
Response of the authors:  

The authors would like to thank the reviewers for their supportive and valuable feedback, 

questions, and comments. In the following, we are giving answers and explanations to their 

questions and comments. The text in the paper is adapted in different places according to the 

reviewer notes. 

hess-2014-489-referee-report-1 Response of the authors 

I feel a little bit uncomfortable with the issue 
that MERIS data are applied for validation as 
they only provide the water vapor above the 
clouds. 
 
 
Major remarks: 
 
page 3, line 7: "Various research suggested 
the assimilation of atmospheric 
measurements into these models to improve 
the quality of the data." As data assimilation is 
for a long time a standard operation in 
atmospheric modelling, this statement lacks 
information and does not help to introduce the 
research question (at least one citation is 
missing here). On the contrary, the statement 
asks for a comparison of the data fusion 
approach to a data assimilation approach, 
appealing by a finally physically consistent 
picture. 
 
page 3, line 10: "We want to comprehend if 
the model simulations of water vapor, in their 
current quality, together with other 
measurement-based estimates can provide 
complete knowledge about the atmospheric 
water vapor." The formulation is in my opinion 
misleading as the main data source 
in your case is not the mesoscale model but 
the remote sensing data. You improve these 
data by adding a mesoscale model. If you state 
it like this, you should first go for an 
improvement of the model simulation. By the 
which seems to be nearly cloud free. So 
better rephrase your research question. 
 
page 4 line 22: The Wang and Seaman 
(1997) citation is too old / inappropriate, as a) 
they apply precipitation, sea level pressure, 
wind, and temperature predictions for model 
evaluation and b) there has been a great 
development of mesoscale models in the 
recent years approaching the convective 

MERIS data measures the water vapor 
content up to the Earth’s surface under 
cloud-free sky. If clouds exist, then the water 
vapor content is measured up to clouds top. 
Therefore, we used only 5 MERIS maps that 
were observed under clear skies. 
 
 
The sentence is modified and references are 
added to make the following clear: 
“The assimilation of measurements and 
measurement-based estimates into the 
model is a well-known research topic and it 
is beyond the scope of this work. We want to 
benefit from the model data to the support 
the measurement-based estimates of water 
vapor and to determine its values in regions 
where the measurements are missing.” 
 
 
 
 
The sentence is modified.  
We agree that complete knowledge means 
3D grids with high spatial resolution, which 
is the further step to this research. 
 
 
 
 
 
 
 
 
 
 
 
The publication of Prein et al. 2015 is indeed 
an interesting review article about the state 
of mesoscale modeling. However, it was 
published just shortly after the finalization of 
the first review round. 
While primarily focusing on climate modeling 
the paper gives also a comprehensive 
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permitting scale (Prein et al., 2015). If you cite 
Wang and Seaman (1997), you should also 
discuss the influence of other 
parametrizations then that one for convection, 
also responsible for water vapor, like 
microphysics, planetary boundary layer and 
land surface. A simple search in Web 
of Science or Scholar Google shows some 
more appropriate papers dealing explicitly 
with water vapor in mesoscale models (e.g. 
Wilgan et al. (2015) or citations in it). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Minor comments: 
 
page 4 line 22 "The the" -> "The" 
page 11 line 2 "signalis" -> "signal is" 
 
 
 
 

overview about the current state of the art of 
convection-permitting models. 
The key message of Prein et al. 2015 with 
respect to our study is that the downscaling 
of large-scale-models provides added value 
for the representation of several processes 
and the development of consistent spatial 
structures, in particular extreme precipitation 
and convective processes. However, there 
are still many open challenges, especially for 
the representation of turbulent processes 
and microphysics schemes.  
We would like to include the proposed 
reference (and replace the citation of Wang 
and Seaman, 1997) in a way that 
corroborates the general message of the 
paragraph which is that there are still many 
processes that lack a   
 
Therefore, we propose to change the 
sentence  
 
p4 l22  
"The presence of convective motion or rapid 
dynamic effects are still a challenge for the 
performance of LAMs (Wang and Seaman, 
1997). Hence, the model data can be 
considerably biased with respect to the 
actual state of the atmosphere. This, in 
addition to the configuration of the model 
domains, can significantly impact the 
simulation output [...]” 
 
to: 
 
"Despite manifold improvements over the 
last years, considerable uncertainties are 
still connected with the parameterization of 
physical processes in mesoscale-
atmospheric models and biases of the 
driving model (Prein et al. 2015). This can 
significantly impact the simulation output 
[...]" 
 
 
 
Done 
Done 
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hess-2014-489-referee-report-2 Response of the authors 

1. I do not understand the plots (negative 
values for PWV???) Either explain more 
precisely what we see on the images or 
stick for all plots to what you did in Figure 
1 – which is in my understanding the best 
way to plot PWV.  

 
2. Driving model resolution – why ERA 

Interim when higher resolution ECMWF 
analyses are available? I think that it 
might be better to use shorter simulations 
driven by higher resolution analyses to 
show the benefits of your procedure for 
single cases. Then it is also necessary to 
use more than 42 vertical levels to better 
represent the tropospheric structure 
and especially the lower troposphere 
where most of the water vapor is. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

These are not absolute values. It is written 
in the caption that a linear trend is 
subtracted from the maps. This results in 
the negative values on the color bars. 
This is now added in text.  
 
 
Thank you for the comment. Comment 2 
and 3 are discussing the point of improving 
the model output data through data 
assimilation before further using them.  
We totally agree on that point, and we are 
working on improving the model 
performance by testing input data at 
different spatial resolutions, paying 
attention to the physics and driving models. 
However, the method presented here used 
the model in its current quality together with 
measurement-based estimates in a data 
fusion approach that depends on the spatial 
properties of the input data. We benefit 
from the model particularly in regions with 
no measurements taking into account the 
spatial covariance properties from both the 
model and measurements to achieve the 
best results. If the model presents a bad 
scenario, then the output map are 
dominated by the measurement-based 
estimates. One point is important to 
consider, that is the systematic bias in the 
model. Therefore, we estimated the long 
wavelength signal using the measurement.  
We agree with the reviewer's opinion that a 
better resolution would be desirable for 
driving the local area model, especially 
when short term simulations are performed. 
However, although the operational analysis 
of ECMWF features a higher output 
precision then ERA-INTERIM, a smaller 
number of observations is ingested due to 
the need for real-time availability. 
Moreover, the model configuration of 
ECMWF's Analysis is not consistent over 
time i.e. model physics, data assimilation 
sources, and also resolution are subject to 
change. In our opinion, a reanalysis is 
much more consistent and of higher quality 
even if the output resolution is lower. For 
the year 2005 the resolution of ECMWF's 
Analysis is about 40 km which is about 
double as with respect to INTERIM. 
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3. When you merge model data with 

observations to create a “new” 
observation, it is necessary 
to make sure that the model provides the 
best possible result. This is only possible 
when you also use data assimilation to 
initialize the model. ERA Interim contains 
data assimilation – but 
I am sure that the WRF simulation would 
highly benefit from doing a re-assimilation 
of observations in the nests. 
 
 
 
 
 

 

To make this clearer, we propose to 
change the following sentence (p. 8 l. 9) as 
follows: 
"Because neither gridded nor spectral 
nudging was activated, the local area 
model physics fully determine the 
propagation of moisture through the 
respective domains." 
is changed to 
 
"Neither gridded nor spectral nudging was 
activated in order to conserve the model's 
internal water balance. Hence the GCM 
boundary fluxes and the local area model 
physics solely determine the propagation of 
moisture through the respective domains." 
 
The selection of the number of layers was 
also based on the work of Berg et al. 2013. 
However, the layers are not equidistant as 
vertical resolution is increased for the lower 
troposphere where the major proportion of 
atmospheric vapor is located.  
We propose the following change of the 
sentence (p.7 l. 7.): 
"Vertically, the model divides into 42 layers 
and the model [...]" 
is changed to 
 
"Vertically, the model divides into 42 layers 
with variable distance. The resolution is 
increased for the lower troposphere where 
most of the atmospheric vapor resides. The 
model top is defined at 50 hPa." 
 
From the time slices that were used in this 
study one can see that the combined 
product of fusioned mesoscale model and 
point observations lead to an overall 
improved product of atmospheric water 
vapor. We agree that with better model 
quality the final results could be even 
better. However, the optimization of the 
mesoscale model is out of the scope of this 
study as the focus is on the methodology of 
the fusion approach.  
With the chosen model configuration, with 5 
months of spin up time, the initial conditions 
would not play a too important role on the 
final results of summer 2005. Therefore, we 
did not consider the re-assimilation of 
observations.  
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4. Is it necessary to do such long simulations 
when you focus on single days? True – 
the deeper layer soil moisture needs long 
spin-up times – but how large is their 
influence on the daily evolving weather? 
The topmost layer directly influenced by 
the atmosphere reacts faster. And only 
this layer influences PWV. 
 
 
 

5. Model results are clearly dependent on 
resolution, physics, and driving model – 
and therefore lead to clearly different 
results for different synoptic situations. 
This is the more the problem when you 
drive the model with such a coarse 
resolution analysis and then look to single 
cases. 
 
 
 
 
 

6. The results do not show the benefit of the 
methodology – the region you selected for 
the results is by far too small. I guess if 
you enlarge the region to e.g. at least 
Germany you might be able to find 
systematic pros and cons of the 
methodology 
 
 
 

7. Some of the plots are too small (labels in 
figure 1, Figures 10, 12 and 13) 

 
 
Minor points: 
1.) Give some information in the introduction 
what you think are the target groups that will 
work with your data. 
2.) Page 2, line 19: Why do you introduce the 
term “neutrosphere”? 
 
 
 
 
 
 
3.) Page 3, line 9: Replace “want to” by 
“would like to” 

We agree with the reviewer, that there 
might be weather conditions where local 
soil moisture is not an important driver for 
the local atmospheric water vapor content. 
However, for stable synoptic conditions with 
poor or no moisture advection, the state of 
the soil becomes quite important. This 
includes also the water content of the lower 
soil layers as they feed the transpiration 
process.  
 
It is right that there are myriad 
configurations to run the mesoscale model. 
For that reason, we employ a setup which 
already proved to produce valuable results 
(Berg et al. 2013). Furthermore it would be 
desirable to extend the analysis to a larger 
set of scenes and also increase the spatial 
extent. However, this was not possible for 
the current study as the density of GNSS 
sensors is only sufficient for the Rhine 
Graben region and because of the breaking 
down of Envisat.  
 
Yes, we agree that might be true. However, 
the focus of this work is provide water 
vapor maps of high spatial resolution, 
where the PS InSAR data are of great 
benefit. The fine scale signal has a spatial 
of length of several meters; therefore, an 
area of 100 km× 100 km is quite good for 
this research. 
 
 
The figures are modified 
 
 
 
 
This is added.   
 
 
The Earth’s atmosphere contains the 
ionospheric layer and an electrically-neutral 
layer called the neutrosphere (up to 50 km), 
where water vapor is located. The most of it 
is located near the surface but less than 1% 
can exist in altitudes above 12km 
(troposphere).  
 
We think “want to” is better in this context. 
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4.) Page 4, line 22: Delete one “the”. What 
you describe in this sentence is exactly what 
you improve (optimize as well as possible) 
when data assimilation is applied. 
5.) Page 5, line 1: I would delete “redundant” 
– you never know whether a data set is 
redundant– this might change from case to 
case. 
6.) Page 5, line 23: “space-bourne” instead of 
“space-based”? 
7.) Page 6, line 3: “Rhine valley” instead of 
“Rhine Graben” 
8.) Page 6, line 17: “In cloudy conditions” 
instead of “Under cloud cover” 
9.) Page 8, line 14: “Rhine valley” instead of 
“Rhine Graben” 

“the” is deleted. 
 
 
 
Yes, that’s correct. But, we are saying that 
it can be redundant, not asserting.  
 
 
“Space-based” is known and used in this 
context. So, we would like to keep it. 
Thank you. We prefer “Rhine Graben” since 
it is used in other publications. 
Modified 
 
We prefer “Rhine Graben” since it is used 
in other publications, too. 
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Abstract

Data fusion aims at integrating multiple data sources that can be redundant or complementary
to produce complete, accurate information of the parameter of interest. In this work, data fusion
of precipitable water vapor (PWV) estimated from remote sensing observations and data from
the Weather Research and Forecasting (WRF) modeling system is applied to provide complete5

grids of PWV with high quality. Our goal is to correctly infer PWV at spatially continuous,
highly-resolved grids from heterogeneous data sets. This is done by a geostatistical data fusion
approach based on the method of fixed-rank kriging. The first data set contains absolute maps
of atmospheric PWV produced by combining observations from Global Navigation Satellite
Systems (GNSS) and Interferometric Synthetic Aperture Radar (InSAR). These PWV maps10

have a high spatial density and a millimeter accuracy; however, the data are missing in regions
of low coherence (e.g., forests and vegetated areas). The PWV maps simulated by the WRF
model represent the second data set. The model maps are available for wide areas, but they
have a coarse spatial resolution and a yet limited accuracy. The PWV maps inferred by the data
fusion at any spatial resolution show better qualities than those inferred from single data sets.15

In addition, by using the fixed-rank kriging method the computational burden is significantly
lower than that for ordinary kriging.

1 Introduction

Water vapor is a vital constituent of the Earth’s electrically neutral atmosphere (neutrosphere).
Although the ratio of water vapor partial to total atmospheric pressure is typically below 4%, it20

is an important constituent in many respects. Due to the dynamic nature of the neutrosphere and
the complex energy exchange with the Earth’s surface, the spatio-temporal distribution of water
vapor can be highly variable. Accurate information about its content and tendency is the main
prerequisite for the prediction of clouds and precipitation. Water vapor is important for studies
of climate and natural disasters such as floods, droughts or glacier melting. On the other hand,25

radio signals transmitted from spaceborne sensors are refracted when traversing the Earth’s neu-

2
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trosphere. The neutrospheric water vapor contributes to less than 10 % of the signal path delay;
however, this error source is not easily eliminated. Accurate information about the water vapor
concentration along the signal path is required, which is not always obtainable. Although many
efforts have been made to produce accurate information about water vapor using ground-based,
space-based or numerical methods, the available information is often limited in the temporal5

resolution, spatial resolution or accuracy (Bevis et al., 1992). Numerical atmospheric prediction
models are increasingly used to provide simulations of the atmospheric parameters. Various
research suggested the assimilation of atmospheric parameters, such as water vapor, estimated
from Global Positioning System (GPS) or Interferometric Synthetic Aperture Radar (InSAR)
into these models to improve the quality of the simulated parameters (Pichelli et al., 2010;10

Bennitt and Jupp , 2008). We want to comprehend if the model simulations of water vapor, in
their current quality, can be used to even out the deficits of the measurement-based estimates,
particularly in regions with no measurements. To achieve this purpose, a statistical data fusion
approach is applied. The output water vapor maps can be used in tomographic approaches to
provide 3D water vapor grids and in adjusting the parameters of numerical atmospheric predic-15

tion models. The remaining of this section presents the recent related research on water vapor
using remote sensing data and atmospheric models.

The amount of remote sensing data available for monitoring the Earth and its atmosphere is
growing in a rapid, continuous way. InSAR has proved its capability for detecting surface de-
formation, landslides, tectonic movements (Massonnet et al., 1993; Zebker et al., 1994) and for20

deriving digital elevation models (Zebker and Goldstein, 1986). The influence of water vapor in
the observations can be reduced by averaging a large number of interferograms (Zebker et al.,
1997) or by time series analysis that indicates the stable persistent scatterers (Ferretti et al.,
2001; Hooper et al., 2007). Besides, InSAR has recently been used to derive the phase shift
caused due to the propagation in the Earth’s atmosphere from the interferograms or by time25

series analysis (Hanssen, 2001; Meyer et al., 2008; Pichelli et al., 2010; Alshawaf et al., 2012).
Global Navigation Satellite Systems (GNSS), however, have been considered since the 1990s as
an efficient microwave-based tool for atmospheric sounding (Bevis et al., 1992; Rocken et al.,
1995). Since then, numerous methods exploited the GNSS observations to produce estimates

3

alshawaf
Hervorheben
change#1

alshawaf
Hervorheben
change#2

alshawaf
Hervorheben
change#9



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

of the integrated atmospheric water vapor, and for generating water vapor maps (Luo et al.,
2008; Jade and Vijayan, 2008; Karabatić et al., 2011). InSAR and GNSS signals are affected in
a similar way by the atmosphere (Onn and Zebker, 2006). Therefore, Alshawaf et al. (2015b)
presented a new approach to derive absolute, high-resolution maps of precipitable water vapor
(PWV) by combining data from InSAR and GNSS. The SAR systems acquires the images at5

repeat cycles of multiples of days. Enivsat images, which are used in this work, are available
at multiples of 35 days. The availability of the data over time can be increased by processing
data from ascending and descending modes. In addition, new SAR missions have shorter repeat
cycles, 11 days for TerraSAR-X and 6 days for Sentinel-1. The InSAR-based PWV estimates
cannot be used to observe the variability of water vapor over short time, but they are important10

in different aspects. This geodetic-based method produces maps of the PWV at a high spatial
resolution without additional costs. These data can be exploited, first, to model the spatial varia-
tions of atmospheric turbulent and nonturbulent effects. Second, they can be used to observe the
variation of water content over long time periods to detect, for example, unusual trends. Third,
they can be used to adjust/readjust the initial and boundary conditions in atmospheric prediction15

models.
Atmospheric modeling systems are standard approaches to simulate three-dimensional dis-

tributions of the neutrospheric water vapor at various temporal and spatial sampling. Dynamic
local area models (LAM) are common tools for scaling down the coarse grids of global circu-
lation models to meso-scale applicability. Several studies employed the Weather Research and20

Forecasting modeling system (WRF, Skamarock and Klemp, 2008) to compare the LAM sim-
ulations of PWV with GNSS point estimates (Mateus et al., 2010; Bender et al., 2008; Cimini
et al., 2012) and PWV maps from MERIS (MEdium Resolution Imaging Spectrometer) (Al-
shawaf et al., 2012). These studies conclude that the medium to long scale (greater than 20 km)
water vapor signals can be well predicted, whereas short scale fluctuations are often hardly25

captured in a realistic way.
Despite manifold improvements over the last years, considerable uncertainties are still con-

nected with the parameterization of physical processes in mesoscale-atmospheric models and
biases of the driving model (Prein et al., 2015). This, in addition to the configuration of the

4
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model domains, can significantly impact the simulation output (Gong et al., 2010) as well as the
model intrinsic water balance (Awan et al., 2011; Fersch et al., 2012; Fersch and Kunstmann,
2014). Therefore, the setup of the local area model is crucial, and it has to be proper for the
study region and the research objectives.

Due to the availability of various data sources, which can be complementary or redundant,5

data fusion has received increasing attention in the Earth observation studies. The focus is put
on the combination of multiple sources, which may be spatially, temporally, or spectrally inho-
mogeneous, to produce a more complete representation of a geophysical process. In this work,
we use remote sensing data and numerical atmospheric models through a data fusion approach
to provide improved information about the distribution of atmospheric water vapor. This infor-10

mation is important not only for weather forecasting and climate research, but also to better
understand how the InSAR interferograms are affected by water vapor, and to select the most
appropriate method for reducing this noise. In turn, reliable local water vapor maps can support
adapting the WRF model configurations and, hence, may improve the model performance.

In the following, we present water vapor maps derived from microwave remote sensing data15

and numerical atmospheric models. Since the available data have different spatial levels of
aggregation, it is important to discuss the change of support problem. Then, we present the data
fusion approach based on the kriging or fixed-rank kriging techniques. We first describe the
ordinary kriging and how it can be extended for fusing multiple data sets. Then, we present
the reasons behind using the fixed-rank kriging. We use the data fusion approach for predicting20

maps of the atmospheric PWV from remote sensing data and atmospheric models.

2 Atmospheric water vapor

Several observation systems are commonly used to continuously monitor the vertical and hor-
izontal distributions of water vapor in the atmosphere. These devices are used either from the
ground, such as radiosondes and ground-based water vapor radiometers, or from space, such as25

space-based water vapor radiometers and infrared sensors. In this work, we employ microwave

5
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remote sensing systems as well as numerical atmospheric models to provide accurate maps of
the atmospheric water vapor at a high spatial resolution.

2.1 Water vapor from remote sensing data

Alshawaf et al. (2015b) presented a new approach to derive absolute, high-resolution maps5

of PWV by combining data from InSAR and GNSS. The data are collected in the region of
Upper Rhine Graben in Germany and France over the period 2003–2008. Persistent Scatterer
InSAR (PSI) using the Stanford Method for Persistent Scatterers (StaMPS, Hooper et al., 2007)
was applied to derive PWV maps from the InSAR interferograms. These maps contain the
water vapor signal of short scale spatial variations, while the elevation-dependent and long10

wavelength water vapor components are eliminated when forming the interferograms or by
phase filtering. Therefore, GNSS-based PWV estimates were used to reconstruct the missing
components. The approach for combining InSAR and GNSS data is presented in details in
Alshawaf et al. (2015a) and Alshawaf et al. (2015b). Fig. 1 shows a map of PWV derived by
combining PSI and GNSS data and the corresponding map extracted from MERIS observations.15

MERIS is a passive imaging spectrometer located on board the Envisat platform. It measures
the solar radiation reflected from the Earth’s surface or clouds. The ratio of the radiance values
measured at the channels 14 and 15, located respectively at 885 nm and 900 nm, are used to
determine the vertical PWV content in the neutrosphere (Fischer and Bennartz, 1997). MERIS
provides maps of the PWV at a spatial resolution of 260 m×290 m (full resolution mode). Under20

cloud weather conditions MERIS measurements are highly underestimated since the measured
PWV represents only the water vapor existing between the sensor and clouds top; therefore,
only 5 MERIS PWV images were available for this study.

The PSI method produces information where stable persistent scatterers are identified, which
requires a high coherence between the SAR images. In forests and vegetated areas, the proba-25

bility to identify persistent scatterers is low; therefore, in these regions only sparse points are
found. The white areas within the left figure indicate regions of low coherence and the corre-
sponding data from MERIS are masked out. The spatial correlation between the maps is 95 %
and the root mean square (RMS) value of the differences is 0.68 mm. We can observe that the

6
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persistent scatterers are dense in the urban areas, while they almost disappear in the low coher-
ence regions. Since PWV data are spatial, their covariance function is exploited by geostatistical5

techniques to reasonably infer the PWV at regular grids. In order to improve the inferred PWV
maps, especially in the areas where the PWV estimates are sparse, we apply data fusion of the
remotely-sensed PWV maps with maps produced by the WRF model.

2.2 Water vapor from regional atmospheric models

As depicted in Fig. 2, the WRF model (version 3.1.1, Skamarock et al., 2008) was set up with10

a parent domain of 27 km× 27 km resolution and two nests with 9 km× 9 km and 3 km× 3 km,
respectively. Feedback from the nests to their parent domain was not activated. Vertically, the
model divides into 42 layers with variable distance. The resolution is increased for the lower
troposphere where most of the atmospheric vapor resides. The model top is defined at 50 hPa.
The selection of the physical modules is based on the study of Berg et al. (2013); accordingly,15

the WRF single moment (WSM) 5-class scheme (Hong et al., 2004) was selected for micro-
physics. Short and longwave radiation were computed with the community atmospheric model
(CAM) scheme (Collins et al., 2004). The processes in the planetary boundary layer were rep-
resented by the Yonsai University scheme (Hong et al., 2006). The surface layer was simulated
with the Monin–Obukhov scheme, and the Noah land-surface-model (Chen and Dudhia, 2001)20

was applied for the surface physics. Sub-grid convective processes were included with the Kain-
Fritsch parametrization (Kain, 2004). The global dynamic boundary conditions were ingested
from the European Center for Medium-Range Weather Forecasts (ECMWF) ERA-INTERIM
reanalysis at 6 hours interval (Uppala et al., 2008). In ERA-INTERIM, a broad range of dif-
ferent data sources is assimilated. For the atmospheric moisture analysis, ground based station25

observations, radiosonde profiles, and GPS radio occultation are exploited. Additionally, to-
tal column water vapor information from the Special Sensor Microwave/Imager (SSM/I) and
the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) is
assimilated (Dee et al., 2011). MERIS retrievals of column water vapor are not ingested into
ERA-INTERIM and thus they depict an independent data set for our approach.

7
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The WRF simulations cover the period between July 2004 and September 2005, such that
the first 5 months were considered as spin-up. The PWV content was determined at every out-
put time-step (10 min) by a vertical integration of all moisture fields from the land surface to5

the model top. Two output time slices were compared with the simultaneous MERIS observa-
tions. The long scale signal is modeled by a linear trend and subtracted from the maps; hence,
negative values are observed on the color bars. From the compared maps shown in Fig. 3, we
observe that the spatial atmospheric patterns are not always correctly resembled by the model.
On 27 June 2005 (09:51 UTC), WRF and MERIS PWV maps are strongly correlated with a co-10

efficient of 0.8, whereas the analysis of 5 September 2005 (09:51 UTC) shows a lower spatial
correlation (0.71). While the patterns east to the Upper Rhine valley are reasonably resembled,
an unexpected discontinuity exists in the area around 7.7◦ E, 48.7◦N.

At the lateral boundaries, WRF ingests the mixing ratio concentration from the global model.
Thus, for the presented simulation the global climate model lateral boundary conditions were15

applied to the first (outer) domain. Neither gridded nor spectral nudging was activated in or-
der to conserve the model’s internal water balance. Hence the GCM boundary fluxes and the
local area model physics solely determine the propagation of moisture through the respective
domains. For the analysis of 27 June, 2005, the atmospheric conditions were rather unexcited
and varied slowly resulting in a good agreement between MERIS and WRF data. On 5 Septem-20

ber, a quickly moving frontal system with a strong west to east gradient and a notch in the
atmospheric vapor over the Upper Rhine Graben characterized the study region. It is not clearly
distinguishable if the structure and dynamics of the ERA-INTERIM boundaries or the WRF
model configurations are responsible for the discontinuity in PWV.

3 Change of support problem25

Spatial data, for which close observations correlate more than distant ones, can be collected at
points or areal units. The former are called point-level data or simply point data and the latter are
areal-level or block data (Gelfand et al., 2001). In geostatistics, this defines the spatial support of
the data. When both data types are available, data fusion can be applied to infer the underlying

8
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process at any level of support. The change of support problem is concerned with the inference
of the underlying process at point- or block-levels different from those at which the data are5

available. This also includes fusing data at different support levels. Based on the available input
data and the desired output grid, there are four prediction possibilities: points to points, points
to blocks, blocks to points, or blocks to blocks. These prediction possibilities may be collected
under the umbrella of kriging (Cressie, 1993).

For block data that can be expressed as an average of point data as if it is collected within10

the block, such as rainfall, temperature, surface elevation, and atmospheric water vapor, the
following model is appropriate

Y (Bi) =
1

|Bi|

∫
Bi

Y (s)ds (1)

where Y (Bi) and Y (s) define the block and point data, respectively (Fig. 4). Bi refers to the15

block over which the data are aggregated and |Bi| is the volume (or cardinality) of the data. The
block-level covariance can then be related to the point-level covariance as follows:

C(Bi,Bj) = cov

 1

|Bi|

∫
Bi

Y (u)du,
1

|Bj |

∫
Bj

Y (v)dv

 (2)

=
1

|Bi||Bj |

∫
Bi

∫
Bj

C(u,v)dudv (3)

20

where C(Bi,Bj) is the block-to-block or block covariance function and C(u,v) is the point
covariance function.

9



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

4 Spatial data fusion using kriging methods

4.1 Ordinary kriging

In geostatistics, a spatial process can be inferred over a continuous spatial domain by exploiting5

the covariance function as an important source of information. Predictions are obtained based
either on single or multiple sets. Kriging is a geostatistical interpolation technique that infers
values at new locations by considering spatial correlations (Cressie, 1993). The spatial density
of the data points has to be enough to capture the covariance structure of the process. This
information is represented by a variogram or covariance function, which is used to determine10

the predictions. If the considered spatial data set is denoted by Z, then the kriging estimator
Ŷ (s0) at the location s0 is determined as follows:

Ŷ (s0) = a′Z̃ (4)

where the vector a contains the kriging weighting coefficients and Z̃ is the centered data set15

(see Eq. (7)). The best linear unbiased estimator is found by solving the following constrained
minimization problem:

min
a

E
{

(Ŷ (s)−Y (s))2
}

subject to

E{Ŷ (s)}= E{Y (s)}
(5)

The constraint is added to guarantee that the estimator is unbiased with respect to the true20

process Y (s). A semivariogram function that reflects the spatial correlations is required to solve
the minimization problem, which is determined from the detrended data, Eq. (A6).

The kriging method extends the spatial process using the following linear model:

Z(s) = T(s) ·α+ ν(s)︸ ︷︷ ︸
Y (s)

+ ε(s)︸︷︷︸
noise

(6)

25
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where ε(s) is an independent error term, which is assumed to be a white noise process with
a mean zero and variance σ2ε . T(s) ·α defines a deterministic linear trend, T has a size of
N × 3 and each row has the following entries: [1 longitude(s) latitude(s)]. N is the number
of observations and α is a vector of the least squares regression coefficient. ν(s) captures the
spatial covariance structure of the process, and it is assumed to have a mean zero and generally5

a non-stationary covariance function. Before inferring the signal at a new location, it is required
to center the data by estimating and subtracting the linear trend, i.e.,

Z̃ =Z −Tα̂ with α̂= (TT′)−1T′Z (7)

The detrended signal Z̃ is used to determine the predictions in Eq. (4) and the deterministic10

signal is calculated from T (s0)α̂. The sum of the two terms gives the total estimated value of
Y (s0). In the next section, a similar strategy is followed to solve for the best unbiased estimator
using two data sets as presented in Braverman et al. (2009).

4.2 Spatial statistical data fusion

The spatial statistical data fusion (SSDF) is a method that statistically combines two data sets15

to optimally infer the quantity of interest and calculate the corresponding uncertainties at any
predefined grid (Nguyen, 2009; Braverman et al., 2009). This method extends the kriging tech-
nique described above to find the optimal estimator using multiple data sets. Let the underlying
process Y (s) to be estimated at the location s from the data in Z1 and Z2 with the size N1

and N2, respectively. The estimator Ŷ (s) at the location s is obtained from the two data sets as20

follows:

Ŷ (s) = a′1Z̃1 +a′2Z̃2 (8)

where a1 and a2 are the fusion weighting coefficients, and Z̃1 and Z̃2 are detrended data sets
of Z1 and Z2, respectively. Following Eq. (5) and Eq. (8), the Lagrangian function L for the
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minimization problem under the unbiasedness constraint is

L= a′1Σ11a1 +a′2Σ22a2 + 2a′1Σ12a
′
2− 2a′1c1− 2a′2c2

+ 2m(a′11N1 +a′21N2 − 1)
(9)

where Σii = cov(Z̃i), Σij = cov(Z̃i,Z̃j), and ci = cov(Z̃i,Y (s)) are the covariance func-5

tions. 1Ni is a vector with all entries one and a lengthNi, andm denotes the Lagrange multiplier.
The last term of L accounts for the unbiasedness constraint. By differentiating L with respect
to a1,a2,m and assigning the results to zero, we get in the following system of equations:Σ11 Σ12 1N1

Σ21 Σ22 1N2

1′N1
1′N2

0

a1a2
m

=

c1c2
1

 (10)

10

and hencea1a2
m

=

Σ11 Σ12 1N1

Σ21 Σ22 1N2

1′N1
1′N2

0

−1c1c2
1

 (11)

There are several important discussion points for the solution in Eq. (11). The covariance ma-
trices Σij should be determined without assuming that the underlying process is isotropic or15

stationary. This is important for atmospheric parameters, particularly the atmospheric water va-
por that shows spatial anisotropy as observed from the spatial autocorrelation function in Fig. 5.
The covariance function ci should account for the change of the support between the input and
the output data. For massive data sets, the size of the covariance matrix is huge and the solution
in Eq. (11) is not feasible anymore. Also, the covariance matrices should be modeled such that20

they would allow data prediction to any level of aggregation. The Fixed-rank kriging covari-
ance model suggested by Cressie and Johannesson (2008) provides a comprehensive solution
for these problems for single data sets and the generalized model for fusing multiple data sets
was presented by Nguyen (2009) and Braverman et al. (2009). In the next section, we describe
the Fixed-rank kriging method and the associated covariance model. Then, we describe how the
data fusion approach is applied to our data sets.
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4.3 Fixed-rank kriging

The Fixed-rank kriging (FRK) approach splits the spatial process into two or three components
depending on the spatial wavelength, i.e,5

Y (s) = T(s) ·α︸ ︷︷ ︸
linear trend

+S(s) ·η+ ζ(s)︸ ︷︷ ︸
ν(s)

(12)

The model in Eq. (12) is called the spatial random effects (SRE) model (Cressie and Johan-
nesson, 2008). The first component represents a deterministic linear trend that reflects the large
scale spatial variations. The second component S(s) ·η captures the relatively smooth spatial10

variations, which form the covariance structure of the process. That is, cov(S(u) ·η,S(v) ·η) =
S(u)KS′(v) with K the covariance function of η. This component is modeled by a linear
combination of spatial random effects at multiple spatial scales. The vector η contains r hidden
spatial random effects, which are estimated from the data at predefined nodes. Therefore, we
should be able to estimate η regardless of the aggregation level of the input data. When neglect-15

ing the last term in Eq. (12), the weighted sum
∑r

j=1Sj(s)ηj should give the detrended value
of Y at the location s.

The weights stored in the matrix S for each location s depend on the distance between s and
each node. The weighting function S(s) has the following form:

S(s) =

{[
1− (||s−mi||/ri)2

]2
, for ||s−mi|| ≤ ri,

0 otherwise
(13)20

mi is the node location, and ri is a predefined effective radius. The formula in Eq. (13) repre-
sents a bisquare bell-shaped function that has its maximum value atmi and decreases smoothly
until it reaches zero outside the circle. To demonstrate, a schematic diagram for the nodes setup
is shown in Fig. 6. Within the domain of the data, four nodes, m1, · · · ,m4, are defined with25

a corresponding radius. In Fig. 6, if s is located within the radius of a certain node, it gets
a positive weight, otherwise the weight is zero. Hence, S(s) = [0, 0, 0, S(s)].

13
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The last component in Eq. (12) accounts for the variations of the process that has not been
captured so far (Kang and Cressie, 2011). The component ζ is assumed to be an uncorrelated
Gaussian process with a mean zero and a variance σ2ζ .5

Based on the model in Eq. (12), the FRK estimator is found when η and ζ are determined,
i.e.,

Ŷ (so) = Sp(so) · η̂+ ζ̂(so)

= Sp(so)KS′Σ−1Z̃ +σ2
ζE(so = s)Σ−1Z̃

(14)

where Sp(so) is the weighting matrix for the prediction location and Σ is the covariance matrix10

of the input data. The matrix E in Eq. (14) has a value of one if s= so and zero elsewhere.
Ŷ represents the detrended estimator. η̂ and ζ̂ are the optimal a postriori estimates of η and ζ,
respectively (Braverman et al., 2011). In order to get the total value of Ŷt, we calculate

Ŷt(so) = T (so) · α̂+ Ŷ (so) (15)
15

The steps followed to obtain the predictions based on the FRK method are summarized in
Fig. 7. The methods to estimate the noise variance σ2ε , the covariance matrix K, and the variance
of the fine-scale signal σ2ζ are shown in Appendix A.

We classify the spatial variations of the atmospheric water vapor signal into three compo-
nents: long wavelength, medium to short wavelength, and uncorrelated fine scale. Therefore,20

we split the water vapor signal using the linear model in Eq. (12) and use the FRK method for
prediction.

We applied the OK and FRK to estimate the zenith-directed wet delay derived from remote
sensing data. For the FRK, the matrix S is constructed using the node setup shown in Fig. 8.
The nodes or center locations of 93 basis functions are established at three spatial resolutions,25

the first resolution is 40 km, the second resolution is 20 km, and the third resolution is 10 km.
The semivariogram and the fitted spherical variogram model are shown in Fig. 9 (a), while
the covariance matrix determined using the FRK method in shown in Fig. 9 (b). The predicted
maps with 3 km× 3 km resolution are shown in Fig. 10. Due to the lack of ground truth data
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that should be used to estimate the bias in the model data, we do not add the long-wavelength
component into the figures to enable unbiased comparison. We observe similar results from
both ordinary kriging and fixed-rank kriging that agree with the original WRF map. The spatial
correlation coefficients with the corresponding WRF data are approximately 85 and 83 % for
FRK and OK, respectively. For using OK, we assumed the signal spatially isotropic to ease the5

computations; therefore, the OK prediction map shows results sightly different from the FRK.
The most impressive point here is the computational time reported for both algorithms. The FRK
algorithm is fast, so that it requires significantly shorter time to produce the predictions. Most
of the time is invested in the calculations of the covariance model parameters and constructing
the matrices S and Σ. We implemented the OK algorithm such that the predictions are found10

iteratively. Also, to estimate a value at the location s, we do not use the entire data, but only
those which exist within a predefined radius around the prediction location. Nevertheless, the
OK algorithm requires computational time with an order of magnitude higher than that required
by the FRK method, on the same machine.

In the next section, we describe the extension of the FRK method for predicting the atmo-15

spheric PWV by fusing remote sensing data and the WRF model.

5 Data fusion for water vapor estimation

In this section, we fuse the PWV maps derived from the remote sensing data and WRF model.
Since we classify the spatial variations of the atmospheric water vapor signal into long wave-
length, medium to short wavelength, and uncorrelated fine scale components, we use the fol-20

lowing model setup for prediction.

5.1 Model setup

PWV maps will be derived from the remote sensing data, denoted Z1, and those from the
WRF model, denoted Z2 with the sizes N1 and N2, respectively. Z1 contains the point PWV
estimates from remote sensing data and Z2 contains the block WRF data. Following the SME

15
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model in Eq. (12), the two data sets can be expressed as[
Z1

Z2

]
=

[
T1

T2

]
α+

[
S1

S2

]
η+

[
ζ1
0

]
+

[
ε1
ε2

]
(16)

5

The regression coefficient α should be estimated jointly from both data sets. However, we do
not have apriori information about the biases; therefore, we estimate α in this contribution
independently for each data set. The matrices S1 and S2 contain the weights of each location
for each data set. To distinguish between point and block data, we used the notation S2 for
block-level data. The model components for point and block data are given in Table 1. The10

WRF data are available at a resolution of 3km× 3km; therefore, the highly variable signal of
water vapor is smoothed. Hence, we do not add the component ζ for the model data.

To solve the system in Eq. (11), we determine the covariance structure associated with each
SRE model in Eq. (16), i.e.,

Σ11 = var(Z̃1) = S1KS′1 +σ2ζVζ +σ2ε1Vε1 (17)15

Σ22 = var(Z̃2) = S̃2KS̃′2 +σ2ε2Vε2 (18)

Σ12 = cov(Z̃1,Z̃2) = S1KS̃′2 = Σ′21 (19)

where σ2ζVζ and σ2εVε are diagonal covariance matrices for ζ and ε, respectively. Note that
when computing the cross covariance functions Σ12 and Σ21, the only part of the signals that is20

assumed correlated is η. In order to solve Eq. (11), we need not only to specify the covariance
matrices of the input data, but also to find the covariance between the observations and the
spatial process at the prediction locations. The covariance terms are obtained from:

c1 = cov(Z̃1(s),Y (so))

= Sp(so)KS′1(s) +σ2ζE(s= so) (20)

c2 = cov(Z̃2,Y (so)) = Sp(so)KS̃′2 (21)
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The matrix E in Eq. (20) has a value of one if s= so and zero elsewhere. By solving for a1 and
a2 in Eq. (11) and substituting the results in Eq. (8), the estimator Ŷ (so) becomes5

Ŷ (so) =

(
Sp(so)K

[
S′1
S̃′2

]
+

[
σ2ζE

0

])[
Σ11 Σ12

Σ21 Σ22

]−1[
Z̃1

Z̃2

]
(22)

The mean squared prediction error (MSPE) corresponding to Ŷ can be obtained from

MSPE = a′1Σ11a1 +a′2Σ22a2 + 2a′1Σ12a2− 2a′1c1− 2a′2c2 (23)
10

Using the FRK covariance model in Eq. (19) makes the matrix inversion of Eq. (22) scalable.
That is, the matrix inversion can be achieved by applying a recursive block-wise inversion as
follows:[

A B
C D

]−1
=

[
O1 O2

O3 O4

]
(24)

15

where

O1 = A−1 + A−1B(D−CA−1B)−1CA−1

O2 =−A−1B(D−CA−1B)−1

O3 =−(D−CA−1B)−1CA−1

O4 = (D−CA−1B)−120

and A,B,C,D are matrices of any size, and A,D must be square. The inversion of individual
matrices in Eq. (24) is achieved by applying the formula of Sherman–Morrison–Woodbury,
which is made possible due to the FRK covariance structure,

Σ−1ii = (Di + SiKiS
′
i)
−1

= D−1i −D−1i Si(K
−1 + S′iD

−1
i Si)

−1S′iD
−1
i

(25)
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The computations require the inversion of the matrices K and (K−1+S′iD
−1
i Si), where each of

them has the size r×r with r significantly smaller than the data size. Note that Di is a diagonal5

matrix, for which the inversion is achieved by inverting the diagonal elements. Using the FRK
covariance model makes the computational burden for the matrix inversion linear with the data
size (Cressie and Johannesson, 2008).

5.2 Application to the data

In this section, we build PWV maps from remote sensing and WRF model data using a spatial10

statistical data fusion method. The first PWV map, derived by combining GNSS and PSI, has
169 688 data points. The WRF model provides a block-level map of 1296 cells of the size
3 km× 3 km. The data to be fused have different qualities, huge size, different spatial support,
and gaps in the remote sensing data. The output grid is defined at 3 km× 3 km (block-level
support) and MERIS PWV maps are used for evaluation.15

Following the work flow in Fig. 7, we first estimate the long wavelength trends and remove
them from the data using Eq. (7). By comparing the PWV from the WRF model and remote
sensing data, we found it is most likely that the model data have a bias. Due to the lack of
apriori information about the bias and the absence of accurate ground truth data to estimate it,
we estimated α independently for each data set. The centered maps are shown in Fig. 11.20

Second, the matrices S1 and S2 are constructed for the first data set (remote sensing data) and
the second data set (model data). The node setup is shown in Fig. 8. The number of nodes must
be the same for both data sets and they are selected such that S does not contain columns of
zeros, otherwise the corresponding node has to be removed. If PWV data are available at point-
level, a weighting value is calculated for each point with respect to all nodes. However, the25

WRF model simulates data at block-level, hence we superimpose the model grid with a lattice
of regular points such that each cell in the WRF grid contains 9 points. A weighting value is
calculated for each point, these values are averaged to get one weighing value for each WRF cell
to form the matrix S2. Building the matrix Sp for the prediction locations is done in a similar
way, either at point-level or block-level, depending on the output grid.

18
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In the third step, the covariance parameters (K,σ2ζ ,σ
2
ε ) are estimated from the centered data

Z̃1 and Z̃2. The error variances for both data sets, K and σ2ζ are estimated as described in
Appendix A. Note that when the two data sets are combined to infer a single process, i.e., PWV,5

one K is estimated for all data sets.

Results

So far, all components required to produce the predictions using Eq. (22) are obtained. In
Fig. 12, we show the prediction maps obtained by applying FRK to individual data sets as
well as the map obtained by data fusion. The figure also shows the MSPE maps associated with10

each prediction map. We compare the interpolations obtained by applying FRK to single data
sets with those obtained by SSDF and we compare both with the MERIS data. The results show
that the map obtained by data fusion correlates more consistently with the map predicted only
from PSI + GNSS (Table 2). In the PWV map generated by WRF, shown in Fig. 11, the area in
the lower left corner shows artifacts that do not reflect the correct values of PWV as observed15

from the MERIS PWV map, Fig. 3c and d. Applying FRK to the WRF data does not remove
these artifacts from the prediction map. However, in the map obtained by the fusion of both data
sets, the artifacts in the lower corner disappeared, but the corresponding MSPE values are large
for this region. The MSPE values corresponding to the SSDF predictions are generally smaller,
and we should note that in the regions of sparse observations, the corresponding MSPE values20

tend to increase. For regions of sparse observations in the PWV map (Fig. 11), i.e., the areas
in the west of the Rhine valley or in the lower right corner, the map from the WRF model con-
tributes to improve the estimation of the PWV values in the prediction map. The region in the
lower right corner has a higher topography and the wet delay values are expected to decrease
as we observe from the map of WRF. In the prediction map obtained by applying FRK to PWV25

from PSI and GNSS, the predicted values tend to increase since the data in this area are sparse
and partially biased. By applying the SSDF approach, the data available from WRF influence
the predictions such that the PWV values in this area are more reasonable and they decrease by
moving to the lower right corner. In a similar way, the data from WRF improve the predictions
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in the region around (7.8◦ E, 49.25◦N), where only sparse PWV data exist. The data from the
model, however, affects the prediction in the lower left corner such that they are smaller than
those observed in the MERIS map.

In addition, we show the PWV profiles over the line drawn horizontally at the latitude
49.37◦N in Fig. 12 (h). It is observed from the plots that the predictions made by data fu-5

sion are affected more by the data from WRF in region A, where the remote sensing data are
sparse. However, in region B, the WRF data are significantly overestimated. In the prediction
map made by data fusion, these data have a lower effect in than those received from the remote
sensing data. The map received by applying the data fusion shows the best spatial correlation
with the data from MERIS and the smallest RMS value (see Table 2).10

In the above example, the data from remote sensing have a more significant influence on
the output. In Fig. 13, we show another example where the model highly affects the predicted
map. The predicted map based on model data shows a better spatial correlation and a lower
uncertainty values compared to the map predicted using remote sensing data. In this case, the
fusion map is more affected by the model data. The spatial correlation coefficients and the15

values of uncertainty are given in Table 2. In the first example (Fig. 12), the effect of the remote
sensing data on the prediction map is significant. The other example in Fig. 13 and Table 2 show
that the model has a larger effect on the output map.

6 Conclusions and outlook

We presented a method to obtain the atmospheric PWV over any aggregation level by the fu-20

sion of remote sensing data and atmospheric models. The PWV maps derived by combining
data from PSI and GNSS are available at discrete points that are absent in regions of low coher-
ence. On the other hand, the WRF model provides simulations of PWV in the atmosphere on
regular grids at a coarse spatial resolution. Both the quality of the model data, and the model
skills for representing meso-scale atmospheric structures should be improved. The quality of the25

prediction maps should be improved by data fusion. For data fusion, the method of spatial statis-
tical data fusion, first presented in (Nguyen, 2009), was employed. This method is based on the
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fixed-rank kriging approach that attempts to solve the problems of computational complexity
of huge data sets, change of support, and bias. We inferred PWV data on a grid of 3 km× 3 km
and compared the results with PWV maps inferred from MERIS data on the same grid. The
results show a strong correlation between data fusion maps and those maps from MERIS. The
difference between both maps shows uncertainty values of less than 1 mm, which is lower than5

that obtained from inferring data based on single sets.
To further improve the results, we suggest the following. The matrix Si has so far been con-

structed for each data source by defining a set of spatial nodes. The number of the nodes is
empirically adjusted such that the covariance function computed for the data set based on the
estimated matrix K approximates the empirical covariance. In future work, the size and the10

locations of nodes have to be optimized by minimizing the difference between the empirical
and the estimated covariance functions. We should also estimate the biases for each data set (if
exist), so that they can be accounted for in the fusion approach. The data fusion approach can be
extended such that more than two data sets are used, for example, by including the MERIS maps
in the fusion. With the increasing number of satellite missions and improved atmospheric mod-15

els, we are able to produce complete, accurate information about the Earth’s atmosphere based
on data fusion approaches. Moreover, the improved PWV maps can be iteratively assimilated to
the local area atmospheric model to generate more accurate 3-dimensional water vapor fields.
Also, testing other combinations of physical schemes within the WRF model can further im-
prove the resulting water vapor maps. In this paper, we compared the prediction maps with the20

data from MERIS; however, in future work, the results should be validated using Bootstrapping,
or Jackknifing techniques.

Appendix A: Estimation covariance parameters

Predicting the stochastic component of the atmospheric signal using kriging requires obtaining
the covariance function Σ and fitting a covariance model. Using the FRK covariance model,25

we need to estimate the matrix K, the noise variance σ2ε , and the variance of the fine-scale
signal σ2ζ . The first method proposed to estimate K is called binned method-of-moments (MM)
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(Cressie and Johannesson, 2008; Nguyen, 2009). This approach derives the empirical estimator
for Σ and obtains K such that ||Σ̂−Σ||F is minimum, where || · ||F refers to the Frobenius
norm.

Another approach proposed by Katzfuss and Cressie (2009) targets to determine the covari-5

ance parameters using the algorithm of maximum likelihood estimation (MLE). Furthermore,
they estimated the covariance paramters using the expectation-maximization (E-M) algorithm
(Dempster et al., 1977) to reduce the computational burden. This algorithm provides estimates
not only of K but also of σ2ζ , where the solution for the MLEs is found iteratively. Within each
iteration the algorithm performs two steps, the expectation and maximization. In the following,10

we present a description of how to obtain the maximum likelihood estimates of the covariance
model parameters via the E-M algorithm.

Assuming that the observations in Z̃ follow a multivariate Gaussian distribution, that is Z̃ ∼
N(0,Σ). Let the parameters of interest K and σ2ζ be summarized in the vector Θ, then the
likelihood function L(Θ) (Katzfuss and Cressie, 2009)15

−2logL(Θ) =−2f(Z̃;Θ)

= log det Σ + Z̃ ′Σ−1Z̃ + c

= log det Σ + tr (Σ−1Z̃Z̃ ′) + c

(A1)

where c= (N/2) log2π is a constant independent of Θ and hence it cancels out in the maxi-
mization step. tr(·) denotes the trace operator of a square matrix, with tr (A) =

∑n
i=1aii.

In the expectation step of the algorithm, we calculate20

Q(Θ;Θ[t]) = EΘ[t]{−2logL(η,ζ;Θ)|Z̃} (A2)

given that:

−2logL(η,ζ;Θ) = log det K + tr (K−1ηη′) +N logσ2ζ

+σ−2ζ tr (ζζ′) +N logσ2ε +σ−2ε tr (εε′)
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Then Eq. (A2) becomes

Q(Θ;Θ[t]) =− 1

2

[
log det K + tr (K−1EΘ[t]{ηη′|Z̃})

+N logσ2ζ +σ−2ζ tr (V−1ζ EΘ[t]{ζζ′|Z̃})

+N logσ2ε +σ−2ε tr (V−1ε EΘ[t]{εε′|Z̃})
] (A3)5

We should remind the reader that the parameters to be estimated here are K and σ2ζ , while σ2ε
is estimated from the robust semivariogram, as described later. To proceed with the solution,
it is required to quantify the conditional expectations in Eq. (A3). Using the standard formula
required for calculating conditional expectations for multivariate normal distribution, the ex-10

pectations will have the following form (Katzfuss and Cressie, 2009)

EΘ[t]{ηη′|Z̃}= Σ[t]
η +µ[t]

η µ
′[t]
η

EΘ[t]{ζζ′|Z̃}= Σ
[t]
ζ +µ

[t]
ζ µ
′[t]
ζ

with15

µη
[t] = EΘ[t]{η|Z̃}= K[t]S′Σt−1Z̃

µζ
[t] = EΘ[t]{ζ|Z̃}= σ2ζ

[t]
VζΣ

[t]−1Z̃

Σ[t]
η = covΘ[t](η|Z̃) = K[t]−K[t]S′Σ[t]−1SK[t]

Σ
[t]
ζ = covΘ[t](ζ|Z̃) = σ2ζ

[t]
Vζ −σ2ζ

[t]
VζΣ

[t]−1σ2ζ
[t]

Vζ20

After the expectation step, we perform a maximization step. The parameters K and σ2ζ in
Eq. (A3) should be selected such that Q(·) is maximized. The partial derivative is taken with
respect to both parameters and the result is assigned to zero. Finding the derivative here is rather
simple since η and ζ do not show dependency on each other, as observed from Eq. (A3). The
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updating scheme of the E-M algorithm in each iteration is

K[t+1] = K[t] + K[t]
(
S′Σ[t]−1

(
Z̃Z̃ ′Σ[t]−1− IN

)
S
)

K[t] (A4)

σ2ζ
[t+1]

= σ2ζ
[t]

+σ2ζ
[t] tr

(
1

N
Σ[t]−1

(
Z̃Z̃ ′Σ[t]−1− IN

)
Vζ

)
σ2ζ

[t] (A5)

We keep updating the solution until the algorithm converges. One criterion to monitor conver-5

gence is to calculate the norm of the difference between the current and last update of the vector
Θ (which is of size r2 + 1). That means ||Θ[t+1]−Θ[t]||< b should hold for small enough and
positive value of b. Following Katzfuss and Cressie (2009), b is assigned a value of 10−6r2.
The starting choice of K and σ2ζ should be valid; strictly speaking, K[0] must be symmetric and

positive-definite and σ2ζ
[0] must be positive, i.e., K[0] = 0.9 · var(Z̃)Ir and σ2ζ

[0]
= 0.1 · var(Z̃).10

The measurement error variance σ2ε is estimated separately from the empirical semivariogram
of the data. Estimating both σ2ε and σ2ζ from the data is not a trivial task. That is because the
nugget effect in the semivariogram reflects not only the error variance but may be affected by
the fine-scale variance. Therefore, having information about the error distribution and variance
is worthwhile. In our case we estimate σ2ε using the method of robust semivariogram (Cressie,15

1993),

2γ(h) =

(
1

|N(h)|
∑

N(h)

∣∣∣Z(ui)−Z(uj)
∣∣∣1/2)4

(
0.457 + 0.494

|N(h)|

) (A6)

where h is separation distance, assuming the signal is spatially isotropic. To obtain an estimate
of σ2ε , a straight line is fitted to the estimated semivariogram at short h. Since the slope of the20

structure function (variogram) describing atmospheric turbulence is expected to vary with h, we
made the line fitting based on the estimates of the first 3 km (empirically defined). Let the line
fit be γ̂(h) = γ̂(0+) + bh, then the estimate of σ2ε is

σ̂2ε = γ̂(0+) (A7)
25
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Should γ̂(0+) have a negative value, σ̂2ε is set to zero.
The estimate of K using the detrended PWV maps estimated from the PSI + GNSS and model

data on 5 September 2005 is shown in Fig. 14. The corresponding covariance function is also
shown. The matrix S is constructed as described in Sect. 4.3 using the nodes setup in Fig. 8. The
KEM has a maximum value for the element (29,29), which is equivalent to estimate at the node5

in the lower right corner at the location (8.524◦ E, 48.69◦N), see Fig. 8. This can be explained
by the sparseness of PWV estimates close to this node and the PWV values from PSI and GNSS
are significantly higher than those from the model. The covariance matrix is computed for the
observations binned into 7 km× 7 km blocks to demonstrate covariance structure. We observe
from the covariance matrices that the variances, on the main diagonal, increase in areas of sparse10

observations. The reader should note that the observations do not exist on a regular grid (due to
the spatial distribution of PS points); hence, the covariance values in the off-diagonal cells can
be negative and then again positive.
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Table 1. Model components from point-level and areal-level data.

Point data Block data

True process Y (s) Y (Bi) = 1
|Bi|

∑
s⊂Bi

Y (s)

Trend T (s)α

(
1
|Bi|

∑
s⊂Bi

T (s)

)
α

Weighting matrix S(s) S̃(Bi) = 1
|Bi|

∑
s⊂Bi

S(s)

Medium-scale signal S(s)η S̃(Bi)η
Fine-scale signal ζ(s) ζ(Bi) = 1

|Bi|
∑

s⊂Bi

ζ(s)

Error ε(s) ε(Bi)
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Table 2. Spatial correlation coefficients (CC) and RMS values when comparing the prediction maps with
MERIS PWV maps.

Method 5 September 2005 27 June 2005
(lr)2-3 (lr)4-5 Spatial CC RMS [mm] Spatial CC RMS [mm]
WRF data 0.70 1.33 0.85 0.87
Remote sensing data 0.87 0.90 0.72 1.13
Data fusion 0.91 0.82 0.86 0.92
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Figure 1. Maps of the absolute atmospheric PWV derived by combining PSI and GNSS data and the
corresponding map from MERIS. The spatial correlation is 95 % and the RMS value of the differences
is 0.68 mm.
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Figure 2. WRF model set up with a parent domain of resolution 27 km× 27 km and two nests of
9 km× 9 km and 3 km× 3 km, respectively.
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Figure 3. Maps of PWV content as received from MERIS and WRF, where a linear trend is subtracted
from each map. The upper data are received on 27 June 2005 (09:51 UTC), while the lower data on
5 September 2005 (09:51 UTC). Gaussian averaging is applied to scale the MERIS data at WRF reso-
lution, 3 km× 3 km. The spatial correlation coefficient between the upper maps is 0.8 and 0.71 for the
lower.
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Figure 4. Point and block data, such that for spatial data, Y (Bi) represents the average of the point data
within the block.
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Figure 5. Spatial autocorrelation function for a PWV map, with the long-wavelength component re-
moved, computed from remote sensing data acquired on 5 September 2005, 10:51 UTC.

36



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

m1 m2

d2

m3 m4

d4
d3

d1

s

Figure 6. The observation domain with the black dots define the locations at which the data are available.
The black little squares indicate the nodes. The weights for each location s are related to the distances
di. The dashed circles define the radius for each node.

37



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

Nodes setup 
→ construct Si

Estimate error variance

Estimate covariance 
parameters K, σξ

2

Input data sets

Estimate → detrend
the data

Define prediction 
locations → construct Sp

Obtain predictions 
and calculate the 

corresponding
MSPEs

Figure 7. Obtaining predictions via the FRK method.
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Figure 8. FRK nodes or center locations of 93 basis functions at three spatial resolutions. The first
resolution is 40 km, the second resolution is 20 km, and the third resolution is 10 km.
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Figure 9. (a) The experimental semivariogram and the fitted spherical variogram model, (b) Covariance
matrix used to predict the wet delay maps in Fig. 10
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Figure 10. Wet delay prediction map using the block OK and FRK. The resolution of the grid is
3 km× 3 km. A point-level wet delay map, on 23 May 2005 at 09:51 UTC, is used as input to the al-
gorithms.
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Figure 11. PWV maps from PSI + GNSS combination and WRF on 5 September 2005, with a linear
trend subtracted from each map. PSI + GNSS provide point-level observations, while WRF generates
block data with a block size of 3 km× 3 km. The predictions will be obtained within the area indicated
by the black box.

42



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

Figure 12. PWV prediction and MSPE maps obtained by data fusion of PWV estimates from PSI and
GNSS and maps from WRF as well as predictions obtained by applying FRK to individual data sets. The
data are available on 5 September 2005 at 09:51 UTC. The output grid has a block size of 3 km× 3 km.
The label A defines a region of sparse remote sensing data and and the model data in region B are highly
overestimated.
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Figure 13. PWV maps from remote sensing (PSI+GNSS) and WRF model data on 27 June 2005 at 09:51
UTC as well as prediction maps obtained by data fusion and individual data sets. The output grid has
a block size of 3 km× 3 km over the area indicated by the black box in a and b.
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Figure 14. Estimate of the covariance matrix K using the E-M algorithm and the corresponding covari-
ance matrix for the Wet delay map from PSI + GNSS. The wet delay observations are aggregated into
maps of 7× 7 km2 cells before their covariance matrices are computed.
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