
Note to the Editor. 

It seems that Figures were not fully readable in the interactive discussion paper. If necessary, as Figures were 
designed with the software illustrator they can be provided in high quality, as it appears in the word format. 

 

Revision notes to Anonymous Referee #1 (Received and published: 6 May 2015) on “Identification of spatial and 
temporal contributions of rainfalls to flash floods using neural network modelling: case study on the Lez Basin 
(Southern France)” by T. Darras et al. 

 

Note to the first anonymous reviewer. 

Comments of the reviewer are recalled in the following and the first response of author is identified in blue; 
modifications provided on the manuscript are written in red. 

Authors first want to thank very much the reviewer for his (her) accurate and interesting work. This will surely 
improve significantly the paper. To facilitate the link with the questions or thought suggested, we propose to 
respond to, (or comment) each point just after the text of the reviewer. In order to facilitate the reading, 
responses will be written in blue. Figures were added.  

1) This paper focuses on the application of the KnoX modelling methodology to extract knowledge about the 
contribution and timing of different geographical aquifer zones to flash floods in SE France from artificial neural 
network models. It is a very worthwhile exercise - the karst aquifers of this region are complex and difficult to model 
physically. Consequently a knowledge extraction approach using data-driven modelling techniques is a sensible and 
novel solution. It is also excellent to see an example of the use of ANNs for geographical knowledge extraction, rather 
than the more commonly attempted (and rather uninteresting) lumped catchment ’curve-fitting’ tasks. However, I am 
concerned that the KnoX methodology (which is essentially a method for assessing model input contributions to the 
output based on the network weights) is not particularly innovative - network weights have been used for more than 
a decade to understand the importance of inputs (Olden and Jackson, 2002; Kingston et al., 2003; 2005). 

The KNOX method was initially described in the paper (Kong-A-Siou et al, 2013). In this former paper we 
explained better the origin of the method, without claiming that the idea to consider parameters (or weights) 
was novel; KNOX was based on the work of Yacoub devoted to variable selection (Yacoub, B., Bennani, Y., 1997. 
A heuristic for variable selection in multilayer artificial neural network classifier. Intelligent Engineering Systems 
Through Artificial Neural Networks 7, 527–532), which was cited in the previous paper. The main difference 
with the papers cited previously (Olden and Jackson, 2002; Kingston 2006 (we didn’t found Kinston 2003)) is 
that KNOX is deterministic thanks to the suppression of the random effect due to the initialization of the 
model. Also the method is different from previous ones: previous ones analyzed variable importance thanks to 
the strength of the parameters (or weights) aided by sensitivity analysis. In opposition, KNOX it is based on a 2 
steps process: first describe the watershed in a block diagram (representing the postulated physical model); 
Parameters of the model are thus constrained to provide the targeted physical information. Second, each box 
is implemented using a multilayer perceptron or a unique linear neuron. After that, the contribution of 
variables can be analyzed and knowledge extracted. In other words, KNOX first constrains the architecture 
toward the postulated physical model, and second quantifies the physical process. To the best of our 
knowledge, this two steps procedure is novel. Moreover KNOX was proved (using a virtual artificial aquifer), in 
the former paper, as sufficiently accurate to extract hydrological knowledge. KNOX method is qualified in L17 
as “recent methodology”, and the goal of the present paper is “To assess the interest of this methodology” 
(L20) on another case study. Due to the complexity of both karst aquifer and neural networks, we think that it 
would be interesting to apply this method to a lot of various configurations in order to assess its efficiency and 
limitations. 

2) What troubles me more, however, is the fact that the KnoX method has been applied to this aquifer before by this 
authorship team or members thereof (see several citations of work by Kong-A-Siou et al.). The authors make some 
reference to this in Section 3.5. and in Section 4 cite that the difference with this paper is the hourly data used to drive 
the model. This leaves me wondering what the contribution to knowledge is in this paper compared to the several 
other papers by the same (or similar) authorship team. If this is a repeat of previously published work that is largely 
the same except for a different temporal resolution of input data, then it feels like only a minor contribution to the 
literature. Therefore, before it can be accepted for publication, I think that the authors need to be very clear about 
how this paper develops the other papers by Kong- A-Siou et al., 2013 on the Lez Basin, the new findings / insights 
that result from this paper, and their relevance and importance for hydrologists.  



We agree with this questioning, which is fully the role of the referee. As it is impossible to rewrite in a new 
paper all the work made before and published elsewhere, it is usual to cite previous papers.  

- In Kong-A-Siou (2011) we applied NN to perform forecast at Lez spring and validate cross validation as a 
useful method to select the complexity of the NN.  

- In Kong-A-Siou (2012) we focused on regularization methods used to select the best complexity (early 
stopping and weight decay) and we presented one exemplar figure of what is overfitting due to too high 
complexity (too many hidden neurons). This figure is the following (top 4 hidden neurons, bottom: 8 
hidden neurons). We concluded also that early stopping was efficient. 

  

- In Kong-A-Siou 2014 we compared reservoir model (VENSIM) and recurrent NN to achieve forecasting of 
discharge and drawdown of water for floods and low water levels. NN was shown efficient for extreme events 
and VENSIM efficient for intermediate events. 

- In Kong-A-Siou 2013 we proposed the KNOX method, explain it, and validate it on a fictitious aquifer. The 
validation was based on the contributions and time delays of rainfall estimated on 4 zones of the aquifer. The 
knowledge extracted from the model allows us to have a new vision of the behavior of the aquifer. The study 
was done on data of the Lez spring at daily time steps. Information was useful for water resource (where does 
the water come from?), and recharge of the aquifer. Only groundwater was considered. 

- In the present paper the same basin is considered, with the same delimitation in 4 zones, nevertheless the 
gauge station is not the same than in 2013: it is the Lavalette station at the entrance of Montpellier. Also the 
database is hourly sampled and includes only flash flood events. Addressed processes are thus different. Flow 
rate at Lavalette station includes contributions from perennial karstic springs (the most important is Lez 
spring), temporary karstic springs (Lirou spring can be stronger than Lez spring), diffuse karstic arrivals and also 
run-off. As the behavior of the basin is very complicated due to surface and underground water floods, and 
because it is impossible to make measurement during the event (to protect human lives) the application of 
KNOX method seems interesting to do. After the application of the KNOX method, we found that it was 
possible to access to a better quantification of processes acting during the flood. We think that this result is 
really interesting for karst hydrologist as it seems possible to distinguish surface flood and underground flood, 
thanks to the model as shown in Figure 5. The comparison of contributions and time delays provided in Table 5 
allows comparing two different processes acting simultaneously in the aquifer. For us this is interesting, very 
useful, and we hope that other people redo the same work on other aquifers to explore the potential of this 
method. 

More extensive presentation of the results of previous papers regarding regularization methods (paper of 2011 
and 2012) was added in P5L26-31 . Also better presentation of the difference between work of 2013 and this 
one is also presented P7L29-P8L4. 

3) The introduction / literature review is generally well structured and provides a fairly comprehensive and critical 
overview of the key literature and the arguments from adopting the method used. There are far more examples of the 
use of the multi-layer perceptron than the two articles cited - a more extensive tabulation would make the review 



more complete. Similarly, the application of ANN-based models in a spatially discretized structure to deal with 
heterogenous and complex hydrological behaviour has also been explored before (e.g. with rainfall-runoff models) 
and it might be worth mentioning these for completeness (e.g. Tsai et al. 2014, Hyd. Proc., 28(3), 1055). The issue of 
how to select the ’best’ or ’correct’ input data sets to the ANN is skipped over a little.  The authors might like to 
consider mentioning the sorts of information-based methods that have emerged for selecting model inputs over the 
last few years (e.g. the Gamma and Evans tests) and explain their choice of inputs a little more thoroughly in light of  
these ideas. 

We agree that this presentation could be extended. Our opinion is that a scientific paper must be concise (if 
possible). The paper has a target, and only the necessary literature, useful to understand and enlighten the 
methodology and results must be cited. This choice implied, in this case, citing 65 papers. We think it is 
sufficient but this point can be discussed: it is an editorial choice.  

4) I also note that the authors identify ANNs as ’statistical’ models. This is, of course, true. However, the term ’data-
driven’ is perhaps more commonly used to describe ANNs and the authors may wish to alter their terminology. 

Yes it could be possible. Nevertheless we observed that the statistical framework is more and more used in the 
neural network research field, so in our perception (which can be false) “data-driven” sounds a little bit old.  

5) Section 2 deals with the basic concepts of ANN design and development. The MLP ANN is chosen, but there is not 
any real justification for this presented. Why not a RBF ANN or some other variant? I think a stronger justification for 
the MLP would be useful here.  

MLP was chosen (P3686, L3) because of “its properties of universal approximation and parsimony”. We thought 
it was sufficient as well as a lot of authors (also Olden and Jackson, 2002, cited in earlier comments). Moreover, 
KNOX method was validated in the framework of multilayer perceptron.  

6) The terminology ’stop set’ is not standard, but I do think it is clear. ’Overtraining’  is more commonly referred to as 
’overfitting’ and this is a term that the authors might like to adjust. The authors do not explain that the issue of 
overfitting is exacerbated by data splits that are not fully representative of the signals in the data.  

Yes we agree. 

Actually there is a subtle difference between overfitting and overtraining: overtraining occurs when training is 
performed too much; it is avoided using early stopping. Overtraining is one the possible cause to overfitting. 
Another cause of overfitting is for example over parametrization which means that the model has too many 
parameters. Thus in the manuscript we took care of the word we used (and correct if necessary): overfitting 
when the problem is the complexity or not well defined; and overtraining when the training is not stopped 
early (by-heart training). 

7) There is a huge literature around methods for achieving representative data splitting to improve the generalisation 
of ANNs (Holger Maier at the University of Adelaide has published in this area recently) and this literature should at 
least be cited.  

Yes it is possible; nevertheless the goal of the paper is not a review about data splitting. The goal was not to 
have the best possible generalization, but a good one taking into account the complexity of the basin and 
uncertainties on input data (that are considerable in this case). Models T7 and T8 (Table 4) can be viewed as 
excellent taking into account that they are evaluated on the two highest events of the database. We 
understand that a meticulous hydrologist want to have the best possible generalization. Nevertheless in the 
context of Mediterranean events, where peaks of flood are measured with an uncertainty of 20% or 30%, we 
think that the level of quality of models T7 and T8 is sufficient. For us, the great challenge was to extract 
knowledge quite similar for all various training set. Regarding this challenge, we thought that results (Table 5 
and Figure 5) were surprisingly good.  

Moreover, regarding flash floods, splitting data following flood events is obvious as time series are not 
continuous (only flash floods are stored and they can be separated by a long time (several years)).  

8) Section 2.1.2. needs a little work. I really struggled to follow what was going on in the method for identifying the 
stopping point and had to read the text forensically. I think a flow chart is needed to support the text in 2.1.2 and the 
authors need to work the text up a little more to improve readability and consistency (e.g. the term ’validation  set’ 
creeps in here but this could be confused with the other ’sets’ presented earlier). The use of a median value from an 
ensemble of 50 ANNs to avoid the influence of the random initialisation effect is sensible - but it does risk ’damping’ 
the model outputs. It might be worth being explicit about the impacts that using an ensemble median might have.  



The “validation set” is simply the one of the cross-validation. This information is lacking; it must be added. For 
readers interested by cross validation, 2 references were provided. Calculation of the median is not used to 
calculate the prediction; it is only used to extract parameters and knowledge. We agree that the calculation of 
the median of the output may induce “damping”; in another work we took this effect into account to make the 
predictions reliable in case of flash floods (Darras et al 2014, Influence of the Initialization of Multilayer 
Perceptron for Flash Flood Forecasting: Design of a Robust Model). 

This last information was added in the text. Section 2.1.2; was checked and better explained. 

9) Section 2.2. deals only briefly with the literature around knowledge extraction. Recent efforts based on partial 
derivatives have provided useful insights into the physical rationality of ANNs and should probably be mentioned at 
least (e.g. Mount et al., 2013.  HESS, 17, 2827 / Dawson et al., 2014. Jnl Hydroinf. 16(2), 407).  

These two papers are thorough, well written and very honest in describing their aims and limits. They address a 
very interesting issue: how to validate a model calculated thanks to a calibration process? In our opinion this 
question must be asked also to practitioners of reservoir models. Indeed it is well known that after calibration, 
parameters of a reservoir model have generally no realistic values. Despite their high quality, these papers 
haven’t the same goal that KnoX method. Hydrometeorological complexity of the Lez model is incommensurate 
with the one of the models targeted by these methods. We don’t apprehend the significant added value they 
could provide to the goal of the paper. 

The ref (Mount et al., 2013) is added in P6L29-P7L4 to extend the state of the art. 

10) The KnoX method description is not particularly easy to follow - the 4 steps in the text should, perhaps, be revised 
to improve their readability and specificity. For example, step 3 states ’...and  calculate of the median of the absolute 
value of each parameter over the ensemble models’. What are these ’parameters’? Are they input values? Are they 
initialization parameters? Are they values associated with the neurons of the network? This is all very unclear. The 
KnoX method is central to what follows so the authors really do need to revise this section fully and provide clarity.  

Parameters are the weights of the model. We choose this word in order to be widely understood by the 
community of neural networks modelers, see for example the book of Dreyfus G. (Neural Networks), and by 
modelers in hydrology (reservoir models have parameters that are calculated thanks to a calibration phase as 
well as parameters of the neural model during training). Nevertheless, the reviewer is right, this term is not so 
clear at this point of the paper. We will include at least the general equation implemented by the multilayer 
perceptron and the definition of variables and parameters before this description of KnoX method. 

Explanation of the calculation made by the multilayer perceptron was added in P4L27-P5L4. It presents what 
are the parameters. 

11) Again, a flow chart or schematic diagram could be helpful for all readers here.  Section 3.5 - please avoid 
statements such as ’fed by abundant rainfall’. What is the rainfall - please give measurements. One man’s abundance 
is another’s dearth.  

We agree, in Table 1 cumulative rainfall was provided for each event. For example, the maximum is 245 mm in 
few days.  

The previous value is added to better precise what "abundant" means. 

12) The legend on Figure 1 is not clear - is the conurbation the hatched area?   

Yes it is, in the original Figure it was better readable. 

The Figure was modified because the area of the conurbation contains also natural land cover. As it is more 
interesting to indicate urban area because they accentuate flash floods, we present this information in the new 
version of Fig. 1.Actually urban zones are downstream of Lavalette that was not obvious in the previous figure.  

13) Section 4.1.1 presents the ’postulated model’. I find it somewhat unsatisfying and poorly argued. It relies on the 
author’s previous papers but little evidence is offered to substantiate the spatial discretisation in the text.  

We were afraid to increase the length of the text, and proposed to the reader to read (Kong-A-Siou 2013) 
where this issue was widely explained. 

14) The inputs to the ANNs are simply the mean rainfall values in each of the four zones - as determined by Theissen 
polygons.  This is a rather simplistic method for assigning rainfall inputs and does not account for the spatio-temporal 
heterogeneity of rainfall in the catchment. Is this a potential issue - I would imagine heterogeneity could be high in 



this catchment? RADAR-based rainfall data might be able to help answer this. What might the impact of such a 
simple assignment of model inputs be on the final model?  

The availability of rainfall spatially and correctly discretized in time is an actual and important issue. These data 
are not available and RADAR data suffers in this region from several problems: (1) consistency from one event 
to another, (2) underestimation of rainfall. They are thus not better than rain gauges even if research in this 
field is very active to improve RADAR rainfall. Don’t forget also that radar data are usually calibrated thanks to 
rain gauges. Personally we demonstrated empirically in a place near the Lez Basin (Gardon d’Anduze) that 
RADAR data underestimate rainfall by a mean factor of 25% (with important variability) compared to rain gauge 
data (by comparing only the rain gauge and the pixel of radar corresponding to the rain gauge); see for 
example the following figure for a cevenol flash flood at Anduze (sorry, it is in French; “pluviomètre” means 
rain gauge, and “pluie” means rainfall). Thus using rain gauge data in this basin appeared as more robust. 

 

This issue was briefly addressed in P11L29-P12L2. 

15) Simply stating that you ’consider  the rainfall information sufficient to carry out this study’ (Pg 3695, Line 10) 
doesn’t feel an adequate justification to me. 

As explained before, rainfall data at hourly time step in the south-east zone doesn’t exist anymore. Concerned 
area (in the south) is impervious; therefore there is no doubt about the influence of karst. Karst contains water 
table under the impervious layer but has no role on flood as indicated by previous hydrogeological studies. Our 
questioning is linked to the NE and SO zones; indeed the NO zone (full karst area, and surface water flowing to 
another river (Vidourle)), seems too far from Lavalette station to be able to contribute to underground Flash 
Flood. The goal of this study is also to better understand the behavior of the basin in order to develop well 
suited monitoring strategy (p3682 L16-17). 

Important stakes associated with flash flooding in Montpellier imposes us to work on this problematic even if 
data are not excellent. A sentence added in P13L.17-20. This limitation of the work is pointed out in P17L4-10.  

16) Section 4.2. The authors introduce the term ’window-width’ in this section and it appears again in Table 3. I simply 
don’t know what this is - I don’t recall having seen it in the text before. Similarly, the authors appear to have 
experimented with developing models using various numbers of hidden neurons - but I don’t recall this important 
process (the model complexity has a major influence on overfitting propensity) being presented in the text earlier. This 
leaves me rather confused and of the opinion that the methodological descriptions presented earlier in the paper 
have not been sufficiently clear or detailed enough.  

Yes, this information is important. Hidden neurons number is determined by cross-validation as indicated 
p3687 L4-5 and p3695 L16 and Table 3. Window widths refer to the sliding windows of rainfall vectors and of 
previous discharge vector. These sliding windows are drawn in Fig. 3; their range of investigation and chosen 
values are provided in Table 3. 

17) I simply can not read Figure 3 and this makes it very difficult  to understand the ANN structure that has been used. 
Similarly, the model outputs in Figure 4 are too small to be useful - I can’t see the hydrographs properly. I think that 
considerably more work is needed here to ensure that the methods and model structure are properly and fully 
described in the paper and that the model outputs that are being used to validate the model are adequately disclosed.   

We are sorry, original figures were designed with Adobe Illustrator. They are good in original png format. They 
are inserted in the following response. The quality is slightly better when clicking on “printer-friendly Version” 
and zooming (in the internet HESSD discussion). 



 

Fig3 Postulated model: grey block-diagram. Three layers multilayer perceptron with linear hidden layer 
between rainfall inputs and nonlinear layer. Parameters used in Eq. (4) are denoted in red. 

 

Fig 4. Hydrographs of major events in the database: events 7 and 8. Simulated discharge is the median of 
outputs coming from the 50 run models (differing by their initialization parameters). Uncertainty on the 
observed value is the measurement ±20 %. Uncertainty on the simulated value is represented by simulations 
coming from the 50 run models (differing by their parameters initialization). 

 



 

Figure 5. Median and total spread of time distributions of North-western, North-eastern, South-western and 
South-eastern rainfall inputs contributions calculated from parameters of the 7 designed models 

18) In section 4.3 the nature of the KnoX method becomes clearer, along with what the authors meant by 
’parameters’ earlier in the paper (they are the network weights).  Knox is revealed as a method for determining the 
influence of each input, on the output,  at each time step, based upon chaining of the network weights. The use of 
network weights to explore and quantify the contributions of different inputs is not particularly new. Work by Olden 
and Jackson (2002) and Kingston et al., (2003, 2006) (which has not been cited) is highly relevant because they did 
something rather similar. How does KnoX differ from this?  

KnoX differs from these methods in several ways: (1) the first step is to constrain the model using the 
“postulated model” established from hydrogeological knowledge. This step diminishes the number of 
parameters and excludes the ones physically impossible. The postulated model guides the simulation model 
towards the physical solution and diminishes the equifinality. Thus the box is no longer totally “black”. This 
proposition is different from the proposition investigated in papers proposed by the reviewer (Olden and 
Jackson, 2002; Kingston et al.) because the constraints are not imposed at the level of the parameters (for 
example make the parameter linking the evapotranspiration to the hidden neurons positive), but at the level of 
processes in the case of this paper. Using the block diagram of the postulated model, one says that some 
processes are possible; others are not. (2) The method takes the median of absolute value of each parameter 
for 50 different initializations in order to be independent from one specific initialization. The sign of the 
parameter is not important as the product of two negative parameters is positive in the chain of parameters 
product; for this reason and in order to take profit of the “black box” capabilities of ANN, we didn’t want to 
constrain parameters. (3) Thanks to the postulated model it is possible to extract temporal information (Fig. 5) 
and not only variable contributions. This point is fundamental and allows in the present paper to characterize 
the hydrological processes. (4) KnoX method was validated on a fictitious nonlinear aquifer using actual rainfall 
data. 

These elements are described in detail in the previous paper (Kong-A-Siou, 2013). As it contains 32 pages in 
Journal of Hydrology, it is not possible to re-write it in the present paper. Nevertheless it is necessary to be red 
in order to fully understand the contribution of the present work. 



The papers of Jackson (2002) and Kingston (2006) present a method which computes a chained product of 
weights, so called “Connection Weight Approach”, this approach was not novel in 2002 and this was not a 
problem, because other interesting works were done thanks to this CWA. It is the case of KnoX method which 
proposes a way to smartly perform “pruning” and deterministic knowledge extraction. It can be noted that the 
CWA approach used in KnoX method was inspired by Yacoub and Bennani, 1997, cited in the previous paper 
(Kong-A-Siou, 2013). 

Nevertheless we would be very interested if we can have another reference about a method able to indicate, 
for example that there is 3 hours delay between underground flood and surface flood, without measurement 
of each kind of flood. KnoX provided this information in the present paper. 

These considerations are added in section 2.2. 

19) Similarly, the quantification of the partial derivatives of MLPs  (Mount et al., 2013 and Dawson et al., 2014 - see 
earlier citations in this report) are arguably more comprehensive methods for understanding the strength and pattern 
of influence of model inputs on the output response of an ANN. Again, why is KnoX a preferable method?   

The response was provided above. Even if cited methods seem more accurate than KnoX to analyze the 
information provided by each parameter (KnoX only calculates the median). It seems to us that they haven’t 
extracted temporal information on a so complex model (26 input variables highly correlated because they are 
time-shifted rainfall values, and 5 hidden non-linear neurons). 

Moreover the goal is not only to address the importance of input, but also the dynamic of the addressed 
process thanks to the postulated model. 

20) The discussion is simply a summary of the findings of the modelling. This section needs further development to 
contextualise the KnoX method, its value in hydrological modelling and how it contributes to the range of knowledge 
extraction methods that have been applied in ANN modelling (seee my earlier comments). Moreover, it would be 
helpful for the readership of HESS to have the contribution of this paper more clearly explained. To help with this, the 
authors might like to refer to Abrahart et al (2012) (Two decades of anarchy?, Progress in Phys Geog, 36(4), 480) to 
position their work within the framework set out therein.  

Well, we are happy to note that one of the references cited in our paper is also appreciate by the referee. 
Clearly the contribution is related to the theme 7: “physical interpretation” as it proposes an integrated and 
simple method to constrain to network (at the level of the whole architecture), and interpret the parameters to 
extract physical information. Consequently, the discussion has been implemented. 

Thank you one more time for the accurate reading of the paper. 

 

  



Revision notes on “Identification of spatial and temporal contributions of rainfalls to flash floods using 
neural network modelling: case study on the Lez Basin (Southern France)” by T. Darras et al. 

Anonymous Referee #2, Received and published: 11 May 2015 

 

First, authors want to thank the anonymous reviewer #2 for his (her) efforts to understand the paper and his 
(her) propositions to improve the readability and understandability of the paper. Comments of the reviewer 
are recalled in the following and the response of author is identified as “response” in blue ; modifications 
provided on the manuscript are written in red.. 

 

General comment: This paper applies KnoX methodology to extracting knowledge from a neural network 
model to better determine the contributions and time responses of several geographic zones of an aquifer. It is 
very interesting to read and learn how ANNs can be used to extract the geographical knowledge. The 
introduction section is nicely rewritten, which is interesting to read, while the remaining parts are difficult to 
follow and/or easy to lose the points. I do not see a solid conclusion about the extraction of knowledge from 
ANNs, instead the knowledge and/or inferences presented in the discussion section are mainly based on the 
authors’ geographical senses, not on ANNs. To increase the readability of this manuscript, I make a number of 
comments and/or suggestion for your consideration. 

 

Response to general comment: One difficulty that was also stressed by the reviewer 1 is that the KnoX method 
and its validation were not sufficiently explained. This was a choice of the team of authors for 2 reasons: first 
the detailed explanation was provided in a previous paper (2013). This previous paper also addressed the 
validation of the method, using a fictitious aquifer with known contributions and known time responses. KnoX 
method was applied to found the contributions and times responses of this fictitious aquifer; after that, 
comparisons were done between extracted and known values of the fictitious aquifer. Results were perfect for 
time response, and jugged acceptable for contributions. Second, this previous paper was very long and it seems 
better to rewrite it as little as possible. Of course this choice can be discussed. 

 

1. In Section 2 Artificial neural network 9modeling for better characterize processes: (1)  There are many kinds 
of ANNs. It is suggested to mention what kind (type) of ANNs is used in the very beginning (Sec. 2.1) before 
going into details. (2) A brief presentation of the Knox method and why and how to implement the Knox 
method in this study should be provided. 

Modifications done in the paper P4-5. 

Response to comment 1. OK for the propositions. We will also add the equation implemented by the multilayer 
perceptron in order to make the description of KnoX method more understandable (as underlined by the 
reviewer 1). 

Modification done in the paper P4L27-29-P5L4. 

2. In Section 4.1 From postulated model to neural network model: (1) The purpose  (reason, logic) of this 
section should be given. (2) It will be of help to clearly present  “The postulated model”. (3) What is the point of 
“Application of the KnoX method would provide this quantification”? Why and how? 

Response to comment 2. The postulated model is a conceptual model of how the watershed physically works. 
It is a block diagram representing the watershed behaviour. It can be drawn only if one has a “high level” idea 
of this behaviour. Regarding the Lez aquifer, the postulated model was built based on geology. 3 
hydrogeological compartments were identified in previous works (during seventies), and a separation was 
operated on the east compartment regarding the ground properties (impervious or not impervious). This 
postulated model was indicated in grey boxes in Fig. 3. Starting from the postulated model, it is necessary to 
implement each box using neural networks. Also in order to make the simulation model better we added a 
state variable, which consisted in the values of the discharge at previous time step. 

Modification done in the paper in section 2.2; and in P12L14-17. 



3. Figure 3 is crucial but difficult to follow (also not clear). For instance, what is the  “elements used in Eq.4 and 
5”? A more detailed description of the corresponding method and process would be helpful. 

Response to comment 3. We are sorry if the Figures appear badly in the paper. Original files in png were good. 
It is possible to access to good figures through the printer-friendly version, and after a zoom of the figures. 
Elements used in eq. 4 et 5. are the parameters whose notations appeared in eq.4 and eq5. In a scientific 
paper, when previous works were published, it is always difficult to estimate what have to be re-explained or 
not. Maybe this point will be more understandable with a readable figure. Please note that figures in good 
quality are also posted in the response to reviewer 1. 

We hope that figures will appear in good quality in the final paper. 

4. Model selection is done using cross-validation and a predefined number of training iterations. A more 
detailed description of cross-validation and the number of iterations should be given.  

Response to comment 4. The same problem than previously applies to the description of cross validation. If 
one wants the paper to be auto-sufficient it must be presented. If one thinks that this method is well known 
and reference provided, it must not be. Our preference is to not re-write it but we can synthetize it in few 
sentences. 

The process is presented more accurately P6L3-15 and the number of iteration is provided (12). 

5. What does the “window-width” mean? Where is the number of hidden neurons? Is there anything to do 
with the “Optimisation” of the rainfall temporal window widths?   

Response to comment 5. Window width refers to the number of delayed rainfall data that are applied to the 
model. They will be presented at the beginning of the paper with the presentation of the multilayer 
perceptron. The number of hidden neurons was 5; it was provided in Table 3.  

Presentation done with the equation of the multilayer perceptron P4-5. 

6. The symbol of variable (for instance, rz(k -d) ) in Equation 4 is difficult to learn (read).  It is suggested to re-
design the symbol and formulation! 

Response to comment 6. Sorry, we don’t understand as the symbol seems readable in eq 4. But it was not 
readable in the Fig.3 (please, see response to question 3). 

We hope that figures will appear in good quality in the final paper. 

7. Page 3697: “The contribution of the previous measured discharges used as input to the model ranges from 
21 to 30% (respectively 89 to 70% for total rainfall) depending on the considered model Tn (n = 1, 7). 
Nevertheless, only rainfall contribution values are considered (for a total of 100 %) because the measured input 
of discharge plays the role of state variable (Artigue et al., 2012).” How to verify those results?  

Response to comment 7. In another life we experienced the design of automatic control schemes using neural 
networks. In automatic control, it is currently accepted that the values of the targeted variable (the output, 
here the discharge) can be applied as input at previous times to provide an idea about the state of the system. 
This is understandable by the simple following reasoning: if the model has the measured value of discharge at 
time k-1 as input in order to estimate the discharge at time k, it has the information about the level of the 
flood: schematically high level or low level. If 2 values of discharge are applied at inputs, the models can 
deduce the slope of the discharge curve and thus it knows if the discharge is increasing or decreasing. If 3 
values are applied, the model can deduce the second derivative (acceleration), etc … the set of values of 
discharge, slope of discharge and second derivative is considered as a “state vector”. In Artigue 2012, we 
showed that the feed-forward model (designed with previous values of discharge as inputs) was very good (this 
is well known). When designing the recurrent model without measured discharge but estimated discharge as 
input, this state vector was lacking (estimation of the state vector is not good), thus we had to replace it by 
another value. To this end we applied the cumulative rainfall from the beginning of the event and this 
information allows the model to be better. We can consider that the cumulative rainfall provides an 
information about the level of humidity of the basin: a state information. 

Our experience with KnoX method showed us that the purely recurrent model wasn’t efficient to simulate the 
behaviour of the basin; thus knowledge extraction has no interest. But the feed-forward model fed by previous 
observed discharge is efficient, knowledge can thus be extracted. 



 

8) Section 4.4 Time distribution of contributions: (1) Line 5 on Page 3698: “Figure 4 shows the time 
distributions ... ,”, should it be Figure 5? 

Response to comment 8. Yes, sorry. Thank you for the scrupulous reading. 

Correction done. 

9. Figure 5 displays the Median and total spread of time distributions of North-western, North-eastern, 
Southwestern and South-eastern rainfall inputs contributions calculated from parameters of the 7 designed 
models. The fluctuations of North-western and North-eastern parts seem small and flat. How to tell (prove) the 
difference?!   

Response to comment 9. We are not sure to well understand the comment. For us only the contributions of 
inputs for North-western are small and flat. For North-eastern zone one can see 2 “peaks” (at k-2 and k-5). Each 
contribution is not very high, but considering the whole zone, the contribution of zone NE reaches 26% (Table 
5) thus 3 times the contribution of NW zone. 

 

10. This contribution calculus of Equation 5 is done for each exogenous input: rainfall or measured discharge, 
and for each designed model. However, in the Conclusion Section, I do not see “Moreover efficient new 
approaches were demonstrated to extract information from a set of parameters” and “Among these methods, 
the KnoX method can identify contributions from various geographic zones to discharge at the basin outlet”. 
More to address? 

Response to comment 10. We are sorry, but we are not sure to understand the question. We think that the 
proposition of a method able to address processes characterization in complex hydrosystem is very new and 
very promising for new research; maybe is it sufficient? 
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Abstract 

Flash floods pose significant hazards in urbanised zones and have important human and fi-

nancial implications in both the present and future due to the likelihood that global climate 

change will exacerbate their consequences. It is thus of crucial importance to better model 

these phenomena especially when they occur in heterogeneous and karst basins where they 

are difficult to describe physically. Toward this goal, this paper applies a recent methodology 

(KnoX methodology) dedicated to extracting knowledge from a neural network model to bet-

ter determine the contributions and time responses of several well-identified geographic zones 

of an aquifer. To assess the interest of this methodology, a case study was conducted in 

Southern France: the Lez hydrosystem whose river crosses the conurbation of Montpellier 

(400,000 inhabitants). Rainfall contributions and time transfers were estimated and analysed 

in four geologically-delimited zones to estimate the sensitivity of flash floods to water coming 

from the surface or karst. The Causse de ViolViols-le-Fort is shown to be the main contributor 

to flash floods and the delay between surface and underground flooding is estimated to be 

three hours. This study will thus help operational flood warning services to better character-

isecharacterize critical rainfall and develop measurements to design efficient flood forecasting 

models. This generic method can be applied to any basin with sufficient rainfall-runoff meas-

urements. 

Mis en forme : Lien hype1, Couleur de
police : Texte 1

Mis en forme : Couleur de police :
Texte 1
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1 Introduction 

Flash floods are rapid (they rise in a few hours) and intense floods that occur within small 

basins. Our current lack of understanding of these floods constitutes a great societal challenge 

because of their socioeconomic and environmental impacts (Gaume and Bouvier, 2004; Llasat 

et al., 2010). Over the past 20 years, flash flooding in southeastern France has caused more 

than 100 fatalities and several billion euros in property damage. In karst basins, the event of 

June 2010, in the Var (southern France) caused 27 casualties and more than one billion euros 

of damages. Early warning is also a priority (Borga et al., 2011; Price et al., 2011) that could 

be improved by using forecast models. In recent decades, considerable efforts have been de-

voted to improving our understanding and forecasting of flash flooding (Gaume et al., 2009; 

Marchi et al., 2010). In the literature three aspects were investigated: (i) the rain event (or 

other cause of rising water), (ii) runoff genesis, and (iii) surface and underground geomorpho-

logic and geologic settings that channel the water transfer toward the outlet.  

Mediterranean rain events often occur at the meso-scale (Rivrain, 1997) and generate intense 

localised rainfall. For this reason, Le Lay and Saulnier, (2007), Cosandey and Robinson, 

(2000) Tramblay et al. (2010) show that flash flood generation is controlled by spatial and 

temporal variability of rainfall and initial soil moisture conditions. Moreover, sensitivity to 

rainfall heterogeneity is elevated in small watersheds, which are locations of flash flooding 

(Krajewski et al., 1991) (Corradini and Singh, 1985) (Raynaud et al., 2015). The hydrody-

namic behaviour of hydrosystems subject to intense rain events depends on soil moisture as 

well as geology, tectonics, and land use (Anctil et al., 2008; Nikolopoulos et al., 2011). Mois-

ture content estimation at the watershed scale has proven beneficial for discharge prediction 

(Kitanidis and Bras, 1980; Parajka et al., 2006; Wooldridge et al., 2003). Nevertheless, soil 

moisture measurements are highly dependent on field measurement techniques; they provide 

relative spatial and temporal distributions (Katul et al., 2007; Lauzon et al., 2004) rather than 

absolute values.  

In karst systems, underground water obviously plays a significant role in flooding (Bailly-

Comte et al., 2009, 2012; Fleury et al., 2013). Nevertheless, karst systems are intrinsically 

heterogeneous and their hydrodynamic behaviour generally differs from one system to anoth-

er (Bakalowicz, 2005). However even if the contribution of karst groundwater to flash flood-

ing is assumed to be negligible because of its longer response time (Borga et al., 2007; Norbi-

ato et al., 2008), other studies emphasize the considerable contribution of groundwater to 

flash flooding (Bailly-Comte et al., 2012). Faced with the question of the role of karst 

Code de champ modifié
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groundwater in flash flooding, this study investigates a method for estimating spatialized con-

tributions from different parts of a heterogeneous aquifer.  

Because of the lack of knowledge regarding the various hydrodynamic behaviours involved in 

karst systems, a generic blackboxIn karst systems, underground water obviously plays a sig-

nificant role in flooding (Bailly-Comte et al., 2009, 2012; Fleury et al., 2013). Nevertheless, 

karst systems are intrinsically heterogeneous and their hydrodynamic behaviour generally 

differs from one system to another (Bakalowicz, 2005). However even if the contribution of 

karst groundwater to flash flooding is assumed to be negligible because of its longer response 

time (Borga et al., 2007; Norbiato et al., 2008), other studies emphasize the considerable con-

tribution of groundwater to flash flooding (Bailly-Comte et al., 2012). Faced with the question 

of the role of karst groundwater in flash flooding, this study investigates a method for estimat-

ing spatialized contributions from different parts of a heterogeneous aquifer.  

Because of the lack of knowledge regarding the various hydrodynamic behaviours involved in 

karst systems, a generic black box method seems to be adequate. For this reason, neural net-

work modelling seems to be a relevant method (Kong-A-Siou et al., 2011; Kong-A-Siou et 

al., 2014; Kurtulus and Razack, 2007). For this purpose, in recent decades, the multilayer per-

ceptron has been increasingly used in the field of hydrology (Maier and Dandy, 2000; Toth, 

2011). These models have been effective in identifying the rainfall-runoff relationship (Hsu et 

al., 1995). Their ability to forecast flash floods (Toukourou et al., 2011; Artigue et al., 2012) 

and model karst system behaviour have also been demonstrated (Kong-A-Siou et al., 2011).  

To model hydrosystem behaviour efficiently, neural networks need relevant datasets as input 

and output variables, and rigorous application of regularisation methods (Abrahart and See, 

2007; Bowden et al., 2005; Fernando et al., 2009). Rainfall data are obvious inputs; in addi-

tion (Anctil et al., 2008) demonstrated that soil-moisture content observations improve predic-

tion performance. Even so, selection of relevant variables to represent moisture content is a 

difficult task (Darras et al., 2014a). Data quantity and quality are the major limiting factors in 

the application of neural networks to hydrological modelling (Pereira Filho and Santos, 2006). 

Because of noisy data, neural networks used to model natural phenomena are sensitive to 

overtrainingoverfitting; the use of regularization methods to deal with the bias-variance trade-

off is thus mandatory (cf. Sect. 3.1.2). Kong-A-Siou et al. (2014) compared neural network 

models and VENSIM software to simulate flooding or drought; they concluded that neural 

modelling performed better for extreme events whereas VENSIM worked better for interme-

diate, more complex events. This statistical approach has been used to propose some interest-
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ing hydrological models. Artigue (2012) has proposed a combination of linear and non-linear 

modelling in the same model. Corzo and Solomatine (2007)Corzo and Solomatine (2007) 

have proposed a combination of specialised neural network to represent isolated processes 

involved in flood genesis. These methods provided efficient forecasts on rapid hydrodynamic 

watersheds. Moreover, recent advances have proven that the use of these statistical tools can 

improve the currently-available knowledge of a system. Based on these recent scientific find-

ings, the Knowledge eXtraction (KnoX) methodology was developed to describe contributions 

and time transfers of spatialized rainfall in any basin. This paper thus proposes to apply this 

methodology to better apprehend both surface and groundwater processes at the origin of 

flash flooding in a karst basin. To this end, we focus on the Lez karst hydrosystem which 

feeds the Lez River that flows through the conurbation of Montpellier (Southern France) with 

a population of 400 000. Because of its meteorological and geomorphological setting, the Lez 

River at the Lavalette station, located at the entrance to the city of Montpellier is the site of 

flash flooding. In addition, as a karst system, the geomorphological structure of the Lez aqui-

fer is strongly heterogeneous, leading to anisotropic water circulation and highly nonlinear 

hydrodynamic behaviour. Flow rate at Lavalette station includes contributions from perennial 

karst springs (the most important is Lez spring), temporary karst springs (Lirou spring can be 

stronger than Lez spring), diffuse karst arrivals and also run-off. 

The scientific challenge of this study is thus to apply neural networks to better quantify pro-

cesses operating in flash flooding. For this purpose, after introduction, Sect. 2 presents a dis-

cussion of neural network modelling and the KnoX method. Section 3 is a description of the 

study area. Section 4 presents the application of the KnoX method to the study area and esti-

mate of contributions and time transfers of spatialized rainfalls to discharge at Lavalette. Sect. 

5 discusses the results and exposes operational and scientific implications. In the conclusion 

section we discuss innovative perspectives of this generic methodology. 

2 Artificial neural network modelling for better characterize processes 

2.1 Neural network design 

2.1.1 General presentation 

Artificial neural networks are statistical black box models that use input-output measurements 

to identify nonlinear functions of a system. Basics about neural modelling can be found in 

(Dreyfus, 2005), only specific information, mandatory for a comprehensive presentation of 
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this study will be provided hereafter. The chosen model is the multilayer perceptron because 

of its properties of universal approximation and parsimony (Barron, 1993). The universal ap-

proximation is the capability to approximate any differentiable and continuous function with 

an arbitrary degree of accuracy (Hornik et al., 1989). In our study, the multilayer perceptron is 

a feed-forward model, a finite impulse response model based on (Nerrand et al., 1993). De-

signing a multilayer perceptron consists mainly of selecting input variables and the number of 

hidden neurons. This determines the number of parameters mechanically; model complexity 

increases with the number of parameters.(Dreyfus, 2005), only specific information, mandato-

ry for a comprehensive presentation of this study will be provided hereafter. The chosen mod-

el is the multilayer perceptron because of its properties of universal approximation and parsi-

mony (Barron, 1993). The universal approximation is the capability to approximate any dif-

ferentiable and continuous function with an arbitrary degree of accuracy (Hornik et al., 1989). 

In our study, the multilayer perceptron is a feed-forward model, a finite impulse response 

model based on (Nerrand et al., 1993). Designing a multilayer perceptron consists mainly of 

selecting input variables and the number of hidden neurons. This determines the number of 

parameters mechanically; model complexity increases with the number of parameters. The 

general equation of the function calculated by the feed-forward multilayer perceptron is the 

following: 

𝑦𝑘 = 𝑔𝑁𝑁(𝑦𝑝
𝑘−1, … , 𝑦𝑝

𝑘−1, 𝑢𝑘, … , 𝑢𝑘, 𝐂), (1) 

where the estimated value of the output at the discrete time k is y
k
, the observed value of this 

variable is k

py , the input vector is u
k
, the nonlinear function implemented by the neural net-

work is gNN; wu and wy are the width of windows used to apply the input time-series, they are 

linked to the length of the vectors u and yp; C is the matrix of parameters of the model, also 

called "weights". 

As statistical models, neural networks are designed in relation to a database. This database is 

usually divided into three sets: a training set, a stop set, and a test set. The training set is used 

to calculate parameters through a training procedure that minimizes the mean quadratic error 

calculated on output neurons. The training is stopped by the stop set (cf. Sect. 2.1.2), and 

model quality is estimated by the third part of the database: the test set, which is separate from 

the training and stopping sets. The model’s ability to be efficient on the test set is called gen-

eralisation. However, the training error is not an efficient estimator of the generalisation error: 

the efficiency of the training algorithm makes the model specific to the training set. This spe-
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cialisation of the neural network on the training set is called overtraining. Overtrainingoverfit-

ting. Overfitting is exacerbated by large errors and uncertainties in field measurements; the 

model learns the specific realization of noise in the training set. This major issue of neural 

network modelling is called bias-variance trade-off (Geman et al., 1992); Kong-A-Siou et al., 

(2012) studied it in relation to karst aquifers. To deal with this issue and improve the generali-

zation performance, regularisation methods must be employed (Kong A Siou et al., 2011; 

Schoups et al., 2008). Three1992). Usually regularization methods are used to avoid overfit-

ting; to this end, two regularisation methods were used in this study. 

2.1.2 Regularisation methods 

In the context of this study, the goal of regularisation methods is to minimize output variance. 

To this end, cross-validation (Stone, 1974) was used as explained in (Kong-A-Siou et al., 

2012) to empirically select input variables and the number of hidden neurons. Cross valida-

tion thus minimizes model complexity and therefore output variance.  

2.1.2 Another regularization method is commonly employed: early-stopping 

(Sjöberg et al., 1995).Regularisation methods 

In the context of this study, the goal of regularisation methods is to minimize output variance. 

To this end, cross-validation (Stone, 1974) was used as explained in (Kong-A-Siou et al., 

2012) to empirically select input variables and the number of hidden neurons. Cross valida-

tion thus minimizes model complexity and therefore output variance (Schoups et al., 2008).  

Another regularization method is commonly employed: early-stopping (Sjöberg et al., 1995).. 

This method stops training before overtraining occurs. A dedicated set, called a stop-set, is 

considered separately from the database. In (Kong-A-Siou et al., 2012), early-stopping was 

used with cross validation for input variables and hidden neuron number sizing. In our study, 

the database is too limited to extract another set from the database (the stop set). Thus, instead 

of a stop-set, a predefined maximum number of training iterations was selected to avoid over-

training. For this purpose 

Working also on the Lez aquifer but considering only underground water at the Lez spring, 

Kong-A-Siou et al., (2011) applied multilayer perceptron to perform forecast at Lez spring 

and validated cross validation as a useful method to select the complexity of the model. 

Moreover, Kong-A-Siou et al., (2012) for the same basin, focused on regularization methods 
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(early stopping and weight decay). They conclude that early stopping used in conjunction 

with cross validation was efficient.  

Nevertheless these results, obtained with 16 years daily database can’t be applied directly in 

the present study because the flash flood database is too limited to extract definitively another 

set from the database (the stop set). Thus, to apply early stopping without stop-set, a prede-

fined maximum number of training iterations was selected to stop training before the com-

plete convergence and, by this way, avoid overtraining. Nevertheless, for this purpose, the 

selection of the optimal number of training iterations is done using a stop set. Then after-

wards, model is run without stop set using this predefined optimal number of training itera-

tions. In the first stage, the database, not including the test set, was divided into S subsets cor-

responding to flash flood events. Training was performed on S-1 subsets with 50 different 

parameters initialisations. The remaining subset was used as a validation-stop set. Each subset 

was used in turn as a validationstop set. For each trial the training iteration with the minimum 

mean quadratic error over the validationstop set is set aside. The median of these numbers of 

iterations was calculated for all validationstop sets and all iterationsinitialisations and selected 

as the optimal number of training iterations. This maximumIn a second stage, this optimal 

number of training iteration: 12 iterations is used in all the following without further utiliza-

tion of stop-set.  

In this study, parameters are iteratively calculated using the Levenberg-Marquardt algorithm 

(Hagan and Menhaj, 1994). 

It is well known also that model performance depends strongly on the parameters initialisa-

tion. To define a reliable simulation independent from the initialisation, (Darras et al., 2014b) 

proposed to establish an ensemble of 50 models trained from different initialisations. The out-

put is calculated at each time step by the median of the 50 outputs. It is well known that this 

method can smooth the output of the model; nevertheless this is not a drawback in this study 

as this method improves the robustness of the model, which is very important to extract in-

formation.  

2.2 Towards knowledge improvement about processes 

Even if neural networks generally implement black-box models, several authors have tried to 

make the model more understandable. For example (Johannet et al., 2008) and (Jain and Ku-

mar, 2009)(Jain and Kumar, 2009) demonstrated the possibility of observing physically inter-

pretable information at the output of hidden neurons. Another path would be to exploit pa-
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rameters values. TheSeveral works were done to constrain the model using physical 

knowledge at the level of the parameter for example to select the best input set, or to select the 

more physically-plausible model (for example the parameters linked to the evapotranspiration 

input must be positive) (Olden and Jackson, 2002; Kingston et al., 2006). Considering indi-

vidual parameter value, another goal would be to assess that the neural network model truly 

performed physical relation (Mount et al., 2013).  

Focusing on parameters, the principal difficulty is the sensitivity of parameterstheir values to 

theirthe initialisation before training. This dependence can be avoided using statistical treat-

ments as proposed by (Kingston et al., 2006). (Kong-A-Siou et al., 2013) using a multistep 

procedureKong-A-Siou et al., (2013) used a multistep procedure to extract knowlege: (i) pro-

posal of a postulated model that describes the available high-level knowledge about the be-

haviour of the system to be modelled, (ii) implement a neural model architecture that follows 

this postulated model,: each box of this diagram is implemented using a multilayer perceptron 

(or a unique linear neuron), (iii) train an ensemble of identical models that differ by their ini-

tialisation, and calculate of the median of the absolute value of each parameter over the en-

semble models (noted as median-parameter), (iv) combine median parameters to quantify the 

importance of each input variable. Kong-A-Siou et al. (2013) applied this method to a karst 

aquifer to evaluate thein a chain of causality to quantify the role of each input variable. Com-

pared to other works that calculate a similar parameters chain-based calculation, and looked at 

constrains at the level of parameters or inputs (Kingston et al., 2006), this method is original 

because it applies constrains at the level of processes identified in the block diagram (postu-

lated model). Using the block diagram of the postulated model indicates that some processes 

are possible; others are not. It allows thus diminishing the number of parameters, and by this 

way, the complexity of the model, and the multifinality of parameters value. The sign of the 

parameter is not important as the product of two negative parameters is positive in the chain 

of parameters product; for this reason and in order to take profit of the “black box” capabili-

ties of ANN, we don’t want to constrain individual parameters. Kong-A-Siou et al. (2013) 

applied this method to the Lez karst aquifer to evaluate the groundwater contributions from 

different geographic zones to the discharge at the outlet. This methodology is called: 

Knowledge eXtraction (KnoX). Its accuracy was assessed on a fictitious model, whose pro-

cesses were perfectly known, before being applied to a real aquifer.  

In this study we propose to apply the KnoX method to estimate the contributions of different 

processes, effective in a heterogeneous aquifer, to flash floods. Regarding the Lez basin, we 
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thusIn this study we propose to apply the KnoX method to quantify spatially and temporally 

the effect of different processes, effective in a heterogeneous aquifer, to flash floods. The con-

sidered gauge station is Lavalette at the entrance of Montpellier, the time step is the hour.  

Regarding the case study on the Lez basin, it is very different from the work made by (Kong-

A-Siou et al., 2013), as in the present study we considered flash flooding at Lavalette (maxi-

mum discharge equal to 480 m
3
/s) having an important surface water contribution; whereas 

the previous work investigated daily runoff of underground water at the Lez spring (maximum 

discharge inferior to 20 m
3
/s). In the present study we investigate improvement of knowledge 

about karst and non-karst (surface) flooding processes.  

2.3 Performance criteria 

Several criteria were used to model selection and performance assessment. The first is the 

Nash-Sutcliffe efficiency, hereafter referred to as R
2
 (Nash and Sutcliffe, 1970). R

2 
is used to 

perform model selection using cross-validation. The second is specifically flood-oriented: the 

synchronous percentage of peak discharge, or SPPD. The last, a purely temporal aspect, is the 

delay between measured and simulated flood peak, hereafter referred to as Pd (Peak delay). 

2.3.1 Nash-Sutcliffe efficiency 

The Nash-Sutcliffe efficiency is the most widely used criterion for evaluating hydrological 

models. It is equivalent to the R
2
 determination coefficient i.e.: 

𝑅2 = 1 −
∑ (𝑦𝑝

𝑘−𝑦𝑘 )2𝑛
𝑘=1

∑ (𝑦𝑝
𝑘−𝑦𝑘

̅̅ ̅̅
)2𝑛

𝑘=1

, (12) 

where k is discrete time, n the number of time steps used to calculate R
2
, y the simulated dis-

charge, yp the measured discharge, and  is the measured mean discharge. The Nash score is 

not really convenient for assessing flood simulations as it takes into account errors on the 

whole event and not specifically on the peak. For this reason, other criteria were proposed.  

2.3.2 Synchronous percentage of peak discharge 

Synchronous percentage of peak discharge is especially designed for the evaluation of flash 

flood modelling. It is the ratio of measured and simulated discharges at the time of the ob-

served peak discharge: 

𝑆𝑃𝑃𝐷 = 100
𝑦𝑘𝑝

𝑚𝑎𝑥

𝑦𝑝
𝑘𝑝
𝑚𝑎𝑥, (23) 

py
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where  is the time of the measured peak discharge.  

2.3.3 Delay between measured and simulated flood peaks 

The delay between simulated and measured peak discharge is calculated using Eq. (34). A 

positive delay means a retarded simulated peak discharge. Conversely, a negative lag means 

advanced simulated peak discharge. The peak delay can be expressed as: 

𝑃𝑑 = 𝑘𝑚𝑎𝑥 − 𝑘𝑝
𝑚𝑎𝑥, (34) 

where  is the time of the simulated peak discharge. 

3 Case study: The Lez aquifer 

3.1 Lez hydrosystem 

The Lez aquifer is a Mediterranean karst system located in southeastern France upstream of 

Montpellier (Fig. 1). Its extent is estimated at about 380 km
2
 (Bérard, 1983). The Lez spring is 

the main outlet of this aquifer, hereafter referred to as the “basin”. Another major spring is the 

Lirou Spring, which flows only during rain events. Both springs feed the Lez River, which 

crosses Montpellier and its conurbation, an area with population of about 400 000. The re-

charge area, composed of karst outcrops and swallow holes, is estimated at about 130 km
2
 

(Dörfliger et al., 2008). The surface catchment, an area of about 120 km
2 

hereafter referred to 

as the “watershed”, is defined by its topographic setting at the outlet of Lavalette gauging 

station. As often with karst systems, geographical areas of the watershed and the underground 

basin are not superposed. Due to complex geology, the recharge area extends to only a part of 

the watershed and underground basin. For this reason, the Lez aquifer is considered to be a 

hydrosystem.  

3.2 Geological and tectonic settings 

Similar to many karst systems, the Lez hydrosystem is composed of karst and non-karst com-

ponents. The karst component crops out in the upstream part of the system; it underlies im-

pervious formations in the downstream part. The karst component consists of Cretaceous and 

Jurassic carbonate rocks. The karst in these formations developed under the current Mediter-

ranean Sea level as a result of the Messinian crisis (Hsü et al., 1973). These formations also 

crop out widely and form the calcareous plateaus of both the Causse de Hortusl’Hortus and 

max

pk

maxk
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the Causse de Viols-le-Fort. The downstream part of the system is composed of Eocene car-

bonate and clay formations and Tertiary sandstone and conglomerate formations.  

Two major tectonic events have affected the geomorphological structure of the Lez hydrosys-

tem. The first was Pyrenean compression, which occurred during the Eocene. This south-

north compression led to the formation of east-west trending faults. The second tectonic event 

was the opening of the Lion Gulf during the Oligocene. This event led to the formation of 

northeast-southwest sinistral faults, including the Corconne fault that crosses the Lez basin. 

3.3 Meteorological and hydrogeological setting 

The study area is subject to a Mediterranean climate. Mediterranean events often occur at the 

meso-scale and promote intense and localized rainfall. Daily rainfalls can reach 650 mm, such 

as one event that occurred in September 2002 in south-eastern France. Such high-volume 

rainfall events are referred to as Mediterranean episodes. 

3.4 Hydrodynamic circulation 

Kong-A-Siou et al. (2013b2013) divided the Lez basin into four parts (Fig. 2) to better analyse 

the rainfall-runoff relationship at the Lez Spring at a daily time step. The east-west division is 

based on the Corconne Fault pathway. On the western side of the basin, the south-north divi-

sion is based on the Causse de Viols-le-Fort boundary, which is a cropping part of the princi-

pal aquifer. On the eastern side of the basin, a south-north division has been drawn based on 

its geological setting. (impervious or non-impervious soils). The Oligocene and Eocene for-

mations define a well-delineated impervious zone in the southeastern part of the basin. The 

geological composition of each zone is assumed to be “homogeneous”, which means that the 

geology within a zone is quite similar and that it differs more from the geology of other zones. 

Using the KnoX method, (Kong-A-Siou et al., 2013a2013) were able to estimate both the wa-

ter contribution from each “homogeneous” geological zone to the Lez Spring discharge and 

the mean time-response. The last study, which was conducted at daily time step, shows the 

important contribution, more than half, of the northeastern zone to the discharge of the Lez 

Spring. These contributions are presented in Table 5.  

3.5 Flash Flooding in the Lez basin 

Fed by abundant rainfall on the basin, (245 mm in few days), the Lez receives contributions 

from surface watershed and also from underground (karst) basin thanks principally to its 



 

 12 

tributary: the Lirou river. The Lez can exceed a discharge higher than 500 m
3
.s

-1
 at its en-

trance to Montpellier. This corresponds to a specific discharge greater than 4 m
3
.s

-1
.km

-2
, 

based on the size of the surface watershed, (120 km
2
, see Sect. 3.1.), or 1.3 m

3
.s

-1
.km

-2
 con-

sidering the whole underground basin. (380 km
2
, see section 3.1.). These two simple numbers 

highlight the need to better understand the origin of the water, and water circulations during 

flash floods at the Lavalette station at the entrance to Montpellier.  

To this end, two different approaches have been proposed in the literature, using event-based 

modelling. The first uses data assimilation (Kalman filter) to: (i) estimate karst filling at the 

beginning of the event, (ii) adapt transfer velocity at each time step, and (iii) correct the lack 

of accuracy of rainfall measurement. Based on these improvements, R
2
 of simulation in-

creased from 0.89 to 0.91 for an event in December 2003, and from 0.72 to 0.98 for an event 

in September 2005 (cf Table 1). The model is based on the Soil Conservation Service produc-

tion function coupled with a lag and route transfer function (Coustau et al., 2012). The second 

approach has operational goals and proposes a graphical method (abacus) to estimate flood 

peaks from forecast rain features and karst filling (Fleury et al., 2013). Using Abacus, authors 

revised the estimated peak of the September 2005 event down to 460 m
3
.s

-1
 from 480  m

3
.s

-1
. 

Thus, it appears that improved knowledge of karst/river interactions is critical. For this pur-

pose, in the next section we propose to use the KnoX method to estimate the contribution of 

each zone of the Lez basin to flash flood events. 

3.6 Database presentation and analysis 

3.6.1 Monitoring network 

Hourly rainfall data are available at five rain gauges: Saint-Martin-de-Londres, Prades-le-Lez, 

Sommières, Vic-le-Fesq and Saint-Hippolyte-du-Fort. The French Weather Forecasting Ser-

vice (Météo France) manages the first two gauges, and the Flood Forecasting Service of the 

Grand Delta (SPCGD) manages the last three gauges. Only the Prades-le-Lez rain gauge is 

inside the Lez system, but as pointed out in introduction, it is essential to make use of spatial-

ized rainfall information. In addition, no data at the considered time step is available further 

south than the Prades-le-Lez rain gauge. Spatial rainfall variability is thus not correctly de-

scribed in the southern part of the basin. This will limit the reliability of this study regarding 

the southern zone of the basin. Unhopefully it is not convenient to use weather radar infor-

mation in this basin because; due to the distance of the Nîmes radar (50 km), this information 
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is not robust from one event to another and generally underestimate the rainfall value com-

pared to the rain gauge measurements (Marchandise, 2007; Visserot, 2012); also radar infor-

mation is not available for all events in the database. Discharge data are provided by the La-

valette gauging station managed by an office of the French ministry of ecology and sustaina-

ble development (DIREN). Both rainfall and discharge data are available at an hourly time 

step, which is convenient for flash flood modelling.  

The data suffers from high noise and uncertainty. The uncertainties of discharge measure-

ments have been estimated at around ± 20% for flash floods. The uncertainty of rainfall 

measurements, can be as high as ± 3010% to 20% (Marchandise, 2007). Rainfall and dis-

charge time series are available from 2002 to 2008. Fifteen flood events whose peak discharg-

es exceed 80 m
3
.s

-1
 were selected (Table 2). Events 7 and 8 were the most intense; contrary to 

other intense events, events 13 and 8 occurred on dry soils.  

4 Application of the KnoX method to flash flooding at Lavalette 

4.1 From postulated model to neural network model 

As presented in Sect. 2.2, the postulated model represents the schematic high-level infor-

mation one has about the basin of interest. This a priori knowledge must be expressed using a 

block diagram and each box of this diagram is implemented using a multilayer perceptron (or 

a unique linear neuron). 

4.1.1 Postulated model 

TheAs presented in Sect. 2.2, it was necessary to prepare a postulated model describing flash 

flood genesis at Lavalette station. The postulated model is based on the work of (Kong-A-

Siou et al. 2013) as the considered basin is the same (surface + underground). TheKong-A-

Siou et al. 2013) as the considered basin is the same (surface and underground). Remember 

that the primary difference is that flash floods are considered at hourly time step at the La-

valette station in this study. Using continuous data at daily time step at the Lez Spring, (Kong-

A-Siou et al., 2013) showed that the north-eastern and north-western zones are the principal 

contributors to Lez spring discharge. To estimate the contributions of each zone to flooding at 

Lavalette, we distinguished the both behaviours: surface (rapid if inside the impervious water-

shed) and underground (slower if infiltrated into karst outcrops or in faults: faults play the role 

of a drain in impervious parts of the basin inside and outside of the Lavalette surface water-

shed). Schematically, by looking at the map presented in Fig. 2 and following the previous 
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reasoning, one can propose that the north-western zone would make a minor contribution to 

flash flooding at Lavalette because it is outside the surface (topographic) basin and because its 

underground time response is greathigh (Table 5). The south-eastern zone would also have a 

minor impact because its impervious area is mostly outside the Lavalette watershed. Regard-

ing the south-western and north-eastern zones, it is difficult to propose an a priori quantifica-

tion. It is thus not easy to estimate the principal contributors to flash flooding. Application of 

the KnoX method would provide this quantification. The postulated model of the basin behav-

iour is thus composed of four branches, each corresponding to a zone of the basin, involving 

surface and groundwater, and feeding a complex mixing process. The postulated model is 

represented in Fig. 33 in grey block-diagram. 

The model used to apply the KnoX method is based on the multilayer perceptron; it follows 

the postulated model represented in Fig. 3 with four zones contributing to discharge at La-

valette station. As suggested by the KnoX method, to be able to identify the contribution of 

each zone to the discharge, a linear hidden neuron is added between the inputs and the layer 

of sigmoid neurons. These neurons are intended to represent rain that falls on each zone; they 

facilitate the estimate of the time response of water falling in each zone.  

4.1.2 Input data 

Inputs are mean rainfalls for each zone. These rainfalls are calculated using the Thiessen pol-

ygon method. Table 2 shows the weight of each rain gauge for each zone. It highlights the 

sparse spatial distribution of rainfall information in the south of the basin. NeverthelessNever-

theless, taking into account the importance of the stakes in this zone, and as the goal of this 

study is to better understand the behaviour of the basin in order to develop well suited moni-

toring strategy, we consider the rainfall information sufficient to carry out this study.  

4.2 Model design 

4.2.1 Model selection 

As presented in Sect. 2.1.2, model selection is done using cross-validation and pre-definite 

number of training iterations. Ranges of investigation and chosen values of various window-

width and hidden neurons numbers are provided in Table 3. One can note that the complexity 

of the model is moderate (small number of hidden neurons). To make the model assessment 

more reliable on the most intense events 7 and 8, model selection was done without these 

events (blind assessment).  
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4.2.2 Model validation 

The database presented in Table 4 shows seven rapidflash flood events. Because of the small 

number of events and their heterogeneity it seemed necessary of estimatingto estimate 

modelling quality on all events. We thus decided to train seven models, testing each on one 

event (training performed on the six following events). The model tested on event n is noted 

as Tn. This is a cross-test operation. Table 4 shows the performance of the seven models in 

terms of R
2
, synchronous percentage of peak discharge (SPPD), and peak delay (Pd). After 

training, we compared the quality of the models: aside from model T2, R
2
 and SPPD scores of 

model T13 are the worst, respectively 0.71 and 138%. The other models show satisfactory R
2
 

and SPPD scores: R
2
 from 0.79 to 0.96 and SPPD from 87% to 99%. Regarding the Pd, only 

model T2 performed badly. The models T4, T7, T8, and T14 are efficient regarding the three 

performance criteria. Model T13 over-estimates the flood peak; note that event 13 is the sole 

event that occurred on dry soils, except event 8 when extremely intense rainfall was observed.  

Looking at hydrographs presented in Fig. 4 for the two most intense events and taking into 

account the scores presented in Table 4, one can suggest that the models are efficient enough 

to be used for knowledge extraction. In addition, as it will be shown in Sect. 4.3.1, knowledge 

extraction is independent of outliers as it takes into account all events of the training database. 

4.3 Contributions and time transfers of spatial rainfall to discharge at the La-

valette station 

The KnoX method was used to estimate the contributions of the four previously defined zones 

to flash flooding at the Lavalette station. 

4.3.1 Extraction of information from parameters 

After training, the median of absolute values of the parameters for 50 different initializations 

is calculated. It is noted as |𝐶𝑖𝑗|
𝑀

for the parameter Cij linking the neuron (or input) j to the 

neuron i. The rainfall contribution of zone z to output at time step k-d (k is the discrete time 

and d a delay) is denoted as rz(k-d). It is calculated according to the chain of parameters link-

ing one input: 𝑟𝑧(𝑘 − 𝑑), to the output y(k). As it is shown in Fig. 3, we have three layers of 

parameters between the input 𝑟𝑧(𝑘 − 𝑑) and the output y(k), therefore there is three terms in 

numerator; denominator corresponds to normalization terms in order to estimate the specific 

contribution of the input 𝑟𝑧(𝑘 − 𝑑) relative to the sum of all other parameters of the same lay-
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er. There is also three normalisation terms because there is three layers of parameters. Follow-

ing notations are reported in red in Fig.3. The contribution is calculated as: 

𝑃(𝑟𝑧(𝑘 − 𝑑)) =
|𝐶𝐻𝑧𝑟𝑑|

𝑀

∑ |𝐶𝐻𝑧𝑟𝑑|
𝑀𝑤𝑧

𝑑=0

∑ [
|𝐶𝐻𝑁𝐻𝑧|

𝑀

∑ ( |𝐶𝐻𝑁𝐻𝑧|
𝑀

)+∑ ( |𝐶𝐻𝑁𝑞𝑑|
𝑀

)
𝑤1−1
𝑑=1

𝑙
𝐻𝑧=1

|𝐶𝑜𝐻𝑁|
𝑀

∑ ( |𝐶𝑜𝐻𝑁|
𝑀

)𝑛
𝐻𝑁=1

]
𝑁𝑐
𝐻𝑁=1

 (5) 

where Hz (Hz=1, 4) is the subscript of the first hidden layer of linear neurons, HN (HN =1, Nc) 

is the subscript of the second hidden layer (of Nc nonlinear neurons); qd is the subscript of the 

previously measured discharge inputs yq, and O is the subscript of the output layer. 

The contribution of an entire zone can be expressed as the sum of the contributions of the 

considered zone at different time steps: 

𝑃𝑧 = ∑ 𝑃(𝑟𝑧(𝑘 − 𝑑))
𝑤𝑧
𝑑=0  (56) 

This contribution calculus is done for each exogenous input: rainfall or measured discharge, 

and for each designed model (Tn, n=1, 7). The contribution of the previous measured dis-

charges used as input to the model ranges from 21% to 30% (respectively 89 to 70% for total 

rainfall) depending on the considered model Tn (n=1, 7). Nevertheless, only rainfall contribu-

tion values are considered (for a total of 100%) because the measured input of discharge plays 

the role of state variable (Artigue et al., 2012). Rainfall contribution medians for the seven 

models are provided in Table 5. Values obtained by (Kong-A-Siou et al., 2013) are also re-

ported; they show the difference between contributions of the same zones to very different 

processes (flash flood at Lavalette station for this study, and daily aquifer discharge at the Lez 

Spring (in the 2013 study). 

This contribution calculus is done for each exogenous input: rainfall or measured discharge, 

and for each designed model (Tn, n=1, 7). The contributions of the previous measured dis-

charges used as input to the model ranges from 21% to 30% (respectively 79 to 70% for total 

rainfall) depending on the considered model Tn (n=1, 7). Nevertheless, only rainfall contribu-

tion values are considered (for a total of 100%) because the measured input of discharge plays 

the role of state variable (Artigue et al., 2012). Rainfall contribution medians for the seven 

models are provided in Table 5. Values obtained by (Kong-A-Siou et al., 2013) are also re-

ported; they show the difference between contributions of the same zones to very different 

processes (flash flood at Lavalette station for this study, and daily aquifer discharge at the Lez 

Spring (in the 2013 study)). 
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4.4 Time distribution of contributions 

Figure 45 shows the time distributions of contributions by the north-western, north-eastern, 

south-western and south-eastern rainfall inputs. The percentages expressed in this section are 

the contribution of the inputs to the output. 

Fig. 5 shows that the major contribution comes from the south-western zone, with two peaks 

at k-1 and {k-4 to k-5}. This means that, on average, for all events and all time steps, water 

comes principally from the south-western zone via two transfer functions: one associated with 

rapid surface response (k-1) and the other associated with slower karst response (k-4) to (k-5) 

(Causse de Viols-le-Fort, cf. Fig. 1 and 2). The same reasoning can be applied to the north-

eastern zone: fast surface response at k-2 and slower karst water at k-5 (due to numerous 

faults in this zone, cf. Fig. 2); nevertheless, contributions from the north-eastern zone are less 

pronounced than the south-western ones. 

5 Discussion 

5.1 Rainfalls contributions to discharge 

The map shown in Fig. 2 and Table 5 can guide the discussion: Fig. 2 presents the transcrip-

tion of geological properties in infiltration capabilities.  

- Regarding the south-western zone (43% to 54%), it appears that the large extent of 

karst delayed contribution (24% for {k-4 to k-5}) comes from the Causse de Viols-le-

Fort. This property is not observed in daily continuous modelling (Table 5) because 

the Lirou Spring (outlet of the Causse de Viols-le-Fort, cf. Fig. 1) is an intermittent 

spring that flows only in wet conditions; moreover this part of the aquifer is pumped 

for drinking water during the dry season.  

- Regarding the north-eastern zone, the second largest contributor to flash flooding at 

Lavalette (18% to 30%), a careless analysis could lead to the conclusion that it may be 

the major contributor because it has a large impervious basin within the surface water-

shed of the Lez at Lavalette. However, significant losses occur through numerous 

faults in the southern part of this zone (cf. Fig.2). As in the south-western zone, two 

contributions play a role: surface (rapid) and underground (slow) (recall that the con-

tribution reflects the behaviour of the entire training database; thus this schematic be-

haviour can be assumed). Nevertheless the Lez Spring, which drains the underground 

north-eastern zone, has a smaller discharge than Lirou Spring, during flood events, and 
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thus softens the underground flooding. The daily discharge of the north-eastern zone 

to Lez Spring (50% to 54%) can be explained only by infiltration through numerous 

faults, not limited to the surface watershed but also in the extreme northern part of the 

underground basin. Indeed, a dye tracing experiment demonstrated water circulation 

between sinkholes in river tributaries of the Vidourle (east of Lez Basin, cf. Fig.2) 

(Bérard, 1983).  

- In the north-western zone, both behaviours (flash flooding at Lavalette or daily runoff 

at the Lez Spring) differsdiffer greatly. For flash floods at Lavalette, the north-western 

zone has a weak influence, which is consistent with the representation of the basin in 

Fig. 2. (perched aquifersaquifer delaying water transfers and limited infiltration along 

the Corconne fault due to the limited infiltration capability of the fault); for daily run-

off at the Lez Spring, conversely, delayed transfer and permanent infiltration along 

faults increases the storage and thus contributes more to daily runoff (28% to 31%).  

- Lastly, the south-eastern zone has a lesser effect on flash flooding due to its small area 

in the watershed at Lavalette (12% to 24%). One can observe a relatively large varia-

bility on Fig. 5. This may be a limit of the work due to: (i) the high sensitivity of this 

small fully-impervious area to localised heavy rainfall, combined with the bad repre-

sentation of the rainfall variability in this zone (Sect. 3.6.1.)..), or (ii) the heterogeneity 

of events that influences the training. For daily runoff at the Lez springSpring, this 

zone can be excluded from the recharge basin (4% to 7%); this is consistent with the 

Fig. 2 information, as the zone is composed of impervious formations downstream of 

the spring.  

5.2 Time behaviour 

Temporal contributions within each zone are shown in Fig.5. As analysed previously, these 

contributions are consistent with dual behaviours: fast surface water and slower karst water. 

The sensitivity of these estimations with respect to the different models (7 models) shown by 

dotted points does not contradict the proposed analysis. 

5.3 Flash-flood simulations 

Schematically Fig. 5 shows that response times of 2 h (probably surface water) and 5-6 h 

(probably karst water) are not very different. Consequently it is possible for karst water to add 

to surface flooding in the event of multi-peak rainfalls. This behaviour was underlined by  
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(Bailly-Comte et al., 2012; Coustau et al., 2012; Fleury et al., 2007) who focused on the im-

portance of the initial water level inside the karst. Consequently, flash-flood simulations 

would require real-time piezometric information in both the north-eastern and south-western 

zones to estimate the influence of karst water in these two zones. 

5.4 Limits of the study 

The KnoX method is a novel tool for investigating the behaviour of heterogeneous basins. 

Because this method is currently under discovery and development, the sensitivity of the pro-

vided estimations to noise, uncertainty, and small database size have not yet been fully as-

sessed. Nevertheless the overview of the Lez aquifer that this method has provided appears to 

be quite consistent with the current knowledge. Based on the proposed behaviour of the Lez 

aquifer, several fieldwork projects are currently in progress to assess karst and non-karst con-

tributions at the Lavalette station.  

6 Conclusion 

Mediterranean flash floods and mountain floods are responsible for numerous casualties and 

major property damage. These floods occur in heterogeneous basins, which are difficult to 

observe and thus to model. For this reason this paper investigates the ability to obtain infor-

mation on a complex aquifer through global systemic modelling using neural networks. For 

this purpose we chose as a case study flash flooding at the entrance to the great city of Mont-

pellier (Southern France) where large potential losses are at stake. After recent trends in flash 

flooding and karst modelling, this paper focuses on hydrological modelling with neural net-

works and presents the basics of neural network modelling. It was shown that these statistical 

models can efficiently model unknown relationships using only databases. Moreover efficient 

new approaches were demonstrated to extract information from a set of parameters. Among 

these methods, the KnoX method can identify contributions from various geographic zones to 

discharge at the basin outlet; it also provides better characterisation of processes linked to 

karst water and surface water. To investigate this capability, a case study was conducted on a 

complex hydrosystem, the Lez hydrosystem. The application to this system shows that the 

KnoX method consistently estimated the water contributions from four “homogenous” geo-

logical zones of the hydrosystem to the discharge at its outlet. The main contributor to flash 

flooding at Lavalette was identified as the Causse de Viols-le-Fort karst plateau. Piezometric 

information within this plateau would thus be of crucial importance to model flooding at the 

Lavalette station. On a more interesting note, several time responses were identified and asso-
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ciated with surface circulations or underground contributions. The lag between these two dif-

ferent response times, estimated at three hours, may thus correspond to synchronization dif-

ference between surface and underground flooding. This information may help flood-warning 

services anticipate the size of a flood in case of a rain event composed of two rain peaks sepa-

rated by three hours.  

This is a generic method that can be applied to any heterogeneous basin as long as a sufficient 

database is available. 
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Table 1. Dates, peak discharges, and mean cumulative rainfalls of flood events contained in 

the database. Intense events are highlighted by a star. Mean cumulative rainfall is calculated 

using a weighted average of the five rain gauges with the Thiessen polygon method. 

Events Dates 
Peak discharge 

(m3.s-1) 

Mean cumulative 

rainfalls (mm) 

1 24 - 27 August 2002 7  128  

2
*
 08 - 09 September 2002 112  171  

3 08 - 13 October 2002 45  118  

4
*
 09 - 13 December 2002 384  245  

5 15 - 18 November 2003 68  86  

6
*
 23 - 25 November 2003 95  51  

7
*
 01 - 05 December 2003 438  234  

8
*
 05 - 07 September 2005 480  144  

9 27 - 31 January 2006 53  117  

10 13 - 15 September 2006 25  147  

11 23 - 26 September 2006 23  85  

12 02 - 07 May 2007 9  88  

13
*
 20 - 21 October 2008 114  123  

14
*
 21 - 22 October 2008 104  72  

15 01 - 08 November 2008 31  127  
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Table 2. Percentage of each rain gauge to the rainfall for each zone and for the whole Lez ba-

sin by Thiessen polygons.  

Rain 

gauges 

North-eastern 

zone 

North-western 

zone 

South-eastern 

zone 

South-western 

zone 

Whole Lez  

system area 

Prades-le-Lez 74% 13% 100% 39% 61% 

Sommières 12% - - - 5% 

Vic-le-Fesq 14% 3% - - 6% 

Saint-Martin-de-Londres - 20% - 61% 15% 

Saint-Hippolyte-du-Fort - 64% - - 13% 

 



 

 28 

 

Table 3: Optimisation of the rainfall temporal window widths 

 

North-

eastern 

zone 

North-

western 

zone 

South-

eastern 

zone 

South-

western 

zone 

Previous  

discharge 
NC 

Temporal window width 

range (h) 
3-9 2-8 2-8 3-9 1-5 1-7 

Chosen temporal window 

width (h) 
7 7 4 7 1 5 
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Table 4. Performances of models T2, T4, T6, T7, T8, T13 and T14: Nash criterion (R
2
), the syn-

chronous percentage of the peak discharge (SPPD) and the peak delay (Pd). T7 and T8 are mod-

els tested on the two most intense events. 

Models R
2
 SPPD (%) Pd (h) 

T2 -0.75 22 -5 

T4 0.96 87 -1 

T6 0.84 122 - 89 0 - 0 

T7 0.96 99 0 

T8 0.93 97 0 

T13 0.71 138 0 

T14 0.79 94 1 
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Table 5. Contributions of different zones to discharge. Flash-flood contribution is the median 

of contributions of rainfall inputs to the output of the seven models T2, T4, T6, T7, T8, T13 and 

T14. Maximum and minimum values come from the set of 7 models in this study and from 10 

experiments of 50 initialisations in (Kong-A-Siou et al., 2013)(Kong-A-Siou et al., 2013). 

 
North-western 

zone 

North-eastern 

zone 

South-western 

zone 

South-eastern 

zone 

Part of the surface water-

shed at Lavalette 
10% 45% 20% 25% 

Rainfalls contribution to 

flash-flooding at La-

valette (min –max) 

9% (8% –11%) 26% (18%–30%) 47% (43% –54%) 18% (12%–24%) 

Time delay of principal 

contributions 
- -2h; -5h -1h; -4h to -5h 0h 

Part of the underground 

basin at Lez Spring from 

(Kong-A-Siou et al., 

2013) 

22% 36% 18% 24% 

Rainfalls contribution to 

daily discharge at Lez 

Spring from (Kong-A-

Siou et al., 2013) (min –

max) 

29% (28%-31%) 52% (50%-54%) 13% (10%-15%) 6% (4%-7%) 

Time delay of principal 

contributions 
-1 day to -3 days -1 day -1 day 0 day 
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Figure 1. Map of the Lez hydrosystem with location of karst outcrops, rain gauges, gauging 

stations, springs, causses de Viols-le-Fort and de l’Hortus and of Corconne fault. Boundaries 

of surface watershed and, underground basin, and the conurbation of Montpellierurban zones 

are also shown. 
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Figure 2. Map of the Lez basin: zone boundaries and topographic watershed; impervious and 

non-impervious formations; faults intensifying infiltration. 
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Figure 3. Postulated model: grey block-diagram. Three layers multilayer perceptron with line-

ar hidden layer between rainfall inputs and nonlinear layer. Parameters used in Equ. 4 are de-

noted in red. 
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Figure 4. Hydrographs of major events in the database: events 7 and 8. Simulated discharge is 

the median of outputs coming from the 50 run models (differing by their initialization 

parameters). Uncertainty on the observed value is the measurement    20%. Uncertainty on 

the simulated value is represented by simulations coming from the 50 run models (differing 

by their parameters initialization). 
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Figure 5. Median and total spread of time distributions of North-western, North-eastern, 

South-western and South-eastern rainfall inputs contributions calculated from parameters of 

the 7 designed models.  
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