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Abstract

This study investigates the effectiveness of a sensitivity-informed method for multi-
objective operation of reservoir systems, which uses global sensitivity analysis as a
screening tool to reduce the computational demands. Sobol’s method is used to screen
insensitive decision variables and guide the formulation of the optimization problems5

with a significantly reduced number of decision variables. This sensitivity-informed
problem decomposition dramatically reduces the computational demands required for
attaining high quality approximations of optimal tradeoff relationships between conflict-
ing design objectives. The search results obtained from the reduced complexity multi-
objective reservoir operation problems are then used to pre-condition the full search of10

the original optimization problem. In two case studies, the Dahuofang reservoir and the
inter-basin multi-reservoir system in Liaoning province, China, sensitivity analysis re-
sults show that reservoir performance is strongly controlled by a small proportion of de-
cision variables. Sensitivity-informed problem decomposition and pre-conditioning are
evaluated in their ability to improve the efficiency and effectiveness of multi-objective15

evolutionary optimization. Overall, this study illustrates the efficiency and effectiveness
of the sensitivity-informed method and the use of global sensitivity analysis to inform
problem decomposition when solving the complex multi-objective reservoir operation
problems.

1 Introduction20

Reservoirs are often operated considering a number of conflicting objectives (such as
different water uses) related to environmental, economic and public services. The op-
timization of Reservoir Operation Systems (ROS) has attracted substantial attention
over the past several decades. In China and many other countries, reservoirs are op-
erated according to reservoir operation rule curves which are established at the plan-25

ning/design stage to provide long-term operation guidelines for reservoir management

3720

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/3719/2015/hessd-12-3719-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/3719/2015/hessd-12-3719-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
12, 3719–3752, 2015

Improving
multi-objective

reservoir operation
optimization

J. G. Chu et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

to meet expected water demands. Reservoir operation rule curves usually consist of
a series of storage volumes or levels at different periods (Liu et al., 2011a, b). For the
optimal ROS problem, the values of storage volumes or levels are optimized to achieve
one or more objectives. Quite often, there are multiple curves, related to different pur-
poses of reservoir operation. The dimension of a ROS problem depends on the number5

of the curves and the number of time periods. For a cascaded reservoir system, the
dimension can be very large, which increases the complexity and problem difficulty and
poses a significant challenge for most search tools currently available (Labadie, 2004;
Draper and Lund, 2004; Sadegh et al., 2010; Zhao et al., 2014).

In the context of multi-objective optimal operation of ROS, there is not one single10

operating policy that improves simultaneously all the objectives and a set of non-
dominating Pareto optimal solutions are normally obtained. The traditional approach
to multi-objective optimal reservoir operation is to reformulate the multi-objective prob-
lem as a single objective problem through the use of some scalarization methods,
such as the weighted sum method (Tu et al., 2003, 2008; Shiau, 2011). This method15

has been developed to repeatedly solve the single objective problem using different
sets of weights so that a set of Pareto-optimal solutions to the original multi-objective
problem could be obtained (Srinivasan and Philipose, 1998; Shiau and Lee, 2005).
Another well-known method is the ε-constraint method (Ko et al., 1997; Mousavi and
Ramamurthy, 2000; Shirangi et al., 2008): all the objectives but one are converted into20

constraints and the level of satisfaction of the constraints is optimized to obtain a set
of Pareto-optimal solutions. However, with the increase in problem complexity (i.e. the
number of objectives or decision variables), both approaches become inefficient and
ineffective in deriving the Pareto-optimal solutions.

In the last several decades, bio-inspired algorithms and tools have been developed to25

directly solve multi-objective optimization problems by simultaneously handling all the
objectives (Nicklow et al., 2010). In particular, multi-objective evolutionary algorithms
(MOEA) have been increasingly applied to the optimal reservoir operation problems,
with intent of revealing tradeoff relationships between conflicting objectives. Suen and
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Eheart (2006) used the non-dominated sorting genetic algorithm (NSGAII) to find the
Pareto set of operating rules that provides decision makers with the optimal trade-off
between human demands and ecological flow requirements. Zhang et al. (2013b) used
a multi-objective adaptive differential evolution combined with chaotic neuron networks
to provide optimal trade-offs for multi-objective long-term reservoir operation problems,5

balancing hydropower operation and the requirement of reservoir ecological environ-
ment. Chang et al. (2013) used an adjustable particle swarm optimization – genetic
algorithm (PSO-GA) hybrid algorithm to minimize water shortages and maximize hydro-
power production in management of Tao River water resources.

However, significant challenges remain for using MOEAs in large, real-world ROS ap-10

plications. The high dimensionality of ROS problems makes it very difficult for MOEAs
to identify “optimal or near optimal” solutions with the computing resources that are typ-
ically available in practice. Thus the primary aim of this study is to investigate the effec-
tiveness of a sensitivity-informed optimization methodology for multi-objective reservoir
operation, which uses sensitivity analysis results to reduce the dimension of the opti-15

mization problems, and thus improves the search efficiency in solving these problems.
This framework is based on the previous study by Fu et al. (2012), which developed
a problem decomposition framework that can dramatically reduce the computational
demands required to obtain high quality solutions for optimal design of water distri-
bution systems. The ROS case studies used to demonstrate this framework consider20

the optimal design of reservoir water supply operation policies. Storage volumes at
different time periods on the operation rule curves are used as decision variables.
It has been widely recognized that the determination of these decision variables re-
quires a balance among different ROS objectives. Sobol’s sensitivity analysis results
are used to form simplified optimization problems considering a small number of sen-25

sitive decision variables, which can be solved with a dramatically reduced number of
model evaluations to obtain Pareto approximate solutions. These Pareto approximate
solutions are then used to pre-condition a full search by serving as starting points for
the multi-objective evolutionary algorithm. The results from the Dahuofang reservoir
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and inter-basin multi-reservoir system case studies in Liaoning province, China, whose
conflicting objectives are minimization of industry water shortage and minimization of
agriculture water shortage, illustrate that sensitivity-informed problem decomposition
and pre-conditioning provide clear advantages to solve large-scale multi-objective ROS
problems effectively.5

2 Problem formulation

Most reservoirs in China are operated according to rule curves, i.e. reservoir water
supply operation rule curves. Because they are based on actual water storage volumes,
they are simple to use. Figure 1 shows typical water supply operation rule curves from
Dahuofang reservoir based on 36 10 day periods.10

Figure 1 shows water supply operation rule curves for agriculture and industry where
the maximum storage is smaller in the middle due to the flood control requirements in
wet seasons. The water storage available between the minimum and maximum stor-
ages is divided into three parts: zone 1, zone 2 and zone 3 by the water supply rule
curves for agriculture and industry. Different water demands, such as industrial and15

agricultural demands, can have different reliability requirements and different levels of
priority in practice. The agricultural demand D1 could be fully supplied when the actual
water storage is in zone 1, which is above the water supply rule curve for agriculture,
and the agricultural demand D1 has to be rationed when the actual water storage is
in zone 2 or zone 3, which is below the water supply rule curve for agriculture. Simi-20

larly, the industrial demand D2 could be fully supplied when the actual water storage
is in zone 1 or zone 2, which is above the water supply rule curve for industry, and
the industrial demand D2 has to be rationed when the actual water storage is in zone
3, which is below the water supply rule curve for industry. The water supply rule for
a specific water user consists of one water supply rule curve and rationing factors that25

indicate the reliability and priority of the water user. Assuming that the specified water
rationing factor α1 is applied to the water supply rule curve for agriculture in Fig. 1,
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the agricultural demand D1 could be fully supplied without rationing when the actual
water storage is in zone 1, however, when the water storage is in zone 2 or zone 3,
the agricultural demand has to be rationed, i.e. α1 ×D1. Similarly, assuming that the
specified water rationing factor α2 is applied to the water supply rule curve for industry
in Fig. 1, the industrial demand D2 could be fully supplied without rationing when the5

actual water storage is in zone 1 or zone 2, however, when the water storage is in zone
3, the industrial demand has to be rationed, i.e. α2 ×D2.

The ROS design problem is formulated as a multi-objective optimization problem,
i.e. minimizing multiple objectives simultaneously. In this paper, the objectives are to
minimize industry and agriculture water shortages:10

minfi (x) = SIi =
100
N

N∑
j=1

(
Di ,j −Wi ,j (x)

Di ,j

)2

(1)

where x is the vector of decision variables, i.e. the water storages at different periods
on a water-supply rule curve; SIi is the shortage index for water demand i (industrial
water demand when i = 1, agricultural water demand when i = 2), which measures the
frequency and magnitude of annual shortages occurred during N years, and is used as15

an indicator to reflect water supply efficiency; N is the total number of years simulated;
Di ,j is the sum of target demands for water demand i during the j th year; Wi ,j (x) is the
sum of delivered water for water demand i during the j th year.

For the ROS optimization problem, the mass balance equations are:

St+1 −St = It −Rt −SUt −Et (2)20

Rt = g(x), SUt = k(x), Et = e(x) (3)

STmin
t ≤ St ≤ STmax

t ,STmin
t ≤ x ≤ STmax

t (4)

where St is the initial water storage at the beginning of period t; St+1 is the ending water
storage at the end of period t; It, Rt, SUt and Et are inflow, delivery for water use, spill

3724

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/3719/2015/hessd-12-3719-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/3719/2015/hessd-12-3719-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
12, 3719–3752, 2015

Improving
multi-objective

reservoir operation
optimization

J. G. Chu et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

and evapotranspiration loss, respectively; and STmax
t and STmin

t are the maximum and
minimum storage, respectively.

3 Methodology

Pre-conditioning is a technique that uses a set of known good solutions as starting
points to improve the search process of optimization problems (Nicklow et al., 2010).5

It is very challenging in determining good initial solutions, and different techniques in-
cluding the domain knowledge can be used. This study utilizes a sensitivity-informed
problem decomposition to develop simpler search problems that consider only a small
number of highly sensitive decisions. The results from these simplified search prob-
lems can be used to successively pre-condition search for larger, more complex formu-10

lations of ROS design problems. The ε-NSGAII, a popular multi-objective evolutionary
algorithm, is chosen as it has been shown effective for many engineering optimization
problems (Kollat and Reed, 2006, 2007; Tang et al., 2006). For the two-objectives (εSI1
and εSI2

) considered in this paper, their epsilon values in ε-NSGAII were chosen based
on reasonable and practical requirements and were both set to 0.01. According to the15

study by Fu et al. (2012), the sensitivity-informed methodology, as shown in Fig. 2, has
the following steps:

1. perform a sensitivity analysis using Sobol’s method to calculate the sensitivity
indices of all decision variables regarding the ROS performance measure;

2. define a simplified problem that considers only the most sensitive decision vari-20

ables by imposing a user specified threshold (or classification) of sensitivity;

3. solve the simplified problem using ε-NSGAII with a small number of model simu-
lations;

4. solve the original problem using ε-NSGAII with the Pareto optimal solutions from
the simplified problem fed into the initial population.25
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3.1 Sobol’s sensitivity analysis

Sobol’s method was chosen for sensitivity analysis because it can provide a detailed
description of how individual variables and their interactions impact model performance
(Tang et al., 2007b; Zhang et al., 2013a). A model could be represented in the following
functional form:5

y = f (x) = f (x1, · · ·,xp) (5)

where y is the goodness-of-fit metric of model output, and x = (x1, · · ·,xp) is the pa-
rameter set. Sobol’s method is a variance based method, in which the total variance of
model output, D(y), is decomposed into component variances from individual variables
and their interactions:10

D(y) =
∑
i

Di +
∑
i<j

Di j +
∑
i<j<k

Di jk + · · ·+D12···m (6)

where Di is the amount of variance due to the i th variable xi , and Di j is the amount of
variance from the interaction between xi and xj . The model sensitivity resulting from
each variable can be measured using the Sobol’s sensitivity indices of different orders:

First-order index: Si =
Di
D

(7)15

Second-order index: Si j =
Di j
D

(8)

Total-order index: STi = 1−
D∼i
D

(9)

where D∼i is the amount of variance from all the variables except for xi , the first-order
index Si measures the sensitivity from the main effect of xi , the second-order index
Si j measures the sensitivity resulting from the interactions between xi and xj , and the20

total-order index STi represents the main effect of xi and its interactions with all the
other variables.
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3.2 Performance metrics

Since MOEA search is stochastic, performance metrics are used in this study to com-
pare the quality of the approximation sets derived from replicate multi-objective evo-
lutionary algorithm runs. Three indicators were selected: the generational distance
(Veldhuizen and Lamont, 1998), the additive ε-indicator (Zitzler et al., 2003), and the5

hypervolume indicator (Zitzler and Thiele, 1998).
The generational distance measures the average Euclidean distance from solutions

in an approximation set to the nearest solution in the reference set, and indicates per-
fect performance with zero. The additive ε-indicator measures the smallest distance
that a solution set need be translated to completely dominate the reference set. Again,10

smaller values of this indicator are desirable as this indicates a closer approximation to
the reference set.

The hypervolume indicator, also known as the S metric or the Lebesgue measure,
measures the size of the region of objective space dominated by a set of solutions. The
hypervolume not only indicates the closeness of the solutions to the optimal set, but15

also captures the spread of the solutions over the objective space. The indicator is nor-
mally calculated as the volume difference between a solution set derived from an op-
timization algorithm and a reference solution set. In this study, the worst case solution
is chosen as reference. For example, the worst solution is (1, 1) for two minimization
objectives in the normalized objective space. Thus larger hypervolume indicator values20

indicate improved solution quality and imply a larger distance from the worst solution.

4 Case study

Two case studies of increasing complexity are used to demonstrate the advan-
tages of the sensitivity-informed methodology: (1) the Dahuofang reservoir, and
(2) the inter-basin multi-reservoir system in Liaoning province, China. The inter-basin25

multi-reservoir system test case is a more complex ROS problem with Dahuofang,
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Guanyinge and Shenwo reservoirs. In the two ROS problems, the reference sets were
obtained from all the Pareto optimal solutions across a total of 10 random seed trials,
each of which was run for a maximum number of function evaluations (NFE) of 500 000.
Additionally, the industrial and agricultural water demands in the future planning year,
i.e. 2030, and the history inflow from 1956 to 2006 were used to optimize reservoir5

operation and meet future expected water demands in the two case studies.

4.1 Dahuofang reservoir

The Dahuofang reservoir is located in the main stream of Hun River, in Liaoning
province, Northeast China. The Dahuofang reservoir basin drains an area of 5437 km2,
and within the basin the total length of Hun River is approximately 169 km. The main10

purposes of the Dahuofang reservoir are industrial water supply and agricultural water
supply to central cities in Liaoning province. The reservoir characteristics and yearly
average inflow are illustrated in Table 1.

The Dahuofang ROS problem is formulated as follows: the objectives are minimiza-
tion of industrial shortage index and minimization of agricultural shortage index as de-15

scribed in Eq. (1); the decision variables include storage volumes on the industrial and
agricultural curves. For the industrial curve, a year is divided into 24 time periods (with
ten days as scheduling horizon from April to September, and a month as scheduling
horizon in the remaining months). Thus there are twenty-four decision variables for in-
dustrial water supply. The agricultural water supply occurs only in the periods from the20

second ten-day of April to the first ten-day of September, thus there are fifteen decision
variables for agricultural water supply. In total, there are thirty-nine decision variables.

4.2 Inter-basin multi-reservoir system

As shown in Fig. 3, Dahuofang, Guanyinge and Shenwo reservoirs compose the inter-
basin multi-reservoir system in Liaoning province, China.25
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Liaoning province in China covers an area of 1.46×105 km2 with an extremely un-
even distribution of rainfall in space. The average amount of annual precipitation de-
creases from 1100 mm in east to 600 mm in west (WMR-PRC, 2008). However, the
population, industries, and agricultural areas mainly concentrate in the western parts.
Therefore, it is critical to develop the best water supply rules for the inter-basin multi-5

reservoir system to decrease the risk of water shortages caused by the mismatch of
water supplies and water demands in both water deficit regions and water surplus re-
gions. Developing inter-basin multi-reservoir water supply operation rules has been
promoted as a long-term strategy for Liaoning province to meet the increasing water
demands in water shortage areas. In the inter-basin multi-reservoir system of Liaoning10

province, the abundant water in Dahuofang, Guanyinge and Shenwo reservoirs is di-
verted downstream to meet the water demands in water shortage areas, especially the
region between Daliaohekou and Sanhekou hydrological stations.

The main purposes of the inter-basin multi-reservoir system are industrial water sup-
ply and agricultural water supply to eight cities (Shenyang, Fushun, Anshan, Liaoyang,15

Panjin, Yingkou, Benxi and Dalian) of Liaoning province, and environmental water de-
mands need to be satisfied fully. The characteristics of each reservoir in the inter-basin
multi-reservoir system are illustrated in Table 2.

The flood season runs from July to September, during which the inflow takes up
a large part of the annual inflow. The active storage capacities of Dahuofang and20

Shenwo reservoirs reduce significantly during flood season for the flood control.
The inter-basin multi-reservoir operation system problem is formulated as follows:

the objectives are minimization of industrial shortage index and minimization of agri-
cultural shortage index as described in Eq. (1). Regarding Shenwo reservoir, which
has the same water supply operation rule curve features as Dahuofang reservoir, the25

decision variables include storage volumes on the industrial and agricultural curves
and there are thirty-nine decision variables. Regarding Guanyinge reservoir, the deci-
sion variables include storage volumes on the industrial curve and water transferring
curve due to the requirement of exporting water from Guanyinge reservoir to Shenwo
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reservoir in the inter-basin multi-reservoir system, which is similar to the water sup-
ply operation rule curve for industrial water demand, and there are forty-eight decision
variables. Therefore, the inter-basin multi-reservoir system has six rule curves and
39×2+48 = 126 decision variables in total.

5 Results and discussions5

5.1 Dahuofang reservoir

In the Dahuofang reservoir case study, a set of 2000 Latin Hypercube samples were
used per decision variable yielding a total number of 2000× (39+2) = 82 000 model
simulations used to compute Sobol’s indices. Following the recommendations of Tang
et al. (2007a, b) boot-strapping the Sobol’ indices showed that 2000 samples per deci-10

sion variable were sufficient to attain stable rankings of global sensitivity.
The first-order indices representing the individual contributions of each variable to

the variance of the objectives are shown in blue in Fig. 4. The total-order indices rep-
resenting individual and interactive impacts on the variance of the objectives are rep-
resented by the total height of bars. Agr4_2 represents decision variable responding15

to water storage volume on the agricultural curve at the second ten days of April and
ind3_3 represents decision variable responding to water storage volume on the indus-
trial curve at the last ten days of March, and so on. Considering the shortage index for
the industrial water demand, the water storages at time periods ind1, ind2, ind3, ind10,
ind11, and ind12, i.e. the water storages at time periods 1, 2, 3, 10, 11, and 12 of20

water supply operation rule curves for industrial water demand are the most sensitive
variables, accounting for almost 100 % of the total variance. However, the interactive
effects from variables are not noticeable due to the characteristics of industrial water
supply and the influences of rules for industrial water demand. Considering the agricul-
tural shortage index, the water storages at time periods from agr4-2 to agr5-3, i.e. the25

water storages at the first five time periods of water supply operation rule curves for
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agricultural water demand are the most sensitive variables. This is explained by the
characteristics of agricultural water supply and the influences of water supply opera-
tion rule curves for agricultural water demand, implying that the interactive effects from
variables are noticeable because the agricultural water supply is limited in the whole
year if the agricultural water supply in one time period is limited and the largest agricul-5

tural water demand occurs in the second and last ten days of May.

5.1.1 Simplified problems

Building on the sensitivity results shown in Fig. 4, one simplified version of the Dahuo-
fang ROS problem is formulated: only 11-periods are considered for optimization,
i.e. time periods ind1, ind2, ind3, ind10, ind11, and ind12 for industrial curve and10

agr4-2, agr4-3, agr5-1, agr5-2, and agr5-3 for agricultural curve based on a total-order
Sobol’s index threshold of greater than 10 %. The full search 39-period problem serves
as the performance baseline relative to the reduced complexity problem.

5.1.2 Pre-conditioned optimization

In this section, the pre-conditioning methodology is demonstrated using the 11-period15

simplification of the Dahuofang ROS test case from the prior section.
Using the sensitivity-informed methodology, the 11-period case was first solved us-

ing ε-NSGAII with a maximum NFE of 2000, and the Pareto optimal solutions were
then used as starting points to start a complete new search with a maximum NFE of
498 000. The standard search using ε-NSGAII was set to a maximum NFE of 500 00020

so that the two methods have the same NFE used for search. In this case, 10 ran-
dom seed trials were used given the computing resources available. The search traces
in Fig. 5 show for all three metrics (generational distance, additive epsilon indicator,
and hypervolume) that the complexity-reduced case can reliably approximate their por-
tions of the industrial and agricultural water shortage tradeoff given their dramatically25

reduced search periods. All three metrics show diminishing returns at the end of the
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reduced search periods. The pre-conditioning results are shown in Fig. 5 in red search
traces continuing from the blue reduced complexity search results.

Figure 5 clearly highlight that the sensitivity-informed pre-condition problems dramat-
ically enhance search efficiency in terms of the generational distance, additive epsilon
indicator, and hypervolume metrics. Overall, sensitivity-informed problem decomposi-5

tion and pre-conditioning yield strong efficiency gains and more reliable search (i.e. nar-
rower band widths on search traces) for the Dahuofang ROS test case.

Figure 6a shows Pareto fronts from a NFE of 3000, 5000 and 8000 in the evolution
process of one random seed trial. In the case of the pre-conditioned search, the solu-
tions from 3000, 5000 and 8000 evaluations are much better than the corresponding10

solutions in the case of standard baseline search. The results show that the Pareto ap-
proximate front of the pre-conditioned search is much wider than that of the standard
search, and clearly dominates that of the standard search in all the regions across the
entire objective space.

Figure 6b shows the best and worst Pareto fronts from a NFE of 500 000 and 8000 in15

the evolution process of ten seed trials. In the case of the pre-conditioned search, the
best solutions from 500 000 evaluations are better than the corresponding solutions in
the case of standard baseline search. Although it is obvious that there are not many
differences between solutions obtained from pre-conditioned search and solutions from
standard baseline search due to the complexity of the problem, the best Pareto fronts20

from a NFE of 8000 in the case of the pre-condition search are approximate the same
as the best Pareto fronts from a NFE of 500 000 in the case of the standard baseline
search.

Figure 7 shows the computational savings for two thresholds of hypervolume values
0.80 and 0.85 in the evolution process of each seed trial. In both cases of the thresh-25

olds of hypervolume values 0.80 and 0.85, NFE of the pre-conditioned search is less
than standard baseline search for each seed. In the case of the threshold of hypervol-
ume value 0.80, the average NFEs of full search and pre-conditioned full search are
approximately 94 564 and 25 083 for one seed run respectively, and the computation is
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saved by 73.48 %. Although the NFE of Sobol’s analysis is 82 000, the average NFEs
of pre-conditioned full search is approximately 25 083+82 000/10 = 33 283 for each
seed run, and the computational saving is 64.80 %.

Similarly, in the case of the threshold of hypervolume value 0.85, which is extremely
difficult to achieve, the average NFEs of full search and pre-conditioned full search5

are approximately 214 049 and 105 060 for each seed run respectively, and the com-
putation is saved by 50.92 %. When the computation demand by Sobol’s analysis is
considered, the computational saving is still 47.09 %.

5.2 Inter-basin multi-reservoir system

5.2.1 Sensitivity analysis10

Similar to the Dahuofang case study, a set of 2000 Latin Hypercube samples were
used per decision variable yielding a total number of 2000× (126+2)=256, model
simulations to compute Sobol’s indices in this case study.

The first-order and total-order indices for 126 decision variables are shown in Fig. 8.
Similar to the results obtained from the Dahuofang ROS Problem in Fig. 4, the variance15

in the two objectives, i.e. industrial and agricultural shortage indices, are largely con-
trolled by the water storages at time periods from agr4-2 to agr5-3 of Shenwo reservoir
water supply operation rule curves for agricultural water demand, the water storages at
time periods from agr4-2 to agr5-3 of Dahuofang reservoir water supply operation rule
curves for agricultural water demand, the water storages at time periods ind1, ind2,20

ind3, ind7-1, ind10, ind11, and ind12 of Dahuofang reservoir water supply operation
rule curves for industrial water demand based on a total-order Sobol’s index threshold
of greater than 3 %. These 17 time periods are obvious candidates for decomposing
the original optimization problem and formulating a pre-conditioning problem. There-
fore, the simplified problem is defined from the original design problem with the 109 in-25

tensive time periods removed. It should be noted that the increased interactions across
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sensitive time periods in this test case. These interactions verify that this problem rep-
resents a far more challenging search problem.

5.2.2 Pre-conditioned optimization

Using the sensitivity-informed methodology, the simplified problem was first solved us-
ing ε-NSGAII with a maximum NFE of 5000, and the Pareto optimal solutions were5

then used as starting points to start a complete new search with a maximum NFE of
495 000. The standard search using ε-NSGAII was set to a maximum NFE of 500 000
so that the two methods have the same NFE used for search. In this case, 10 random
seed trials are used given the computing resources available. Similar to the results ob-
tained from the Dahuofang ROS problem in Fig. 5, the search traces in Fig. 9 show10

all three metrics (generational distance, additive epsilon indicator, and hypervolume)
that represent performance metrics for the inter-basin multi-reservoir water supply op-
eration system problem. Similarly, the pre-conditioning results are shown in Fig. 9 in
red search traces continuing from the blue reduced complexity search results. It is clear
that the sensitivity-informed pre-condition problems enhance search efficiency in terms15

of the generational distance, additive epsilon indicator, and hypervolume metrics. How-
ever, with the increase in problem complexity in comparison to the first case study
(i.e. the number of decision variables from 39 to 126), the search of ROS optimiza-
tion problem becomes more difficult, and so the metrics obtained from pre-conditioned
search are not improved greatly compared with the standard baseline search and the20

pre-conditioning results shown in Fig. 9 are as good as the results shown in Fig. 5.
Figure 10a shows Pareto fronts from a NFE of 6000, 8000 and 10 000 in the evo-

lution process of one random seed trial. In the case of the pre-conditioned search,
the solutions from the three NFE snapshots are much better than those from stan-
dard baseline search. Similar to Fig. 6a, the results show that the Pareto approximate25

front of the pre-conditioned search is much wider than that of the standard search,
and clearly dominates that of the standard search in all the regions across the entire
objective space. Additionally, in the case of the pre-conditioned search, the solutions
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from 6000 evaluations are as good as those from 8000 evaluations and 10 000 evalua-
tions. And they are much better than the solutions from the standard baseline search.
It should be noted that the slow progress in the Pareto approximate fronts from 6000
to 10 000 evaluations reveals the difficulty of the inter-basin multi-reservoir operation
system problem.5

Figure 10b shows the best and worst Pareto fronts from a NFE of 500 000 in the
evolution process of ten seeds trials. Although it is obvious that the best Pareto ap-
proximate front of the pre-conditioned is as good as that of the standard search in all
the regions across the entire objective space approximately, the Pareto solutions from
10 trials of the pre-conditioned search have significantly reduced variation, indicating10

a more reliable performance of the pre-conditioned method. In other words, the results
show that the Pareto solution from one random seed trial of the pre-conditioned search
is as good as the best solution from ten random seed trials of the standard search.
That is to say, in the case of the pre-conditioned search, one random seed trial with
a NFE of 500 000 is sufficient to obtain the best set of Pareto solutions, however, in15

the case of the standard search, ten seed trials with a total of 500 000×10 = 5 000 000
NFE are required to obtain the Pareto solutions. Note that the NFE of Sobol’s anal-
ysis is 256 000, which is about half of the NFE of one random seed trial. Thus, an
improvement in search reliability can significantly reduce the computational demand
for a complex search problem such as the multi-reservoir case study, even when the20

computation required by sensitivity analysis is included.

5.3 Discussions

For a very large and computationally intensive ROS problem, the full search problem is
likely to be difficult so that it could not be optimized sufficiently in practice. The simplified
problems can be used to generate high quality pre-conditioning solutions and thus25

dramatically improve the computational tractability of complex problems. This, however,
requires using suitable optimization algorithms like ε-NSGAII which are capable of
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overcoming the risks for pre-mature convergence when pre-conditioning search (Fu
et al., 2012).

The methodology tested in this study aims to reduce the number of decision variables
through sensitivity-guided decomposition to form simplified problems. The optimization
results from the two ROS problems show the reduction in decision space can make an5

impact on the reliability and efficiency of the search algorithm. For the Dahuofang ROS
problem, recall that the original optimization problem has 39 decision variables, and the
simplified problem has 11 decision variables based on Sobol’s analysis. In the case of
the inter-basin multi-reservoir operation system, the original optimization problem has
126 decision variables, and the simplified problem has a significantly reduced number10

of decision variables, i.e. 17. Searching in such significantly reduced space formed by
sensitive decision variables makes it much easier to reach good solutions.

Although Sobol’s global sensitivity analysis is computationally expensive, it captures
the important sensitive information between a large number of variables for ROS mod-
els. This is critical for correctly screening insensitive decision variables and guiding the15

formulation of ROS optimization problems of reduced complexity (i.e. fewer decision
variables). For example, in the Dahuofang ROS problem, accounting for the sensitive
information, i.e. using total-order or first-order indices, result in a simplified problem
for threshold of 10 % as shown in Fig. 4. Compared with the standard search, this
sensitivity-informed problem decomposition dramatically reduces the computational20

demands required for attaining high quality approximations of optimal ROS tradeoffs
relationships between conflicting objectives, i.e. the best Pareto fronts from a NFE of
8000 in the case of the pre-condition search are approximately the same as the best
Pareto front from a NFE of 500 000 in the case of the standard baseline search.

It should be noted that the sensitivity-informed problem decomposition framework25

is completely independent of multi-objective optimization algorithms, that is, any multi-
objective algorithms could be embedded in the framework, including AMALGAM (Vrugt
and Robinson, 2007). When dealing with three or more objectives, the formulation of
the optimization problems with a significantly reduced number of decision variables will
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dramatically reduce the computational demands required to attain Pareto approximate
solutions in a similar way to the two-objective optimization case studies considered in
this paper.

6 Conclusions

This study investigates the effectiveness of a sensitivity-informed optimization method5

for the ROS multi-objective optimization problems. The method uses a global sensitiv-
ity analysis method to screen out insensitive decision variables and thus forms simpli-
fied problems with a significantly reduced number of decision variables. The simplified
problems dramatically reduce the computational demands required to attain Pareto ap-
proximate solutions, which themselves can then be used to pre-condition and solve the10

original (i.e. full) optimization problem. This methodology has been tested on two case
studies with different levels of complexity- the Dahuofang reservoir and the inter-basin
multi-reservoir system in Liaoning province, China. The results obtained demonstrate
the following:

1. The sensitivity-informed optimization problem decomposition dramatically in-15

creases both the computational efficiency and effectiveness of the optimization
process when compared to the conventional, full search approach. This is demon-
strated in both case studies for both MOEA efficiency (i.e. the NFE required to
attain high quality tradeoffs) and effectiveness (i.e. the quality approximations of
optimal ROS tradeoffs relationships between conflicting design objectives).20

2. The Sobol’s method can be used to successfully identify important sensitive in-
formation between different decision variables in the ROS optimization problem
and it is important to account for interactions between variables when formulating
simplified problems.

Overall, this study illustrates the efficiency and effectiveness of the sensitivity-25

informed method and the use of global sensitivity analysis to inform problem decom-
3737
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position. This method can be used for solving the complex multi-objective optimization
problems with a large number of decision variables, such as optimal design of wa-
ter distribution and urban drainage systems, distributed hydrological model calibration,
multi-reservoir optimal operation and many other engineering optimization problems.
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Table 1. Reservoir characteristics and yearly average inflow (108 m3).

Reservoir
name

Minimum
capacity

Utilizable
capacity

Flood control
capacity

Yearly average
inflow

Dahuofang 1.34 14.30 10.00 15.70
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Table 2. Characteristics of each reservoir in the inter-basin multi-reservoir system.

Reservoir Active storage (108m3) Role in water supply project
Flood season Non-flood season

Dahuofang 10.00 14.30 Supplying water

Guanyinge 14.20 14.20 Supplying water and exporting water to
Shenwo

Shenwo 2.14 5.43 Supplying water and importing water
from Guanyinge
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Figure 1. Reservoir operational rule curves.
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Figure 2. Flowchart of the sensitivity-informed methodology.
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Figure 3. Layout of the inter-basin multi-reservoir system.

3745

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/3719/2015/hessd-12-3719-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/3719/2015/hessd-12-3719-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
12, 3719–3752, 2015

Improving
multi-objective

reservoir operation
optimization

J. G. Chu et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 4. First-order and total-order indices for the Dahuofang ROS problem regarding (a) in-
dustrial shortage index and (b) agricultural shortage index. The x axis labels represent decision
variables (water storage volumes on the industrial and agricultural curves).
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Figure 5. Performance metrics for the Dahuofang ROS problem – (a) generational distance;
(b) additive epsilon indicator; (c) hypervolume.
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Figure 6. Pareto fronts derived from pre-conditioned and standard full searches for the Dahuo-
fang ROS problem. (a) Sample Pareto fronts with different numbers of function evaluations for
one random seed trial. (b) The best and worst Pareto fronts of ten seed trials.
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Figure 7. Computational savings for two hypervolume values – (a) hypervolume = 0.80;
(b) hypervolume = 0.85.
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Figure 8. First-order and total-order indices for the inter-basin multi-reservoir operation problem
regarding industrial shortage index and agricultural shortage index. The x axis labels represent
decision variables (water storage volumes on the industrial, agricultural and water transferring
curves).
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Figure 9. Performance metrics for the inter-basin multi-reservoir water supply operation prob-
lem – (a) generation distance; (b) additive epsilon indicator; (c) hypervolume.
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Figure 10. Pareto fronts derived from pre-conditioned and standard full searches for the inter-
basin multi-reservoir operation problem. (a) Sample Pareto fronts with different numbers of
function evaluations for one random seed trial. (b) The best and worst Pareto fronts of ten seed
trials.
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