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Abstract 19 

This study investigates the effectiveness of a sensitivity-informed method for 20 

multi-objective operation of reservoir systems, which uses global sensitivity analysis 21 

as a screening tool to reduce the computational demands. Sobol′’s method is used to 22 

screen insensitive decision variables and guide the formulation of the optimization 23 

problems with a significantly reduced number of decision variables. This 24 

sensitivity-informed method dramatically reduces the computational demands 25 

required for attaining high quality approximations of optimal tradeoff relationships 26 

between conflicting design objectives. The search results obtained from the reduced 27 

complexity multi-objective reservoir operation problems are then used to 28 

pre-condition the full search of the original optimization problem. In two case studies, 29 

the Dahuofang reservoir and the inter-basin multi-reservoir system in Liaoning 30 

province, China, sensitivity analysis results show that reservoir performance is 31 

strongly controlled by a small proportion of decision variables. Sensitivity-informed 32 

dimension reduction and pre-conditioning are evaluated in their ability to improve the 33 

efficiency and effectiveness of multi-objective evolutionary optimization. Overall, 34 

this study illustrates the efficiency and effectiveness of the sensitivity-informed 35 

method and the use of global sensitivity analysis to inform dimension reduction of 36 

optimization problems when solving the complex multi-objective reservoir operation 37 

problems. 38 

Keywords water supply; complexity reduction; multi-objective optimization; 39 

preconditioning; sensitivity analysis; reservoir operation 40 
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1 Introduction 41 

Reservoirs are often operated considering a number of conflicting objectives (such 42 

as different water uses) related to environmental, economic and public services. The 43 

optimization of Reservoir Operation Systems (ROS) has attracted substantial attention 44 

over the past several decades. In China and many other countries, reservoirs are 45 

operated according to reservoir operation rule curves which are established at the 46 

planning/design stage to provide long-term operation guidelines for reservoir 47 

management to meet expected water demands. Reservoir operation rule curves 48 

usually consist of a series of storage volumes or levels at different periods (Liu et al., 49 

2011a and 2011b). 50 

In order to solve the ROS problem, there are different approaches, such as implicit 51 

stochastic optimization (ISO), explicit stochastic optimization (ESO), and 52 

parameter-simulation-optimization (PSO) (Celeste and Billib, 2009). ISO uses 53 

deterministic optimization, e.g., dynamic programming, to determine a set of optimal 54 

releases based on the current reservoir storage and equally likely inflow scenarios 55 

(Young, 1967; Karamouz and Houck, 1982; Castelletti et al., 2012; François et al., 56 

2014). Instead the use of equally likely inflow scenarios, ESO incorporates inflow 57 

probability directly into the optimization process, including stochastic dynamic 58 

programming and Bayesian methods (Huang et al., 1991; Tejada-Guibert et al., 1995; 59 

Powell, 2007; Goor et al., 2010; Xu et al., 2014). However, many challenges remain 60 

in application of these two approaches due to their complexity and ability to deal with 61 

conflicting objectives (Yeh, 1985; Simonovic, 1992; Wurbs, 1993; Teegavarapu and 62 
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Simonovic, 2001; Labadie, 2004). 63 

In a different way, PSO predefines a rule curve shape and then utilizes 64 

optimization algorithms to obtain the combination of rule curve parameters that 65 

provides the best reservoir operating performance under possible inflow scenarios or a 66 

long inflow series (Nalbantis and Koutsoyiannis, 1997; Oliveira and Loucks, 1997). 67 

In this way, most stochastic aspects of the problem, including spatial and temporal 68 

correlations of unregulated inflows, are implicitly included, and reservoir rule curves 69 

could be derived directly with genetic algorithms and other direct search methods 70 

(Koutsoyiannis and Economou, 2003; Labadie, 2004). Because PSO reduces the curse 71 

of dimensionality problem in ISO and ESO, it is widely used in reservoir operation 72 

optimization (Chen, 2003; Chang et al., 2005; Momtahen and Dariane, 2007). In this 73 

study, the PSO-based approach is used to solve the ROS problem. 74 

In the PSO procedure to solve the ROS problem, the values of storage volumes or 75 

levels in reservoir operation rule curves are optimized to achieve one or more 76 

objectives directly. Quite often, there are multiple curves, related to different purposes 77 

of reservoir operation. The dimension of a ROS problem depends on the number of 78 

the curves and the number of time periods. For a cascaded reservoir system, the 79 

dimension can be very large, which increases the complexity and problem difficulty 80 

and poses a significant challenge for most search tools currently available (Labadie, 81 

2004; Draper and Lund, 2004; Sadegh et al., 2010; Zhao et al., 2014). 82 

In the context of multi-objective optimal operation of ROS, there is not one single 83 

operating policy that improves simultaneously all the objectives and a set of 84 
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non-dominating Pareto optimal solutions are normally obtained. The traditional 85 

approach to multi-objective optimal reservoir operation is to reformulate the 86 

multi-objective problem as a single objective problem through the use of some 87 

scalarization methods, such as the weighted sum method (Tu et al., 2003 and 2008; 88 

Shiau, 2011). This method has been developed to repeatedly solve the single objective 89 

problem using different sets of weights so that a set of Pareto-optimal solutions to the 90 

original multi-objective problem could be obtained (Srinivasan and Philipose, 1998; 91 

Shiau and Lee, 2005). Another well-known method is the ε-constraint method (Ko et 92 

al., 1997; Mousavi and Ramamurthy, 2000; Shirangi et al., 2008): all the objectives 93 

but one are converted into constraints and the level of satisfaction of the constraints is 94 

optimized to obtain a set of Pareto-optimal solutions. However, with the increase in 95 

problem complexity (i.e., the number of objectives or decision variables), both 96 

approaches become inefficient and ineffective in deriving the Pareto-optimal 97 

solutions. 98 

In the last several decades, bio-inspired algorithms and tools have been developed 99 

to directly solve multi-objective optimization problems by simultaneously handling 100 

all the objectives (Nicklow et al., 2010). In particular, multi-objective evolutionary 101 

algorithms (MOEA) have been increasingly applied to the optimal reservoir operation 102 

problems, with intent of revealing tradeoff relationships between conflicting 103 

objectives. Suen and Eheart (2006) used the non-dominated sorting genetic algorithm 104 

(NSGAII) to find the Pareto set of operating rules that provides decision makers with 105 

the optimal trade-off between human demands and ecological flow requirements. 106 
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Zhang et al. (2013b) used a multi-objective adaptive differential evolution combined 107 

with chaotic neural networks to provide optimal trade-offs for multi-objective 108 

long-term reservoir operation problems, balancing hydropower operation and the 109 

requirement of reservoir ecological environment. Chang et al. (2013) used an 110 

adjustable particle swarm optimization – genetic algorithm (PSO-GA) hybrid 111 

algorithm to minimize water shortages and maximize hydro-power production in 112 

management of Tao River water resources. 113 

However, significant challenges remain for using MOEAs in large, real-world 114 

ROS applications. The high dimensionality of ROS problems makes it very difficult 115 

for MOEAs to identify ‘optimal or near optimal’ solutions with the computing 116 

resources that are typically available in practice. Thus the primary aim of this study is 117 

to investigate the effectiveness of a sensitivity-informed optimization methodology 118 

for multi-objective reservoir operation, which uses sensitivity analysis results to 119 

reduce the dimension of the optimization problems, and thus improves the search 120 

efficiency in solving these problems. This framework is based on the previous study 121 

by Fu et al. (2012), which developed a framework for dimension reduction of 122 

optimization problems that can dramatically reduce the computational demands 123 

required to obtain high quality solutions for optimal design of water distribution 124 

systems. The ROS case studies used to demonstrate this framework consider the 125 

optimal design of reservoir water supply operation policies. Storage volumes at 126 

different time periods on the operation rule curves are used as decision variables. It 127 

has been widely recognized that the determination of these decision variables requires 128 
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a balance among different ROS objectives. Sobol'’s sensitivity analysis results are 129 

used to form simplified optimization problems considering a small number of 130 

sensitive decision variables, which can be solved with a dramatically reduced number 131 

of model evaluations to obtain Pareto approximate solutions. These Pareto 132 

approximate solutions are then used to pre-condition a full search by serving as 133 

starting points for the multi-objective evolutionary algorithm. The results from the 134 

Dahuofang reservoir and inter-basin multi-reservoir system case studies in Liaoning 135 

province, China, whose conflicting objectives are minimization of industry water 136 

shortage and minimization of agriculture water shortage, illustrate that 137 

sensitivity-informed dimension reduction and pre-conditioning provide clear 138 

advantages to solve large-scale multi-objective ROS problems effectively. 139 

 140 

2 Problem formulation 141 

Most reservoirs in China are operated according to rule curves, i.e., reservoir 142 

water supply operation rule curves. Because they are based on actual water storage 143 

volumes, they are simple to use. Fig. 1 shows an illustration of rule curves for 144 

Dahuofang reservoir based on 36 10-day periods. 145 

As we know, water demand could be fully satisfied only when there is sufficient 146 

water in reservoir. Water supply operation rule curve, which is used to operate most 147 

reservoirs in China, represents the limited storage volume for water supply in each 148 

period of a year. In detail, water demand will be fully satisfied when the reservoir 149 

storage volume is higher than water supply operation rule curve; whereas water 150 
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demand needs to be rationed when the reservoir storage volume is lower than water 151 

supply operation rule curve. In general, a reservoir has more than one water supply 152 

target, and there is one to one correspondence between water supply rule curve and 153 

water supply target. The water supply with lower priority will be limited prior to the 154 

water supply with higher priority when the reservoir storage volume is not sufficient. 155 

To reflect the phenomenon that different water demands can have different reliability 156 

requirements and thus different levels of priority in practice, the operation rule curve 157 

for the water supply with the lower priority is located above the operation rule curve 158 

for the water supply with the higher priority. 159 

Fig. 1 shows water supply operation rule curves for agriculture and industry where 160 

the maximum storage is smaller in the middle due to the flood control requirements in 161 

wet seasons. In Fig. 1, the red line with circle represents water supply rule curve for 162 

agriculture, the green line with triangle represents water supply rule curve for industry. 163 

The water supply rule curve for agriculture with lower priority is located above the 164 

water supply rule curve for industry with higher priority. The water storage available 165 

between the minimum and maximum storages is divided into three parts: zone 1, zone 166 

2 and zone 3 by the water supply rule curves for agriculture and industry.  167 

Specifically, both the agricultural demand 𝐷1  and the industrial demand 𝐷2 168 

could be fully satisfied when the actual water storage is in zone 1, which is above the 169 

water supply rule curve for agriculture. When the actual water storage is in zone 2, the 170 

industrial demand could be fully satisfied, and the agricultural demand has to be 171 

rationed. Both the agricultural demand and the industrial demand have to be rationed 172 
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when the actual water storage is in zone 3. The water supply rule for a specific water 173 

user consists of one water supply rule curve and rationing factors that indicate the 174 

reliability and priority of the water user. The rationing factors used to determine the 175 

amount of water supply for different water demands can be either assigned according 176 

to the experts’ knowledge or determined by optimization (Shih and ReVelle, 1995). In 177 

this paper, rationing factors are given at the reservoir’s design stage according to the 178 

tolerable elastic range of each water user in which the damage caused by rationing 179 

water supply is limited. Assuming that the specified water rationing factor 𝛼1 is 180 

applied to the water supply rule curve for agriculture in Fig. 1, the agricultural 181 

demand 𝐷1 could be fully supplied without rationing when the actual water storage 182 

is in zone 1, however, when the water storage is in zone 2 or zone 3, the agricultural 183 

demand has to be rationed, i.e., 𝛼1 ∗ 𝐷1. Similarly, assuming that the specified water 184 

rationing factor 𝛼2 is applied to the water supply rule curve for industry in Fig. 1, the 185 

industrial demand 𝐷2 could be fully supplied without rationing when the actual 186 

water storage is in zone 1 or zone 2, however, when the water storage is in zone 3, the 187 

industrial demand has to be rationed, i.e., 𝛼2 ∗ 𝐷2. 188 

To provide long-term operation guidelines for reservoir management for meeting 189 

expected water demands for future planning years, the projected water demands and 190 

long-term historical inflow are used. The optimization objective for water supply 191 

operation rule curves is to minimize water shortages during the long-term historical 192 

period. The ROS design problem is formulated as a multi-objective optimization 193 

problem, i.e., minimizing multiple objectives simultaneously. In this paper, the 194 
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objectives are to minimize industry and agriculture water shortages: 195 

min𝑓𝑖(𝒙) = 𝑆𝑆𝑖 = 100
𝑁
∑ �𝐷𝑖,𝑗−𝑊𝑖,𝑗(𝒙)

𝐷𝑖,𝑗
�
2

𝑁
𝑗=1                   (1) 196 

where 𝒙 is the vector of decision variables, i.e., the water storages at different 197 

periods on a water-supply rule curve; 𝑆𝑆𝑖 is the shortage index for water demand 𝑖 198 

(agricultural water demand when 𝑖 = 1, industrial water demand when 𝑖 = 2), which 199 

measures the average annual shortage occurred during 𝑁 years, and is used as an 200 

indicator to reflect water supply efficiency; 𝑁 is the total number of years simulated; 201 

𝐷𝑖,𝑗 is the demand for water demand 𝑖 during the 𝑗th year; 𝑊𝑖,𝑗(𝑥) is the actually 202 

delivered water for water demand 𝑖  during the 𝑗 th year. The term 𝑊𝑖,𝑗(𝑥)  is 203 

calculated below using agricultural water demand (𝑖 = 1) as an example. If the 204 

actual water storage is above the water supply rule curve for agricultural water 205 

demand (𝑖 = 1) at period 𝑡 in a year, the delivered water at period 𝑡 is its full 206 

demand without being rationed, 𝐷1,𝑡. If the actual water storage is below the water 207 

supply rule curve for agricultural water demand at period 𝑡, the delivered water for 208 

agricultural water demand at period 𝑡 is its rationed demands, 𝛼1 ∗ 𝐷1,𝑡. 209 

For the ROS optimization problem, the mass balance equations are: 210 

𝑆𝑡+1 − 𝑆𝑡 =  𝑆𝑡 − 𝑅𝑡 − 𝑆𝑆𝑡 − 𝐸𝑡                       (2) 211 

𝑅𝑡 = 𝑔(𝒙),  𝑆𝑆𝑡 = 𝑘(𝒙),𝐸𝑡 = 𝑒(𝒙)                     (3) 212 

𝑆𝑆𝑡min ≤ 𝑆𝑡 ≤ 𝑆𝑆𝑡max, 𝑆𝑆𝑡min ≤ 𝒙 ≤ 𝑆𝑆𝑡max                  (4) 213 

where 𝑆𝑡 is the initial water storage at the beginning of period 𝑡; 𝑆𝑡+1 is the 214 

ending water storage at the end of period 𝑡; 𝑆𝑡,𝑅𝑡, 𝑆𝑆𝑡 and 𝐸𝑡 are inflow, delivery 215 

for water use, spill and evapotranspiration loss, respectively; and 𝑆𝑆𝑡max and 𝑆𝑆𝑡min 216 
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are the maximum and minimum storage, respectively. Additionally, because 𝑊𝑖,𝑗(𝑥) 217 

in Equation (1) is the actually delivered water for water demand 𝑖 during the 𝑗th 218 

year, 𝑅 in that year is equal to the sum: 𝑊1,𝑗(𝑥) + 𝑊2,𝑗(𝑥). 219 

 220 

3 Methodology 221 

Pre-conditioning is a technique that uses a set of known good solutions as starting 222 

points to improve the search process of optimization problems (Nicklow et al., 2010). 223 

It is very challenging to determine good initial solutions, and different techniques 224 

including the domain knowledge can be used. This study utilizes a 225 

sensitivity-informed dimension reduction to develop simpler search problems that 226 

consider only a small number of highly sensitive decisions. The results from these 227 

simplified search problems can be used to successively pre-condition search for larger, 228 

more complex formulations of ROS design problems. The ε-NSGAII, a popular 229 

multi-objective evolutionary algorithm, is chosen as it has been shown effective for 230 

many engineering optimization problems (Kollat and Reed, 2006; Tang et al., 2006; 231 

Kollat and Reed, 2007). For the two-objectives considered in this paper, their epsilon 232 

values in ε-NSGAII (𝜀𝑆𝑆1 and 𝜀𝑆𝑆2) were chosen based on reasonable and practical 233 

requirements and were both set to 0.01. According to the study by Fu et al. (2012), the 234 

sensitivity-informed methodology, as shown in Fig. 2, has the following steps: 235 

1. Perform a sensitivity analysis using Sobol'’s method to calculate the sensitivity 236 

indices of all decision variables regarding the ROS performance measure; 237 

2. Define a simplified problem that considers only the most sensitive decision 238 



12 
 

variables by imposing a user specified threshold (or classification) of sensitivity; 239 

3. Solve the simplified problem using ε-NSGAII with a small number of model 240 

simulations; 241 

4. Solve the original problem using ε-NSGAII with the Pareto optimal solutions 242 

from the simplified problem fed into the initial population. 243 

3.1 Sobol'’s sensitivity analysis 244 

Sobol'’s method was chosen for sensitivity analysis because it can provide a 245 

detailed description of how individual variables and their interactions impact model 246 

performance (Tang et al., 2007b; Zhang et al., 2013a). A model could be represented 247 

in the following functional form: 248 

𝑦 = 𝑓(𝒙) = 𝑓�𝑥1,⋯ , 𝑥𝑝�                     (5) 249 

where 𝑦 is the goodness-of-fit metric of model output, and 𝒙 = �𝑥1,⋯ , 𝑥𝑝� is the 250 

parameter set. Sobol'’s method is a variance based method, in which the total variance 251 

of model output, 𝐷(𝑦), is decomposed into component variances from individual 252 

variables and their interactions: 253 

𝐷(𝑦) = ∑ 𝐷𝑖𝑖 + ∑ 𝐷𝑖𝑗𝑖<𝑗 + ∑ 𝐷𝑖𝑗𝑖𝑖<𝑗<𝑖 + ⋯+ 𝐷12⋯𝑚         (6) 254 

where 𝐷𝑖  is the amount of variance due to the 𝑖th variable 𝑥𝑖 , and 𝐷𝑖𝑗  is the 255 

amount of variance from the interaction between 𝑥𝑖 and 𝑥𝑗. The model sensitivity 256 

resulting from each variable can be measured using the Sobol′’s sensitivity indices of 257 

different orders: 258 

First-order index: 𝑆𝑖 = 𝐷𝑖
𝐷

                     (7) 259 

Second-order index: 𝑆𝑖𝑗 = 𝐷𝑖𝑗
𝐷

                    (8) 260 
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Total-order index: 𝑆𝑇𝑖 = 1 − 𝐷~𝑖
𝐷

                    (9) 261 

where 𝐷~𝑖  is the amount of variance from all the variables except for 𝑥𝑖 , the 262 

first-order index 𝑆𝑖  measures the sensitivity from the main effect of 𝑥𝑖 , the 263 

second-order index 𝑆𝑖𝑗  measures the sensitivity resulting from the interactions 264 

between 𝑥𝑖 and 𝑥𝑗, and the total-order index 𝑆𝑇𝑖 represents the main effect of 𝑥𝑖 265 

and its interactions with all the other variables. 266 

3.2 Performance metrics 267 

Since MOEA uses random-based search, performance metrics are used in this 268 

study to compare the quality of the approximation sets derived from replicate 269 

multi-objective evolutionary algorithm runs. Three indicators were selected: the 270 

generational distance (Veldhuizen and Lamont, 1998), the additive ε-indicator (Zitzler 271 

et al., 2003), and the hypervolume indicator (Zitzler and Thiele, 1998). 272 

The generational distance measures the average Euclidean distance from solutions 273 

in an approximation set to the nearest solution in the reference set, and indicates 274 

perfect performance with zero. The additive ε-indicator measures the smallest 275 

distance that a solution set needs to be translated to completely dominate the reference 276 

set. Again, smaller values of this indicator are desirable as this indicates a closer 277 

approximation to the reference set. 278 

The hypervolume indicator, also known as the S metric or the Lebesgue measure, 279 

measures the size of the region of objective space dominated by a set of solutions. The 280 

hypervolume not only indicates the closeness of the solutions to the optimal set, but 281 

also captures the spread of the solutions over the objective space. The indicator is 282 
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normally calculated as the volume difference between a solution set derived from an 283 

optimization algorithm and a base solution set. In this study, the worst case solution is 284 

chosen as base. For example, the worst solution is (1, 1) for two minimization 285 

objectives in the normalized objective space. Thus larger hypervolume indicator 286 

values indicate improved solution quality and imply a larger distance from the worst 287 

solution. 288 

 289 

4 Case study 290 

Two case studies of increasing complexity are used to demonstrate the advantages 291 

of the sensitivity-informed methodology: (1) the Dahuofang reservoir, and (2) the 292 

inter-basin multi-reservoir system in Liaoning province, China. The inter-basin 293 

multi-reservoir system test case is a more complex ROS problem with Dahuofang, 294 

Guanyinge and Shenwo reservoirs. In the two ROS problems, the reference sets were 295 

obtained from all the Pareto optimal solutions across a total of 10 random seed trials, 296 

each of which was run for a maximum number of function evaluations (NFE) of 297 

500,000. Additionally, the industrial and agricultural water demands in the future 298 

planning year, i.e., 2030, and the historical inflow from 1956 to 2006 were used to 299 

optimize reservoir operation and meet future expected water demands in the two case 300 

studies. 301 

4.1 Dahuofang reservoir 302 

The Dahuofang reservoir is located in the main stream of Hun River, in Liaoning 303 

province, Northeast China. The Dahuofang reservoir basin drains an area of 5437 km2, 304 
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and within the basin the total length of Hun River is approximately 169 km. The main 305 

purposes of the Dahuofang reservoir are industrial water supply and agricultural water 306 

supply to central cities in Liaoning province. The reservoir characteristics and yearly 307 

average inflow are illustrated in Table 1. 308 

The Dahuofang ROS problem is formulated as follows: the objectives are 309 

minimization of industrial shortage index and minimization of agricultural shortage 310 

index as described in Equation (1); the decision variables include storage volumes on 311 

the industrial and agricultural curves. For the industrial curve, a year is divided into 312 

24 time periods (with ten days as the scheduling time step from April to September, 313 

and one month as the scheduling time step in the remaining months). Thus there are 314 

twenty-four decision variables for industrial water supply. The agricultural water 315 

supply occurs only in the periods from the second ten-day of April to the first ten-day 316 

of September, thus there are fifteen decision variables for agricultural water supply. In 317 

total, there are thirty-nine decision variables. 318 

4.2 Inter-basin multi-reservoir system 319 

As shown in Fig. 3, Dahuofang, Guanyinge and Shenwo reservoirs compose the 320 

inter-basin multi-reservoir system in Liaoning province, China. 321 

Liaoning province in China covers an area of 146 × 103 km2 with an extremely 322 

uneven distribution of rainfall in space. The average amount of annual precipitation 323 

decreases from 1100 mm in east to 600 mm in west (WMR-PRC, 2008). However, the 324 

population, industries, and agricultural areas mainly concentrate in the western parts. 325 

Therefore, it is critical to develop the best water supply rules for the inter-basin 326 
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multi-reservoir system to decrease the risk of water shortages caused by the mismatch 327 

of water supplies and water demands in both water deficit regions and water surplus 328 

regions. Developing inter-basin multi-reservoir water supply operation rules has been 329 

promoted as a long-term strategy for Liaoning province to meet the increasing water 330 

demands in water shortage areas. In the inter-basin multi-reservoir system of Liaoning 331 

province, the abundant water in Dahuofang, Guanyinge and Shenwo reservoirs is 332 

diverted downstream to meet the water demands in water shortage areas, especially 333 

the region between Daliaohekou and Sanhekou hydrological stations. 334 

The main purposes of the inter-basin multi-reservoir system are industrial water 335 

supply and agricultural water supply to eight cities (Shenyang, Fushun, Anshan, 336 

Liaoyang, Panjin, Yingkou, Benxi and Dalian) of Liaoning province, and 337 

environmental water demands need to be satisfied fully. The characteristics of each 338 

reservoir in the inter-basin multi-reservoir system are illustrated in Table 2. 339 

The flood season runs from July to September, during which the inflow takes up a 340 

large part of the annual inflow. The active storage capacities of Dahuofang and 341 

Shenwo reservoirs reduce significantly during flood season for the flood control. 342 

The inter-basin multi-reservoir operation system problem is formulated as follows: 343 

the objectives are minimization of industrial shortage index and minimization of 344 

agricultural shortage index as described in Equation (1). Regarding Shenwo reservoir, 345 

which has the same water supply operation rule curve features as Dahuofang reservoir, 346 

the decision variables include storage volumes on the industrial and agricultural 347 

curves and there are thirty-nine decision variables. Regarding Guanyinge reservoir, 348 
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the decision variables include storage volumes on the industrial curve and water 349 

transferring curve due to the requirement of exporting water from Guanyinge 350 

reservoir to Shenwo reservoir in the inter-basin multi-reservoir system, which is 351 

similar to the water supply operation rule curve for industrial water demand, and there 352 

are forty-eight decision variables. Therefore, the inter-basin multi-reservoir system 353 

has six rule curves and 39 × 2 + 48 = 126 decision variables in total. 354 

 355 

5 Results and discussions 356 

5.1 Dahuofang reservoir 357 

In the Dahuofang reservoir case study, a set of 2000 Latin Hypercube samples 358 

were used per decision variable yielding a total number of 2000 × (39 + 2) =359 

82000  model simulations used to compute Sobol'’s indices. Following the 360 

recommendations of Tang et al. (2007a, b) boot-strapping the Sobol'’ indices showed 361 

that 2000 samples per decision variable were sufficient to attain stable rankings of 362 

global sensitivity. 363 

The first-order indices representing the individual contributions of each variable to 364 

the variance of the objectives are shown in blue in Fig. 4. The total-order indices 365 

representing individual and interactive impacts on the variance of the objectives are 366 

represented by the total height of bars. Agr4_2 represents decision variable 367 

responding to water storage volume on the agricultural curve at the second ten days of 368 

April and ind3_3 represents decision variable responding to water storage volume on 369 

the industrial curve at the last ten days of March, and so on. Considering the shortage 370 
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index for the industrial water demand, the water storages at time periods ind1, ind2, 371 

ind3, ind10, ind11, and ind12, i.e., the water storages at time periods 1, 2, 3, 10, 11, 372 

and 12 of water supply operation rule curves for industrial water demand are the most 373 

sensitive variables, accounting for almost 100% of the total variance. Considering the 374 

agricultural shortage index, the water storages at time periods from agr4-2 to agr5-3, 375 

i.e., the water storages at the first five time periods of water supply operation rule 376 

curves for agricultural water demand are the most sensitive variables. The explanation 377 

for the most sensitive variables in water supply operation rule curves for industrial 378 

and agricultural water demands will be provided in section 5.1.3. 379 

5.1.1 Simplified problems 380 

Building on the sensitivity results shown in Fig. 4, one simplified version of the 381 

Dahuofang ROS problem is formulated: only 11-periods are considered for 382 

optimization, i.e., time periods ind1, ind2, ind3, ind10, ind11, and ind12 for industrial 383 

curve and agr4-2, agr4-3, agr5-1, agr5-2, and agr5-3 for agricultural curve based on a 384 

total-order Sobol'’s index threshold of greater than 10%. The threshold is subjective 385 

and its ease-of-satisfaction decreases with increasing number of parameters or 386 

parameter interactions. In all of the results for the Sobol′’s method, parameters 387 

classified as the most sensitive contribute, on average, at least 10 percent of the 388 

overall model variance (Tang et al., 2007a, b). The full search 39-period problem 389 

serves as the performance baseline relative to the reduced complexity problem. 390 

5.1.2 Pre-conditioned optimization 391 

In this section, the pre-conditioning methodology is demonstrated using the 392 
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11-period simplification of the Dahuofang ROS test case from the prior section, while 393 

the insensitive decision variables are set randomly first with domain knowledge and 394 

kept constant during the solution of the simplified problem. 395 

Using the sensitivity-informed methodology, the 11-period case was first solved 396 

using ε-NSGAII with a maximum NFE of 2000, and the Pareto optimal solutions 397 

combined with the constant insensitive decision variables were then used as starting 398 

points to start a complete new search with a maximum NFE of 498,000. The standard 399 

search using ε-NSGAII was set to a maximum NFE of 500,000 so that the two 400 

methods have the same NFE used for search. In this case, 10 random seed trials were 401 

used given the computing resources available. The search traces in Fig. 5 show for all 402 

three metrics (generational distance, additive epsilon indicator, and hypervolume) that 403 

the complexity-reduced case can reliably approximate their portions of the industrial 404 

and agricultural water shortage tradeoff given their dramatically reduced search 405 

periods. All three metrics show diminishing values at the end of the reduced search 406 

periods. The pre-conditioning results are shown in Fig. 5 in red search traces 407 

continuing from the blue reduced complexity search results. 408 

Fig. 5 clearly highlight that the sensitivity-informed pre-condition problems 409 

dramatically enhance search efficiency in terms of the generational distance, additive 410 

epsilon indicator, and hypervolume metrics. Overall, sensitivity-informed dimension 411 

reduction and pre-conditioning yield strong efficiency gains and more reliable search 412 

(i.e., narrower band widths on search traces) for the Dahuofang ROS test case. 413 

Fig. 6(a) shows Pareto fronts from a NFE of 3000, 5000 and 8000 in the evolution 414 
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process of one random seed trial. In the case of the pre-conditioned search, the 415 

solutions from 3000, 5000 and 8000 evaluations are much better than the 416 

corresponding solutions in the case of standard baseline search. The results show that 417 

the Pareto approximate front of the pre-conditioned search is much wider than that of 418 

the standard search, and clearly dominates that of the standard search in all the 419 

regions across the entire objective space. 420 

Fig. 6(b) shows the best and worst Pareto fronts from a NFE of 500,000 and 8000 421 

in the evolution process of ten seed trials. In the case of the pre-conditioned search, 422 

the best solutions from 500,000 evaluations are better than the corresponding 423 

solutions in the case of standard baseline search. Although it is obvious that there are 424 

not many differences between solutions obtained from pre-conditioned search and 425 

solutions from standard baseline search due to the complexity of the problem, the best 426 

Pareto fronts from a NFE of 8000 in the case of the pre-condition search are 427 

approximate the same as the best Pareto fronts from a NFE of 500,000 in the case of 428 

the standard baseline search. 429 

Fig. 7 shows the computational savings for two thresholds of hypervolume values 430 

0.80 and 0.85 in the evolution process of each seed trial. In both cases of the 431 

thresholds of hypervolume values 0.80 and 0.85, NFE of the pre-conditioned search is 432 

less than standard baseline search for each seed. In the case of the threshold of 433 

hypervolume value 0.80, the average NFEs of full search and pre-conditioned full 434 

search are approximately 94,564 and 25,083 for one seed run respectively, and the 435 

computation is saved by 73.48%. Although the NFE of Sobol'’s analysis is 82,000, the 436 
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average NFEs of pre-conditioned full search is approximately 25,083 + 82,000/437 

10 = 33,283 for each seed run, and the computational saving is 64.80%. 438 

Similarly, in the case of the threshold of hypervolume value 0.85, which is 439 

extremely difficult to achieve, the average NFEs of full search and pre-conditioned 440 

full search are approximately 214,049 and 105,060 for each seed run respectively, and 441 

the computation is saved by 50.92%. When the computation demand by Sobol'’s 442 

analysis is considered, the computational saving is still 47.09%. 443 

5.1.3 Optimal operation rule curves 444 

The rule curves for Dahuofang reservoir from the final Pareto fronts based on the 445 

projected water demands and long-term historical inflow are shown in Fig. 8 (S2). 446 

The effectiveness and reasonability of the rule curves for Dahuofang reservoir are 447 

analyzed as follows. 448 

Firstly, the optimal operational rule curves in Fig. 8 (S2) have the same 449 

characteristics as they are used in practice. During the pre-flood season (from April to 450 

June), the curves gradually become lower so that they can reduce the probability of 451 

limiting water supply and empty the reservoir storage for the flood season (from July 452 

to early September). During the flood season, the curves also stay in low positions 453 

owing to the massive reservoir inflow and the requirement of flood control, so that it 454 

is beneficial to supply as much water as possible. However, during the season from 455 

mid-September to March, the curves remain high, especially from mid-September to 456 

October, in order to increase the probability of limiting water supply and retaining 457 

enough water for later periods to avoid severe water-supply shortages as drought 458 
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occurs. 459 

Secondly, Fig. 8 (S2) shows that different water demands occur at different 460 

periods, e.g., industrial water demand occurs throughout the whole year, and 461 

agricultural water demand occurs only at the periods from the second ten-day of April 462 

to the first ten-day of September. Specially, during the flood season, there are still 463 

agricultural water demands due to temporal and spatial variations of rainfall though 464 

they are significantly reduced. Also note that the water supply curves are developed 465 

based on a historical, long-term rainfall series and the projected demands are also 466 

based on historical demands, covering stochastic uncertainties in demands and 467 

rainfalls. Due to the higher priority of industrial water supply than agricultural water 468 

supply, the industrial water supply curve is more close to minimum storage 469 

throughout the year than the agricultural water supply curve. Due to the conflicting 470 

relationship between industrial and agricultural water demands, the industrial water 471 

supply curve is higher during the non-flood season, compared to the same curve in the 472 

flooding season. Thus, if the industrial water supply curve is too low during the 473 

non-flood season from January to April, which implies that the industrial water 474 

demand is satisfied sufficiently, there would not be enough water supplied for the 475 

agricultural water demand in the same year. Similarly, if the industrial water supply 476 

curve is too low during the non-flood season from September to December, there 477 

would not be enough water supplied for the agricultural water demand in the next one 478 

or more years. 479 

Thirdly, the inflow and industrial water demands are relatively stable during the 480 
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non-flood seasons from January to March and from October to December, so one 481 

month is taken as the scheduling time step, which is in accordance with the 482 

requirement of Dahuofang reservoir operation in practice. Due to the larger amount of 483 

industrial water demand in periods 1, 2, 3, 10, 11 and 12 (January-March and 484 

October-December) than other periods, the water storages at these time periods are 485 

very important to industrial water supply, making them the most sensitive variables. 486 

Because the agricultural water demand is very high during the non-flood period from 487 

April to May, the agricultural water supply curve at this time period is higher, and the 488 

water storages at time periods from agr4-2 to agr5-3, i.e., the water storages at the 489 

first five time periods of water supply operation rule curve for agricultural water 490 

demand, are the most important variables. On the other hand, in practice, if the 491 

agricultural water demand could not be satisfied at the first few periods of water 492 

supply operation rule curve, the agricultural water supply at each period throughout 493 

the year would be limited, i.e., the interactive effects from variables are noticeable at 494 

time periods from agr4-2 to agr5-3. 495 

Additionally, comparisons are made among the optimized solutions from the final 496 

Pareto fronts, including industry-favoring solution (S0), agriculture-favoring solution 497 

(S1) and compromised solution (S2). The comparisons of water shortage indices 498 

among different solutions are shown in Table 3, and the optimal rule curves for 499 

different solutions are shown in Fig. 8. 500 

It could be seen from Table 3 and Fig. 8 that there are larger differences among 501 

different solutions. With industry-favoring solution (S0), the agricultural water supply 502 
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curve at the period from April to May is the highest among the three solutions. 503 

Because the agricultural water demand is very high during the non-flood period from 504 

April to May, the highest position of agricultural water supply curve at these periods 505 

could cause that the agricultural water demand would not be satisfied at the first few 506 

periods of agricultural water supply operation rule curve, and the agricultural water 507 

supply at each period throughout the year would be limited easily. Therefore, in S0, 508 

the industrial water demand could be fully satisfied through limiting agricultural 509 

water supply to a large extend, and lowering the industrial water supply curve; 510 

industrial and agricultural water shortage indices are 0.000 and 3.550, respectively. 511 

Opposite to S0, the agricultural water demand in S1 could be satisfied largely through 512 

lowering the agricultural water supply curve on the period from April to May and 513 

raising the industrial water supply curve; and industrial and agricultural water 514 

shortage indices are 0.020 and 1.380, respectively. Compared with solutions S0 and 515 

S1, two objectives are balanced in compromised solution (S2), where industrial and 516 

agricultural water shortage indices are 0.007 and 1.932, respectively. 517 

 518 

5.2 Inter-basin multi-reservoir system 519 

5.2.1 Sensitivity analysis 520 

Similarly to the Dahuofang case study, a set of 2000 Latin Hypercube samples 521 

were used per decision variable yielding a total number of 2000 × (126 + 2) =522 

256,000 model simulations to compute Sobol'’s indices in this case study. 523 

The first-order and total-order indices for 126 decision variables are shown in Fig. 524 
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9. Similarly to the results obtained from the Dahuofang ROS Problem in Fig. 4, the 525 

variance in the two objectives, i.e., industrial and agricultural shortage indices, are 526 

largely controlled by the water storages at time periods from agr4-2 to agr5-3 of 527 

Shenwo reservoir water supply operation rule curves for agricultural water demand, 528 

the water storages at time periods from agr4-2 to agr5-3 of Dahuofang reservoir water 529 

supply operation rule curves for agricultural water demand, the water storages at time 530 

periods ind1, ind2, ind3, ind7-1, ind10, ind11, and ind12 of Dahuofang reservoir 531 

water supply operation rule curves for industrial water demand based on a total-order 532 

Sobol'’s index threshold of greater than 3%, which is subjective and its 533 

ease-of-satisfaction decreases with increasing numbers of parameters or parameter 534 

interactions. These 17 time periods are obvious candidates for reducing the dimension 535 

of the original optimization problem and formulating a pre-conditioning problem. 536 

Therefore, the simplified problem is defined from the original design problem with 537 

the 109 intensive time periods removed, while the insensitive decision variables are 538 

set randomly first with domain knowledge and kept constant during the solution of the 539 

simplified problem. It should be noted that the increased interactions across sensitive 540 

time periods in this test case. These interactions verify that this problem represents a 541 

far more challenging search problem. 542 

5.2.2 Pre-conditioned optimization 543 

Using the sensitivity-informed methodology, the simplified problem was first 544 

solved using ε-NSGAII with a maximum NFE of 5000, and the Pareto optimal 545 

solutions combined with the constant insensitive decision variables were then used as 546 
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starting points to start a complete new search with a maximum NFE of 495,000. The 547 

standard search using ε-NSGAII was set to a maximum NFE of 500,000 so that the 548 

two methods have the same NFE used for search. In this case, 10 random seed trials 549 

are used given the computing resources available. Similarly to the results obtained 550 

from the Dahuofang ROS problem in Fig. 5, the search traces in Fig. 10 show all three 551 

metrics (generational distance, additive epsilon indicator, and hypervolume) that 552 

represent performance metrics for the inter-basin multi-reservoir water supply 553 

operation system problem. Similarly, the pre-conditioning results are shown in Fig. 10 554 

in red search traces continuing from the blue reduced complexity search results. It is 555 

clear that the sensitivity-informed pre-condition problems enhance search efficiency 556 

in terms of the generational distance, additive epsilon indicator, and hypervolume 557 

metrics. However, with the increase in problem complexity in comparison to the first 558 

case study (i.e., the number of decision variables from 39 to 126), the search of ROS 559 

optimization problem becomes more difficult, and so the metrics obtained from 560 

pre-conditioned search are not improved greatly compared with the standard baseline 561 

search. Both Figures 5 and 10 show that sensitivity-informed dimension reduction and 562 

pre-conditioning could also yield strong efficiency gains and more reliable search (i.e., 563 

narrower band widths on search traces) for Inter-basin multi-reservoir system. 564 

Fig. 11(a) shows Pareto fronts from a NFE of 6000, 8000 and 10,000 in the 565 

evolution process of one random seed trial. In the case of the pre-conditioned search, 566 

the solutions from the three NFE snapshots are much better than those from standard 567 

baseline search. Similar to Fig. 6(a), the results show that the Pareto approximate 568 
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front of the pre-conditioned search is much wider than that of the standard search, and 569 

clearly dominates that of the standard search in all the regions across the entire 570 

objective space. Additionally, in the case of the pre-conditioned search, the solutions 571 

from 6000 evaluations are as good as those from 8000 evaluations and 10,000 572 

evaluations. And they are much better than the solutions from the standard baseline 573 

search. It should be noted that the slow progress in the Pareto approximate fronts from 574 

6000 to 10,000 evaluations reveals the difficulty of the inter-basin multi-reservoir 575 

operation system problem. 576 

Fig. 11(b) shows the best and worst Pareto fronts from a NFE of 500,000 in the 577 

evolution process of ten seeds trials. Although it is obvious that the best Pareto 578 

approximate front of the pre-conditioned is as good as that of the standard search in 579 

all the regions across the entire objective space approximately, the Pareto solutions 580 

from 10 trials of the pre-conditioned search have significantly reduced variation, 581 

indicating a more reliable performance of the pre-conditioned method. In other words, 582 

the results show that the Pareto solution from one random seed trial of the 583 

pre-conditioned search is as good as the best solution from ten random seed trials of 584 

the standard search. That is to say, in the case of the pre-conditioned search, one 585 

random seed trial with a NFE of 500,000 is sufficient to obtain the best set of Pareto 586 

solutions, however, in the case of the standard search, ten seed trials with a total of 587 

500,000 ∗ 10 = 5,000,000 NFE are required to obtain the Pareto solutions. Note that 588 

the NFE of Sobol'’s analysis is 256,000, which is about half of the NFE of one 589 

random seed trial. Thus, an improvement in search reliability can significantly reduce 590 
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the computational demand for a complex search problem such as the multi-reservoir 591 

case study, even when the computation required by sensitivity analysis is included. 592 

 593 

5.3 Discussions 594 

The methodology tested in this study aims to reduce the number of decision 595 

variables through sensitivity-guided dimension reduction to form simplified problems. 596 

The optimization results from the two ROS problems show the reduction in decision 597 

space can make an impact on the reliability and efficiency of the search algorithm. For 598 

the Dahuofang ROS problem, recall that the original optimization problem has 39 599 

decision variables, and the simplified problem has 11 decision variables based on 600 

Sobol'’s analysis. In the case of the inter-basin multi-reservoir operation system, the 601 

original optimization problem has 126 decision variables, and the simplified problem 602 

has a significantly reduced number of decision variables, i.e., 17. Searching in such 603 

significantly reduced space formed by sensitive decision variables makes it much 604 

easier to reach good solutions. 605 

Although Sobol'’s global sensitivity analysis is computationally expensive, it 606 

captures the important sensitive information between a large number of variables for 607 

ROS models. This is critical for correctly screening insensitive decision variables and 608 

guiding the formulation of ROS optimization problems of reduced complexity (i.e., 609 

fewer decision variables). For example, in the Dahuofang ROS problem, accounting 610 

for the sensitive information, i.e., using total-order or first-order indices, result in a 611 

simplified problem for threshold of 10% as shown in Fig. 4. Compared with the 612 



29 
 

standard search, this sensitivity-informed method dramatically reduces the 613 

computational demands required for attaining high quality approximations of optimal 614 

ROS tradeoffs relationships between conflicting objectives, i.e., the best Pareto fronts 615 

from a NFE of 8000 in the case of the pre-condition search are approximately the 616 

same as the best Pareto front from a NFE of 500,000 in the case of the standard 617 

baseline search. 618 

In reality for a very large and computationally intensive problem, the full search 619 

with all the decision variables would likely be so difficult that it may not be optimized 620 

sufficiently. However, as shown here, these simplified problems can be used to 621 

generate high quality pre-conditioning solutions and thus dramatically improve the 622 

computational tractability of complex problems. The framework could be used for 623 

solving the complex optimization problems with a large number of decision variables. 624 

For example, Fu et al. (2012) has used the framework for reducing the complexity 625 

of the multi-objective optimization problems in water distribution system (WDS), and 626 

applied it to two case studies with different levels of complexity - the New York 627 

Tunnels rehabilitation problem and the Anytown rehabilitation/redesign problem. For 628 

the New York Tunnels network, because the original optimization problem has 21 629 

decision variables (pipes) and each variable has 16 options, the decision space is 630 

1621 = 1.934 × 1025. The simplified problem with 8 decision variables based on 631 

Sobol'’s analysis have a decision space of 168 = 4.295 × 109. To obtain the same 632 

threshold of hypervolume value 0.78 for the New York Tunnels rehabilitation problem, 633 

the most pre-conditioned search need is 30 to 40% of the NFE compared to the full 634 
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search through 50 random seed trials. In the case of the Anytown network, the original 635 

problem has a space of 2.859 × 1073, and the simplified problem has a significantly 636 

reduced space of 8.364 × 1038. Through 50 random seed trials for the Anytown 637 

rehabilitation/redesign problem, the full search requires average of 800000 638 

evaluations to reach hypervolume value 0.77, and the pre-conditioned search exceeds 639 

hypervolume value 0.8 in all trials in fewer than 200000 evaluations. The results also 640 

show that searching in such significantly reduced space formed by sensitive decision 641 

variables makes it much easier to reach good solutions, and the sensitivity-informed 642 

reduction of problem size and pre-conditioning improve the efficiency, reliability and 643 

effectiveness of the multi-objective evolutionary optimization. 644 

It should be noted that the framework for sensitivity-informed dimension 645 

reduction of optimization problems is completely independent of multi-objective 646 

optimization algorithms, that is, any multi-objective algorithms could be embedded in 647 

the framework. When dealing with three or more objectives, the formulation of the 648 

optimization problems with a significantly reduced number of decision variables will 649 

dramatically reduce the computational demands required to attain Pareto approximate 650 

solutions in a similar way to the two-objective optimization case studies considered in 651 

this paper. 652 

 653 

6 Conclusions 654 

This study investigates the effectiveness of a sensitivity-informed optimization 655 

method for the ROS multi-objective optimization problems. The method uses a global 656 
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sensitivity analysis method to screen out insensitive decision variables and thus forms 657 

simplified problems with a significantly reduced number of decision variables. The 658 

simplified problems dramatically reduce the computational demands required to attain 659 

Pareto approximate solutions, which themselves can then be used to pre-condition and 660 

solve the original (i.e., full) optimization problem. This methodology has been tested 661 

on two case studies with different levels of complexity- the Dahuofang reservoir and 662 

the inter-basin multi-reservoir system in Liaoning province, China. The results 663 

obtained demonstrate the following: 664 

1. The sensitivity-informed dimension reduction dramatically increases both the 665 

computational efficiency and effectiveness of the optimization process when 666 

compared to the conventional, full search approach. This is demonstrated in both case 667 

studies for both MOEA efficiency (i.e., the NFE required to attain high quality 668 

tradeoffs) and effectiveness (i.e., the quality approximations of optimal ROS tradeoffs 669 

relationships between conflicting design objectives). 670 

2. The Sobol'’s method can be used to successfully identify important sensitive 671 

information between different decision variables in the ROS optimization problem 672 

and it is important to account for interactions between variables when formulating 673 

simplified problems. 674 

Overall, this study illustrates the efficiency and effectiveness of the 675 

sensitivity-informed method and the use of global sensitivity analysis to inform 676 

dimension reduction. This method can be used for solving the complex 677 

multi-objective optimization problems with a large number of decision variables, such 678 
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as optimal design of water distribution and urban drainage systems, distributed 679 

hydrological model calibration, multi-reservoir optimal operation and many other 680 

engineering optimization problems. 681 
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Table 1 Reservoir characteristics and yearly average inflow (106 m3) 835 

Reservoir 

name 

Minimum 

capacity 

Utilizable 

capacity 

Flood control 

capacity 

Yearly average 

inflow 

Dahuofang 134 1430 1000 1570 

 836 

  837 
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Table 2 Characteristics of each reservoir in the inter-basin multi-reservoir system 838 

Reservoir 
Active storage (106 m3) Role in water supply 

project Flood season Non-flood season 

Dahuofang 1000 1430 Supplying water 

Guanyinge 1420 1420 
Supplying water and 
exporting water to 

Shenwo 

Shenwo 214 543 
Supplying water and 
importing water from 

Guanyinge 

 839 

  840 
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Table 3 Comparisons of water shortage indices among different solutions 841 

Solutions 

Water Shortage Index (-) 

Industrial 

water demand 

Agricultural water 
demand 

 (S0) Industry-favoring solution 0.000 3.550 

(S1) Agriculture-favoring solution 0.020 1.380 

(S2) Compromised solution 0.007 1.932 

 842 

  843 
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 844 

Fig. 1 Reservoir operational rule curves 845 
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 847 

Fig. 2 Flowchart of the sensitivity-informed methodology 848 

  849 
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 850 

Fig. 3 Layout of the inter-basin multi-reservoir system 851 

  852 
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 853 

Fig. 4 First-order and total-order indices for the Dahuofang ROS problem regarding 854 

(a) industrial shortage index and (b) agricultural shortage index. The x-axis labels 855 

represent decision variables (water storage volumes on the industrial and agricultural 856 

curves) 857 
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 858 

Fig. 5 Performance metrics for the Dahuofang ROS problem - (a) Generational 859 

Distance; (b) Additive Epsilon Indicator; (c) Hypervolume 860 
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 861 

Fig. 6 Pareto fronts derived from pre-conditioned and standard full searches for the 862 

Dahuofang ROS problem. (a) Sample Pareto fronts with different numbers of function 863 

evaluations for one random seed trial. (b) The best and worst Pareto fronts of ten seed 864 

trials. 865 
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 866 

Fig. 7 Computational savings for two hypervolume values - (a) ℎ𝑦𝑦𝑒𝑦𝑦𝑦𝑦𝑦𝑦𝑒 =867 

0.80; (b) ℎ𝑦𝑦𝑒𝑦𝑦𝑦𝑦𝑦𝑦𝑒 = 0.85 868 

  869 
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 870 

Fig. 8 Optimal rule curves for different solutions, (S0) Industry-favoring solution; (S1) 871 

Agriculture-favoring solution; (S2) Compromised solution 872 

  873 
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 874 

Fig. 9 First-order and total-order indices for the inter-basin multi-reservoir operation 875 

problem regarding industrial shortage index and agricultural shortage index. The 876 

x-axis labels represent decision variables (water storage volumes on the industrial, 877 

agricultural and water transferring curves) 878 

  879 
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 880 

Fig. 10 Performance metrics for the inter-basin multi-reservoir water supply operation 881 

problem - (a) Generation Distance; (b) Additive Epsilon Indicator; (c) Hypervolume 882 
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 883 

Fig. 11 Pareto fronts derived from pre-conditioned and standard full searches for the 884 

inter-basin multi-reservoir operation problem. (a) Sample Pareto fronts with different 885 

numbers of function evaluations for one random seed trial. (b) The best and worst 886 

Pareto fronts of ten seed trials. 887 
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