techniques
✿✿✿✿

such
✿✿

as
✿✿✿✿✿✿✿✿✿✿✿✿

geographically210

✿✿✿✿✿✿✿

weighted
✿✿✿✿✿✿✿✿✿

regression
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Pratt and Chang, 2012; Chang and Psaris, 2013),
✿✿✿✿✿✿✿✿✿

networked
✿✿✿✿✿✿

kriging
✿✿✿✿✿✿

models
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Gardner and Sullivan, 2004; Isaak et al., 2010; Ruesch et al., 2012) or

✿✿✿✿✿✿✿

machine
✿✿✿✿✿✿✿

learning
✿✿✿✿✿✿✿✿✿

techniques
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g. Westenbroek et al., 2010; Hill et al., 2013; DeWeber and Wagner, 2014).

✿✿✿

All
✿✿✿✿

these
✿✿✿✿✿✿✿✿

methods
✿✿✿

are
✿✿✿✿✿✿✿

general,
✿✿

in
✿✿✿

the
✿✿✿✿✿

sense
✿✿✿✿

that
✿✿✿✿

they
✿✿✿

can
✿✿✿

be
✿✿✿✿

used
✿✿

to
✿✿✿✿✿✿

model
✿✿✿✿✿✿

almost
✿✿✿

any
✿✿✿✿✿✿✿✿

possible

✿✿✿✿✿✿✿✿✿

relationship
✿✿✿✿✿✿✿✿

between
✿✿✿✿

given
✿✿✿✿✿

input
✿✿✿

and
✿✿✿✿✿✿

output
✿✿✿✿✿✿✿✿✿

variable(s).
✿✿✿

As
✿

a
✿✿✿✿✿✿✿✿✿✿✿

consequence
✿✿

of
✿✿✿

this
✿✿✿✿✿✿✿✿✿

generality,
✿✿✿

the
✿✿✿✿

user215

✿✿✿

has
✿✿

to
✿✿✿✿✿✿

specify
✿✿✿

the
✿✿✿

set
✿✿

of predictor variables to stream temperature. The
✿✿

be
✿✿✿✿✿✿✿✿✿

considered
✿✿✿

by
✿✿✿

the
✿✿✿✿✿✿

model.

✿✿✿✿✿✿✿✿

Although
✿✿✿✿

some
✿✿✿✿✿✿✿✿

objective
✿✿✿✿✿✿✿

methods
✿✿✿

can
✿✿✿✿

help
✿✿

to
✿✿✿✿✿✿✿

perform
✿✿✿

this
✿✿✿✿✿✿✿

selection
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g. Burnham and Anderson, 2002),

✿✿

the
✿✿✿✿✿✿✿

original
✿✿✿

set
✿✿

of
✿✿✿✿✿✿✿✿

variables
✿✿✿

on
✿✿✿✿✿

which
✿✿✿✿✿

these
✿✿✿✿✿✿✿✿

methods
✿✿

act
✿✿✿✿✿

must
✿✿✿✿✿✿✿

initially
✿✿

be
✿✿✿✿✿✿✿✿

indicated
✿✿✿

by
✿✿✿

the
✿✿✿✿

user.
✿✿✿

In

✿✿

the
✿✿✿✿✿

end,
✿✿✿

the
✿

choice of predictor variables varies quite significantly from one model to the other.

Some
✿✿

is
✿✿✿✿✿✿✿✿✿

necessarily
✿✿✿✿✿✿✿

affected
✿✿

to
✿✿✿✿✿

some
✿✿✿✿✿✿

extent
✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿

training
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿

experience
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿

authors,
✿✿✿✿✿✿

hereby220

✿✿✿✿✿✿✿✿✿

introducing
✿✿✿✿✿

some
✿✿✿✿✿✿✿

diversity
✿✿

in
✿✿✿

the
✿✿✿✿

sets
✿✿

of
✿✿✿✿✿✿✿✿

predictor
✿✿✿✿✿✿✿✿

variables.
✿✿✿✿✿

Thus,
✿✿

in
✿✿✿

the
✿✿✿✿

case
✿✿

of
✿✿✿✿✿✿

stream
✿✿✿✿✿✿✿✿✿✿

temperature

✿✿✿✿✿✿✿✿

modeling
✿✿

in
✿✿✿✿✿✿✿✿✿

ungauged
✿✿✿✿✿✿✿✿✿✿

catchments,
✿✿✿✿✿

some
✿

studies consider only physiographic
✿✿✿✿✿✿✿✿✿✿✿

characteristics
✿✿✿

as

✿✿✿✿✿✿✿

predictor
✿

variables (e.g. Scott et al., 2002; Jones et al., 2006; Nelson and Palmer, 2007; Hrachowitz

et al., 2010), while others also include climatic variables (e.g. Isaak et al., 2010; Ruesch et al.,

2012; Moore et al., 2013), stream morphological factors such as channel width or bed gravel size225

(e.g. Hawkins et al., 1997; Arscott et al., 2001; Daigle et al., 2010), or even markers of anthro-

pogenic activities (e.g. Pratt and Chang, 2012; Hill et al., 2013; Macedo et al., 2013). Similarly,

the range of used statistical methods is rather broad. It encompasses traditional methods such as

multi-linear regression (e.g. Arscott et al., 2001; Mayer, 2012; Imholt et al., 2013) or linear mixed

modeling (Macedo et al., 2013), but also more advanced techniques such as geographically weighted230

regression (Pratt and Chang, 2012; Chang and Psaris, 2013), networked kriging models (Gardner and Sullivan, 2004; Isaak et al., 2010; Ruesch et al., 2012) or

machine learning techniques (e.g. Westenbroek et al., 2010; Hill et al., 2013; DeWeber and Wagner, 2014).

✿

It
✿✿✿✿✿✿

should
✿✿✿

be
✿✿✿✿✿✿✿✿✿

mentioned
✿✿✿✿

that
✿✿✿✿

this
✿✿✿✿✿✿✿✿

diversity
✿✿✿✿

also
✿✿✿✿✿✿

largely
✿✿✿✿✿✿

results
✿✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿

varying
✿✿✿✿✿✿✿✿✿✿

availability
✿✿✿✿

and

✿✿✿✿✿✿✿✿

reliability
✿✿

of
✿✿✿✿

data
✿✿✿✿✿✿

among
✿✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿✿✿

geographic
✿✿✿✿✿✿

areas.
✿✿✿✿

This
✿✿

is
✿✿✿✿✿✿✿✿✿✿

particularly
✿✿✿

true
✿✿✿

for
✿✿✿✿✿✿✿

riparian
✿✿✿✿✿✿✿✿

shading,
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✿✿✿✿✿

which
✿✿

is
✿✿✿✿✿

never
✿✿✿✿✿✿✿

directly
✿✿✿✿✿✿✿✿✿

measured
✿✿✿

and
✿✿✿✿

can
✿✿✿✿

only
✿✿✿

be
✿✿✿✿✿✿✿✿

estimated
✿✿✿✿✿✿

based
✿✿✿

on
✿✿✿

the
✿✿✿✿

data
✿✿

at
✿✿✿✿✿✿✿✿

disposal.
✿✿✿✿

For235

✿✿✿✿✿✿✿

example,
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Isaak et al. (2010) approximated
✿✿✿✿✿✿✿

riparian
✿✿✿✿✿✿✿

shading
✿✿✿✿✿

using
✿✿

a
✿✿✿✿✿✿✿✿✿✿✿

sophisticated
✿✿✿✿✿✿✿✿✿✿✿

combination
✿✿✿

of

✿✿✿✿✿✿

satellite
✿✿✿✿✿✿✿✿✿✿

orthoimages
✿✿✿✿

and
✿✿✿✿✿✿

ground
✿✿✿✿✿✿✿✿✿✿✿

hemispherical
✿✿✿✿✿✿✿

canopy
✿✿✿✿✿✿✿

pictures,
✿✿✿✿✿✿✿

whereas
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

DeWeber and Wagner (2014) could

✿✿✿✿

only
✿✿✿

rely
✿✿✿

on
✿✿✿✿✿✿✿✿✿✿✿

country-wide
✿✿✿✿✿✿

landuse
✿✿✿✿✿

data.

We advocate here that the statistical modeling approach suffers two drawbacks. First, the selection

of the predictor variables relies on the training and experience of the author(s); as such, it is not a240

deterministic procedure. This explains the fact that, despite some similarities, all lists of predictor

variables are different among the reviewed articles. Secondly,
✿✿✿✿✿✿✿

Although
✿✿✿

the
✿✿✿✿✿✿✿✿✿

generality
✿✿

of the choice

of the statistical model directly dictates the functional form of the relationship between the predictand

(stream temperature) and predictor variables
✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿

statistical
✿✿✿✿✿✿✿

methods
✿✿✿✿✿✿

allows
✿✿✿✿✿

them
✿✿

to
✿✿

be
✿✿✿✿✿✿✿

applied

✿✿

to
✿✿✿✿✿

many
✿✿✿✿✿✿✿✿

problems,
✿✿

it
✿✿✿✿✿✿✿

prevents
✿✿✿✿

them
✿✿

to
✿✿✿✿✿✿✿✿✿✿

incorporate
✿✿✿✿✿

prior
✿✿✿✿✿✿✿✿✿

knowledge
✿✿✿✿✿

about
✿✿✿

the
✿✿✿✿✿✿

system
✿✿✿✿✿✿✿✿

dynamics
✿✿✿✿

into245

✿✿✿✿

their
✿✿✿✿✿✿✿

structure. For example, a multi-linear model assumes that the predictand can be expressed

✿✿✿✿✿✿✿✿

expresses
✿✿✿

the
✿✿✿✿✿✿✿✿

predictand
✿

as a linear combination of the predictors
✿✿✿✿✿✿✿✿

regardless
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

problem
✿✿

at
✿✿✿✿

hand.

This fact is also true for non-parametric methods such as the artificial neural networks, which im-

plicitly impose some (flexible) functional form . The selection of one type of modelover another one

is generally a heuristic decision.250

We acknowledge that the statistical approach cannot be avoided in many disciplines, such as in

Social Sciences or Economics, where the interactions between the different variables of interestare

so complex that no functional form prevails in practice. Yet stream temperature is known to obey

the energy conservation law. Our aim is to investigate whether the consideration of this physical law

leads to the development of a more general and justifiable model. This
✿

to
✿✿✿

the
✿✿✿✿✿✿

model.
✿✿✿

As
✿✿✿✿✿✿✿✿

advocated
✿✿✿

by255

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Burnham and Anderson (2002),
✿✿✿✿

our
✿✿✿

idea
✿✿

is
✿✿✿✿✿✿✿✿

therefore
✿✿

to
✿✿✿✿✿✿

attempt
✿✿

at
✿✿✿✿✿✿✿

deriving
✿✿

a
✿✿✿✿✿✿✿✿

statistical
✿✿✿✿✿

model
✿✿✿✿✿✿

whose

✿✿✿✿✿✿✿

structure
✿✿✿✿✿✿✿

includes
✿✿✿✿✿✿

known
✿✿✿✿✿✿✿✿

dynamics
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

predictand
✿✿✿✿✿✿✿

variable
✿✿

of
✿✿✿✿✿✿✿

interest,
✿✿✿✿✿✿

namely
✿✿✿✿✿✿

stream
✿✿✿✿✿✿✿✿✿✿

temperature

✿✿

in
✿✿✿

the
✿✿✿✿

case
✿✿

at
✿✿✿✿✿

hand.
✿

✿✿✿

Our
✿

approach is strongly inspired from the physically-based models which have been used for

decades to predict water temperature along stream reaches (e.g. Brown, 1969; Sinokrot and Stefan,260

1993; Westhoff et al., 2007). However, it differs from these models in the sense that we seek a much

simpler expression for stream temperature, expressed as a function of variables which are readily

available at the regional scale.

Our method requires analytically solving
✿✿

To
✿✿✿

this
✿✿✿✿

end,
✿✿✿

we
✿✿✿✿✿✿✿✿✿✿

analytically
✿✿✿✿✿

solve
✿✿

a
✿✿✿✿✿✿✿✿

simplified
✿✿✿✿✿✿✿

version

✿✿

of the energy-balance equation using some simplifying assumptions (see Sect.
✿✿✿

over
✿✿✿

an
✿✿✿✿✿

entire
✿✿✿✿✿✿

stream265

✿✿✿✿✿✿✿

network
✿✿✿

(see
✿✿✿✿✿✿✿

Section 3.1). The resulting expression for stream temperature is in theory not subject

to the two above-mentioned drawbacks pertaining to the statistical approach. As a matter of fact, the

predictor variables do not need to be specified a priori, as they naturally appear during the derivation

of
✿✿✿✿✿✿✿

involves
✿✿✿✿✿✿✿

variables
✿✿✿✿✿✿

whose
✿✿✿✿✿

value
✿✿✿✿✿

cannot
✿✿✿

be
✿✿✿✿✿✿✿✿

estimated
✿✿✿✿✿

based
✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿

available
✿✿✿✿✿

spatial
✿✿✿✿

data
✿✿✿✿

sets.
✿✿✿✿

Due
✿✿

to

✿✿✿

our
✿✿✿✿

lack
✿✿

of
✿✿✿✿✿✿✿✿✿

knowledge
✿✿✿✿✿✿✿✿

regarding
✿✿✿

the
✿✿✿✿✿✿

nature
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

relationships
✿✿✿✿✿✿✿

between
✿

the expression. Moreover,270

the analytical formula directly provides the functional form of the relationship between stream
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temperature and the predictor variables . In practice these two assertions have to be moderated,

since some of the predictor variables appearing in the analytical expression are not available in

ungauged catchments—such as the long-wave radiation emitted by the stream. So as to keep our

model as simple as possible
✿✿✿✿✿✿✿

unknown
✿✿✿✿✿✿✿✿

variables
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿

available
✿✿✿✿

data, we choose to express these275

unknown quantities as linear functions of the available data
✿✿✿

rely
✿✿

on
✿✿✿✿✿✿✿✿✿✿

multi-linear
✿✿✿✿✿✿✿✿✿

regression
✿✿

to
✿✿✿✿✿✿✿

estimate

✿✿

the
✿✿✿✿✿✿

former
✿✿✿

as
✿

a
✿✿✿✿✿✿✿

function
✿✿

of
✿✿✿

the
✿✿✿✿✿

latter. Although this step involves the
✿✿✿✿✿✿✿✿

subjective selection of predic-

tor variables and assumes a linear relationshipwith the unknown quantities, we do not think that it

entirely questions our incentive to base our work on physical grounds. Indeed
✿✿✿✿✿✿✿✿✿

incorporate
✿✿✿✿✿✿✿✿

physical

✿✿✿✿✿✿✿✿✿✿✿✿

considerations
✿✿✿

into
✿✿✿

the
✿✿✿✿✿

model
✿✿✿✿✿✿✿✿

structure.
✿✿✿

As
✿

a
✿✿✿✿✿✿

matter
✿✿

of
✿✿✿✿

fact, only the unknown variables are replaced280

in the analytical formula, letting the global form of the relationship unaffected.
✿✿✿✿✿✿✿✿

Assuming
✿✿✿✿

that
✿✿✿

the

✿✿✿✿✿

major
✿✿✿✿✿✿✿✿✿✿✿✿

non-linearities
✿✿✿

are
✿✿✿✿✿✿

already
✿✿✿✿✿✿✿✿

captured
✿✿

by
✿✿✿

the
✿✿✿✿✿✿

global
✿✿✿✿✿✿✿

structure
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

model,
✿✿✿

the
✿✿✿✿✿✿✿

specific
✿✿✿✿

form
✿✿✿

of

✿✿

the
✿✿✿✿✿✿✿✿✿✿

expressions
✿✿✿✿✿

used
✿✿

to
✿✿✿✿✿✿✿✿✿✿

approximate
✿✿✿

the
✿✿✿✿✿✿✿✿

unknown
✿✿✿✿✿

terms
✿✿✿✿

may
✿✿✿

be
✿✿✿✿✿✿✿✿✿

considered
✿✿

to
✿✿✿✿

have
✿✿

a
✿✿✿✿✿

minor
✿✿✿✿✿✿

effect.

Moreover, our approach attributes a physical meaning to
✿✿✿✿

some
✿✿✿

of the terms appearing in the for-

mula. These terms can be constrained to remain within physical bounds, hereby restricting the range285

of values that the calibration parameters can adopt.

The objectives of the present work are three-fold: (1) describe a new analytical expression
✿✿✿✿✿✿✿✿✿✿✿✿✿

physics-inspired

✿✿✿✿✿✿✿✿

statistical
✿✿✿✿✿

model
✿

for the prediction of stream temperature in ungauged basins, allowing for the com-

putation of the monthly resolved annual cycle and capturing inter-annual variability; (2) through

proper calibration of the model, determine the length of the upstream area which controls stream290

temperature at a given point; and (3) compare the analytical
✿✿✿✿✿✿✿✿✿✿✿✿✿

physics-inspired
✿

model with a more

standard statistical approach over a set of various Swiss catchments. The models
✿

,
✿✿

so
✿✿

as
✿✿✿

to
✿✿✿✿✿✿✿

evaluate

✿✿

the
✿✿✿✿✿✿✿✿

potential
✿✿✿✿✿✿✿

benefits
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

incorporation
✿✿

of
✿✿✿✿✿✿✿

physical
✿✿✿✿✿✿✿✿✿✿✿✿

considerations
✿✿✿✿

into
✿✿✿

the
✿✿✿✿✿✿

model
✿✿✿✿✿✿✿✿

structure.
✿✿✿✿

The

✿✿✿

data
✿✿✿

set
✿✿✿✿✿

used
✿✿

to
✿✿✿✿✿✿✿

evaluate
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

performances
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

models
✿✿

is
✿✿✿✿✿✿✿✿

presented
✿✿

in
✿✿✿✿✿

Sect.
✿✿

2.
✿✿✿✿

The
✿✿✿✿✿✿✿

models are

described in Sect. 3. The characteristics of the Swiss catchments are presented in Sect.
✿✿✿✿✿✿

Results
✿✿✿

are295

✿✿✿✿✿✿

detailed
✿✿

in
✿✿✿✿✿

Sect.
✿

4
✿✿✿✿

and
✿✿✿✿✿✿✿✿

discussed
✿✿

in
✿✿✿✿

Sect.
✿✿

5,
✿✿✿✿✿✿✿✿

followed
✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

conclusion.
✿

2
✿✿✿✿

Data
✿✿✿✿✿✿✿✿✿✿

description

2.1
✿✿✿✿✿✿

Selected
✿✿✿✿✿✿✿✿✿✿✿

catchments
✿✿✿

for
✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿✿

evaluation

✿✿

In
✿✿✿✿

order
✿✿

to
✿✿✿✿

test
✿✿

the
✿✿✿✿

two
✿✿✿✿✿✿

stream
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿

models,
✿✿✿✿✿✿✿✿✿✿

catchments
✿✿✿

are
✿✿✿✿✿✿✿

selected
✿✿

in
✿✿✿✿✿✿✿✿✿✿

Switzerland
✿✿✿✿

such
✿✿✿✿

that:

✿✿

(a)
✿✿✿

the
✿✿✿✿✿✿✿

natural
✿✿✿✿✿✿

regime
✿✿

of
✿✿✿

the
✿✿✿✿✿

river
✿✿

is
✿✿

as
✿✿✿✿

little
✿✿✿✿✿✿✿

affected
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿

anthropogenic
✿✿✿✿✿✿✿✿

activities
✿✿

as
✿✿✿✿✿✿✿✿

possible,
✿✿✿✿

and300

✿✿

(b)
✿✿✿✿✿✿✿✿✿✿✿✿

measurements
✿✿✿

of
✿✿✿✿✿✿✿✿

discharge
✿✿✿✿

and
✿✿✿✿✿✿

stream
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿

are
✿✿✿✿✿✿✿✿

available
✿✿✿

for
✿✿✿✿

more
✿✿✿✿

than
✿✿✿✿

one
✿✿✿✿

year.
✿✿✿✿✿

This

✿✿✿✿✿

results
✿✿

in
✿✿

a
✿✿

set
✿✿

of
✿✿✿

29
✿✿✿✿✿✿✿✿✿✿

catchments,
✿✿✿✿✿

whose
✿✿✿✿✿✿✿✿

locations
✿✿✿

are
✿✿✿✿✿✿✿

depicted
✿✿

in
✿✿✿✿

Fig.
✿

1
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿

physiographic
✿✿✿✿✿✿✿✿✿

properties

✿✿

are
✿✿✿✿✿✿✿✿✿✿✿

summarized
✿✿

in
✿✿✿✿✿

Table
✿✿

3.

✿✿✿✿✿

About
✿✿✿✿

half
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

selected
✿✿✿✿✿✿✿✿✿✿

catchments
✿✿

is
✿✿✿✿✿✿✿

situated
✿✿✿

on
✿✿✿

the
✿✿✿✿✿

Swiss
✿✿✿✿✿✿✿✿✿

Plateau—a
✿✿✿✿✿

large
✿✿✿✿

area
✿✿✿✿

with
✿✿✿✿✿

little

✿✿✿✿✿✿

altitude
✿✿✿✿✿✿✿✿✿

variations
✿✿✿✿✿✿✿

between
✿✿✿✿✿

Lake
✿✿✿✿✿✿

Geneva
✿✿

in
✿✿✿✿

the
✿✿✿✿✿

south
✿✿✿✿

west
✿✿✿

and
✿✿✿✿✿

Lake
✿✿✿✿✿✿✿✿✿

Constance
✿✿

in
✿✿✿

the
✿✿✿✿✿

north
✿✿✿✿✿

east.305

✿✿✿

The
✿✿✿✿✿✿✿

climate
✿✿

in
✿✿✿✿

this
✿✿✿✿✿✿

region
✿✿

is
✿✿✿✿✿✿✿✿

relatively
✿✿✿✿✿

mild,
✿✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿✿✿✿

mostly
✿✿✿✿✿✿

falling
✿✿

as
✿✿✿✿

rain
✿✿✿

in
✿✿✿✿✿✿

winter

9



✿✿✿

and
✿✿✿✿✿

mean
✿✿✿✿✿

daily
✿✿✿✿✿✿✿✿✿

maximum
✿✿✿

air
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿

hardly
✿✿✿✿✿✿✿✿✿

exceeding
✿✿✿✿✿

30◦C
✿✿

in
✿✿✿✿✿✿✿✿

summer.
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿

hydrological

✿✿✿✿✿✿

regimes
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

catchments
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

Plateau
✿✿✿✿✿✿✿

depend
✿✿

on
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿✿✿✿✿

patterns
✿✿✿

and
✿✿✿✿

are
✿✿✿✿✿✿✿✿

therefore

✿✿✿✿✿✿✿

strongly
✿✿✿✿✿✿✿

variable
✿✿✿✿

from
✿✿✿✿

year
✿✿

to
✿✿✿✿

year
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Aschwanden and Weingartner, 1985).
✿✿✿✿✿✿✿✿

Discharge
✿✿✿✿

does
✿✿✿✿

not
✿✿✿✿

vary

✿✿

by
✿✿✿✿✿

more
✿✿✿✿

than
✿✿

a
✿✿✿✿✿✿

factor
✿✿✿

two
✿✿✿✿✿

over
✿✿✿

the
✿✿✿✿✿

year;
✿✿

it
✿✿✿✿✿✿

usually
✿✿✿✿✿✿✿

reaches
✿✿✿

its
✿✿✿✿✿✿✿✿✿

maximum
✿✿✿✿✿✿

during
✿✿✿✿✿✿

winter,
✿✿✿✿✿✿

when310

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

evapotranspiration
✿✿

is
✿✿✿

the
✿✿✿✿✿✿

lowest.
✿✿✿

As
✿✿✿✿✿✿✿✿✿✿

catchments
✿✿✿✿

gain
✿✿

in
✿✿✿✿✿✿✿

altitude,
✿✿✿

the
✿✿✿✿✿✿✿✿✿

discharge
✿✿✿✿✿✿

control
✿✿✿✿✿✿✿✿✿✿

mechanism

✿✿✿✿✿✿

changes
✿✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

evapotranspiration
✿✿

to
✿✿✿✿✿✿✿✿✿

snowmelt:
✿✿✿✿✿✿✿✿✿✿✿✿✿

higher-altitude
✿✿✿✿✿✿✿✿✿

catchments
✿✿✿✿✿✿✿

present
✿

a
✿✿✿✿✿✿✿✿

discharge
✿✿✿✿✿

peak

✿✿✿✿✿

during
✿✿✿

the
✿✿✿✿

melt
✿✿✿✿✿✿✿

season,
✿✿

in
✿✿✿✿✿✿✿✿✿

April–May.
✿

✿✿✿✿

Only
✿✿✿

two
✿✿✿✿✿✿✿✿✿✿

catchments
✿✿✿

are
✿✿✿✿✿

found
✿✿

in
✿✿

the
✿✿✿✿

Jura
✿✿✿✿✿✿✿✿✿

mountains,
✿✿

a
✿✿✿✿✿✿✿

relatively
✿✿✿✿✿✿✿✿✿✿

low-altitude
✿✿✿✿✿✿✿

(< 1700
✿✿✿

m)
✿✿✿✿✿✿✿✿✿✿✿

mountainous

✿✿✿✿

range
✿✿✿✿✿

with
✿✿✿✿✿✿✿

rigorous
✿✿✿✿✿✿✿

winters.
✿✿✿✿

This
✿✿✿✿✿✿

region
✿✿

is
✿✿✿✿✿✿✿✿✿✿✿✿

characteristic
✿✿✿

for
✿✿

its
✿✿✿✿✿✿

karstic
✿✿✿✿✿✿✿

aquifers
✿✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿

preferential315

✿✿✿✿

flow
✿✿✿✿✿

paths,
✿✿✿✿✿✿✿✿✿

generating
✿✿✿

fast
✿✿✿✿

and
✿✿✿✿✿✿✿

complex
✿✿✿✿✿✿✿✿✿

responses
✿✿

to
✿✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿✿✿✿

events.
✿✿✿✿✿✿✿✿

Although
✿✿✿✿✿

more
✿✿✿✿✿✿✿

marked,

✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

hydrological
✿✿✿✿✿✿✿

regimes
✿✿

of
✿✿

the
✿✿✿✿

Jura
✿✿✿✿✿✿✿✿✿✿

catchments
✿✿

are
✿✿✿✿✿✿✿✿

relatively
✿✿✿✿✿✿

similar
✿✿

to
✿✿✿✿✿

those
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

watersheds
✿✿

in
✿✿✿

the

✿✿✿✿✿✿

Plateau.
✿✿

A
✿✿✿✿

clear
✿✿✿✿✿

peak
✿✿

in
✿✿✿✿✿✿✿✿

discharge
✿

is
✿✿✿✿✿✿✿✿✿

noticeable
✿✿

in
✿✿✿✿

April
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿

highest
✿✿✿✿✿✿✿✿✿✿

catchments
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Aschwanden and Weingartner, 1985).

✿✿✿

The
✿✿✿✿✿✿

Alpine
✿✿✿✿✿✿

region
✿✿

of
✿✿✿✿✿✿✿✿✿✿

Switzerland
✿✿

is
✿✿✿✿✿✿✿✿

typically
✿✿✿✿✿✿✿✿✿

subdivided
✿✿✿

into
✿✿✿

its
✿✿✿✿✿

north
✿✿✿

and
✿✿✿✿✿

south
✿✿✿✿✿

parts,
✿✿✿✿✿

based
✿✿✿
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✿✿✿✿

their
✿✿✿✿✿✿✿✿

difference
✿✿✿

in
✿✿✿✿✿✿✿

climate.
✿✿✿

The
✿✿✿✿✿✿✿✿

Southern
✿✿✿✿✿

Alps
✿✿✿

are
✿✿✿✿✿✿✿✿✿

influenced
✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿

Mediterranean
✿✿✿✿✿✿✿✿

weather,
✿✿✿✿✿✿✿✿

implying

✿✿✿✿✿✿

warmer
✿✿✿✿✿✿✿

winters
✿✿✿✿

and
✿✿✿✿

more
✿✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿

in
✿✿✿✿✿✿✿

autumn
✿✿✿✿

than
✿✿

in
✿✿✿✿

the
✿✿✿✿✿✿✿✿

Northern
✿✿✿✿✿

Alps.
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿

hydrological

✿✿✿✿✿✿

regimes
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

catchments
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

Northern
✿✿✿✿

Alps
✿✿✿

are
✿✿✿✿✿✿✿

strongly
✿✿✿✿✿✿

related
✿✿

to
✿✿✿✿✿✿✿

altitude.
✿✿✿✿

The
✿✿✿✿✿

month
✿✿

in
✿✿✿✿✿✿

which

✿✿

the
✿✿✿✿✿

peak
✿✿

of
✿✿✿✿✿✿✿✿✿

discharge
✿✿

is
✿✿✿✿✿✿✿✿

observed
✿✿✿✿✿✿

ranges
✿✿✿✿✿

from
✿✿✿✿

May
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿✿

low-altitude
✿✿✿✿✿✿✿✿✿

watersheds
✿✿✿

to
✿✿✿✿✿✿✿✿✿✿✿

July–August

✿✿

for
✿✿✿✿✿✿✿✿✿✿

catchments
✿✿✿✿✿✿✿✿

partially
✿✿✿✿✿✿✿

covered
✿✿

by
✿✿✿✿✿✿✿✿

glaciers.
✿✿✿✿✿✿✿✿✿

Moreover,
✿✿✿

the
✿✿✿✿✿

ratio
✿✿

of
✿✿✿✿✿✿

annual
✿✿✿✿✿✿✿✿✿

maximum
✿✿✿

to
✿✿✿✿✿✿

annual325

✿✿✿✿✿✿✿✿

minimum
✿✿✿✿✿✿✿✿

discharge
✿✿✿✿✿✿✿

increases
✿✿✿✿

with
✿✿✿✿✿✿✿

altitude.
✿✿✿✿✿✿✿

Similar
✿✿✿✿✿✿✿✿✿✿

hydrological
✿✿✿✿✿✿✿

regimes
✿✿✿

are
✿✿✿✿✿✿✿

observed
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

Southern

✿✿✿✿

Alps,
✿✿✿✿✿✿

except
✿✿✿

for
✿

a
✿✿✿✿✿✿

second
✿✿✿✿✿✿✿✿

discharge
✿✿✿✿

peak
✿✿

in
✿✿✿✿✿✿

autumn
✿✿✿✿

due
✿

to
✿✿✿✿✿✿✿

rainfall
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Aschwanden and Weingartner, 1985).

✿✿

As
✿✿✿✿

seen
✿✿

in
✿✿✿✿

Fig.
✿✿

1,
✿✿✿✿

only
✿✿✿✿

three
✿✿✿✿✿✿✿✿✿✿

unperturbed
✿✿✿✿✿✿✿✿✿✿

catchments
✿✿✿✿✿

could
✿✿

be
✿✿✿✿✿

found
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

Northern
✿✿✿✿

Alps,
✿✿✿✿✿

while
✿✿✿✿

five

✿✿

are
✿✿✿✿✿✿✿

located
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

Southern
✿✿✿✿✿

Alps.
✿

✿✿✿

All
✿✿

in
✿✿✿

all,
✿✿

10
✿✿

of
✿✿✿

the
✿✿

16
✿✿✿✿✿✿✿✿✿✿✿

hydrological
✿✿✿✿✿✿✿

regimes
✿✿✿✿✿✿✿✿

identified
✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
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✿✿✿✿✿✿✿✿✿✿

Switzerland
✿✿

are
✿✿✿✿✿✿✿

present
✿✿✿✿✿

among
✿✿✿

the
✿✿✿

29
✿✿✿✿✿✿

selected
✿✿✿✿✿✿✿✿✿✿

catchments
✿✿✿

(see
✿✿✿✿✿

Table
✿✿✿

3).
✿✿✿

The
✿✿✿✿✿✿

surface
✿✿✿✿

area
✿✿✿✿✿✿✿✿✿✿

distribution

✿

is
✿✿✿✿✿

quite
✿✿✿✿✿

large,
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿

catchments
✿✿✿✿✿✿✿

ranging
✿✿✿✿

from
✿✿✿✿

3.31 2.1, and the
✿✿✿✿

km2
✿✿✿✿✿✿✿✿✿✿✿✿

(Rietholzbach
✿✿

at
✿✿✿✿✿✿✿✿

Mosnang)
✿✿✿

to

✿✿✿

392
✿✿✿✿

km2
✿✿✿✿✿✿

(Broye
✿✿

at
✿✿✿✿✿✿✿✿

Payerne).
✿✿✿✿

The
✿✿✿✿✿

mean
✿✿✿✿✿✿✿

altitudes
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

watersheds
✿✿✿

are
✿✿✿✿

also
✿✿✿✿✿✿✿✿

spanning
✿

a
✿✿✿✿✿

wide
✿✿✿✿✿

range

✿✿

of
✿✿✿✿✿✿

values.
✿✿✿✿

Few
✿✿✿✿✿✿✿✿✿

catchments
✿✿✿

are
✿✿✿✿✿✿✿

partially
✿✿✿✿✿✿✿

covered
✿✿

by
✿✿

a
✿✿✿✿✿✿

glacier,
✿✿✿✿

with
✿✿✿✿

only
✿✿✿✿

two
✿✿

of
✿✿✿✿

them
✿✿✿✿✿✿

having
✿✿

a
✿✿✿✿✿✿

glacier

✿✿✿✿

cover
✿✿✿✿✿✿✿

fraction
✿✿✿✿

over
✿✿✿✿✿

10%.335

2.2
✿✿✿✿✿✿

Stream
✿✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿

data

✿✿✿

The
✿

stream temperature data set in Sect. 2. Results are detailed in
✿✿✿✿✿

which
✿✿✿

are
✿✿✿✿

used
✿✿

in
✿✿✿

the
✿✿✿✿✿✿

present
✿✿✿✿✿

study

✿✿✿

was
✿✿✿✿✿✿✿✿

provided
✿✿

by
✿✿✿

the
✿✿✿✿✿✿

Swiss
✿✿✿✿✿✿

Federal
✿✿✿✿✿✿

Office
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

Environment
✿✿✿✿✿✿✿

(FOEN).
✿✿✿✿✿✿✿✿✿✿

Advantage
✿

is
✿✿✿✿✿

taken
✿✿✿

of
✿✿✿

the

✿✿✿✿✿✿

present
✿✿✿✿✿✿✿✿✿

publication
✿✿

to
✿✿✿✿✿✿✿✿

describe
✿✿✿

this
✿✿✿✿

new
✿✿✿✿

data
✿✿✿

set,
✿✿✿✿✿

which
✿✿

is
✿✿✿✿✿

freely
✿✿✿✿✿✿✿✿✿

accessible
✿✿✿

for
✿✿✿✿✿✿✿

research
✿✿✿✿✿✿✿✿

purposes
✿✿

at

✿✿

the
✿✿✿✿✿✿✿✿✿

following
✿✿✿✿✿✿✿

address:
✿

http://www.bafu.admin.ch/hydrologie/01832/01856/index.html?lang=en.
✿✿✿

A340

✿✿✿

map
✿✿✿✿✿✿✿✿✿

displaying
✿✿✿

the
✿✿✿✿✿✿✿

position
✿✿

of
✿✿✿

all
✿✿✿✿✿✿✿

available
✿✿✿✿✿✿✿✿✿✿✿

hydrological
✿✿✿✿✿✿

stations
✿✿✿✿✿✿

which
✿✿✿✿✿✿✿

measure
✿✿✿✿✿✿

stream
✿✿✿✿✿✿✿✿✿✿

temperature

10



✿✿✿

can
✿✿✿✿

also
✿✿

be
✿✿✿✿✿✿

found
✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿

website
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿

FOEN
✿

(
✿

http://www.hydrodaten.admin.ch/en/index.html#

temperatur_fliessgewaesser
✿

).
✿

✿✿✿

The
✿✿✿✿✿✿

FOEN
✿✿

is
✿✿✿✿✿✿✿✿

operating
✿✿

an
✿✿✿✿✿✿✿✿

automatic
✿✿✿✿✿✿✿

network
✿✿

of
✿✿✿✿✿✿

stream
✿✿✿✿✿✿✿

gauging
✿✿✿✿✿✿✿

stations,
✿✿✿✿✿✿✿✿✿✿✿

continuously
✿✿✿✿✿✿✿✿✿

measuring

✿✿✿✿

water
✿✿✿✿✿

level
✿✿✿

and
✿✿✿✿✿✿✿✿✿

discharge
✿✿

at
✿✿✿✿

more
✿✿✿✿

than
✿✿✿✿

180
✿✿✿✿✿✿✿✿

locations
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿

Switzerland.
✿✿✿✿✿

Water
✿✿✿✿

level
✿✿

is
✿✿✿✿✿✿✿✿

recorded
✿✿✿✿✿

using345

✿✿

an
✿✿✿✿✿✿✿✿

ultrasonic
✿✿✿✿✿✿✿✿

distance
✿✿✿✿✿✿

sensor,
✿✿✿

and
✿✿✿✿✿✿✿✿✿

converted
✿✿✿✿

into
✿✿✿✿✿✿✿✿

discharge
✿✿✿✿✿✿

values
✿✿✿✿✿✿✿

through
✿

a
✿✿✿✿✿✿

rating
✿✿✿✿✿

curve
✿✿✿✿✿✿✿

adapted

✿✿✿✿

each
✿✿✿✿

year.
✿✿✿✿

The
✿✿✿✿✿

water
✿✿✿✿

level
✿✿✿✿✿

values
✿✿✿

are
✿✿✿✿✿✿✿✿

validated
✿✿✿✿✿✿

against
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

measurements
✿✿

of
✿✿

a
✿✿✿✿✿✿

second
✿✿✿✿✿✿✿✿✿✿✿✿

instrument—a

✿✿✿✿✿✿✿

pressure
✿✿✿✿✿✿✿✿✿✿

probe—and
✿✿✿✿✿✿✿

rejected
✿✿

in
✿✿✿✿

case
✿✿✿

the
✿✿✿✿✿✿✿✿

difference
✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿

two
✿✿✿✿✿✿

values
✿✿

is
✿✿✿✿✿✿

greater
✿✿✿✿

than
✿

2
✿✿✿✿

cm.
✿✿

A

✿✿✿✿✿✿

limited
✿✿✿✿✿✿

number
✿✿✿

of
✿✿✿✿✿✿✿

gauging
✿✿✿✿✿✿✿

stations
✿✿✿

has
✿✿✿✿

been
✿✿✿✿✿✿✿✿

equipped
✿✿✿✿

with
✿✿

a
✿✿✿✿✿✿✿✿✿✿✿

thermometer,
✿✿✿

the
✿✿✿✿✿✿✿

earliest
✿✿✿✿✿✿

starting
✿✿✿

in

✿✿✿✿✿

1968.
✿✿✿✿

This
✿✿✿✿✿✿

number
✿✿✿

has
✿✿✿✿✿✿✿✿✿

increased
✿✿✿✿✿✿

greatly
✿✿✿✿

since
✿✿✿✿✿

2002,
✿✿✿✿

with
✿✿✿✿

now
✿✿✿✿✿

more
✿✿✿✿

than
✿✿✿

70
✿✿✿✿✿✿

stations
✿✿✿✿✿✿✿✿✿✿✿✿

automatically350

✿✿✿✿✿✿

probing
✿✿✿✿✿

water
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿

every
✿✿

10
✿✿✿✿✿✿✿

minutes
✿✿✿✿✿✿✿✿✿✿✿✿

(Jakob, 2010).
✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿

measurement
✿✿✿✿✿✿

values
✿✿

are
✿✿✿✿✿✿✿✿✿✿✿✿

automatically

✿✿✿✿✿✿✿

uploaded
✿✿✿✿

and
✿✿✿✿✿✿✿✿

displayed
✿✿✿

in
✿✿✿✿

real
✿✿✿✿

time
✿✿✿

on
✿✿✿

the
✿✿✿✿

web
✿✿✿✿✿

page
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

FOEN
✿✿✿✿✿✿

(same
✿✿✿✿✿

page
✿✿

as
✿✿✿

for
✿✿✿

the
✿✿✿✿✿

map

✿✿✿✿✿✿✿✿

displaying
✿✿✿

the
✿✿✿✿✿✿✿✿

positions
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

stations).

✿✿✿✿✿✿

Among
✿✿✿

the
✿✿✿✿✿✿✿✿✿

watersheds
✿✿

in
✿✿✿✿✿✿

which
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿

is
✿✿✿✿✿✿✿✿✿

monitored,
✿✿✿

25
✿✿✿✿

have
✿✿✿✿

been
✿✿✿✿✿✿✿✿

identified
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

present

✿✿✿✿

study
✿✿✿

as
✿✿✿✿✿

being
✿✿✿✿

little
✿✿✿✿✿✿✿✿

affected
✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿

anthropogenic
✿✿✿✿✿✿✿✿

activities.
✿✿✿

In
✿✿✿✿✿

order
✿✿

to
✿✿✿✿✿✿✿✿

complete
✿✿✿✿

this
✿✿✿✿

data
✿✿✿

set,
✿✿✿✿

the355

✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿

and
✿✿✿✿✿✿✿✿✿

discharge
✿✿✿✿✿✿✿✿✿✿✿✿

measurements
✿✿

of
✿✿✿✿

four
✿✿✿✿✿✿✿✿✿

additional
✿✿✿✿✿✿✿

gauging
✿✿✿✿✿✿✿

stations
✿✿✿✿

were
✿✿✿✿✿✿✿✿

obtained
✿✿✿✿✿

from

✿✿

the
✿✿✿✿✿✿✿✿✿✿

Department
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿✿✿

Construction,
✿✿✿✿✿✿✿✿

Transport
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

Environment
✿✿✿

of
✿✿✿✿✿✿

Canton
✿✿✿✿✿✿

Aargau
✿✿✿✿

(see
✿✿✿✿✿

Table
✿✿✿

3).
✿✿✿✿

The

✿✿✿✿✿

period
✿✿

in
✿✿✿✿✿✿

which
✿✿✿✿

water
✿✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿

was
✿✿✿✿✿✿✿✿

measured
✿✿✿

by
✿✿✿✿

each
✿✿✿✿✿✿

station
✿✿

is
✿✿✿

also
✿✿✿✿✿✿✿✿

indicated
✿✿

in
✿✿✿✿✿

Table
✿✿

3.
✿

✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿

data
✿✿✿

are
✿✿✿✿✿✿✿

usually
✿✿✿

not
✿✿✿✿✿✿✿✿✿✿✿✿✿

quality-proofed
✿✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿

FOEN
✿✿

or
✿✿✿✿✿✿✿

Canton
✿✿✿✿✿✿✿

Aargau.
✿✿✿

As
✿✿

a

✿✿✿✿✿✿✿✿

validation
✿✿✿✿✿✿✿✿✿

procedure,
✿✿✿

we
✿✿✿✿✿✿✿✿✿

performed
✿✿✿✿

two
✿✿✿✿✿✿✿

different
✿✿✿✿

tests
✿✿✿

on
✿✿✿

the
✿✿✿✿

data
✿✿

at
✿✿✿

the
✿✿✿✿✿✿

hourly
✿✿✿✿

time
✿✿✿✿✿

step,
✿✿

on
✿✿✿✿

top360

✿✿

of
✿✿✿✿✿

visual
✿✿✿✿✿✿✿✿✿

inspection:
✿

(a)
✿✿

all
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿✿✿✿✿✿✿

measurements
✿✿✿✿✿

lower
✿✿✿✿

than
✿✿✿✿

0◦C
✿✿

or
✿✿✿✿✿✿

greater
✿✿✿✿

than
✿✿✿✿✿

30◦C
✿✿✿✿

were
✿✿✿✿✿✿✿✿

removed,
✿✿✿✿✿✿

except
✿✿✿

for

✿✿

the
✿✿✿✿✿✿

values
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿✿

−0.5◦C
✿✿✿

and
✿✿✿✿

0◦C
✿✿✿✿✿✿

which
✿✿✿✿

were
✿✿✿

set
✿✿

to
✿✿✿✿✿

0◦C,
✿✿✿

and
✿✿✿✿

the
✿✿✿✿✿

values
✿✿✿✿✿✿✿✿

between
✿✿✿✿✿

30◦C

✿✿✿

and
✿✿✿✿✿✿

30.5◦C
✿✿✿✿✿✿

which
✿✿✿✿

were
✿✿✿

set
✿✿

to
✿✿✿✿✿✿

30◦C.
✿✿✿✿✿✿✿✿

Although
✿✿✿

the
✿✿✿✿

limit
✿✿✿

of
✿✿✿✿

30◦C
✿✿✿✿✿✿

might
✿✿

be
✿✿✿✿✿✿✿✿

naturally
✿✿✿✿✿✿✿

reached

✿✿

in
✿✿✿✿✿✿

shallow
✿✿✿✿✿✿

areas,
✿✿✿✿

some
✿✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿

series
✿✿✿✿✿✿✿

showed
✿✿✿✿

clear
✿✿✿✿✿✿✿✿

evidence
✿✿✿

that
✿✿✿✿✿

such
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿

was365

✿✿✿✿✿✿✿

recorded
✿✿

as
✿✿

a
✿✿✿✿✿

result
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿

sensor
✿✿✿✿✿

being
✿✿✿

out
✿✿

of
✿✿✿✿✿✿

water.
✿✿✿

As
✿

a
✿✿✿✿✿✿✿✿✿✿✿✿

consequence,
✿✿

it
✿✿✿

was
✿✿✿✿✿✿✿

decided
✿✿✿

to

✿✿✿✿✿✿

remove
✿✿

all
✿✿✿✿

data
✿✿✿✿✿✿

points
✿✿✿✿✿

above
✿✿✿✿✿

30◦C,
✿✿✿✿✿✿✿✿✿

potentially
✿✿✿✿✿✿✿✿✿

discarding
✿✿✿✿✿✿

correct
✿✿✿✿✿

data.

(b)
✿✿

the
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿✿✿

variation
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿✿✿✿

consecutive
✿✿✿✿

time
✿✿✿✿

steps
✿✿✿

was
✿✿✿✿✿✿✿

checked
✿✿

to
✿✿✿✿✿✿

remain
✿✿✿✿✿✿

within
✿✿✿✿✿✿✿

physical

✿✿✿✿✿✿

bounds.
✿✿

In
✿✿✿✿✿✿✿✿✿

particular,
✿

it
✿✿✿✿

was
✿✿✿✿✿✿

verified
✿✿✿✿

that
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿

varied
✿✿

by
✿✿✿✿✿

more
✿✿✿✿

than
✿✿✿✿✿✿

0.01◦C
✿✿✿✿

over
✿

5
✿✿✿✿✿✿

hours,

✿✿✿

but
✿✿✿

less
✿✿✿✿

than
✿✿✿✿

3◦C
✿✿✿✿✿✿

within
✿✿✿

one
✿✿✿✿✿

hour.
✿✿✿✿✿✿✿

Constant
✿✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿

values
✿✿✿✿✿

could
✿✿✿✿✿

result
✿✿✿✿✿

from
✿

a
✿✿✿✿✿✿

defect
✿✿

in370

✿✿

the
✿✿✿✿✿✿

sensor,
✿✿✿

but
✿✿✿✿

also
✿✿✿✿

from
✿✿✿

the
✿✿✿

fact
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿

hourly
✿✿✿✿✿✿

values
✿✿✿

had
✿✿✿✿

been
✿✿✿✿✿✿✿

replaced
✿✿✿✿

with
✿✿✿✿✿

their
✿✿✿✿

daily
✿✿✿✿✿

mean

✿✿

in
✿✿✿✿

some
✿✿✿✿✿✿

cases.
✿✿

In
✿✿✿✿✿

order
✿✿

to
✿✿✿✿✿✿✿✿✿

distinguish
✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿

two,
✿✿✿

the
✿✿✿✿✿✿✿

present
✿✿✿✿✿✿

quality
✿✿✿✿✿✿

control
✿✿✿✿✿✿✿✿✿

procedure

✿✿✿

was
✿✿✿✿✿✿✿✿✿

performed
✿✿✿✿✿✿✿✿✿✿✿✿✿

semi-manually.

✿✿✿✿

After
✿✿✿✿✿✿

quality
✿✿✿✿✿✿✿

control,
✿✿✿

the
✿✿✿✿✿✿

hourly
✿✿✿

data
✿✿✿✿✿

were
✿✿✿✿✿✿✿✿✿

aggregated
✿✿✿✿

into
✿✿✿✿✿✿✿

monthly
✿✿✿✿✿

mean
✿✿✿✿✿✿

values.

2.3
✿✿✿✿✿✿✿✿✿✿✿✿

Meteorological
✿✿✿✿✿

data375
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✿✿✿

The
✿✿✿

two
✿✿✿✿✿✿✿✿

statistical
✿✿✿✿✿✿✿

models
✿✿✿✿✿✿✿✿

described
✿✿

in Sect. 4 and discussed
✿

3
✿✿✿

use
✿✿✿✿✿✿✿

monthly
✿✿✿✿✿

mean
✿✿

air
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿

and

✿✿✿✿✿✿✿✿

incoming
✿✿✿✿

solar
✿✿✿✿✿✿✿

radiation
✿✿

as
✿✿✿✿✿✿✿✿

predictor
✿✿✿✿✿✿✿✿

variables.
✿✿✿✿

Data
✿✿✿

for
✿✿✿✿

these
✿✿✿✿✿✿✿✿

variables
✿✿✿✿

were
✿✿✿✿✿✿✿✿

obtained
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿

Swiss

✿✿✿✿✿✿✿✿✿✿✿✿

Meteorological
✿✿✿✿✿✿

Office
✿✿✿✿✿✿✿✿✿✿✿✿

(MeteoSwiss),
✿✿✿✿✿

which
✿✿✿✿✿✿✿✿

provides
✿✿✿

free
✿✿✿✿✿✿

access
✿✿

to
✿✿✿✿

them
✿✿✿

for
✿✿✿✿✿✿✿

research
✿✿✿✿✿✿✿✿

purposes.
✿✿✿✿

For

✿✿✿✿

each
✿✿✿

one
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

selected
✿✿✿✿✿✿✿✿✿

catchments
✿✿✿✿✿✿✿✿✿

described in Sect. 5, followed by the conclusion.
✿✿✿

2.1,
✿✿✿

the
✿✿✿

air

✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿

and
✿✿✿✿✿✿✿✿

incoming
✿✿✿✿

solar
✿✿✿✿✿✿✿✿

radiation
✿✿✿✿✿

values
✿✿✿✿✿✿✿✿✿

measured
✿✿

by
✿✿

all
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

meteorological
✿✿✿✿✿✿

stations
✿✿✿✿✿✿✿

located380

✿

at
✿✿✿✿

less
✿✿✿✿

than
✿✿✿

20
✿✿✿

km
✿✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿✿

catchment
✿✿✿✿✿✿

outlet
✿✿✿✿

were
✿✿✿✿✿✿✿✿✿

collected.
✿✿

In
✿✿✿✿

case
✿✿✿✿

less
✿✿✿✿

than
✿

3
✿✿✿✿✿✿✿

stations
✿✿✿✿✿

could
✿✿✿

be

✿✿✿✿✿

found
✿✿✿✿✿✿

within
✿

a
✿✿✿

20
✿✿✿

km
✿✿✿✿✿✿

radius,
✿✿✿✿

data
✿✿✿✿✿

from
✿✿✿

the
✿✿

3
✿✿✿✿✿✿

closest
✿✿✿✿✿✿✿✿✿✿✿✿✿

meteorological
✿✿✿✿✿✿✿

stations
✿✿✿✿

were
✿✿✿✿✿✿✿✿

retained.
✿✿✿✿

The

✿✿✿✿

value
✿✿✿

of
✿✿

20
✿✿✿

km
✿✿✿✿

was
✿✿✿✿✿✿

chosen
✿✿✿

so
✿✿

as
✿✿

to
✿✿✿✿✿✿

ensure
✿✿✿

that
✿✿✿✿

data
✿✿✿✿✿✿✿✿✿✿✿✿

interpolations
✿✿✿✿✿✿

would
✿✿✿✿✿✿

remain
✿✿✿✿✿✿✿✿✿✿✿

representative
✿✿✿

of

✿✿

the
✿✿✿✿✿✿✿

climatic
✿✿✿✿✿✿✿✿✿

conditions
✿✿

at
✿✿✿

the
✿✿✿✿✿✿✿✿✿

catchment
✿✿✿✿✿✿

outlet,
✿✿✿✿✿

while
✿✿✿✿✿

being
✿✿✿✿✿

based
✿✿✿

on
✿

3
✿✿✿✿✿✿✿

stations
✿✿

at
✿✿✿✿✿

least.
✿✿

In
✿✿✿✿

fact,
✿✿✿

27

✿✿

of
✿✿✿

the
✿✿

29
✿✿✿✿✿✿✿✿

selected
✿✿✿✿✿✿✿✿✿

catchments
✿✿✿

are
✿✿✿✿✿✿✿

entirely
✿✿✿✿✿✿✿✿✿

contained
✿✿✿✿✿

within
✿✿✿✿

the
✿✿✿✿

disk
✿✿

of
✿✿✿✿✿✿

radius
✿✿

20
✿✿✿✿

km
✿✿✿✿✿✿✿

centered
✿✿✿

on385

✿✿✿✿

their
✿✿✿✿✿✿✿✿

respective
✿✿✿✿✿

outlet
✿✿✿✿✿

point
✿✿✿✿

(not
✿✿✿✿✿✿✿

shown).
✿✿

As
✿✿✿✿✿

such,
✿✿✿

the
✿✿✿✿✿✿✿✿

collected
✿✿✿✿✿✿✿✿✿✿✿✿

meteorological
✿✿✿✿

data
✿✿✿

can
✿✿✿✿✿✿✿

actually
✿✿✿

be

✿✿✿✿✿✿✿✿✿

considered
✿✿

as
✿✿✿✿✿✿✿✿✿✿✿

representative
✿✿✿

for
✿✿✿

the
✿✿✿✿✿

entire
✿✿✿✿✿✿✿✿✿✿

catchments,
✿✿✿✿

and
✿✿✿

not
✿✿✿

just
✿✿✿

for
✿✿✿✿

their
✿✿✿✿✿

outlet
✿✿✿✿✿

point.
✿

✿✿✿

We
✿✿✿✿

were
✿✿✿✿✿✿✿

provided
✿✿✿✿

with
✿✿✿✿✿✿

hourly
✿✿✿✿✿

mean
✿✿✿✿

data,
✿✿✿✿✿

which
✿✿✿

we
✿✿✿✿✿✿✿✿✿

aggregated
✿✿✿✿

into
✿✿✿✿✿✿✿

monthly
✿✿✿✿✿

mean
✿✿✿✿✿✿

values.
✿✿✿

We
✿✿✿

did

✿✿✿

not
✿✿✿✿✿✿✿

perform
✿✿✿

any
✿✿✿✿✿✿

quality
✿✿✿✿✿✿

checks
✿✿✿

on
✿✿✿

the
✿✿✿✿

data,
✿✿✿✿✿

since
✿✿✿✿✿✿✿✿✿✿

MeteoSwiss
✿✿✿✿✿✿

already
✿✿✿✿✿✿✿

follows
✿✿✿✿

strict
✿✿✿✿✿✿

quality
✿✿✿✿✿✿✿

control

✿✿✿✿✿✿✿✿✿

procedures
✿✿✿

(see
✿

http://www.meteosuisse.admin.ch/home/systemes-de-mesure-et-de-prevision/gestion-des-donnees/390

preparation-des-donnees.html
✿

;
✿✿✿

web
✿✿✿✿✿

page
✿✿✿✿

only
✿✿✿✿✿✿✿

available
✿✿

in
✿✿✿✿✿✿✿✿

German,
✿✿✿✿✿✿

French
✿✿

or
✿✿✿✿✿✿✿

Italian).

✿✿✿✿✿✿

Among
✿✿✿

its
✿✿✿✿✿✿✿

network
✿✿✿

of
✿✿✿✿✿✿✿

operated
✿✿✿✿✿✿✿✿✿✿✿✿✿

meteorological
✿✿✿✿✿✿✿✿

stations,
✿✿✿✿✿✿✿✿✿✿

MeteoSwiss
✿✿✿✿✿✿✿✿

selected
✿

a
✿✿✿✿✿✿

subset
✿✿✿

of
✿✿✿
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✿✿✿✿✿✿

stations
✿✿✿✿✿

which
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿

considered
✿✿

to
✿✿

be
✿✿✿✿✿✿✿✿✿✿✿✿

representative
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

climate
✿✿✿✿✿✿✿✿

diversity
✿✿

in
✿✿✿✿✿✿✿✿✿✿

Switzerland
✿✿✿

(see
✿

http://

www.meteosuisse.admin.ch/web/fr/climat/climat_aujourdhui/donnees_mensuelles_homogeneisees.html
✿

;

✿✿✿✿✿✿✿✿✿

description
✿✿✿✿

only
✿✿✿✿✿✿✿✿

available
✿✿

in
✿✿✿✿✿✿✿✿

German,
✿✿✿✿✿✿

French
✿✿

or
✿✿✿✿✿✿✿

Italian).
✿✿✿✿✿✿

These
✿✿✿✿✿✿✿

stations,
✿✿✿✿✿✿✿

referred
✿✿

to
✿✿✿

as
✿✿✿✿✿✿✿✿✿

“reference395

✿✿✿✿✿✿✿

stations”
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿

following,
✿✿✿

are
✿✿✿✿

used
✿✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿

statistical
✿✿✿✿✿✿

model
✿✿

to
✿✿✿✿✿✿✿

estimate
✿✿✿

the
✿✿✿✿✿✿✿✿

monthly
✿✿✿✿✿

mean

✿✿

air
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿

over
✿✿✿

the
✿✿✿✿✿

entire
✿✿✿✿✿

Swiss
✿✿✿✿✿✿✿

territory
✿✿✿✿

(see
✿✿✿✿✿

Sect.
✿✿✿✿

3.2).

2.4
✿✿✿✿✿✿✿

Thermal
✿✿✿✿✿✿

regime
✿✿✿✿✿✿✿✿✿✿✿✿

classification

✿

A
✿✿✿✿✿✿✿✿✿✿

preliminary
✿✿✿✿✿

study
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

selected
✿✿✿✿✿✿✿✿✿

catchments
✿✿✿✿

was
✿✿✿✿✿✿✿✿✿

performed,
✿✿✿✿

with
✿✿✿

the
✿✿✿✿

aim
✿✿

of
✿✿✿✿✿✿✿✿✿

classifying
✿✿✿

the
✿✿✿✿✿

rivers

✿✿✿✿✿✿✿✿

according
✿✿

to
✿✿✿✿✿

their
✿✿✿✿✿✿

thermal
✿✿✿✿✿✿✿✿✿

behavior.
✿✿✿✿

This
✿✿✿✿✿✿✿✿✿✿✿

classification
✿✿✿✿

was
✿✿✿✿✿✿✿

intended
✿✿✿

to
✿✿

be
✿✿✿✿✿

used
✿✿✿✿

later
✿✿

in
✿✿✿✿✿

order
✿✿✿

to400

✿✿✿✿✿✿✿✿✿

investigate
✿✿✿✿✿✿

whether
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

performance
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

models
✿✿✿✿

was
✿✿✿✿✿✿✿

affected
✿✿

by
✿✿✿

the
✿✿✿✿✿

river
✿✿✿✿✿✿

thermal
✿✿✿✿✿✿✿

regime.

✿✿

As
✿✿

a
✿✿✿✿

first
✿✿✿✿✿✿✿

attempt,
✿✿✿

we
✿✿✿✿✿✿✿✿

examined
✿✿✿✿✿✿✿

whether
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

catchments
✿✿✿✿✿

could
✿✿

be
✿✿✿✿✿✿✿✿✿

classified
✿✿✿✿✿

based
✿✿

on
✿✿✿

the
✿✿✿✿✿✿

shape

✿✿

of
✿✿✿✿

their
✿✿✿✿✿✿

stream
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿

curve.
✿✿✿

To
✿✿✿

this
✿✿✿✿

end,
✿✿✿

we
✿✿✿✿✿✿✿✿

z-scored
✿✿✿✿

(i.e.
✿✿✿✿✿✿✿✿✿✿✿

standardized)
✿✿✿

the
✿✿✿✿✿✿✿✿

monthly
✿✿✿✿✿

mean

✿✿✿✿✿

stream
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿

values
✿✿

in
✿✿✿✿

each
✿✿✿✿✿✿✿✿✿

watershed
✿✿✿✿✿✿✿

similarly
✿✿

to
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Garner et al. (2014).
✿✿✿✿✿✿✿✿

However,
✿✿

as
✿✿✿✿✿✿✿✿

observed

✿✿

by
✿✿✿✿✿

these
✿✿✿✿✿✿✿

authors,
✿✿✿

we
✿✿✿✿✿

could
✿✿✿✿✿✿

identify
✿✿✿✿

only
✿✿✿✿

one
✿✿✿✿✿

single
✿✿✿✿✿✿✿

thermal
✿✿✿✿✿✿

regime
✿✿✿✿

(Fig.
✿✿✿✿

2a).
✿✿✿✿✿

Only
✿✿✿

two
✿✿✿✿✿✿✿✿✿✿

catchments405

✿✿✿✿✿

among
✿✿✿✿

the
✿✿

29
✿✿✿

did
✿✿✿

not
✿✿✿

to
✿✿✿✿✿✿

present
✿✿✿

the
✿✿✿✿✿

same
✿✿✿✿✿✿✿

thermal
✿✿✿✿✿✿

regime
✿✿

as
✿✿✿

the
✿✿✿✿✿✿

others,
✿✿✿✿✿✿✿

namely
✿✿✿✿

those
✿✿✿✿✿✿✿

labeled
✿✿

as
✿✿

5

✿✿✿

and
✿✿

14
✿✿

in
✿✿✿✿✿

Table
✿✿

3.
✿

✿✿

As
✿✿✿

an
✿✿✿✿✿✿✿✿✿

alternative
✿✿✿✿✿✿✿✿

approach,
✿✿✿

we
✿✿✿✿✿✿

tested
✿✿✿✿✿✿✿

whether
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

characteristics
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

stream–air
✿✿✿✿✿✿✿✿✿✿✿

temperature

✿✿✿✿

curve
✿✿✿✿✿

could
✿✿✿

be
✿✿✿✿

used
✿✿

to
✿✿✿✿✿✿✿✿✿✿

characterize
✿✿✿

the
✿✿✿✿✿✿✿

thermal
✿✿✿✿✿✿

regime
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

catchments.
✿✿✿

For
✿✿✿

this
✿✿✿✿✿✿✿✿

purpose,
✿✿✿✿✿✿✿

monthly

✿✿✿✿

mean
✿✿✿✿✿✿

stream
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿

was
✿✿✿✿✿✿✿

linearly
✿✿✿✿✿✿✿✿

regressed
✿✿✿✿✿✿

against
✿✿✿✿✿✿✿✿

monthly
✿✿✿✿✿

mean
✿✿

air
✿✿✿✿✿✿✿✿✿✿✿

temperature,
✿✿✿✿✿✿✿✿✿

excluding410

✿✿

the
✿✿✿✿✿✿

points
✿✿✿✿

with
✿✿✿✿✿✿✿✿

negative
✿✿

air
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿

values
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g. Kelleher et al., 2012).
✿✿✿✿✿✿

Based
✿✿✿

on
✿✿✿

the
✿✿✿✿✿

values
✿✿✿

of

12



✿✿

the
✿✿✿✿✿

slope
✿✿✿✿

and
✿✿✿✿✿✿✿✿

intercept
✿✿

of
✿✿✿

this
✿✿✿✿✿✿✿✿✿✿✿

relationship,
✿✿✿✿✿

three
✿✿✿✿✿✿

groups
✿✿

of
✿✿✿✿✿✿✿✿✿✿

catchments
✿✿✿✿✿

could
✿✿

be
✿✿✿✿✿✿

clearly
✿✿✿✿✿✿✿✿✿

identified

✿✿✿✿

(Fig.
✿✿✿

2b).
✿✿✿✿

The
✿✿✿

first
✿✿✿✿✿

group
✿✿✿✿✿✿✿

contains
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

watersheds
✿

in
✿✿✿✿✿✿

which
✿

a
✿✿✿✿✿✿✿✿✿

significant
✿✿✿✿✿✿

portion
✿✿

of
✿✿✿✿✿✿✿✿

discharge
✿✿✿✿✿✿✿✿

originates

✿✿✿✿

from
✿✿✿✿

deep
✿✿✿✿✿✿

aquifer
✿✿✿✿✿✿✿✿✿

infiltration
✿✿✿✿✿✿✿✿✿✿

(watersheds
✿✿

9
✿✿✿

and
✿✿

14
✿✿

in
✿✿✿✿✿

Table
✿✿

3,
✿✿✿✿✿✿

labeled
✿✿✿

as
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

“groundwater-fed
✿✿✿✿✿✿✿✿

streams”

✿✿

in
✿✿✿

Fig.
✿✿✿✿

2b).
✿✿✿✿

This
✿✿✿✿✿

group
✿✿

is
✿✿✿✿✿✿✿✿✿✿✿

characterized
✿✿✿

by
✿✿✿

low
✿✿✿✿✿

slope
✿✿✿

and
✿✿✿✿

high
✿✿✿✿✿✿✿✿

intercept
✿✿✿✿✿✿

values,
✿✿

as
✿✿✿✿✿✿✿

reported
✿✿✿

by
✿✿✿✿✿

many415

✿✿✿✿✿✿

studies
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g. Caissie, 2006; Webb et al., 2008).
✿✿✿✿

The
✿✿✿✿✿✿

second
✿✿✿✿✿

group
✿✿✿

of
✿✿✿✿✿✿✿✿✿

watersheds
✿✿✿✿✿✿✿✿✿✿

corresponds
✿✿✿

to
✿✿✿

the

✿✿✿✿✿✿✿✿✿✿

high-altitude
✿✿✿✿✿✿

basins
✿✿✿✿

with
✿✿✿✿

more
✿✿✿✿

than
✿✿✿✿

50%
✿✿✿✿✿✿

glacier
✿✿✿✿✿

cover.
✿✿✿✿✿

Both
✿✿

the
✿✿✿✿✿

slope
✿✿✿

and
✿✿✿✿✿✿✿✿

intercept
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

stream–air

✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿✿✿✿

relationship
✿✿✿

are
✿✿✿✿✿

small
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿

members
✿✿

of
✿✿✿✿

this
✿✿✿✿✿

group,
✿✿✿✿✿✿

which
✿

is
✿✿✿✿✿✿✿

actually
✿✿✿✿✿✿✿✿✿

composed
✿✿

of
✿✿✿✿

only

✿✿✿

one
✿✿✿✿✿✿✿✿✿

catchment
✿✿✿✿✿✿✿✿✿

(watershed
✿

5
✿✿

in
✿✿✿✿✿

Table
✿✿

3,
✿✿✿✿✿✿✿

denoted
✿✿

as
✿✿✿✿✿✿✿✿✿✿✿

“proglacial”
✿✿

in
✿✿✿

Fig.
✿✿✿✿

2b).
✿✿✿✿

The
✿✿✿

vast
✿✿✿✿✿✿✿✿

majority
✿✿

of
✿✿✿

the

✿✿✿✿✿✿✿✿✿

watersheds
✿✿✿

do
✿✿✿

not
✿✿✿

fall
✿✿✿✿

into
✿✿✿✿

any
✿✿

of
✿✿✿

the
✿✿✿✿

two
✿✿✿✿✿✿✿✿✿✿✿✿✿

aforementioned
✿✿✿✿✿✿✿

groups.
✿✿✿✿✿

These
✿✿✿✿✿✿✿✿✿✿

catchments,
✿✿✿✿✿✿✿

denoted
✿✿✿

as420

✿✿✿✿✿✿✿✿✿

“thermally
✿✿✿✿✿✿✿✿✿✿✿✿✿

climate-driven”,
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿✿

characterized
✿✿✿

by
✿✿✿✿✿✿✿✿

relatively
✿✿✿✿

low
✿✿✿✿✿✿✿

intercept
✿✿✿✿

and
✿✿✿✿

high
✿✿✿✿✿

slope
✿✿✿✿✿✿

values,
✿✿✿

i.e.

✿✿✿✿

their
✿✿✿✿✿

stream
✿✿✿✿✿✿✿✿✿✿✿

temperature
✿

is
✿✿✿✿✿✿✿

strongly
✿✿✿✿✿✿✿✿✿

correlated
✿✿

to
✿✿✿

air
✿✿✿✿✿✿✿✿✿✿

temperature.
✿

✿✿✿✿✿✿✿

Because
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

predominance
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

“thermally
✿✿✿✿✿✿✿✿✿✿✿✿✿

climate-driven”
✿✿✿✿✿✿✿

streams,
✿✿✿✿

only
✿✿✿✿

the
✿✿✿✿

latter
✿✿✿✿

will
✿✿✿

be

✿✿✿✿✿✿✿✿✿

considered
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿

testing
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

physics-inspired
✿✿✿

and
✿✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿✿

regression
✿✿✿✿✿✿✿

models.
✿✿✿✿

The
✿✿✿✿✿✿✿✿

inclusion

✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

groundwater-dominated
✿✿✿✿✿✿✿

streams
✿✿

in
✿✿✿

the
✿✿✿✿

test
✿✿✿

set
✿✿✿✿✿✿

would
✿✿✿✿✿✿

require
✿✿✿✿

the
✿✿✿✿✿✿

amount
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

groundwater425

✿✿✿✿✿✿✿✿✿

discharging
✿✿✿✿

into
✿✿✿

the
✿✿✿✿✿✿

stream
✿✿

to
✿✿✿

be
✿✿✿✿✿✿✿✿

estimated.
✿✿✿

We
✿✿✿✿✿✿

tested
✿✿✿✿✿✿

several
✿✿✿✿✿✿✿✿

methods,
✿✿✿✿✿✿✿✿

including
✿✿✿

the
✿✿✿✿✿✿✿✿

derivation
✿✿✿

of

✿✿

the
✿✿✿✿✿✿✿✿

baseflow
✿✿✿✿✿

index
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿

discharge
✿✿✿✿✿✿✿✿✿✿✿✿

measurements
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g. Eckhardt, 2005; van Dijk, 2010) or
✿✿✿✿✿

from
✿✿✿

the

✿✿✿✿✿✿✿✿✿✿✿

TOPMODEL
✿✿✿✿✿✿✿✿✿✿

topographic
✿✿✿✿✿

index
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g. Ducharne, 2009).
✿✿✿✿✿✿✿✿

However,
✿✿✿✿

none
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

investigated
✿✿✿✿✿✿✿✿✿

techniques

✿✿✿✿✿✿✿✿

succeeded
✿✿

in
✿✿✿✿✿✿✿✿✿

predicting
✿

a
✿✿✿✿✿✿

larger
✿✿✿✿✿✿✿

baseflow
✿✿✿✿✿

index
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿

catchments
✿✿✿✿✿✿✿

labeled
✿✿

as
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

“groundwater-fed”
✿✿✿

as

✿✿✿✿✿✿✿✿

compared
✿✿

to
✿✿✿

the
✿✿✿✿✿✿

others
✿✿✿✿

(not
✿✿✿✿✿✿✿

shown).
✿✿✿✿✿✿✿✿

Similarly,
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

consideration
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

proglacial
✿✿✿✿✿✿✿

streams
✿✿✿✿✿✿

would430

✿✿✿✿✿

imply
✿✿✿

the
✿✿✿✿✿✿

glacier
✿✿✿✿✿

cover
✿✿✿✿✿✿✿

fraction
✿✿

to
✿✿✿

be
✿✿✿✿✿✿✿✿

included
✿✿✿✿

into
✿✿✿

the
✿✿✿✿✿✿✿

models.
✿✿✿✿

This
✿✿✿✿✿✿✿

addition
✿✿✿

of
✿✿✿

one
✿✿✿✿✿✿✿✿✿✿

calibration

✿✿✿✿✿✿✿✿

parameter
✿✿✿✿

was
✿✿✿

not
✿✿✿✿✿✿✿✿✿

considered
✿✿✿✿✿✿✿

justified
✿✿✿✿✿

given
✿✿✿✿

that
✿✿✿

this
✿✿✿✿✿

group
✿✿✿✿✿✿✿✿

contains
✿✿✿✿

only
✿✿✿

one
✿✿✿✿✿✿✿✿✿✿

catchment.
✿✿

In
✿✿✿✿✿

total,

✿✿

26
✿✿✿✿✿✿✿✿✿✿

catchments
✿✿✿✿

were
✿✿✿✿

used
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿

calibration
✿✿✿✿

and
✿✿✿✿✿✿✿✿

validation
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

models,
✿✿✿✿✿✿

namely
✿✿✿

all
✿✿✿✿✿

those
✿✿✿✿✿

listed
✿✿

in

✿✿✿✿

Table
✿✿

3
✿✿✿✿✿✿

except
✿✿✿✿✿✿✿✿✿

watersheds
✿✿

5,
✿

9
✿✿✿✿

and
✿✿✿

14.

3 Formulations of the stream temperature models435

The new analytical expression
✿✿✿✿✿✿✿✿✿✿✿✿✿

physics-inspired
✿✿✿✿✿✿✿✿

statistical
✿✿✿✿✿✿

model for stream temperature prediction is

derived in the following subsection. The
✿✿✿✿✿✿

standard
✿

statistical model used for comparison is presented

in Sect. 3.2.

3.1 Physically-based stream temperature
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Physics-inspired
✿✿✿✿✿✿✿✿

statistical
✿

model

As mentioned above, the physically-based
✿✿✿✿✿✿✿✿✿✿✿✿✿

physics-inspired stream temperature model presented in440

this paper is based on the analytical solution to the stream energy-balance equation. This topic has

been investigated extensively in the literature (e.g. Edinger et al., 1968; Theurer et al., 1984; Gosink,

1986; Polehn and Kinsel, 2000; Toffolon et al., 2010), although used only once for stream temper-

ature prediction in ungauged basins (Bogan et al., 2003). In order to analytically solve the energy-

balance equation, all studies relied on the linearization of the heat flux σ
✿✿

φa at the air–water interface445
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as a function of stream temperature T : σ =−k(T −Te)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

φa =−k(T −Te). Some of them assumed

the heat transfer coefficient k to be constant and used prescribed functions of time, space or both to

express the equilibrium temperature Te (e.g. Gosink, 1986; Polehn and Kinsel, 1997; Daly, 2005).

Other studies derived analytical formulations for k and Te based on the physical expressions of the

heat fluxes occurring at the stream–air interface (e.g. Edinger et al., 1968; Bogan et al., 2003; Caissie450

et al., 2005; Bustillo et al., 2014). While a minority of authors considered the temperature distribu-

tion to be spatially homogeneous (Edinger et al., 1968; Caissie et al., 2005; Bustillo et al., 2014),

most of them assumed the stream to be in a steady-state or, equivalently, the stream celerity to be

constant. In addition, they all imposed the river width to remain constant along the stream so as to

analytically solve the energy-balance equation. Very few studies accounted for the heat exchange455

with the stream bed or the heat advected by lateral inflow of water (Bogan et al., 2004; Herb and

Stefan, 2011). Bogan et al. (2003) were the only authors to evaluate their analytical expression over

ungauged basins. They tested their model in the Central and Eastern United States, since this region

has a topography flat enough for a meteorological station located even at more than 100 km from

a given point to be still representative of the climate at that point. Their work is therefore hardly460

transferable to Switzerland, where the mountainous landscape prevents the proper interpolation of

variables such as air humidity or wind speed, which are required as input by the model.

3.1.1 Derivation of the analytical solution to the energy-balance equation

Assuming a well-mixed water column and a negligible longitudinal heat dispersion, the mass and

energy-balance equations along a stream reach read (adapted from Westhoff et al., 2007):465

∂A

∂t
+
∂Q

∂x
= qℓ, (1)

∂(AT )

∂t
+
∂(QT )

∂x
=
wφa+ pφb

ρcp
+ qℓTℓ−Q

g

cp

∂z

∂x
, (2)

where w [m], p [m], A [m2], Q [m3 s−1] and T [◦C] denote the width, wetted perimeter, cross-

sectional area, discharge and temperature of the stream, respectively; t [s] refers to time, x [m] to

the downstream distance, z [m] to altitude, and g [ms−2] to the gravitational acceleration. The water470

mass density ρ [kgm−3] and the specific heat capacity of water cp [J
◦C−1 kg−1] are both assumed

constant. The quantities φa [Wm−2] and φb [Wm−2] refer to the energy fluxes at the stream–air

and stream–bed interfaces, respectively. The lateral heat fluxes due to the inflow of surface, fast

subsurface and slow subsurface runoffs into the stream are merged into a single term, qℓTℓ, where

qℓ [m
2 s−1] denotes the sum of these three runoffs per unit stream length and Tℓ [

◦C] stands for their475

mean temperature. The last term on the right-hand side of Eq. (2) corresponds to friction, which

is usually neglected in stream temperature models (e.g. Sinokrot and Stefan, 1993; Westhoff et al.,

2007), but has been shown by Hannah et al. (2004) and Leach and Moore (2014) to be an important

term in the energy-balance of small streams during winter.
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The present study builds mainly upon the work of Theurer et al. (1984), which is one of those480

considering the less restrictive approximations for the derivation of the solution to Eqs. (1)–(2). Our

own assumptions are the following:

(i) At the time scale of the month, the stream temperature is assumed to be in a steady-state.

(ii) The energy flux at the stream–air interface is expressed as

φa = φr+ k (Ta−T ), (3)485

where φr [Wm−2] denotes the net radiative heat flux, incorporating both the shortwave and

longwave components. The second term on the right-hand side accounts for both the latent

and sensible heat fluxes (e.g. Polehn and Kinsel, 1997; Toffolon et al., 2010), where the bulk

heat transfer coefficient k [Wm−2 ◦C−1] between water and air is assumed to be constant,

and Ta [
◦C] refers to the air temperature.490

(iii) The energy flux at the stream–bed interface is neglected, i.e. φb = 0 (e.g. Bogan et al., 2003;

Caissie et al., 2005; Bustillo et al., 2014).

(iv) The lateral inflow of water qℓ is assumed to be spatially constant (e.g. Biswal and Marani,

2010; Mutzner et al., 2013).

(v) The ratio of streamwidth to dischargew/Q is assumed to be spatially constant. This approximation495

is different from the one of ,
✿✿

as
✿✿✿✿✿✿✿✿

opposed
✿✿

to Theurer et al. (1984) and Polehn and Kinsel (2000)

, who both assumed a constant stream width.
✿✿✿✿

This
✿✿✿✿✿✿✿✿✿✿✿✿

approximation
✿✿✿✿

also
✿✿✿✿✿

differs
✿✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿

typical

✿✿✿✿✿✿✿✿✿

relationship
✿✿✿✿✿

used
✿✿

in
✿✿✿✿✿✿

fluvial
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

geomorphology,
✿✿✿✿✿✿

which
✿✿✿✿✿✿✿✿

expresses
✿✿✿✿✿✿

stream
✿✿✿✿✿

width
✿✿✿

as
✿

a
✿✿✿✿✿✿✿✿✿✿

power-law

✿✿✿✿✿✿✿

function
✿✿

of
✿✿✿✿✿✿✿✿

discharge
✿✿✿✿

with
✿✿✿✿✿✿✿✿

exponent
✿✿✿✿✿

∼ 0.5
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(see e.g. Knighton, 1998). It allows for the defini-

tion of a characteristic stream length Lc [m],500

Lc =
cp ρQ

wk
. (4)

(vi) All sources in the network are supposed to have the same discharge, denoted as Qs in the

following. This approximation is discussed in more details in Sect. 3.1.2.

Using the above assumptions, the mass and energy-balance equations simplify to Eqs. (5)–(6),

dQ

dx
= qℓ, (5)505

dT

dx
=

1

Lc

(γ φr+Ta−T )+
qℓ
Q
(Tℓ−T )−

g

cp

dz

dx
, (6)

where γ = 1/k. The reader is referred to Appendix A for the complete derivation of the analytical

solution to these equations. Only the final expressions for discharge Qout and stream temperature

15



Tout at the outlet of a catchment are reported here,

Qout = nsQs+Ltotqℓ, (7)510

Tout = ω1Ts+ω2
〈
Tℓ

〉
L
+ω3

〈
γφr+Ta−Lc

g

cp

dz

dx

〉
L
, (8)

with

ω1 = (1− η)δs, (9)

ω2 = ηδℓ, (10)

ω3 = 1−ω1−ω2. (11)515

In the above equations, Ltot and ns correspond to the total length of the river network and the num-

ber of sources in the catchment, respectively. The operator
〈
·
〉
L
refers to the distance-weighted

average; it computes the average of its operand over the entire stream network using a weight equal

to exp(−d/Lc), where d denotes the distance to the catchment outlet. This operator gives much

more emphasis to the points located near to the catchment exit. It should be noted that the spatial520

extent of the area over which the average is computed is controlled by the characteristic length Lc:

the smaller Lc, the smaller the contributing area. The quantity Ts appearing in Eq. (8) denotes the

weighted average of water temperature at the network sources. The latter are weighted by a factor

exp(−ds,i/Lc), where ds,i is the distance along the stream between the i-th source point and the

catchment outlet. The weights ω1, ω2 and ω3 are all in the interval [0,1]. In Eqs. (9)–(10), the factor525

η refers to the fraction of discharge at the catchment outlet originating from lateral inflow of water

along the stream network—i.e. excluding the fraction coming from the sources,

η =
qℓLtot

Qout

= 1−
nsQs

Qout

. (12)

The two factors δs and δℓ are defined as

δs =
1

ns

ns∑

i=1

e−ds,i/Lc , (13)530

δℓ =
Lc

Ltot

nr∑

k=1

e−dk/Lc
(
1− e−Lk/Lc

)
, (14)

where nr denotes the number of reaches in the stream network, dk the streamwise distance between

the downstream point of stream reach k and the catchment outlet, and Lk the length of stream

reach k. The factor δs corresponds to the average of the weight exp(−d(x)/Lc) over all the network

sources, and the factor δℓ refers to the average of the same weight over the set of all stream reaches535

in the catchment. It follows that both δs and δℓ decrease roughly exponentially as a function of the

network length.

Equation (8) expresses stream temperature as a linear function of air temperature, the slope of the

regression line between the two being equal to ω3 = 1−ω1−ω2. Assuming η to vary only slightly

16



along the network, it can be seen from Eqs. (9)–(10) that ω1 and ω2 decrease roughly exponentially540

with the stream network length. As a consequence, the present model predicts ω3 to tend towards 1

as the catchment size increases, a fact which has been observed at many locations (e.g. Ozaki et al.,

2003; Ducharne, 2008; Kelleher et al., 2012; Chang and Psaris, 2013; Segura et al., 2014).

The present expression for Tout differs from those reported previously in the literature in at least

two aspects (see Sect. 1 for a review of the analytical solutions to the energy-balance equation pub-545

lished to date). First, the terms on the right-hand side of Eq. (6) were not assumed to be spatially

homogeneous when integrating them. This explains the presence of the spatial averaging operator
〈
·
〉
L
in Eq. (8), which in turn translates the fact that stream temperature is not impacted by lo-

cal conditions only. This operator has already been used for the computation of predictor variables

in regression-based stream temperature models (Isaak et al., 2010; Hill et al., 2013), but never in550

association with analytical solutions to the energy-balance equation. Second, the source and lat-

eral inflow terms have not been neglected. These two terms are weighted by the factors ω1 and ω2

in Eq. (8), respectively, and tend to decrease exponentially with the stream length (see discussion

above). Although negligible in large catchments, they might be of the same order of magnitude as

the heat exchange term in small watersheds. Only a few studies relying on an analytical expression555

for stream temperature modeling have considered the lateral inflow term to date (Bogan et al., 2004;

Herb and Stefan, 2011), and none has retained the source term.

As noted above, the extent of the zone over which
〈
·
〉
L
averages its operand is controlled by the

characteristic length Lc. Given that this length is a function of the river discharge-to-width ratio

Q/w (see Eq. (4)) and that the stream celerity is assumed here to be constant, Lc is approximately560

proportional to the water height. Its value should therefore be expected to change over the course of

the year. Based on a formula similar to Eq. (4), Herb and Stefan (2011) have estimated Lc to vary

between 3 and 45 km for discharge values between 0.4 and 5.8 m3 s−1 in the case of the Vermillion

River in Minnesota. As most of the catchments considered in the present study have discharges

contained within this range, we should expect a marked variation in the values of Lc both during the565

course of the year and across catchments. However, since the characteristic length will be treated

as a calibration parameter here (see Sect. 3.1.2), only its seasonal variability will be investigated. A

single value will be assumed in each season for all the catchments (see Sect. 4), for otherwise Lc

would have to be calibrated independently for each catchment, which would prevent prediction in

ungauged basins. We acknowledge this as a limitation of our model.570

3.1.2 Parametrization of the unknown terms

Equation (8) contains several unknown quantities. The procedure used to calculate their respective

values is detailed below.

The channel slope dz/dx is computed along the center line of each stream. A vector repre-

sentation of the center lines was extracted from a land cover map at scale 1:25’000 (for more575
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information on this map, see http://www.swisstopo.admin.ch/internet/swisstopo/en/home/products/

maps/national/25.html) and is freely available on the website of the Swiss Federal Office for the

Environment (see ; description available only in German, French or Italian). This map was over-

laid with a digital elevation model of Switzerland with 2 m horizontal resolution produced by

the Swiss Federal Office of Topography (see http://www.swisstopo.admin.ch/internet/swisstopo/en/580

home/products/height/swissALTI3D.html) in order to extract the altitude of each point. As an alter-

native approach, a geomorphological analysis of the stream watersheds could have been performed

so as to automatically extract the stream networks. However, it was observed that the results of this

analysis did not match with the land cover map in some basins (not shown).

The monthly mean air temperature Ta
✿✿

Ta
✿

along the streams is assumed to be a linear function of585

altitude. The slope and intercept of this function are computed every month and for each catchment i

separately
✿✿✿✿✿✿✿

computed
✿✿✿✿✿

based
✿✿✿

on
✿✿✿

the
✿✿✿✿✿

values
✿✿✿✿✿✿✿✿

measured
✿✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

neighbouring
✿✿✿✿✿✿✿✿✿✿✿✿

meteorological
✿✿✿✿✿✿✿

stations (see

Sect. 2.2 for a description of the selected catchments),
✿✿✿✿

2.3).
✿✿✿✿✿✿

Within
✿✿✿✿

each
✿✿✿✿✿✿✿✿✿

catchment
✿

i,
✿✿✿

air
✿✿✿✿✿✿✿✿✿✿

temperature

✿✿✿

Ta,i
✿✿

is
✿✿✿✿✿✿✿

assumed
✿✿

to
✿✿✿

be
✿

a
✿✿✿✿✿

linear
✿✿✿✿✿✿✿

function
✿✿

of
✿✿✿✿✿✿✿

altitude
✿✿✿✿

only,
✿

T a,ia,i
✿

(z) = al,iT,i
✿✿

(z− zi)+ bl,iT,i
✿✿

, (15)590

where zi [m] refers to the altitude of the gauging station. The lapse rate al,i
✿✿✿

aT,i [
◦Cm−1] is derived

using
✿✿✿✿✿✿✿✿

computed
✿✿✿✿

each
✿✿✿✿✿✿

month
✿✿✿✿✿✿✿✿✿

separately
✿✿

by
✿✿✿✿✿✿✿✿✿

regressing
✿

the air temperature measurements of all the

meteorological stations located at less than 20 km from the catchment outlet—or the 3 closest

meteorological stations if less than 3 are located within a 20 km radius
✿✿✿✿✿✿✿✿✿✿✿

neighbouring
✿✿✿✿✿✿✿✿✿✿✿✿✿

meteorological

✿✿✿✿✿✿

stations
✿✿✿✿✿✿

against
✿✿✿✿

the
✿✿✿✿✿✿

station
✿✿✿✿✿✿✿

altitudes. In case the coefficient of determination R2 of the regression595

line between the air temperature values and the altitudes of the meteorological stations is lower than

0.6, al,i
✿✿✿

aT,i
✿

is set equal to zero. The intercept bl,i
✿✿✿

bT,i [
◦C] is computed

✿✿✿✿

each
✿✿✿✿✿✿

month as the inverse-

distance weighted average of the air temperature values measured by the same neighbouring stations.

Before computing their average, these values are
✿✿✿✿

same
✿✿✿

air
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿✿✿✿✿✿✿✿

measurements,
✿✿✿✿✿✿

which
✿✿✿

are

✿✿✿

first
✿

corrected for the altitude effect by virtually transferring them to altitude zi using the lapse rate600

al,i
✿✿✿

aT,i.

The monthly mean
✿✿✿✿✿✿

quantity
✿✿✿✿

γφr,
✿✿✿✿✿✿

which
✿✿✿✿✿✿✿✿

accounts
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿

effect
✿✿

of
✿✿✿

the
✿

net radiation heat flux

at the water surface φr is mostly dominated by incoming solar radiation, particularly in summer

(Caissie, 2006; Webb et al., 2008). In order to keep our model simple, and because φr eventually has

to be distance-averaged using the operator
〈
·
〉
L
, we express the unknown quantity γφr as a linear605

combination of the measured incoming solar radiation φsw,inc, an index quantifying the shading by

topography fs, the stream orientation θ and the fraction frc of the riparian zone covered with forests,

γφr = aφ,swφsw,inc+ aφ,sfs+ aφ,θθ+ aφ,fff+ bφ.

The above equation requires the calibration of 5 unknown coefficients, namely {aφ,x}x=sw,s,θ,f610

and bφ. In order to avoid equifinality issues (see e.g. Beven, 1993), this expression is not directly
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used as is. Instead, more parsimonious formulations are evaluated by setting at least two of the

coefficients {aφ,x}x=sw,s,θ,f to zero. Considering all possible combinations of these coefficients,

11 different models are tested for γφr in total—including the constant expression with only bφ as

calibration parameter. In Eq. , the monthly mean incoming solar radiation φsw,inc is approximated as615

a linear
✿✿✿✿✿✿✿

air–water
✿✿✿✿✿✿✿✿

interface,
✿✿✿✿✿✿✿

cannot
✿✿

be
✿✿✿✿✿✿

readily
✿✿✿✿✿✿✿✿✿

computed
✿✿✿✿✿

based
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿

available
✿✿✿✿

data.
✿✿✿

As
✿✿

a
✿✿✿✿✿✿

matter

✿✿

of
✿✿✿✿

fact,
✿✿✿✿✿✿✿✿✿

long-wave
✿✿✿✿✿✿✿✿

radiation
✿✿✿✿

and
✿✿✿✿✿✿✿✿

reflected
✿✿✿✿✿✿✿✿✿

short-wave
✿✿✿✿✿✿✿✿

radiation
✿✿✿✿✿✿✿✿✿✿✿✿

measurements
✿✿✿✿

are
✿✿✿✿✿✿✿✿✿

performed
✿✿✿

by

✿✿✿✿✿✿✿✿✿✿

MeteoSwiss
✿✿

at
✿✿

a
✿✿✿

few
✿✿✿✿✿✿✿✿

locations
✿✿✿✿✿

only.
✿✿✿✿✿✿✿✿✿

Incoming
✿✿✿✿✿✿✿✿✿

short-wave
✿✿✿✿✿✿✿✿

radiation
✿✿✿✿

φisw
✿

[
✿✿✿✿✿✿✿

Wm−2]
✿

,
✿✿✿

on
✿✿✿

the
✿✿✿✿✿

other

✿✿✿✿

hand,
✿✿

is
✿✿

a
✿✿✿✿✿✿✿✿✿

commonly
✿✿✿✿✿✿✿✿

measured
✿✿✿✿✿✿✿✿

variable
✿✿✿✿✿

which
✿✿✿✿

can
✿✿

be
✿✿✿✿✿✿✿✿✿✿

interpolated
✿✿✿✿✿

along
✿✿✿

the
✿✿✿✿✿✿

stream
✿✿✿✿✿✿✿✿✿

networks.
✿✿✿

To

✿✿✿

this
✿✿✿✿

end,
✿

it
✿✿

is
✿✿✿✿✿✿✿

assumed
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿

incoming
✿✿✿✿✿✿✿✿✿

short-wave
✿✿✿✿✿✿✿✿

radiation
✿✿✿✿

φisw,i
✿✿

in
✿✿✿✿✿

each
✿✿✿✿✿✿✿✿

catchment
✿

i
✿✿

is
✿✿

a function620

of altitude , whose slope and intercept are computed every month and for every catchment using the

same procedure as described above for air temperature (see
✿✿✿✿

only,

φisw,i(z) = aφ,i(z− zi)+ bφ,i,
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(16)

✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿✿

lapse
✿✿✿

rate
✿✿✿✿

aφ,i
✿

[
✿✿✿✿✿✿✿

Wm−3]
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿

intercept
✿✿✿

bφ,i
✿

[
✿✿✿✿✿✿✿

Wm−2]
✿✿

are
✿✿✿✿✿✿✿✿✿

computed
✿✿✿✿✿✿✿✿

similarly
✿✿

to
✿✿✿✿

aT,i

✿✿✿

and
✿✿✿

bT,i
✿✿✿

in Eq. (15)). Shading by topography fs is expressed at each point along the stream network625

as a value between 0 and 1, 1 indicating complete shading.It is derived from the above-mentioned

2 m digital elevation map of Switzerland at nine different hours of day time—corresponding to

the fractions 0.1–0.9 of the day-time length—on the 15th day of each month of the year. These

values are then averaged at each grid cell and in each season to obtain the spatial distribution of

fs. The stream .
✿✿✿

An
✿✿✿✿✿✿✿

attempt
✿✿

is
✿✿✿✿✿

made
✿✿

at
✿✿✿✿✿✿✿✿✿

correcting
✿✿✿

the
✿✿✿✿✿✿

values
✿✿✿✿✿✿✿✿✿

computed
✿✿✿✿✿

using
✿✿✿

Eq.
✿✿✿

16
✿✿

in
✿✿✿✿✿

order
✿✿✿

to630

✿✿✿✿✿✿

account
✿✿✿

for
✿✿✿✿✿✿✿

riparian
✿✿✿✿✿✿✿✿

shading.
✿✿

As
✿✿✿✿✿✿✿✿✿

discussed
✿✿

in
✿✿✿✿✿

Sect.
✿✿✿

1.5
✿✿✿✿✿✿

above,
✿✿✿✿

very
✿✿✿✿

few
✿✿✿✿✿✿

spatial
✿✿✿✿

data
✿✿✿

sets
✿✿✿✿✿

exist
✿✿✿

for

✿✿✿✿✿✿

riparian
✿✿✿✿✿✿✿✿

shading,
✿✿✿✿✿

which
✿✿

in
✿✿✿✿✿✿✿

practice
✿✿✿✿✿

often
✿✿✿

has
✿✿✿

to
✿✿

be
✿✿✿✿✿✿✿✿✿

estimated
✿✿✿✿✿

using
✿✿✿✿

proxi
✿✿✿✿✿✿✿✿✿

variables.
✿✿

In
✿✿✿

the
✿✿✿✿✿✿✿

present

✿✿✿✿

case,
✿✿✿✿✿✿✿

riparian
✿✿✿✿✿✿

shading
✿✿

at
✿✿

a
✿✿✿✿✿

given
✿✿✿✿✿

stream
✿✿✿✿✿

point
✿✿

is
✿✿✿✿✿✿✿✿✿✿✿

approximated
✿✿✿✿✿

based
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿

stream orientation θ
✿✿✿

and

✿✿✿✿✿✿

riparian
✿✿✿✿✿

forest
✿✿✿✿✿

cover
✿✿

ff
✿✿

at
✿✿✿✿

that
✿✿✿✿✿

point.
✿✿✿✿✿

Using
✿✿✿

the
✿✿✿✿

land
✿✿✿✿✿

cover
✿✿✿

map
✿✿

at
✿✿✿✿✿

scale
✿✿✿✿✿✿✿✿

1:25’000
✿✿✿✿✿✿✿✿✿

mentioned
✿✿✿✿✿

above,
✿✿

θ

is computed as the cosine of the angle between the North
✿✿✿✿

north
✿

and the stream direction at the point635

of interest along the network. It follows that θ
✿✿✿✿

flow
✿✿✿✿✿✿✿✿

direction;
✿✿

it is a measure of northing, i.e. values

close to 1 (resp. −1) indicate a catchment that is oriented towards the North (resp. the South). The

fraction
✿✿✿✿

north
✿✿✿✿

and
✿✿✿✿✿

values
✿✿✿✿✿

close
✿✿

to
✿✿✿

−1
✿✿

a
✿✿✿✿✿✿✿✿✿

catchment
✿✿✿

that
✿✿

is
✿✿✿✿✿✿✿✿✿✿✿✿✿

south-oriented.
✿✿✿✿

The
✿✿✿✿✿✿

riparian
✿✿✿✿✿✿

forest
✿✿✿✿✿

cover

ff
✿

is
✿✿✿✿✿✿✿

defined
✿✿✿✿

here
✿✿

as
✿✿✿

the
✿✿✿✿✿✿✿

fraction of the riparian zone
✿✿✿✿✿

which
✿✿

is covered with forests is extracted from

the same national
✿✿✿✿✿✿✿✿

according
✿✿

to
✿✿✿

the
✿

land cover mapat scale 1:25’000 which is also used to derive640

the stream network (see above). As the extent of the riparian zone affecting stream temperature is

unclear (Moore et al., 2005), the forest cover fraction is computed over riparian buffers with different

widths: 25, 50 and 100 m on each side of the center line of the streams (total buffer widths are 50,

100 and 200 m, respectively). The map does unfortunately not allow for the distinction between

coniferous and deciduous forests.
✿✿

In
✿✿✿✿✿✿✿

addition
✿✿

to
✿

θ
✿✿✿✿

and
✿✿

ff,
✿✿✿✿✿✿✿✿✿✿✿✿

topographical
✿✿✿✿✿✿✿

shading
✿✿

fs
✿✿

is
✿✿✿

also
✿✿✿✿✿✿✿✿✿

computed645

✿✿

in
✿✿✿✿✿

order
✿✿

to
✿✿✿✿✿✿

correct
✿✿✿

the
✿✿✿✿✿✿✿✿✿

incoming
✿✿✿✿

solar
✿✿✿✿✿✿✿✿

radiation
✿✿✿✿✿✿

values
✿✿✿✿✿✿✿✿✿

estimated
✿✿✿✿

from
✿✿✿✿

Eq.
✿

(16).
✿✿✿

fs
✿✿

is
✿✿✿✿✿✿✿✿✿

expressed

✿

at
✿✿✿✿✿

each
✿✿✿✿✿

point
✿✿✿✿✿

along
✿✿✿

the
✿✿✿✿✿✿✿

streams
✿✿

as
✿✿

a
✿✿✿✿✿

value
✿✿✿✿✿✿✿

between
✿✿

0
✿✿✿✿

and
✿✿

1,
✿

1
✿✿✿✿✿✿✿✿✿

indicating
✿✿✿✿✿✿✿✿

complete
✿✿✿✿✿✿✿✿

shading.
✿✿

It
✿✿

is
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✿✿✿✿✿✿

derived
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

above-mentioned
✿

2
✿✿

m
✿✿✿✿✿✿

digital
✿✿✿✿✿✿✿✿

elevation
✿✿✿✿

map
✿✿

of
✿✿✿✿✿✿✿✿✿✿

Switzerland
✿✿

at
✿✿✿✿

nine
✿✿✿✿✿✿✿✿

different
✿✿✿✿✿

hours

✿✿

of
✿✿✿

day
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

time—corresponding
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿

fractions
✿✿✿✿✿✿✿

0.1–0.9
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿

day-time
✿✿✿✿✿✿✿✿✿✿

period—on
✿✿✿

the
✿✿✿✿✿

15th
✿✿✿

day
✿✿✿

of

✿✿✿✿

each
✿✿✿✿✿

month
✿✿

of
✿✿✿

the
✿✿✿✿✿

year.
✿✿✿✿✿

These
✿✿✿✿✿

values
✿✿✿

are
✿✿✿✿

then
✿✿✿✿✿✿✿✿

averaged
✿✿

at
✿✿✿✿

each
✿✿✿✿

grid
✿✿✿

cell
✿✿✿

and
✿✿

in
✿✿✿✿

each
✿✿✿✿✿✿

season
✿✿

to
✿✿✿✿✿✿

obtain650

✿✿

the
✿✿✿✿✿✿

spatial
✿✿✿✿✿✿✿✿✿✿

distribution
✿✿✿

of
✿✿

fs.
✿✿✿✿✿✿

Since
✿✿✿✿✿✿

shading
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿

topography
✿✿✿✿

and
✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿

riparian
✿✿✿✿✿

forest
✿✿✿

do
✿✿✿

not
✿✿✿✿✿

only

✿✿✿✿✿

affect
✿✿✿✿✿✿✿✿

incoming
✿✿✿✿

solar
✿✿✿✿✿✿✿✿

radiation,
✿✿✿

but
✿✿✿✿

also
✿✿✿✿✿✿✿✿

incoming
✿✿✿✿✿✿✿✿✿

long-wave
✿✿✿✿✿✿✿✿

radiation,
✿

it
✿✿✿✿

was
✿✿✿✿✿✿✿

decided
✿✿✿

not
✿✿

to
✿✿✿

use
✿✿✿

the

✿✿✿✿✿✿✿

variables
✿✿

θ,
✿✿

ff
✿✿✿

and
✿✿✿

fs
✿✿

to
✿✿✿✿✿✿

directly
✿✿✿✿✿✿

modify
✿✿✿

the
✿✿✿✿✿✿

values
✿✿

of
✿✿✿✿

φisw.
✿✿✿✿✿✿✿

Instead,
✿

it
✿✿

is
✿✿✿

the
✿✿✿✿✿✿✿✿

unknown
✿✿✿✿

term
✿✿✿

γφr
✿✿✿✿✿✿

which

✿

is
✿✿✿✿✿✿✿✿✿✿✿✿

approximated
✿✿

as
✿

a
✿✿✿✿✿

linear
✿✿✿✿✿✿✿✿✿✿✿

combination
✿✿

of
✿✿✿✿

φisw,
✿✿

θ,
✿✿

ff
✿✿✿✿

and
✿✿

fs:
✿

γφr = aφ,iswφisw+ aφ,sfs+ aφ,θθ+ aφ,fff+ bφ.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(17)655

✿✿

As
✿✿✿✿✿✿✿✿✿

discussed
✿✿

in
✿✿✿✿

Sect.
✿✿✿✿

1.5,
✿✿✿

the
✿✿✿✿✿✿

choice
✿✿

of
✿✿

a
✿✿✿✿✿

linear
✿✿✿✿✿✿✿✿✿✿

relationship
✿✿

is
✿✿✿✿✿✿✿✿✿

motivated
✿✿

by
✿✿✿✿

our
✿✿✿✿

wish
✿✿

to
✿✿✿✿✿

keep
✿✿✿

the

✿✿✿✿✿

model
✿✿✿✿✿✿

simple
✿✿✿

and
✿✿

by
✿✿✿

our
✿✿✿✿✿✿✿✿✿

ignorance
✿✿

of
✿✿✿

the
✿✿✿✿✿

actual
✿✿✿✿

form
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

function
✿✿✿✿✿✿

linking
✿✿✿

γφr
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

above-mentioned

✿✿✿✿✿✿✿

predictor
✿✿✿✿✿✿✿✿

variables.
✿✿

A
✿✿✿✿✿

linear
✿✿✿✿✿✿✿✿✿✿

relationship
✿✿✿

also
✿✿✿✿✿✿✿✿✿✿✿

significantly
✿✿✿✿✿✿✿✿

simplifies
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

computation
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

distance-average

✿✿

of
✿✿✿

γφr
✿✿✿✿✿

using
✿✿✿

the
✿✿✿✿✿✿✿✿

operator
✿✿✿✿✿

〈
·
〉
L
.
✿✿✿✿✿✿✿✿

Equation (17)
✿✿✿✿✿✿✿

requires
✿✿✿

the
✿✿✿✿✿✿✿✿✿

calibration
✿✿✿

of
✿

5
✿✿✿✿✿✿✿✿

unknown
✿✿✿✿✿✿✿✿✿✿✿

coefficients,

✿✿✿✿✿✿

namely
✿✿✿✿✿✿✿✿✿✿✿✿✿

{aφ,x}x=isw,s,θ,f
✿✿✿✿

and
✿✿✿

bφ.
✿✿

In
✿✿✿✿✿

order
✿✿

to
✿✿✿✿✿

limit
✿✿✿

the
✿✿✿✿✿✿

number
✿✿✿

of
✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿✿

parameters,
✿✿✿✿

this
✿✿✿✿✿✿✿✿✿

expression660

✿

is
✿✿✿✿

not
✿✿✿✿✿✿

directly
✿✿✿✿✿

used
✿✿

as
✿✿✿

is,
✿✿✿

but
✿✿✿✿✿

more
✿✿✿✿✿✿✿✿✿✿✿

parsimonious
✿✿✿✿✿✿✿✿✿✿✿

formulations
✿✿✿

are
✿✿✿✿✿✿✿✿

evaluated
✿✿✿✿✿✿✿

instead.
✿✿✿

All
✿✿✿✿✿✿✿✿

possible

✿✿✿✿✿✿✿✿✿✿✿✿✿

sub-expressions
✿✿✿✿✿✿✿✿

involving
✿✿✿

any
✿✿✿✿✿✿✿✿✿✿

combination
✿✿

of
✿✿✿✿✿

either
✿✿✿✿

one
✿✿

or
✿✿✿

two
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

predictor
✿✿✿✿✿✿✿✿

variables
✿✿✿✿✿✿✿✿✿✿✿✿

{φisw,θ,ff,fs}

✿

is
✿✿✿✿✿✿✿✿✿✿

considered
✿✿

for
✿✿✿✿✿✿✿✿✿✿✿✿✿

approximating
✿✿✿

γφr.
✿✿

It
✿✿✿✿✿✿

should
✿✿

be
✿✿✿✿✿✿✿✿✿

mentioned
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿

choice
✿✿

to
✿✿✿✿✿✿✿

consider
✿✿✿✿✿✿✿✿✿✿

expressions

✿✿✿✿

with
✿

at
✿✿✿✿✿

most
✿✿✿

two
✿✿✿✿✿

terms
✿✿✿✿

(plus
✿✿✿

the
✿✿✿✿✿✿✿✿

intercept)
✿✿

is
✿✿✿✿✿✿✿

arbitrary
✿✿✿

and
✿✿✿✿

only
✿✿✿✿✿✿✿✿✿

introduced
✿✿

to
✿✿✿✿✿

avoid
✿✿✿✿✿✿✿✿✿✿

equifinality
✿✿✿✿✿

issues

✿✿✿✿✿✿✿✿✿✿✿✿

(Beven, 2012).
✿✿

In
✿✿✿✿✿

total,
✿✿✿

11
✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿

models
✿✿✿

are
✿✿✿✿✿

tested
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿✿✿✿

γφr—including
✿✿✿

the
✿✿✿✿✿✿✿

constant
✿✿✿✿✿✿✿✿✿✿

expression665

✿✿✿✿

with
✿✿✿✿

only
✿✿

bφ
✿✿

as
✿✿✿✿✿✿✿✿✿

calibration
✿✿✿✿✿✿✿✿✿

parameter.
✿

The two weights ω1 and ω2 cannot be readily estimated from Eqs. (9)–(10). While the values

of the factors δs and δℓ can be easily derived from the vector representation of the stream network

described above, the parameter η requires additional assumptions. It should be reminded that this

parameter corresponds to the fraction of the outlet discharge which originates from lateral inflow.670

Assuming a typical power-law relationship between drainage area and discharge (e.g. Mutzner et al.,

2013), η could in principle be approximated as the ratio between the areaAnet drained by the network

(excluding the area drained by the sources) and the total catchment area Atot, raised to some power

α: η ∼ (Anet/Atot)
α. However, the computation of Anet would require a geomorphological analysis,

which was discarded based on the discrepancy between the stream network predicted by this analysis675

and the observed one (see above). As alternative methods, we consider two different techniques

for estimating η. The simplest approach assumes a constant single value for η, calibrated over all

catchments. The second approach relies on the analytical expression for η presented in Eq. (12), in

which the ratio Qs/Qtot is replaced with (As/Atot)
α:

η = 1−ns

(
As

Atot

)α

. (18)680

The calibration parameters of this second method correspond to the area As drained by a single

source and the exponent α.
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In order to compute T̄s and
〈
Tℓ

〉
L
in Eq. (8), two different methods for the estimation of the source

and lateral inflow temperatures are considered. In a first approximation,these two temperatures are

assumed to be both constant and equal. The second method considers them to be linearly related to685

air temperature as measured at their respective altitudes. In other words, it expresses the temperature

Ts,i of each source i= 1 . . .ns and the lateral inflow temperature Tℓ(z) at any point with altitude z

along the network as

Ts,i = awTa(zs,i)+ bw, (19)

Tℓ(z) = awTa(z)+ bw, (20)690

where zs,i [m] denotes the altitude of source i, and aw [◦C◦C−1] and bw [◦C] are two parameters to

be calibrated over the set of all catchments. Notice that the same slope aw and intercept bw are used

to derive both Ts,i and Tℓ from air temperature, hereby assuming that the source and lateral inflows

originate from the same hydrological processes. Moreover, since these two parameters are the same

for all catchments, it is implicitly supposed that the ratio of surface runoff to subsurface runoff is695

the same in all watersheds. As discussed in Sect. 2.4, this requires catchments to be classified by

hydrological regime before aw and bw can be calibrated separately for each regime. In Eqs. (19)–

(20), the monthly mean air temperature is computed in each catchment using Eq. (15).

The distance-average of variables Tℓ, γφr, Ta and dz/dx are computed by discretizing the operator
〈
·
〉
L
over the stream segments,700

〈
f
〉
L
=

∑
k∈Γ e

−(dk+Lk/2)/Lc Lk fk∑
k∈Γ e

−(dk+Lk/2)/Lc Lk
, (21)

where fk denotes the unweighted mean value of variable f along stream segment k; the other quan-

tities have been defined previously in Sect. 3.1.1. Except for the riparian forest cover ff which is de-

rived over buffers of widths 25, 50 and 100 m, the unweighted mean of all other quantities (namely

φsw,inc
✿✿✿

φisw, fs, Ta and dz/dx) along each stream segment are computed over a 20 m wide buffer705

centered around the center line of the segment, as extracted from the vector representation of the

stream network at scale 1:25’000 (see above). The value of 20 m is considered as being typical for

the width of the streams investigated in the present study; although only this value has been tested,

it is expected to have little impact on the computed averages. It should be noted that the expressions

for
〈
Ta

〉
L
and

〈
φsw,inc

〉
L ✿✿✿✿✿✿

〈
φisw

〉
L✿

both reduce to linear functions of the distance-weighted average710

of altitude along the stream network
〈
z
〉
L
as per Eqs. (15) and (17). The length Lk of stream reach

k and the distance dk between the downstream end of reach k and the catchment outlet are derived

from the vector map of the stream network.

Replacing the terms in Eq. (8) by their above expressions, the stream temperature model reads

Tout = (1− η)δs
(
awTa+ bw

)
+ ηδℓ

(
aw

〈
Ta

〉
L
+ bw

)
715

+(1− δs− ηδs− ηδℓ)
〈
Teq

〉
L
, (22)
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where

Teq = aφ,swφ,isw
✿✿✿

〈
φsw,incisw

✿✿

〉
L
+ aφ,s

〈
fs
〉
L
+ aφ,θ

〈
θ
〉
L
+ aφ,f

〈
ff
〉
L
+

〈
Ta

〉
L

−Lc

g

cp

〈 dz
dx

〉
L
+ bφ. (23)

The calibration parameters of the model are listed in Table 2). When testing a constant parametriza-720

tion for the source and lateral inflow temperatures, aw should be set to zero. Similarly, at least two of

the coefficients {aφ,x}x=sw,s,θ,f
✿✿✿✿✿✿✿✿✿✿✿✿✿

{aφ,x}x=isw,s,θ,f
✿

are assumed equal to zero as per the parametrization

of the radiation term discussed above. As such
✿✿✿✿

Thus, between 3 and 8 parameters must be calibrated

depending on the methods used to approximate the respective unknown variables in Eq. (8). Ad-

vantage is taken of the fact that each parameter can be interpreted from a physical point of view to725

restrict its associated calibration range (see Table 2). For example, η is imposed to adopt a value

between 0 and 1 as per Eq. (12), and only positive values are considered for aφ,sw
✿✿✿✿✿

aφ,isw
✿

based on

the fact that solar radiation is contributing positively to the net radiation heat flux. Moreover, six

different values are tested for the characteristic length Lc used in the definition of
〈
·
〉
L
: 1, 2, 4, 8, 16

and 32 km (see Sect. 4.2). All possible combinations of the different parametrizations of the model730

terms are tested for each one of these values of Lc. The model associated with the lowest value of

the modified Akaike information criterion (AICc) is considered to be the best one among the tested

set (e.g. Burnham and Anderson, 2002). As mentioned in Sect. 3.1.1, the model is calibrated in each

season separately to account for the fact that the value of the parameter Lc varies over the year.

3.2 Regression
✿✿✿✿✿✿✿✿

Standard
✿✿✿✿✿✿✿✿✿✿

regression model735

In order to assess its performances, the physically-based
✿✿✿✿✿✿✿✿✿✿✿✿✿

physics-inspired
✿✿✿✿✿✿✿✿

statistical
✿

model described

by Eq. (22) is compared with a
✿✿✿✿

more
✿✿✿✿✿✿✿✿

classical
✿

regression model which we developed based on

a combination of some of the standard statistical approaches reviewed in Sect. 1. The regression

model takes advantage of the fact that most stream temperature curves have a similar shape (see

Sect. 2.4). This shape is first estimated by the model based on air temperature, before being mapped740

to the respective stream temperature curves of the catchments using a linear transformation.

The model assumes all streams to have the same z-scored (i.e. standardized) temperature T̂ [–].

The latter is related to the monthly mean temperature Ti of each individual catchment i through (see

e.g. Garner et al., 2014)

Ti = σiT̂ +T i, (24)745

where T i [
◦C] and σi [

◦C] correspond to the annual mean and standard deviation of monthly mean

stream temperature in catchment i, respectively. These two quantities are estimated each year in-

dependently using multi-linear regression models (MLR). Although more sophisticated techniques

could have been used, Wehrly et al. (2009) and Daigle et al. (2010) showed that MLR performs
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at least as good as several more complicated statistical methods for stream temperature predic-750

tion. The MLR models were constructed using similar predictor variables as in the physically-based

✿✿✿✿✿✿✿✿✿✿✿✿✿

physics-inspired
✿✿✿✿✿✿✿✿

statistical
✿

model, namely the annual mean and standard deviation of both air tem-

perature and incoming short-wave radiation, the riparian forest cover fraction, stream channel slope,

stream orientation, the difference in topographical shading between summer and winter, the number

of sources in the network and the watershed area. All multi-linear models based on any possible755

subset of these variables were tested, with a maximum number of terms per model arbitrarily fixed

to 6 to prevent
✿✿

6.
✿✿✿✿

This
✿✿✿✿✿✿✿✿

limitation
✿✿✿✿

was
✿✿✿✿✿✿✿✿✿

introduced
✿✿

in
✿✿✿✿✿

order
✿✿

to
✿✿✿✿✿

avoid
✿

over-parametrization
✿

,
✿✿✿

but
✿✿✿✿

also
✿✿

to

✿✿✿✿✿

ensure
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿

number
✿✿✿

of
✿✿✿✿✿✿✿✿✿

parameters
✿✿

in
✿✿✿

the
✿✿✿✿

final
✿✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿

regression
✿✿✿✿✿✿

model
✿✿✿✿

was
✿✿✿✿✿

about
✿✿✿

the
✿✿✿✿

same
✿✿✿

as

✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

physics-inspired
✿✿✿✿✿✿

model,
✿✿✿✿✿✿

hereby
✿✿✿✿✿✿✿✿✿✿

guarantying
✿✿

a
✿✿✿✿✿

more
✿✿✿✿

even
✿✿✿✿✿✿✿✿✿✿

comparison
✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿

two. Mul-

ticollinearity issues were avoided by discarding
✿✿✿✿

MLR
✿

models whose variance inflation factor (VIF)760

exceeded 5. Each predictor variable was distance-averaged over the stream networks using the oper-

ator
〈
·
〉
L
, as in the case of the physically-based

✿✿✿✿✿✿✿✿✿✿✿✿✿

physics-inspired
✿✿✿✿✿✿✿✿

statistical
✿

model. Different values

of Lc were considered when applying this operator as per Eq. (21): 1, 2, 4, 8, 16 and 32 km. The

best predicting MLR models for T i and σi were selected based on AICc.

In Eq. (24), the z-scored stream temperature is computed each month by the model based on a765

non-linear relationship with air temperature,

T̂ = µ+
α−µ

1+ exp
(
−κ

(
T̂a−β

)) , (25)

where µ [◦C], α [◦C], β [◦C] and κ [◦C−1] are coefficients obtained through ordinary least squares

regression, and T̂a [–] denotes the mean z-scored air temperature over Switzerland. T̂a is obtained

by averaging the z-scored measurements of
✿✿

the
✿

14
✿✿✿✿✿✿✿✿✿✿

MeteoSwiss
✿

reference meteorological stations ,770

which are considered by the Swiss Meteorological Office to be representative of the climate diversity

in Switzerland (see ; description only available in German, French or Italian
✿✿✿

(see
✿✿✿✿

Sect.
✿✿✿

2.3),

T̂a =
1

14

14∑

k=1

Ta,k −T a,k

σa,k
. (26)

In the above equation, Ta,k [◦C] denotes the monthly mean air temperature measured at
✿✿✿✿✿✿✿✿

reference

station k, and T a,k [◦C] and σa,k [◦C] refer to the annual average and standard deviation of Ta,k775

computed each year independently, respectively.

In summary, the
✿✿✿✿✿✿✿

standard regression model proceeds as follows to estimate stream temperature

in an ungauged basin: (a) it first computes the mean z-scored air temperature over Switzerland ac-

cording to Eq. (26), based on the measurements of 14 meteorological stations, (b) it then uses T̂a to

estimate the z-scored stream temperature in any catchment as per Eq. (25), and finally (c) it converts780

T̂ to the actual stream temperature using Eq. (24), where the scaling coefficients T i and σi are esti-

mated for the catchment of interest using multi-linear regression models. These different steps will

be illustrated into
✿✿

in
✿

more detail in Sect. 4.4.
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4 Selected catchments for model evaluation

In order to test the two stream temperature models, catchments are selected in Switzerland such that:785

(a) the natural regime of the river is as little affected by anthropogenic activities as possible, and

(b) measurements of discharge and stream temperature are available for more than one year. This

results in a set of 29 catchments, whose locations are depicted in Fig. 1 and physiographic properties

are summarized in Table 3.

About half of the selected catchments is situated on the Swiss Plateau—a large area with little790

altitude variations between Lake Geneva in the south west and Lake Constance in the north east.

The climate in this region is relatively mild, with precipitation mostly falling as rain in winter

and mean daily maximum air temperature hardly exceeding 30◦C in summer. The hydrological

regimes of the catchments in the Plateau depend on the precipitation patterns and are therefore

strongly variable from year to year (Aschwanden and Weingartner, 1985). Discharge does not vary795

by more than a factor two over the year; it usually reaches its maximum during winter, when

evapotranspiration is the lowest. As catchments gain in altitude, the discharge control mechanism

changes from evapotranspiration to snowmelt: higher-altitude catchments present a discharge peak

during the melt season, in April–May.

Only two catchments are found in the Jura mountains, a relatively low-altitude (< 1700m)mountainous800

range with rigorous winters. This region is characteristic for its karstic aquifers with preferential

flow paths, generating fast and complex responses to precipitation events. Although more marked,

the hydrological regimes of the Jura catchments are relatively similar to those of the watersheds in the

Plateau. A clear peak in discharge is noticeable in April for the highest catchments (Aschwanden and Weingartner, 1985).

805

The Alpine region of Switzerland is typically subdivided into its north and south parts, based on

their difference in climate. The Southern Alps are influenced by Mediterranean weather, implying

warmer winters and more precipitation in autumn than in the Northern Alps. The hydrological

regimes of the catchments in the Northern Alps are strongly related to altitude. The month in which

the peak of discharge is observed ranges from May for low-altitude watersheds to July–August810

for catchments partially covered by glaciers. Moreover, the ratio of annual maximum to annual

minimum discharge increases with altitude. Similar hydrological regimes are observed in the Southern

Alps, except for a second discharge peak in autumn due to rainfall (Aschwanden and Weingartner, 1985).

As seen in Fig. 1, only three unperturbed catchments could be found in the Northern Alps, while five

are located in the Southern Alps.815

All in all, 10 of the 16 hydrological regimes identified by Aschwanden and Weingartner (1985) in

Switzerland are present among the 29 selected catchments (see Table 3). The surface area distribution

is quite large, with catchments ranging from 3.31 km2 (Rietholzbach at Mosnang) to 392 km2

(Broye at Payerne). The mean altitudes of the watersheds are also spanning a wide range of values.
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Few catchments are partially covered by a glacier, with only two of them having a glacier cover820

fraction over 10%.

4 Stream temperature data

The stream temperature data which is used in the present study was provided by the Swiss Federal

Office for the Environment (FOEN). Advantage is taken of the present publication to describe this

new data set, which is freely accessible for research purposes at the following address: . A map825

displaying the position of all available hydrological stations which measure stream temperature can

also be found on the website of the FOEN ( ).

3.1 Data collection and validation

The FOEN is operating an automatic network of stream gauging stations, continuously measuring

water level and discharge at more than 180 locations in Switzerland. Water level is recorded using830

an ultrasonic distance sensor, and converted into discharge values through a rating curve adapted

each year. The water level values are validated against the measurements of a second instrument—a

pressure probe—and rejected in case the difference between the two values is greater than 2 cm. A

limited number of gauging stations has been equipped with a thermometer, the earliest starting in

1968. This number has increased greatly since 2002, with now more than 70 stations automatically835

probing water temperature every 10 minutes (Jakob, 2010). The measurement values are automatically

uploaded and displayed in real time on the web page of the FOEN (same page as for the map

displaying the positions of the stations).

Among the watersheds in which temperature is monitored, 25 have been identified in the present

study as being little affected by anthropogenic activities. In order to complete this data set, the840

temperature and discharge measurements of four additional gauging stations were obtained from

the Department for Construction, Transport and Environment of Canton Aargau (see Table 3). The

period in which water temperature was measured by each station is also indicated in Table 3.

The temperature data is usually not quality-proofed by the FOEN or Canton Aargau. As a validation

procedure, we performed two different tests on the data at the hourly time step, on top of visual845

inspection: all temperature measurements lower than 0◦C or greater than 30◦C were removed,

except for the values between −0.5◦C and 0◦C which were set to 0◦C, and the values between

30◦C and 30.5◦C which were set to 30◦C. the temperature variation between consecutive time steps

was checked to remain within physical bounds. In particular, it was verified that temperature varied

by more than 0.01◦C over 5 hours, but less than 3◦C within one hour. Constant temperature values850

could result from a defect in the sensor, but also from the fact that the hourly values had been

replaced with their daily mean in some cases. In order to distinguish between the two, the present
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quality control procedure was performed semi-manually. After quality control, the hourly data were

aggregated into monthly mean values.

3.1 Thermal regime classification855

A preliminary study of the selected catchments was performed, with the aim of classifying the rivers

according to their thermal behavior. This classification was intended to be used later in order to

investigate whether the performance of the models was affected by the river thermal regime.

As a first attempt, we examined whether the catchments could be classified based on the shape

of their stream temperature curve. To this end, we z-scored (i.e. standardized) the monthly mean860

stream temperature values in each watershed similarly to Garner et al. (2014). However, as observed

by these authors, we could identify only one single thermal regime (Fig. 2a). Only two catchments

among the 29 did not to present the same thermal regime as the others, namely those labeled as 5

and 14 in Table 3.

As an alternative approach, we tested whether the characteristics of the stream–air temperature865

curve could be used to characterize the thermal regime of the catchments. For this purpose, monthly

mean stream temperature was linearly regressed against monthly mean air temperature, excluding

the points with negative air temperature values (e.g. Kelleher et al., 2012). Based on the values of

the slope and intercept of this relationship, three groups of catchments could be clearly identified

(Fig. 2b). The first group contains the watersheds in which a significant portion of discharge originates870

from deep aquifer infiltration (watersheds 9 and 14 in Table 3, labeled as “groundwater-fed streams”

in Fig. 2b). This group is characterized by low slope and high intercept values, as reported by many

studies (e.g. Caissie, 2006; Webb et al., 2008). The second group of watersheds corresponds to the

high-altitude basins with more than 50% glacier cover. Both the slope and intercept of the stream–air

temperature relationship are small for the members of this group, which is actually composed of only875

one catchment (watershed 5 in Table 3, denoted as “proglacial” in Fig. 2b). The vast majority of the

watersheds do not fall into any of the two aforementioned groups. These catchments, denoted as

“thermally climate-driven”, are characterized by relatively low intercept and high slope values, i.e.

their stream temperature is strongly correlated to air temperature.

Because of the predominance of the “thermally climate-driven” streams, only the latter will be880

considered for the testing of the physically-based and regression models. The inclusion of the groundwater-dominated

streams in the test set would require the amount of groundwater infiltrating into the stream to be

estimated. We tested several methods, including the derivation of the baseflow index from discharge

measurements (e.g. Eckhardt, 2005; van Dijk, 2010) or from the TOPMODEL topographic index

(e.g. Ducharne, 2009). However, none of the investigated techniques succeeded in predicting a larger885

baseflow index for the catchments labeled as “groundwater-fed” as compared to the others (not

shown). Similarly, the consideration of the proglacial streams would imply the glacier cover fraction

to be included into the models. This addition of one calibration parameter was not considered
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justified given that this group contains only one catchment. In total, 26 catchments were used for

the calibration and validation of the models, namely all those listed in Table 3 except watersheds 5,890

9 and 14.

4 Model evaluation

In order to rigorously evaluate the performance of the two models described in the previous sec-

tion, 5 of the 26 selected catchments were removed from the data set to create an independent

validation set (watersheds 3, 6, 11, 13 and 27, displayed in orange in Fig. 1). Caution was given895

to single out basins with different size, mean elevation and geographic location. Among the four

climatic regions of Switzerland, only the Jura could not be represented in the validation set, given

that only one station (number 26) among the 26 available was located in this area.
✿

A
✿✿✿✿✿✿✿✿

bootstrap
✿✿✿

on

✿✿

the
✿✿✿✿✿✿✿✿✿

validation
✿✿✿✿✿✿✿

stations
✿✿✿✿

was
✿✿✿

not
✿✿✿✿✿✿✿

possible
✿✿✿✿✿✿✿

because
✿✿✿

of
✿✿✿

too
✿✿✿✿

high
✿✿✿✿✿✿✿✿✿✿✿✿

computational
✿✿✿✿✿✿✿✿✿✿✿✿

requirements.
✿✿✿✿✿✿✿

Indeed,

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Burnham and Anderson (2002) recommend
✿✿✿✿✿

using
✿✿

at
✿✿✿✿

least
✿✿✿✿✿✿

10’000
✿✿✿✿✿✿✿✿

bootstrap
✿✿✿✿✿✿✿✿

samples,
✿✿✿✿✿

which
✿✿✿

led
✿✿

to
✿✿

a900

✿✿✿✿✿✿✿✿✿✿

prohibitively
✿✿✿✿

high
✿✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿

evaluations
✿✿

in
✿✿✿

our
✿✿✿✿✿

case.

The measurement time period is also split into a calibration (2007–2012) and a validation (all dates

before and including 2006) period. Only the measurements performed by the calibration stations—

whose drainage area is marked in green in Fig. 1—during the period 2007–2012 are used to calibrate

the models. Four different validation sets can be formed with the remaining station-months:905

1. the data set containing the measurements of the validation stations during the calibration pe-

riod. This set can be used to evaluate the ability of the models to make predictions in ungauged

basins.

2. the data set containing the measurements of the calibration stations during the validation pe-

riod. This set will be used to evaluate the precision of the models when predicting stream910

temperature in past or future years.

3. the data set formed by the measurements of the validation stations during the validation period.

This set serves to evaluate the performance of the models when predicting stream temperature

both in ungauged basins and in ungauged years.

4. the data set corresponding to the union of all three previous validation sets, which may be used915

to obtain a synthetic evaluation of the precision of the models.

The complete data set is almost equally subdivided into its calibration and validation parts, with the

former containing 1223 station-months and the validation sets 1–4 regrouping 360, 705, 204 and

1269 station-months, respectively.

As mentioned in Sect. 3.1, the value of the characteristic stream length Lc is expected to change920

over the course of the year. In order to ease capturing of this variability, the physically-based
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✿✿✿✿✿✿✿✿✿✿✿✿✿

physics-inspired
✿✿✿✿✿✿✿✿

statistical
✿

model is calibrated over each season separately. As such, the calibration

and validation data sets are each subdivided into four groups, corresponding to winter (January–

March), spring (April–June), summer (July–September) and autumn (October–December), respec-

tively. Each one of these subgroups contains approximately one fourth of the station-months origi-925

nally belonging to the parent group. The
✿✿✿✿✿✿✿

standard regression model is calibrated over all seasons at

once, but evaluated in each season separately so as to investigate a potential effect of the period of

the year on its precision.

Since the physically-based
✿✿✿✿✿✿✿✿✿✿✿✿✿

physics-inspired model expresses stream temperature as a linear func-

tion of air temperature, it cannot reproduce the asymptotic behavior of the former as the latter drops930

below 0◦C. Consequently, data points associated with negative air temperature values are removed

from the data set before calibration (Kelleher et al., 2012). When evaluating the model over the

validation sets, all stream temperatures predicted to be negative are replaced with 0◦C values.

In the following, the best seasonal formulations of the physically-based
✿✿✿✿✿✿✿✿✿✿✿✿✿

physics-inspired
✿

model are

presented first. The precision of this model is then evaluated, and the influence of the stream network935

resolution on the model results investigated. Finally, comparison is made with the regression-based

✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿

regression
✿

model. All the results presented in this section will be discussed and analyzed in

Sect. 5.

4.1 Model formulations

Asmentioned in Sect. 3.1.2, the different possible formulations of the physically-based
✿✿✿✿✿✿✿✿✿✿✿✿✿

physics-inspired940

✿✿✿✿✿✿✿✿

statistical model are ranked in each season according to their respective AICc value. Following

Burnham and Anderson (2002), AICc is preferred here over the classical definition of the Akaike in-

formation criterion (AIC) since it includes a correction term for finite-sized data sets
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Burnham and Anderson, 2002).

It should be mentioned that
✿

,
✿✿✿✿✿✿✿✿

following
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Burnham and Anderson (2002),
✿

AICc is computed by cali-

brating the models not over the calibration set only, but rather over the entire data set (i.e. both the945

calibration set and validation set 4). Only in a second time is each model calibrated over just the

calibration set, so as to evaluate its performances in terms of RMSE, R2 and bias.

Table 4 presents the best model formulations selected in each season, ranked according to their

respective Akaike weights wi. The latter corresponds to the probability of each model to be a better

descriptor of the observed data (according to information theory) as compared to the model with the950

minimumAICc value (Burnham and Anderson, 2002; Wagenmakers and Farrell, 2004). Considering

models with wi ≤ 0.1 to be statistically insignificant, it can be observed that only a few formulations

were identified in each season as being relevant for stream temperature prediction. The characteristic

stream length Lc is found to be consistent among these formulations, with a value of 4 km in spring,

summer and autumn, and 8 km in winter, regardless of the formulation.955

The model selection reveals the radiation term γφr to be preferentially expressed as a function of

topographical shading fs and riparian forest cover fraction ff, or as a function of fs alone. Among
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the tested buffer widths used to compute ff, none of the three values 50, 100 or 200 m prevails

significantly over the others. The order in which they appear in the ranked models varies depending

on the season; for example in winter, forest cover computed over a 100 m wide buffer is expected to960

be a better predictor of γφr than forest cover over a 50 m wide buffer, whereas the opposite is true in

spring. Focusing on each season separately, the linear coefficient associated with any given term is

observed to have a fairly constant value among the different expressions tested for γφr. For example,

the coefficient multiplying fs remains within a narrow range (at most 1◦C large) in each season.

This behavior is even more pronounced in the case of the term associated with the source and lat-965

eral inflow temperatures (Ts and Tℓ). This term is expressed as a linear function of air temperature,

whose slope aw and intercept bw are constant among the various model formulations in a given sea-

son (see Table 4). The values of aw are observed to be rather low independently of the period of the

year, which indicates a weak coupling between the stream source (resp. lateral inflow) temperature

and air temperature. Moreover, aw and bw differ among the seasons in such a way that Ts and Tℓ are970

the least coupled to air temperature in winter and the most in summer.

The model ranking based on AICc also identified a single expression for η in each season. This

parameter is found equal to one in summer and autumn, and zero in winter. Its expression is slightly

more complicated in spring, where the selected formulation is the one based on the source drainage

area (see Sect. 3.1.2).975

4.2 Model performance

The RMSE, R2 and bias of the best selected model formulation in each season—i.e. the one with

wi = 1—are reported in Table 5. Based on the results of the evaluation over validation set 4, the

model precision is observed to be rather satisfactory. Its RMSE and R2 are relatively constant over

the year (about 1.3◦C and 0.87, respectively), except in winter where the value of the coefficient980

of determination is much lower (0.55). Similarly, the bias is small in all seasons (−0.11 to 0.14◦C)

apart from winter (−0.47◦C).

Regarding the different validation sets, it can be observed in Table 5 that the model performs better

when predicting in ungauged catchments as compared to simulating past or future years. Indeed, the

RMSE values computed using validation set 1 are smaller than those based on set 2, particularly in985

winter, autumn and summer. Similarly, the values of R2 are higher over set 1 than over set 2, despite

the fact that the model bias is larger over the former set as compared to the latter. As expected,

the weakest model performances are generally associated with validation set 3, which contains the

measurements performed by the validation stations during the validation period. The only noticeable

exception is in summer, where the model evaluation over set 3 provides satisfactory results (RMSE=990

1.13◦C, R2 = 0.90, bias=−0.01◦C).
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4.3 Influence of the stream network resolution

The results reported above are based on the stream network geometries extracted from the land cover

map at scale 1:25’000 (see Sect. 3.1.2). These geometries directly affect the values of the distance-

averaged predictor variables, since the operator
〈
·
〉
L
averages over the entire stream network. As a995

consequence, modifying the network resolution is expected to impact the model performance.

To test this hypothesis, two additional stream networks with coarser resolution than the original

one were investigated. These networks were obtained by removing stream segments with Strahler or-

der 1, and those with Strahler order 1 and 2, respectively. Through this procedure, the mean drainage

density of the 26 selected catchments decreased from 2.1 km km−2 for the original network to1000

0.5 km km−2 for the coarsest one, passing through 1.0 km km−2 for the intermediate resolution

network. The different model formulations were evaluated over the two additional networks using

the same procedure as described in the previous section. Although the results are not reported here,

it was essentially observed that the network resolution had little influence on the ranking of the

model formulations based on AICc in each season. Almost all selected models were associated with1005

a characteristic stream length Lc = 4 or 8 km, as in the case of the original stream network. The

parametrization of the net radiation heat flux γφr was also similar to the one reported in Table 4.

Topographical shading and riparian forest cover remained the two most statistically significant pre-

dictors for this term, except during winter, where stream orientation appeared as a relevant variable.

The values of the coefficients aw and bw were noted to vary little among the selected model formu-1010

lations in a given season. Finally, the parameter η was preferentially expressed as a constant term.

Its value was identified as being zero in all seasons except summer in the case of the intermediate

resolution stream network, whereas its parametrization was close to the one described in Table 4 in

the case of the coarser network.

As a consequence of the little influence of the network resolution on the model parametrization,1015

few variations in the model precision were observed between the three stream networks. As seen in

Fig. 3, no clear tendency can be identified among the residuals. At most can a small increase in the

model prediction error be detected for the coarsest network as compared to the first two, especially

in autumn. The largest absolute residuals are also observed to be generated by this network. On

the other hand, the strong bias previously noted in winter is present in the case of the intermediate1020

resolution network, but less so in the case of the coarsest resolution one.

4.4 Comparison with the
✿✿✿✿✿✿✿✿

standard regression model

This section describes the characteristics of the calibrated
✿✿✿✿✿✿✿

standard
✿

regression model first, before

presenting the results of its evaluation in a second step. Figure 4 pictures the observed monthly

mean stream temperature, z-scored and averaged over the 21 calibration stations, as a function of1025

T̂a over the period 2007–2012. As can be observed, the relationship between these two quantities

30



displays a small hysteresis effect, which can be explained by stream cooling due to snow-melt in

spring (Mohseni et al., 1998). The logistic equation introduced by Mohseni et al. (1998) is fitted to

each one of the hysteresis branches separately,

T̂ =−1.87+
4.88

1+ e−0.99·(T̂a−0.66)
(in January–June), (27)1030

T̂ =−1.86+
3.96

1+ e−1.16·(T̂a−0.06)
(in July–December). (28)

It should be noted that the parameters corresponding to the lower and upper asymptotic values of the

logistic curve are particularly sensitive to the data points located at both ends of the hysteresis. To

limit inaccuracy errors, the temperatures measured in January and July were used to fit both branches

of the hysteresis, as they usually correspond to the annual extreme values. Equations (27)–(28) are1035

those used in the model to determine the z-scored stream temperature T̂ at any location based on T̂a

(see Sect. 3.2).

The multi-linear regression models which were selected to estimate the annual mean T i and the

standard deviation σi of stream temperature in a given year are presented in Table 6. They correspond

to the models associated with the lowest AICc values among the tested formulations (see Sect. 3.2).1040

As observed in the table, the characteristic stream length used by the operator
〈
·
〉
L
to average the

predictor variables over the stream networks is significantly different in the two cases: Lc = 4 km

for the T i model, whereas Lc = 32 km for the σi one.

Table 7 summarizes the prediction errors of the
✿✿✿✿✿✿✿

standard stream temperature regression model

when evaluated over validation set 4 using the original stream network. Comparison with Table 51045

reveals that its precision is greater than the one of the physically-based
✿✿✿✿✿✿✿✿✿✿✿✿✿

physics-inspired
✿

model. Its

RMSE is about 0.2◦C lower, its R2 about 0.03 to 0.12 larger, and its absolute bias 0.05 to 0.20◦C

smaller depending on the season. However, its performance worsens when using the two stream

networks with coarser resolution: its yearly average RMSE increases to 1.26◦C in the case of the

intermediate resolution network, and even 1.29◦C for the coarsest network, which is close to the1050

value obtained with the physically-based
✿✿✿✿✿✿✿✿✿✿✿✿✿

physics-inspired
✿

model.

5 Discussion

The formulations of the physically-based
✿✿✿✿✿✿✿✿✿✿✿✿✿

physics-inspired
✿

model selected by AICc ranking are con-

sistent among the different seasons. In particular, topographical shading systematically appears to

be the strongest predictor of the net radiation heat flux γφr. This observation is not particularly sur-1055

prising in a mountainous country like Switzerland, where some valleys are steep enough for their

bottom not to be illuminated by direct sun light for some period of the year. The basins referred to

as numbers 14 and 24 in Table 3 are examples of such watersheds, both having a mean catchment

slope larger than 35 degrees. Riparian forest cover fraction corresponds to the second most important

predictor for the net radiation heat flux term. It was rather unexpected to identify this parameter as1060
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relevant during autumn and winter, especially since more than half of the selected catchments are

mainly covered with deciduous forests due to their relatively low mean elevation (< 1000 m). This

result has to be balanced with the fact that a given fraction increase in riparian forest cover is pre-

dicted by the model to have an effect on γφr about 4 to 6 times smaller in magnitude than the same

fraction increase in topographical shading. It should also be reminded that the precision of the model1065

is rather low in winter, hereby questioning the validity of its parametrization in this season. Certainly

more unexpected is the absence of solar radiation among the predictors of γφr, which will be ex-

plained below. Regarding the parametrization of the discharge fraction due to lateral water inflow

η, the model predicts the water in the stream channel to originate principally from surface and sub-

surface runoff during summer and autumn (η = 1). This partly matches our expectations, since the1070

fraction of discharge originating from the sources is expected to decrease when moving downstream

along a given network. The characteristic catchment size defining the transition from source-water-

dominated to lateral-inflow-dominated discharge is controlled here by Lc, which is equal to 4 km

in summer and autumn. This value is smaller than the main channel length in more than 90% of

the selected watersheds (not shown), hereby strengthening our confidence in the parametrization of1075

η during these two seasons. On the other hand, a value of 1 for η in all catchments may appear as

a too simplified approach (see below). The questioning of the parametrization of η is all the more

true in winter, where its value is predicted to be zero. Only in spring did the model ranking select

the more physically-based formulation for η, expressed as a function of the area drained by each

source. Concerning the parametrization of the source and lateral inflow temperatures, it should be1080

mentioned that the linear expression as a function of air temperature was systematically preferred

over the constant term. This certainly results from the large altitudinal range covered by the se-

lected catchments, which does not allow for a constant inflow temperature to reflect the diversity of

encountered climatological conditions, and mainly air temperature.

As defined in Eq. (22), the physically-based
✿✿✿✿✿✿✿✿✿✿✿✿✿

physics-inspired model linearly relates air temper-1085

ature to stream temperature through the proportionality coefficient ω3. The latter is compared in

Fig. 5 with its actual observed value, namely the slope of the regression line between the monthly

mean temperature measurements of the stream and air. As seen in the figure, the model systemat-

ically overestimates the value of ω3, particularly in winter and summer were the mean bias equals

0.2. Referring to Eq. (22), this implies that ω1 and ω2 are globally underestimated by the model,1090

hereby indicating that the parametrization of the factor η could possibly be improved. As noted in

Sect. 3.1.2, a more physically-based expression could be used to compute η, as long as a geomor-

phological analysis of the river watersheds can be performed. This approach was not investigated

here for the reasons mentioned earlier.

The overestimation of ω3 is probably at the origin of the fact that solar radiation is unexpectedly1095

missing from the selected expressions for the net radiation heat flux γφr (see Table 4). Contrary to

the
✿✿✿✿✿✿✿

standard regression model, the physically-based
✿✿✿✿✿✿✿✿✿✿✿✿✿

physics-inspired
✿

model presents the advantage
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that the calibration range of each one
✿✿✿✿

most of its parameters can be restricted based on physical

considerations (see Table. 2). An attempt was made at removing these constraints, which resulted

in incoming short-wave radiation being present in almost all models for γφr, but associated with a1100

negative coefficient. It was concluded that the unconstrained model takes advantage of the fact that

the annual cycles of air temperature and solar radiation have a similar shape to artificially reduce

the value of air temperature by subtracting a fraction of solar radiation, hereby compensating for the

too large value of ω3. This observation argues once more in favor of a better parametrization of the

factor η.1105

As mentioned in Sect. 4, the characteristic stream length Lc is found to be of the order of 4–

8 km regardless of the season or the stream network resolution in the case of the physically-based

✿✿✿✿✿✿✿✿✿✿✿✿✿

physics-inspired
✿

model. This range is in agreement with the findings of Isaak et al. (2010) and

Macedo et al. (2013). Hrachowitz et al. (2010) and Chang and Psaris (2013) rather concluded that

Lc was around 1 km, however they did not investigate values for Lc larger than 1 km. Contrary1110

to our expectations, we do not observe a marked variation of Lc across seasons, probably due to

the fact that we assumed a single value for all the catchments. The annual cycle of Lc may have

been better captured by separately calibrating this parameter in each individual catchment
✿✿✿✿✿✿✿✿✿

catchment

✿✿✿✿✿✿✿✿✿✿

individually, but this would have contradicted our aim to derive a regional model. It should be em-

phasized that the absence of observed annual cycle for Lc does not question the decision to cali-1115

brate the physically-based
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

physics-inspired model on a seasonal basis, since the source temperature

parametrization is observed to vary significantly over the year (see Table 4).

Our model is rather equivocal regarding the width of the riparian buffer which is relevant for

the determination of stream temperature at a given point. As a matter of fact, none of the tested

buffer widths appears to prevail over the other ones in the retained parametrizations of γφr. This1120

ambiguity reflects the range of buffer widths used in the literature, which extends from 30 m (e.g.

Jones et al., 2006; Macedo et al., 2013) to 200 m (e.g. Scott et al., 2002; Segura et al., 2014).
✿✿✿✿

This
✿✿✿✿

also

✿✿✿✿✿

points
✿✿

at
✿✿✿

the
✿✿✿✿✿✿✿✿

difficulty
✿✿

to
✿✿✿✿✿✿✿✿✿

adequately
✿✿✿✿✿✿✿

account
✿✿

for
✿✿✿

the
✿✿✿✿✿

effect
✿✿✿

of
✿✿✿✿✿✿

riparian
✿✿✿✿✿✿✿✿✿

vegetation
✿✿✿✿✿

using
✿✿✿

the
✿✿✿✿✿✿✿✿

available

✿✿✿✿✿

spatial
✿✿✿✿

data
✿✿✿✿

sets,
✿✿✿✿✿✿

which
✿✿✿✿

often
✿✿✿✿

lack
✿✿✿✿✿✿✿✿✿

important
✿✿✿✿✿✿

details
✿✿✿✿

such
✿✿

as
✿✿✿

the
✿✿✿✿✿✿✿✿✿

distinction
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿✿✿

deciduous
✿✿✿✿

and

✿✿✿✿✿✿✿✿

coniferous
✿✿✿✿✿✿

forest.1125

The precision of the physically-based
✿✿✿✿✿✿✿✿✿✿✿✿✿

physics-inspired
✿

model was reported in the previous section

to be rather low in January–March. This can be explained by the fact that the non-linearity of the

stream–air temperature relationship at low air temperature values is not captured by the model. The

latter rather simulates a sharp transition from the linear regime to a constant one, since the stream

temperature values predicted to be negative are systematically replaced with 0◦C. This implies a1130

faster decrease towards 0◦C, which is at the origin of the strong negative model bias in winter.

As noticeable in Table 5, the model RMSE is larger in spring as compared to the other seasons.

This is attributable to the fact that many of the selected watersheds are impacted by snow melt in

spring. Since the snow cover conditions are strongly variable both spatially and temporally, a large
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dispersion of the stream temperature values is typically observed in spring. The model performs1135

nonetheless relatively well in this season, for its R2 value is of the same magnitude in spring as

during the rest of the year.

Advantage can be taken of the physical basis of the model
✿✿✿✿✿✿

physics
✿✿✿✿✿✿✿✿✿

integrated
✿✿✿✿

into
✿✿✿

the
✿✿✿✿✿✿

model

✿✿✿✿✿✿✿

structure
✿

to investigate some aspects of the stream temperature dynamics. For example, Fig. 6 dis-

plays the respective values of the factors ω1, ω2 and ω3 appearing in Eq. (22) as a function of the1140

season. These factors correspond to the weights associated with the mean source temperature T s, av-

erage lateral inflow temperature along the network
〈
Tℓ

〉
L
and average equilibrium temperature along

the network
〈
Te

〉
L
, respectively. As seen in the figure, ω3 is the largest factor of the three in all sea-

sons, with a value of about 0.6–0.8. This results from the fact that stream temperature is primarily

impacted by the atmospheric conditions. The other two factors are nonetheless non-negligible, with1145

ω1 being of the order of 0.4 in winter and ω2 being approximately equal to 0.2 from April to Decem-

ber. The value of ω1 has to be put into perspective with respect to the fact that our confidence in the

model parametrization is relatively low in winter. Moreover, following the above discussion about

the computation of the factor η, the values reported here for ω2 should be considered as a lower limit.

It therefore appears that not only the net total heat flux at the air–water interface is important in de-1150

termining stream temperature, but also the heat flux associated with the lateral inflow of water. This

conclusion is in agreements with the findings of Bogan et al. (2004), who found that the precision of

their stream temperature model was improved by including a term accounting for the lateral water

inflow. Similarly, Herb and Stefan (2011) mention that the heat input associated with groundwater

infiltration may be of the same order of magnitude as the heat flux due to atmospheric forcing in1155

some cases. This effect seems to be largely underestimated in the literature, since the lateral inflow

of water has often been neglected in previous stream temperature models (e.g. Edinger et al., 1968;

Bogan et al., 2003; Caissie et al., 2005; Bustillo et al., 2014).

✿✿✿

The
✿✿✿✿✿✿✿✿✿✿

simplifying
✿✿✿✿✿✿✿✿✿✿

assumptions
✿✿✿✿✿✿

(i)–(vi)
✿✿✿✿✿✿✿

reported
✿✿

in
✿✿✿✿

Sect.
✿✿✿✿✿

3.1.1
✿✿✿

are
✿✿✿✿✿

likely
✿

to
✿✿✿✿✿

have
✿✿✿✿✿✿

limited
✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

performance

✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

physics-inspired
✿✿✿✿✿✿

model.
✿✿

In
✿✿✿✿✿✿✿✿

particular,
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

assumption
✿✿

of
✿

a
✿✿✿✿✿✿✿

spatially
✿✿✿✿✿✿✿✿✿✿✿✿

homogeneous
✿✿✿✿✿

lateral
✿✿✿✿✿✿

inflow1160

✿✿✿

rate
✿✿

qℓ
✿✿

is
✿✿✿✿✿✿✿✿

expected
✿✿

to
✿✿✿

fail
✿✿

in
✿✿✿✿

most
✿✿✿✿✿✿✿✿✿✿

catchments.
✿✿✿✿

For
✿✿✿✿✿✿✿✿

example,
✿✿✿✿

only
✿✿✿

the
✿✿✿✿✿✿

highest
✿✿✿✿✿✿

regions
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿

low-altitude

✿✿✿✿✿✿✿✿✿

catchments
✿✿✿✿✿✿✿✿✿

experience
✿✿✿✿✿✿✿✿✿

snow-melt
✿✿✿

in
✿✿✿✿✿✿

spring.
✿✿

In
✿✿✿✿✿✿✿✿✿✿✿✿✿

higher-altitude
✿✿✿✿✿✿✿✿✿✿

catchments,
✿✿✿✿✿✿✿✿✿

snow-melt
✿✿✿✿✿

leads
✿✿

to
✿✿✿

an

✿✿✿✿✿✿✿

increase
✿✿

in
✿✿

qℓ
✿✿✿✿

only
✿✿

at
✿✿✿

low
✿✿✿✿✿✿✿

altitudes
✿✿

at
✿✿✿

the
✿✿✿✿✿✿✿✿

beginning
✿✿

of
✿✿✿✿✿✿

spring,
✿✿✿✿

and
✿✿✿✿

only
✿

at
✿✿✿✿✿✿

higher
✿✿✿✿✿✿✿

altitudes
✿✿✿✿✿

latter
✿✿

in
✿✿✿

the

✿✿✿✿✿✿

season.
✿✿✿✿✿

These
✿✿✿✿✿✿✿✿✿✿

mechanisms
✿✿✿✿✿✿✿✿

introduce
✿✿✿

an
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

altitude-dependence
✿✿

in
✿✿

qℓ
✿✿✿✿✿✿

which
✿✿✿✿✿✿✿✿✿

contradicts
✿✿✿

our
✿✿✿✿✿✿✿✿✿✿

assumption

✿✿✿

and
✿✿✿✿

may
✿✿✿✿✿

partly
✿✿✿✿✿✿

explain
✿✿✿

the
✿✿✿✿✿✿

higher
✿✿✿✿✿✿

RMSE
✿✿

of
✿✿✿

the
✿✿✿✿✿

model
✿✿

in
✿✿✿✿✿✿

spring.
✿✿✿✿✿✿✿✿

Similarly,
✿✿✿✿✿✿✿✿✿✿

assumption
✿✿✿

(v)
✿✿✿✿✿✿✿✿

expresses1165

✿✿✿✿✿

stream
✿✿✿✿✿✿

width
✿✿

as
✿

a
✿✿✿✿✿✿

linear
✿✿✿✿✿✿✿

function
✿✿

of
✿✿✿✿✿✿✿✿✿

discharge.
✿✿✿

As
✿✿✿✿✿✿✿✿

compared
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿

typical
✿✿✿✿✿✿✿✿✿

power-law
✿✿✿✿✿✿✿✿✿✿

relationship

✿✿✿✿

used
✿✿

in
✿✿✿✿✿

fluvial
✿✿✿✿✿✿✿✿✿✿✿✿✿

geomorphology
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Knighton, 1998),
✿✿✿

this
✿✿✿✿✿✿✿✿✿✿✿✿

simplification
✿✿✿

may
✿✿✿✿

lead
✿✿

to
✿✿

an
✿✿✿✿✿✿✿✿✿✿✿✿✿

overestimation
✿✿

of

✿✿✿✿✿

stream
✿✿✿✿✿

width
✿✿

at
✿✿✿✿

low
✿✿✿✿✿✿✿✿

discharge
✿✿✿✿✿✿✿✿✿

rates—i.e.
✿✿

in
✿✿✿✿

small
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

catchments—and
✿✿

to
✿✿

an
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

underestimation
✿✿

of
✿✿✿✿✿✿

stream

✿✿✿✿✿

width
✿✿

at
✿✿✿✿

high
✿✿✿✿✿✿✿✿

discharge
✿✿✿✿✿✿✿✿✿

rates—i.e.
✿✿

in
✿✿✿✿

large
✿✿✿✿✿✿✿✿✿✿

catchments.
✿✿✿✿

This
✿✿✿✿

may
✿✿✿

in
✿✿✿

turn
✿✿✿✿✿✿✿✿

decrease
✿✿✿

the
✿✿✿✿✿

ability
✿✿✿

of
✿✿✿

the

✿✿✿✿✿

model
✿✿

to
✿✿✿✿✿✿✿

simulate
✿✿✿✿✿✿✿✿✿

catchments
✿✿✿

of
✿✿✿✿✿✿

various
✿✿✿✿✿

sizes,
✿✿✿✿✿

hereby
✿✿✿✿✿✿✿✿✿

increasing
✿✿

its
✿✿✿✿✿✿✿✿✿

prediction
✿✿✿✿

error.
✿✿✿✿✿✿✿✿✿✿

Assumption
✿✿✿✿

(vi)1170

✿✿✿✿✿

stating
✿✿✿✿

that
✿✿

all
✿✿✿✿✿✿✿

sources
✿✿

in
✿

a
✿✿✿✿✿

given
✿✿✿✿✿✿✿✿✿

catchment
✿✿✿✿

have
✿✿✿

the
✿✿✿✿✿

same
✿✿✿✿✿✿✿✿

discharge
✿✿✿✿

rate
✿✿

is
✿✿✿

also
✿✿✿✿✿✿✿✿✿✿

disputable.
✿✿✿✿

This
✿✿

is
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✿✿✿✿✿✿✿✿✿

particularly
✿✿✿✿

true
✿✿✿

for
✿✿✿✿✿

small
✿✿✿✿✿✿✿✿✿✿

catchments,
✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿✿

short
✿✿✿✿✿✿✿

distance
✿✿

to
✿✿✿

the
✿✿✿✿✿

outlet
✿✿✿

and
✿✿✿

the
✿✿✿✿

low
✿✿✿✿✿✿

number
✿✿✿

of

✿✿✿✿✿✿

sources
✿✿✿

do
✿✿✿

not
✿✿✿✿✿

allow
✿✿✿

the
✿✿✿✿✿✿✿✿

averaging
✿✿✿✿✿

effect
✿✿

to
✿✿

be
✿✿✿✿✿✿✿✿✿

significant
✿✿✿✿✿✿✿

enough
✿✿

to
✿✿✿✿✿✿✿✿✿✿

compensate
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿

introduced

✿✿✿✿

error.
✿

✿✿

In
✿✿✿✿✿✿✿

addition
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

simplifying
✿✿✿✿✿✿✿✿✿✿

assumptions
✿✿✿✿✿✿✿✿

discussed
✿✿✿✿✿✿

above,
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

parametrizations
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

unknown1175

✿✿✿✿

terms
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿

analytical
✿✿✿✿✿✿

solution
✿✿✿✿✿✿

might
✿✿✿

also
✿✿✿✿

have
✿✿✿✿✿✿✿✿

impacted
✿✿✿

the
✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿

precision.
✿✿✿✿✿✿

Indeed,
✿✿✿

the
✿✿✿✿✿✿✿✿✿

estimation

✿✿

of
✿✿

the
✿✿✿✿✿✿

source
✿✿✿

and
✿✿✿✿✿✿

lateral
✿✿✿✿✿

inflow
✿✿✿✿✿✿✿✿✿✿✿

temperatures
✿✿✿✿✿

using
✿✿✿✿

only
✿✿

air
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿

has
✿✿✿✿✿✿✿

recently
✿✿✿✿

been
✿✿✿✿✿✿✿✿✿✿

questioned,

✿✿✿✿✿✿✿✿✿

particularly
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

catchments
✿✿✿✿✿✿✿✿

impacted
✿✿✿

by
✿✿✿✿✿

snow-
✿✿✿

or
✿✿✿✿✿✿✿✿✿✿

glacier-melt
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Leach and Moore, 2015).
✿✿✿✿✿

This

✿✿✿✿✿✿✿✿✿✿✿

simplification
✿✿✿✿

may
✿✿✿✿✿✿✿

notably
✿✿✿✿

have
✿✿✿✿✿✿✿✿✿✿

contributed
✿✿

to
✿✿✿✿✿✿✿

increase
✿✿✿

the
✿✿✿✿✿

model
✿✿✿✿✿✿✿

RMSE
✿✿

in
✿✿✿✿✿✿

spring.
✿✿✿✿✿✿✿✿✿

Regarding
✿✿✿

the

✿✿✿✿✿✿✿✿✿✿✿✿✿

parametrization
✿✿

of
✿✿✿

the
✿✿✿✿✿

term
✿✿✿✿✿✿✿✿✿

accounting
✿✿✿

for
✿✿✿✿

the
✿✿✿

net
✿✿✿✿✿✿✿✿

radiation
✿✿✿✿

heat
✿✿✿✿

flux
✿✿

at
✿✿✿

the
✿✿✿✿✿✿✿✿

air–water
✿✿✿✿✿✿✿✿✿

interface,1180

✿✿

the
✿✿✿✿

use
✿✿

of
✿✿

a
✿✿✿✿✿

linear
✿✿✿✿✿✿✿✿✿

expression
✿✿✿✿

may
✿✿✿✿✿✿

appear
✿✿

as
✿✿✿✿✿✿✿✿

limiting.
✿✿✿

We
✿✿✿✿✿✿✿

actually
✿✿✿✿✿

tested
✿✿

a
✿✿✿✿✿✿✿✿✿

power-law
✿✿✿✿✿✿✿

function
✿✿✿

as

✿✿✿✿

well,
✿✿✿

but
✿✿✿

did
✿✿✿

not
✿✿✿✿✿✿✿

succeed
✿✿

in
✿✿✿✿✿✿✿✿✿

calibrating
✿✿✿

the
✿✿✿✿✿✿

model
✿✿✿

due
✿✿

to
✿✿✿✿✿✿✿✿✿✿

convergence
✿✿✿✿✿✿

issues.
✿✿✿

We
✿✿✿✿

also
✿✿✿✿✿✿✿✿✿

considered
✿✿✿

an

✿✿✿✿✿✿✿✿

alternative
✿✿✿✿✿✿✿✿✿

expression
✿✿✿✿✿

based
✿✿✿

on
✿✿

an
✿✿✿✿✿✿✿✿✿

estimation
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

incoming
✿✿✿✿✿✿✿✿✿✿

atmospheric
✿✿✿✿✿✿✿✿

radiation
✿✿✿

and
✿

a
✿✿✿✿✿✿✿✿✿

first-order

✿✿✿✿✿✿✿✿✿✿✿✿

approximation
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

long-wave
✿✿✿✿✿✿✿✿

radiation
✿✿✿✿✿✿

emitted
✿✿✿

by
✿✿

the
✿✿✿✿✿✿

stream
✿✿✿✿

(not
✿✿✿✿✿✿

shown).
✿✿✿✿✿✿

Rather
✿✿✿✿

than
✿✿

an
✿✿✿✿✿✿✿✿✿✿✿✿

improvement,

✿✿✿

this
✿✿✿✿✿✿✿✿✿✿✿✿✿

parametrization
✿✿✿✿✿✿✿

actually
✿✿✿

led
✿✿

to
✿✿

a
✿✿✿✿✿✿✿

decrease
✿✿

in
✿✿✿

the
✿✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿

precision,
✿✿

as
✿

a
✿✿✿✿✿

result
✿✿✿

of
✿✿

its
✿✿✿✿✿✿✿

inability
✿✿✿

to1185

✿✿✿✿✿✿✿✿✿

compensate
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

overestimation
✿✿

of
✿✿

ω3
✿✿✿✿

(see
✿✿✿✿✿✿

above).
✿

As opposed to the physically-based
✿✿✿✿✿✿✿✿✿✿✿✿✿

physics-inspired
✿

model, the parameter values of the
✿✿✿✿✿✿✿

standard

regression model could not be constrained using physical considerations. As a result, the sign of

some of the linear coefficients relating the predictor variables to T i and σi are in contradiction with

our understanding of stream temperature dynamics (see Table 6). For example, the stream orientation1190

θ, measured as the cosine of the angle between north and the channel direction, is positively related

to the annual mean stream temperature T i. It was rather expected that north-oriented catchments

receive less radiation from the sun, hereby implying lower stream temperatures. The same observa-

tion is true for the riparian forest cover fraction, which is positively associated in the model with

the annual standard deviation σi of stream temperature. However, experimental observations tend1195

to conclude that riparian shading has a buffering effect on stream temperature, therefore dampening

the amplitude of the variations of the latter (see e.g. Moore et al., 2005). Despite these inconsis-

tencies, the
✿✿✿✿✿✿✿

standard regression model performs better than the physically-based
✿✿✿✿✿✿✿✿✿✿✿✿✿

physics-inspired

one in terms of RMSE, R2 and bias. This fact questions further the validity of the parametrization

of the physically-based
✿✿✿✿✿✿✿✿✿✿✿✿✿

physics-inspired model, which could certainly be improved (see Sect. 6).1200

On the other hand, the
✿✿✿✿✿✿✿

standard regression model appears to be much more sensitive to the stream

network resolution as compared to its counterpart, possibly as a consequence of its lack of physi-

cal basis
✿✿✿✿✿✿✿

elements
✿✿✿✿

into
✿✿

its
✿✿✿✿✿✿✿

structure. This lack does also not allow for the investigation of the physics

governing stream temperature, as can be done with the physically-based
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

physics-inspired model (see

Fig. 6).1205
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6 Conclusions

This study aimed at presenting a new
✿✿✿✿✿✿✿✿

statistical model for the prediction of monthly mean stream

temperature in ungauged basins. The model corresponds to an
✿✿

As
✿✿✿✿✿✿✿

opposed
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿

statistical

✿✿✿✿✿✿✿

methods,
✿✿✿✿

this
✿✿✿✿✿✿

model
✿✿

is
✿✿✿✿✿✿

devised
✿✿✿

so
✿✿

as
✿✿✿

to
✿✿✿✿✿✿✿✿✿✿

incorporate
✿✿✿✿✿✿✿

physical
✿✿✿✿✿✿✿✿✿✿✿✿

considerations
✿✿✿✿

into
✿✿✿

its
✿✿✿✿✿✿✿✿

structure.
✿✿✿

To

✿✿✿

this
✿✿✿✿

end,
✿✿

it
✿✿

is
✿✿✿✿

built
✿✿✿✿

upon
✿✿✿

the
✿

analytical solution to a
✿✿✿✿✿✿✿✿✿

simplified
✿✿✿✿✿✿✿

version
✿✿

of the one dimensional heat1210

advection equation, simplified using some approximations. Among the latter, the most important

one assumes the ratio of stream width to discharge to remain spatially constant. As opposed to

previous studies relying on the same approach, the heat advection equation is solved here .
✿✿✿✿✿✿✿✿

Contrary

✿✿

to
✿✿✿✿✿✿✿✿

previously
✿✿✿✿✿✿✿✿

reported
✿✿✿✿✿✿✿✿

analytical
✿✿✿✿✿✿✿✿

solutions,
✿✿✿

the
✿✿✿✿✿✿✿

present
✿✿✿

one
✿✿

is
✿✿✿✿✿✿✿

obtained
✿✿✿

by
✿✿✿✿✿✿

solving
✿✿✿

the
✿✿✿✿✿✿✿✿

equation over

an entire stream network instead of a single stream reach
✿✿✿

each. Moreover, the various terms of the1215

equation are also not supposed to be spatially homogeneous, which leads to the apparition of a space

averaging operator
〈
·
〉
L
applied to most terms of the solution. This operator uses a weight which

decreases exponentially with the distance to the catchment outlet, hereby giving more emphasis to

the points located near the gauging station. The extent of the spatial area over which the operator

acts is controlled by a parameter Lc, referred to as the stream characteristic length. This parameter is1220

typically dynamic, which explains why the model needs to be calibrated separately in each season.

Both the source and the lateral inflow terms—which are usually neglected—are retained in the final

solution to the heat advection equation. This notably enables the model to be applied in small wa-

tersheds, where the influence of source temperature on the value of stream temperature measured at

the catchment outlet cannot be discarded.1225

While most terms of the model expression could be evaluated based on
✿✿✿✿✿✿✿

analytical
✿✿✿✿✿✿✿✿✿

expression
✿✿✿✿

can

✿✿

be
✿✿✿✿✿✿✿✿

evaluated
✿✿✿✿✿

using
✿

meteorological observations or topographic maps, some required an additional

modeling effort.
✿✿✿✿✿

require
✿✿✿✿

data
✿✿✿✿✿✿

which
✿✿

is
✿✿✿

not
✿✿✿✿✿✿✿✿

available.
✿✿✿✿✿

These
✿✿✿✿✿

terms
✿✿✿

are
✿✿✿✿✿✿✿✿

replaced
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿✿✿✿

approximations

✿✿✿✿✿

based
✿✿

on
✿✿✿

the
✿✿✿✿✿✿

spatial
✿✿✿✿

data
✿✿✿✿

sets
✿✿

at
✿✿✿✿✿

hand. In particular, the net radiation heat flux at the air–water in-

terface was approximated
✿✿

is
✿✿✿✿✿✿✿✿

expressed
✿

as a linear combination of several predictor variables, e. g.1230

topographical shading or riparian forest cover.
✿✿✿✿✿✿✿✿✿✿✿

physiographic
✿✿✿✿✿✿✿✿

variables.
✿

Similarly, the source and

lateral inflow temperatures were expressed
✿✿

are
✿✿✿✿✿✿✿✿✿✿✿✿

approximated as a linear function of air temperature

measured at the source location and along the stream, respectively. Finally, the fraction η of discharge

at the catchment outlet originating from lateral water inflow along the network was
✿

is
✿

estimated

based on the number of sources in the watershed. These parametrizations present the advantage1235

that the information they require is readily available at the regional scale, namely: air temperature

measurements, a land cover map and a digital elevation map. They differ from the physically-based

parametrizations used in other studies (e.g. Bogan et al., 2004; Herb and Stefan, 2011), which require

measurements of meteorological variables being hard to interpolate in mountainous terrain, such as

wind speed or relative humidity
✿✿

As
✿✿

a
✿✿✿✿✿✿✿✿✿✿✿

consequence
✿✿

of
✿✿✿✿✿

these
✿✿✿✿✿✿✿✿✿✿✿✿✿

approximations,
✿✿✿

the
✿✿✿✿✿✿✿✿

resulting
✿✿✿✿✿✿

model
✿✿

is1240

✿✿✿✿✿✿✿✿

statistical
✿✿

in
✿✿✿✿✿✿

nature,
✿✿

but
✿✿✿✿✿✿✿✿✿✿✿

nevertheless
✿✿✿✿✿✿

retains
✿✿✿✿✿✿✿

physical
✿✿✿✿✿✿

aspects
✿✿✿

due
✿✿

to
✿✿✿

its
✿✿✿✿✿

global
✿✿✿✿✿✿✿

structure
✿✿✿✿✿

being
✿✿✿✿✿✿✿

derived

✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

heat-balance
✿✿✿✿✿✿✿✿

equation.
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The performance of the model is quite satisfactory, with a root-mean-square error of about 1.3◦C

and a coefficient of determination R2 of 0.87 when used for stream temperature prediction in “ther-

mally climate-driven” catchments. These catchments, which are by far the most abundant ones in1245

Switzerland, correspond to those with a glacier cover lower than 50% and whose stream is not im-

pacted by groundwater infiltration from deep aquifer. Model precision is the lowest in winter, due to

the inability of the model to reproduce the fact that stream temperature asymptotically tends towards

0◦C for negative air temperature values. Closer investigation of the model error could attribute part of

its imprecision to the parametrization of the factor η, which corresponds to the fraction of discharge1250

originating from the lateral inflow of water (in opposition to the discharge fraction originating from

the sources).

The precision of the model was also assessed by comparing it with a more simple
✿✿✿✿✿✿✿

standard re-

gression model. The latter was observed to perform slightly better, with a RMSE about 0.2◦C lower.

However, its parameters could not be interpreted from a physical point of view, hereby hindering the1255

restriction of their respective calibration ranges based on physical considerations. This led the re-

gression model to simulate some aspects of the stream temperature dynamics wrongly. For example,

some physiographic variables known to have a cooling effect on water temperature were modeled as

warming up the stream. The
✿✿✿✿✿✿✿

standard regression model was also observed to be much more sensitive

than its physically-based
✿✿✿✿✿✿✿✿✿✿✿✿✿

physics-inspired
✿

counterpart with respect to the stream network resolution.1260

When discarding all stream segments with a Strahler order equal to one, the RMSE of the regression

model increased from 1.12◦C to 1.26◦C, whereas the one of the physically-based
✿✿✿✿✿✿✿✿✿✿✿✿✿

physics-inspired

model remained constant up to 0.01◦C.

Despite a few deficiencies, the physically-based
✿✿✿✿✿✿✿✿✿✿✿✿✿

physics-inspired
✿✿✿✿✿✿✿✿

statistical
✿

model can be used

to analyse some aspects of the physics governing stream temperature. As an example, the relative1265

importance of each one of the stream heat sources could be determined from the model. Climatic

forcing was found to be the major driver of water temperature, as expected (e.g. Caissie, 2006). More

interestingly, the lateral inflow of water was identified as a non-negligible secondary heat flux. This

fact is confirmed by other studies (e.g. Bogan et al., 2004; Herb and Stefan, 2011), but nonetheless

fails to be accounted for in many stream temperature models (e.g. Caissie et al., 2005; Bustillo et al.,1270

2014). We therefore wish at emphasizing
✿✿

to
✿✿✿✿✿✿✿✿✿

emphasize
✿

the role of lateral water inflow on stream

temperature, even in catchments—such as those used in this study—which are not impacted by

groundwater infiltration originating from a deep aquifer.

Among the improvements that can be brought to the physically-based
✿✿✿✿✿✿✿✿✿✿✿✿✿

physics-inspired
✿

model,

a more accurate parametrization of the discharge fraction originating from lateral water inflow η1275

appears as a promising enhancement. In particular, η could be estimated from a geomorphological

analysis of the catchments. This approach was not retained here due to the discrepancy between

the stream networks predicted by the geomorphological analysis and the observed ones. In case it

could be implemented, such a revision is expected to improve the predicted slope of the stream–air

37



temperature curve. A geomorphological analysis could also positively influence the modeling of the1280

source and lateral inflow temperatures. The parametrization of these two terms could be improved by

including predictor variables accounting for e.g. the glacier cover fraction or the mean altitude of the

area drained by each source (resp. stream reach). As a matter of fact, surface and subsurface runoffs

originating from glacier-covered or high-altitude subcatchments are expected to have particularly

low temperatures, especially during the snow- and ice-melt season. The model could also be sub-1285

stantially improved in case the characteristic stream length Lc,
✿✿✿✿✿✿

which
✿✿✿✿✿✿✿

controls
✿✿✿

the
✿✿✿✿✿✿

extent
✿✿

of
✿✿✿✿

the

✿✿✿✿✿

spatial
✿✿✿✿

area
✿✿✿✿

over
✿✿✿✿✿✿

which
✿✿✿

the
✿✿✿✿✿✿✿

operator
✿✿✿✿

〈
·
〉
L✿✿✿✿

acts,
✿

could be computed instead of calibrated. Indeed, Lc

does not only present a seasonal variation but also differs across the individual catchments, a fact

which was neglected in the present work. The a priori computation of Lc would imply the ratio of

discharge to channel width to be independently estimated in each catchment. Such an estimation1290

would in turn require the stream rating curve to be known, hereby limiting the applicability of the

model to gauged watersheds. Finally, one might expect the model precision to improve by using

a more physically-based parametrization for the net radiation heat flux—instead of the multi-linear

model used here. We actually tested an alternative expression based on an estimation of the incoming

atmospheric radiation and a first-order approximation of the long-wave radiation emitted by the1295

stream (not shown). Rather than an improvement, this parametrization led to a decrease of the model

precision, as a result of its inability to compensate for the overestimation of another parametrized

term (ω3) in the model—contrary to the multi-linear expression.

We expect the physically-based
✿✿✿✿✿✿✿✿✿✿✿✿✿

physics-inspired
✿

model to be easily transferable to other regions

of the globe. The parametrization of the net radiation heat flux at the air–water interface might need1300

some adaptation in order to correctly reflect the dominant physiographic controls on local stream

climate. For example, topographic shading is certainly not a relevant predictor variable over flat

regions. Similarly to the approach presented in this work, the most appropriate set of predictor vari-

ables for the net radiation heat flux over a particular region can be obtained through AICc ranking.

Once set, the stream temperature model can be used to investigate e.g. the extent of the stream net-1305

work which is thermally suitable for sensitive fish species at the regional scale (e.g. Isaak et al.,

2010). This investigation can in turn serve as a basis for the introduction of regulation policies or

protection measures.

Appendix A: Solution to the energy-balance equation over a stream network

The analytical solution to Eqs. (5)–(6) is first derived for the case of a simple stream reach of lengthL1310

(see Fig. 7a). Let the downstream distance be denoted as x, with x0 and x1 referring to the positions

of the reach origin and end points, respectively. The dischargeQ(x1) and stream temperature T (x1)
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can be easily computed by integrating Eqs. (5)–(6) between x0 and x1,

Q(x1) =Q(x0)+ qℓL, (A1)

T (x1) =
Q(x0)

Q(x1)
e−d(x0)/LcT (x0)+

1

Q(x1)

x1∫

x0

e−d(x)/Lc ψ(x) dx, (A2)1315

where

ψ(x) = qℓTℓ(x)+Q(x)

(
γ φr(x)+Ta(x)

Lc

−
g

cp

dz

dx

)
. (A3)

In Eq. (A2), d(x) = x1−x denotes the distance between any point x and the downstream end point

x1 (see Figure 7a).

The above equations require the values of discharge and temperature at the upstream end of the1320

reach to be known. By applying them iteratively to all the reaches of a network, starting from the

most downstream one, the expressions for discharge Qout and water temperature Tout at the network

outlet can be expressed as a function of the discharges and temperatures of the sources. At the

confluences, the discharges Qu,1 and Qu,2 and the temperatures Tu,1 and Tu,2 of the two upstream

reaches can be related to the discharge Qd and temperature Td of the downstream reach using the1325

mass and energy-balance equations (Westhoff et al., 2007),

Qd =Qu,1+Qu,2, (A4)

Td =
Qu,1

Qd

Tu,1+
Qu,2

Qd

Tu,2. (A5)

Based on Eqs. (A1)–(A5), the derivation of the expressions for Qout and Tout is straightforward and

leads to the following relations,1330

Qout =

ns∑

i=1

Qs,i+ qℓLtot (A6)

Tout =

ns∑

i=1

Qs,i

Qout

e−ds,i/Lc Ts,i+
1

Qout

∫

L

e−d(x)/Lc ψ(x) dx. (A7)

In the above equations, ns refers to the number of sources in the network, Ltot denotes the total

length of the stream network, ds,i corresponds to the downstream distance of source point xs,i to the

network outlet, d(x) refers to the distance between any point x along the network and the network1335

outlet, L corresponds to the geometrical union of all reaches in the stream network, and Ts,i andQs,i

denote the stream temperature and discharge at source point xs,i, respectively. The reader is referred

to Fig. 7b for a graphical illustration of some of the variables. The integral over L is a short-hand

notation for the sum of the respective integrals over all the reaches in the network.

Equations (A6)–(A7) can be written in a more convenient form using space-averaging operators.1340

Replacing ψ with its expression defined in Eq. (A3), the integral on the right-hand side of Eq. (A7)

can be written as
∫

L

e−d(x)/Lc ψ(x) dx=A1 qℓ
〈
Tℓ

〉
L
+
A2
Lc

〈
γ φr+Ta−Lc

g

cp

dz

dx

〉
Q
, (A8)
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where the two averaging operators
〈
·
〉
L
and

〈
·
〉
Q
are defined as

〈
f
〉
L
=

1

A1

∫

L

e−d(x)/Lc f(x) dx, (A9)1345

〈
f
〉
Q
=

1

A2

∫

L

e−d(x)/Lc Q(x)f(x) dx, (A10)

for any integrable function f defined on L, with the normalizing factors A1 and A2 being defined as

A1 =

∫

L

e−d(x)/Lc dx,

=

nr∑

k=1

xk,1∫

xk,0

e−d(x)/Lc dx

=

nr∑

k=1

Lce
−dk/Lc

(
1− e−Lk/Lc

)
, (A11)1350

A2 =

∫

L

e−d(x)/Lc Q(x) dx

=

nr∑

k=1

xk,1∫

xk,0

e−d(x)/Lc Qk(x) dx. (A12)

In the above equations, nr denotes the number of reaches in the network; xk,0, xk,1 and Lk refer to

the upstream point, downstream point and length of reach k respectively; dk refers to the distance

along the stream network between xk,1 and the network outlet; and Qk(x) denotes the discharge1355

along reach k (see Fig. 7b). Based on Eq. (A1), Qk may be expressed as

Qk(x) =Q(xk,0)+ qℓ(x−xk,0) =
∑

j∈Πk

Qs,j + qℓ
∑

r∈Γk

Lr + qℓ(x−xk,0), (A13)

where Πk and Γk denote the set of source points and reaches draining into reach k, respectively, as

illustrated in Fig. 7c. Inserting the above equation in Eq. (A12) and re-arranging the terms, A2 may

be written as1360

A2 =

ns∑

i=1

Qs,i

∑

j∈Ωi

xj,1∫

xj,0

e−d(x)/Lc dx

+ qℓ

nr∑

k=1

Lk

∑

r∈∆k

xr,1∫

xr,0

e−d(x)/Lc dx

+ qℓ

nr∑

k=1

xk,1∫

xk,0

e−d(x)/Lc x dx, (A14)

where Ωi refers to the set of reaches linking the i-th source point to the network outlet, and ∆k

denotes the set of reaches linking reach k to the network outlet, not including reach k itself (see
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Fig. 7c). Assuming that all source points have the same discharge Qs, and replacing the integrals

along the reaches with their respective values, Eq. (A14) can be written more simply as1365

A2 =LcQs

ns∑

i=1

(
1− e−ds,i/Lc

)

+ qℓLc

nr∑

k=1

{
Lk −Lce

−dk/Lc
(
1− e−Lk/Lc

)}

=Lc

(
Qtot− qℓLtot

)(
1− δs

)
+ qℓLcLtot

(
1− δℓ

)
, (A15)

where Eq. (A6) has been used in the second step to replace nsQs with Qtot− qℓLtot, and the factors

δs and δℓ are defined as

δs =
1

ns

ns∑

i=1

e−ds,i/Lc , (A16)

δℓ =
Lc

Ltot

nr∑

k=1

e−dk/Lc
(
1− e−Lk/Lc

)
=
A1
Ltot

. (A17)1370

Combining Eqs. (A7), (A8), (A11) and (A15), the expression for stream temperature at the network

outlet can eventually be written in a more convenient form,

Tout = (1− η)δsTs+ ηδℓ
〈
Tℓ

〉
L
+

[
1− (1− η)δs− ηδℓ

]〈
γφr+Ta−Lc

g

cp

dz

dx

〉
L
, (A18)

where the averaging operator
〈
·
〉
Q

has been approximated by
〈
·
〉
L
, and Ts corresponds to the

distance-weighted source temperature, averaged over all sources and weighted by a factor decreasing1375

exponentially with the respective distance of each source to the network outlet,

Ts =
1

nsδs

ns∑

i=1

e−ds,i/Lc Ts,i. (A19)

The factor η appearing in Eq. (A18) denotes the ratio between the discharge originating from lateral

inflow and the total discharge at the network outlet,

η =
qℓLtot

Qtot

. (A20)1380
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Table 1. List of reviewed publications about statistical stream temperature prediction in ungauged basins.

Reference
Geographic Model Number of Number of Temporal

Model Precisionb,c

Location Typea Sites Yearsb Scale

Arscott et al. (2001) Italy MLR 22 1 season R2 = 0.37–0.8

Bogan et al. (2003) Eastern USA AE 596 30 week R2 = 0.80, σe = 3.1◦C

Chang and Psaris (2013) Western USA MLR, GWR 74 n/a week, year R2 = 0.52–0.62, σe = 2.0–2.3◦C

Daigle et al. (2010) Western Canada Various 16 0.5 month σe = 0.9–2.8◦C

DeWeber and Wagner (2014) Eastern USA ANN 1080 31 day σe = 1.8–1.9◦C

Ducharne (2008) France MLR 88 7 month R2 = 0.88–0.96, σe = 1.4–1.9

Gardner and Sullivan (2004) Eastern USA NKM 72 1 day σe = 1.4◦C

Garner et al. (2014) UK CA 88 18 month n/a

Hawkins et al. (1997) Western USA MLR 45 ≥ 1 year R2 = 0.45–0.64

Hill et al. (2013) Conterminous USA RF ∼ 1000 1/site season, year σe = 1.1–2.0◦C

Hrachowitz et al. (2010) UK MLR 25 1 month, year R2 = 0.50–0.84

Imholt et al. (2013) UK MLR 23 2 month R2 = 0.63–0.87

Isaak et al. (2010) Western USA MLR, NKM 518 14 month, year R2 = 0.50–0.61, σe = 2.5–2.8◦C

Isaak and Hubert (2001) Western USA PA 26 1/site season R2 = 0.82

Johnson (1971) New Zealand ULR 6 1 month n/a

Johnson et al. (2014) UK NLR 36 1.5 day R2 = 0.67–0.90, σe = 1.0–2.4◦C

Jones et al. (2006) Eastern USA MLR 28 3 year R2 = 0.57–0.73

Kelleher et al. (2012) Eastern USA MLR 47 2 day, week n/a

Macedo et al. (2013) Brazil LMM 12 1.5 day R2 = 0.86

a AE: Analytical Expression, ANN: Artificial Neural Network, CA: Cluster Analysis, CRT: Classification and Regression Trees, GWR: Geographically Weighted Regression, LMM: Linear Mixed

Model, MLR: Multi-Linear Regression, NKM: Networked Kriging Model, NLR: Non-linear Regression, PA: Path Analysis, RF: Random Forest, ULR: Univariate Linear Regression.

b n/a: not available.

c σe: root-mean-square error,R2: coefficient of determination (sometimes referred to as Nash-Sutcliffe index).
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Table 1. (continued)

Reference
Geographic Model Number of Number of Temporal

Model Precisionb,c

Location Typea Sites Yearsb Scale

Mayer (2012) Western USA MLR 104 ≥ 2 week, month R2 = 0.72, σe = 1.8◦C

Miyake and Takeuchi (1951) Japan ULR 20 n/a month n/a

Moore et al. (2013) Western Canada MLR 418 1/site year σe = 2.1◦C

Nelitz et al. (2007) Western Canada CRT 104 1/site year n/a

Nelson and Palmer (2007) Western USA MLR 16 3 season R2 = 0.36–0.88

Ozaki et al. (2003) Japan ULR 5 8 day n/a

Pratt and Chang (2012) Western USA MLR, GWR 51 1/site season R2 = 0.48–078

Risley et al. (2003) Western USA ANN 148 0.25 hour, season σe = 1.6–1.8◦C

Rivers-Moore et al. (2012) South Africa MLR 90 1/site month, year R2 = 0.14–0.50

Ruesch et al. (2012) Western USA NKM 165 15 year R2 = 0.84, σe = 1.5◦C

Segura et al. (2014) Conterminous USA MLR 171 ≥ 1.5 week, month R2 = 0.79

Sponseller et al. (2001) Eastern USA MLR 9 1 year R2 = 0.81–0.93

Scott et al. (2002) Eastern USA MLR 36 1/site season R2 = 0.82

Stefan and Preud’homme (1993) Eastern USA ULR 11 n/a day, week σe = 2.1–2.7◦C

Tague et al. (2007) Western USA MLR 43 4 day R2 = 0.49–0.65

Wehrly et al. (2009) Eastern USA Various 1131 1/site month σe = 2.0–3.0◦C

Westenbroek et al. (2010) Eastern USA ANN 254 1/site day R2 = 0.70, σe = 1.8◦C

Young et al. (2005) New Zealand MLR 23 1 season R2 = 0.75–0.93

a AE: Analytical Expression, ANN: Artificial Neural Network, CA: Cluster Analysis, CRT: Classification and Regression Trees, GWR: Geographically Weighted Regression, LMM: Linear

Mixed Model, MLR: Multi-Linear Regression, NKM: Networked Kriging Model, NLR: Non-linear Regression, PA: Path Analysis, RF: Random Forest, ULR: Univariate Linear Regression.

b n/a: not available.

c σe: root-mean-square error,R2: coefficient of determination (sometimes referred to as Nash-Sutcliffe index).
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Table 2. Calibration parameters of the physically-based
✿✿✿✿✿✿✿✿✿✿✿

physics-inspired
✿✿✿✿✿✿✿✿

statistical model.

Parameter Defined in Units Calibration Range Physical Constraints

aw Eqs. (19)–(20) [◦C◦C−1] Chosen so as to constrain Ts,i and Tℓ to the range 0–25◦C Must be positive

bw [◦C] None

aφ,sw
✿✿✿✿✿

aφ,isw Eq. (17) [◦Cm2W−1] Chosen so as to constrain γφr to the range −20–20◦C Must be positive

aφ,s [◦C] Must be negative

aφ,θ [◦C] Must be negative

aφ,f [◦C] None

bφ [◦C] None

η Eqs. (9)–(10) [–] 0–1 None

As Eq. (18) [m2] Chosen so as to constrain η in the range 0–1 Must be positive

α [–] 0–3 None
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Table 3. Physiographic properties of the 29 selected hydrological catchments in Switzerland. The three watersheds indicated in bold are not used for the model evaluation.

Basin Name Basin Gauging Station Mean Basin Glacier Hydrological Temperature Measu- Data

Number Area [km2] Altitude [m] Altitude [m] Cover [%] Regimea rement Period Provider b

1 Broye at Payerne 392.0 441 710 0 pluvial inferior 1976–2012 FOEN

2 Sitter at Appenzell 74.2 769 1252 0.1 transition nival 2006–2012 FOEN

3 Murg at Wängi 78.0 466 650 0 pluvial inferior 2002–2012 FOEN

4 Gürbe at Belp, Mülimatt 117.0 522 849 0 transition pluvial 2007–2012 FOEN

5 Massa at Blatten, Naters 195.0 1446 2945 65.9 glacial 2003–2012 FOEN

6 Sense at Thörishaus, Sensematt 352.0 553 1068 0 pre-alpine nivo-pluvial 2004–2012 FOEN

7 Allenbach at Adelboden 28.8 1297 1856 0 alpine nival 2002–2012 FOEN

8 Rosegbach at Pontresina 66.5 1766 2716 30.1 glacial 2004–2012 FOEN

9 Grosstalbach at Isenthal 43.9 767 1820 9.3 alpine nival 2005–2012 FOEN

10 Goldach at Goldach, Bleiche 49.8 399 833 0 pluvial superior 2005–2012 FOEN

11 Dischmabach at Davos, Kriegsmatte 43.3 1668 2372 2.1 glacio-nival 2004–2012 FOEN

12 Langeten at Huttwil, Häberenbad 59.9 597 766 0 pluvial inferior 2002–2012 FOEN

13 Riale di Roggiasca at Roveredo 8.1 980 1710 0 meridional nivo-pluvial 2003–2012 FOEN

14 Riale di Calneggia at Cavergno, Pontit 24 890 1996 3.0 meridional nival 2002–2012 FOEN

15 Poschiavino at La Rösa 14.1 1860 2283 0.4 meridional nival 2004–2012 FOEN

16 Mentue at Yvonand, La Mauguettaz 105.0 449 679 0 jurassian pluvial 2003–2012 FOEN

17 Necker at Mogelsberg, Aachsäge 88.2 606 959 0 pluvial superior 2007–2012 FOEN

18 Grossbach at Gross, Säge 9.1 940 1276 0 pre-alpine nivo-pluvial 2003–2012 FOEN

19 Rietholzbach at Mosnang, Rietholz 3.3 682 795 0 pluvial superior 2002–2012 FOEN

20 Gürbe at Burgistein, Pfandersmatt 53.7 569 1044 0 pre-alpine nivo-pluvial 2007–2008 FOEN

21 Biber at Biberbrugg 31.9 825 1009 0 pluvial superior 2003–2012 FOEN

22 Sellenbodenbach at Neuenkirch 10.5 515 615 0 pluvial superior 2003–2012 FOEN

23 Alp at Einsiedeln 46.4 840 1155 0 transition pluvial 2003–2012 FOEN

24 Riale di Pincascia at Lavertezzo 44.4 536 1708 0 meridional nivo-pluvial 2004–2012 FOEN

25 Rom at Müstair 129.7 1236 2187 0.1 meridional nival 2003–2012 FOEN

26 Sissle at Eiken 123.0 314 529 0 jurassian pluvial 2004–2012 Aargau

27 Bünz at Othmarsingen 110.6 390 526 0 pluvial inferior 2005–2012 Aargau

28 Wyna at Unterkulm 92.1 455 643 0 pluvial inferior 2005–2012 Aargau

29 Talbach at Schinznach-Dorf 14.5 358 559 0 jurassian pluvial 2009–2012 Aargau

a According to the classification by Aschwanden and Weingartner (1985).

b FOEN: Swiss Federal Office for the Environment, Aargau: Department for Construction, Transport and Environment of Canton Aargau.
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Table 4. Formulations of the physically-based
✿✿✿✿✿✿✿✿✿✿✿✿

physics-inspired
✿✿✿✿✿✿✿

statistical
✿

model selected in each season based on their corresponding AICc value. The Akaike weights are

denoted as wi. Only the model formulations with wi ≥ 0.1 are presented here. The widths of the buffers used to compute the riparian vegetation cover are indicated as

subscripts of the variable ff (the indicated values correspond to the total buffer widths, i.e. accounting for both sides of the stream center line).

Season wi Lc [km] Formulation of γφr Formulation of Ts and Tℓ Formulation of η

Winter 1 8 γφr = aφ,sfs + aφ,fff,100m + bφ, Ts = awTa + bw, η = 0 (constant)

with aφ,s = 18.2◦C, aφ,f =−2.9
◦C and bφ =−12.1◦C with aw = 0.15 and bw = 3.1◦C

0.25 γφr = αφ,sfs + bφ,

with aφ,s = 19.4◦C and bφ =−14.1◦C

0.15 γφr = aφ,sfs + aφ,fff,50m + bφ,

with aφ,s = 19.3◦C, aφ,f =−0.4
◦C and bφ =−13.9◦C

Spring 1 4 γφr = aφ,sfs + aφ,fff,50m + bφ, Ts = awTa + bw, η = 1−ns(As/Atot)
α,

with aφ,s = 12.9◦C, aφ,f =−3.7
◦C and bφ =−11.3◦C with aw = 0.27 and bw = 5.3◦C with As = 0.13 km2 and α= 1

0.86 γφr = aφ,sfs + aφ,fff,200m + bφ,

with aφ,s = 13.1◦C, aφ,f =−3.4
◦C and bφ =−11.6◦C

0.53 γφr = aφ,sfs + bφ,

with aφ,s = 13.1◦C and bφ =−12.7◦C

0.31 γφr = aφ,sfs + aφ,fff,100m + bφ,

with aφ,s = 13.4◦C, aφ,f =−2.2
◦C and bφ =−12.3◦C

Summer 1 4 γφr = aφ,sfs + aφ,fff,100m + bφ, Ts = awTa + bw, η = 1 (constant)

with aφ,s = 13.4◦C, aφ,f =−0.3
◦C and bφ =−13.0◦C with aw = 0.33 and bw = 6.6◦C

0.15 γφr = aφ,sfs + bφ,

with aφ,s = 13.4◦C and bφ =−13.1◦C

Autumn 1 4 γφr = aφ,sfs + bφ, Ts = awTa + bw, η = 1 (constant)

with aφ,s = 10.4◦C and bφ =−5.9◦C with aw = 0.25 and bw = 5.1◦C

0.54 γφr = aφ,sfs + aφ,fff,100m + bφ,

with aφ,s = 10.0◦C, aφ,f =−2.8
◦C and bφ =−4.7◦C

0.48 γφr = aφ,sfs + aφ,fff,200m + bφ,

with aφ,s = 10.1◦C, aφ,f =−2.9
◦C and bφ =−4.7◦C

0.4 γφr = aφ,sfs + aφ,fff,50m + bφ,

with aφ,s = 10.2◦C, aφ,f =−2.2
◦C and bφ =−5.1◦C
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Table 5. Performance of the best physically-based
✿✿✿✿✿✿✿✿✿✿✿✿

physics-inspired
✿✿✿✿✿✿✿✿

statistical model in each season (wi = 1)

in terms of RMSE, R2 and bias, depending on the validation set. The numbers between brackets refer to the

different validation sets (see beginning of Sect. 4).

Season
RMSE [◦C] R2 [–] Bias [◦C]

1 2 3 4 1 2 3 4 1 2 3 4

Winter 1.34 1.34 1.58 1.38 0.68 0.40 0.52 0.55 −0.58 −0.30 −0.84 −0.47

Spring 1.51 1.29 1.57 1.40 0.87 0.90 0.86 0.88 0.24 0.02 0.36 0.14

Summer 1.07 1.47 1.13 1.31 0.91 0.84 0.90 0.87 −0.04 0.01 −0.01 −0.01

Autumn 1.16 1.22 1.47 1.25 0.89 0.87 0.84 0.87 −0.49 0.15 −0.34 −0.11

All Year 1.28 1.33 1.45 1.34 0.94 0.94 0.93 0.94 −0.22 −0.03 −0.21 −0.11

Table 6. Best multi-linear regression models for the prediction of annual mean T i and standard deviation σi

of the monthly mean stream temperature in a given year. All predictor variables are averaged over the stream

networks using the operator
〈
·
〉
L
.

Predictand Predictorsa (with coefficients) Lc [km]

T i [
◦C] ff,25m (−1.86◦C), θ (0.60◦C), Atot (1.6× 10−3◦Ckm−2), 4

∆fs (−4.90
◦C), T a,i (0.75

◦C ◦C−1), intercept (3.88◦C)

σi [
◦C] |dz/dx| (6.03◦C), ff,25m (6.70◦C), θ (0.93◦C), 32

ns (1.6× 10−3◦C),∆fs (−12.8
◦C), σa,i (0.39

◦C ◦C−1),

intercept (0.34◦C)

a ∆fs denotes the difference in topographical shading between summer and winter, T a,i and σa,i refer to the

annual mean value and standard deviation of air temperature in the year of interest, respectively,Atot denotes the

watershed area and |dz/dx| the channel slope. The other variables have been defined in the text.

Table 7. Performance of the
✿✿✿✿✿✿

standard regression model in terms of RMSE, R2 and bias computed over the

validation set 4 in each season. The stream network used to evaluate the model corresponds to the original one

derived from the map at scale 1:25’000.

Season RMSE [◦C] R2 Bias [◦C]

Winter 1.18 0.67 −0.27

Spring 1.06 0.93 −0.09

Summer 1.18 0.90 0.11

Autumn 1.03 0.91 0.02

All Year 1.12 0.96 −0.06
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Figure 1. Locations of the gauging stations selected for the evaluation of the physically-based
✿✿✿✿✿✿✿✿✿✿✿✿

physics-inspired

and regression
✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿

statistical
✿

models. The stations are displayed as red points and their associated catch-

ments as green or orange areas, depending on whether they are used to calibrate or validate the model. The

four main climatic regions of Switzerland—Jura mountains, Plateau, Northern Alps and Southern Alps—are

displayed in different colors. The numbering corresponds to Table 3.
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Figure 2. Classification of the thermal regimes of the selected catchments. Streams impacted by groundwater

infiltration are shown in green, the proglacial stream in blue and the thermally climate-driven streams in orange.

(a) Normalized monthly mean stream temperature curves over 3 consecutive years (2010–2012); all curves are

z-scored independently each year. (b) Slopes and intercepts of the regression lines fitted to the stream–air

temperature points of the respective catchments. All points with negative air temperature values have been

discarded prior to fitting. The bars indicate the standard error estimates.

56



JFM

AMJ JAS OND

6

4

2

0

2

4

6

R
e
s
i
d
u
a
l
 
[

◦

C
]

Figure 3. Prediction error of the physically-based
✿✿✿✿✿✿✿✿✿✿✿✿

physics-inspired
✿✿✿✿✿✿✿✿

statistical model for different resolutions

of the stream network. The boxes extend from the first to the third quartile of the error distribution. Outliers

are displayed as red dots. In each season, the network resolution decreases from left to right: the left box

corresponds to the network with all stream reaches, whereas the central and right boxes contain only the stream

segments whose Strahler order is greater or equal to 2 and 3, respectively. The error values 0, −1 and +1◦C

are displayed as a solid grey line and two dashed grey lines.
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Figure 4. Non-linear relationship between the z-scored stream temperature T̂ and the z-scored air temperature

T̂a averaged over 14 reference meteorological stations. The values of T̂ are obtained by averaging in each

month the z-scored stream temperatures measured at the 21 calibration stations. Each point corresponds to a

single month of the calibration period 2007–2012. Months from January to July are displayed as green crosses,

and those from July to December as blue dots. The two solid lines correspond to the respective fits of the data

points in the two year halves (see Eqs. (27)–(28)).
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Figure 5. Comparison of modeled against measured slopes of the regression line between stream and air temper-

atures. The panels correspond to the different seasons: (a) January–March, (b) April–June, (c) July–September,

and (d) October–December. The bias b corresponds to the average, in each season, of the difference between

the modeled and measured regression slopes over all the selected stations and years (i.e. belonging to both the

calibration set and validation set 4). The 1:1 line is indicated as a dashed grey curve.

JFM

AMJ JAS OND

0.0

0.2

0.4

0.6

0.8

1.0

W
e
i
g
h
t
 
[
-
]

ω

1

ω

2

ω

3

Figure 6. Seasonal values of the factors ω1, ω2 and ω3 weighting the different terms in Eq. (8). The values of

these weights are evaluated over the entire data set, i.e. both the calibration set and validation set 3. The error

bars indicate the confidence interval centered around the mean and extending over one standard deviation on

each side.
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Figure 7. Schematic representations of (a) a stream reach, and (b)–(c) a stream network, illustrating the notation

used in Appendix A to derive the analytical solution to the stream energy-balance.
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