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 We would like to thank the reviewer of the paper “Regime shifts in Annual Maxima Rainfall 2 

across Australia– Implications for Intensity-Frequency-Duration (IFD) relationships”. We are 3 

particularly pleased with the positive comments provided on the revised version of this 4 

manuscript. We have considered the Reviewers’ comments and provided descriptions of 5 

how each comment will be addressed in the revised manuscript below: 6 

Comment 1: 7 

Line 233: I hope that the authors should clarify the version of ‘Australian Rainfall and Runoff 8 

(AR&R)’ because there was no mention of the AR&R 1999 in Introduction and AR&R 1999 9 

suddenly appeared in line 233, I was really confused with other versions of AR&R. It should 10 

be explained the AR&R 1999 and the relation between different versions in Introduction. 11 

Response: The 1987 AR&R edition was republished in book form in 1999. With only the 12 

chapter on the estimation of extreme to large floods updated. This has been clarified in the 13 

revised manuscript. 	  14 

Comment 2: 15 

Line 378: The authors considered a simple bootstrap procedure suggested by the referee #1. 16 

However, the authors did a repetition number of 100 times. I think that it is too small in the 17 

bootstrap resampling method. As the referee #1 said in the comments, I think that more 18 

repetition in resampling should be carried out since a small number of repetition causes 19 

large sampling error. If more repetition, the range of percent difference in rainfall intensity 20 

and the return period with zero crossing may be changed. 21 

Response: While we agree that repeating the bootstrap procedure additional times times may 22 

help to further quantify the uncertainty we feel that resampling 100 times is sufficient to 23 

represent the effects of sampling and parameter estimation uncertainties under the hypothesis 24 



of the existence of two different regimes. Indeed Reviewer 1 who originally suggested the 25 

procedure was happy with our method and results. 26 

Comment 3: 27 

In Fig. 7, it would be better to provide the differences between rainfall intensities for two 28 

climate phases through resampling method for Melbourne and Brisbane. If the results of 29 

these two stations are provided in Fig. 7, the discussion and conclusions would be more 30 

reasonable. 31 

Response: The reason that Melbourne and Brisbane are not included in Fig 7 is that the IPO 32 

positive and negative rainfall distributions were found not to be significantly different based 33 

on the KS test for all durations, whereas the distributions were significantly different for 34 

Sydney rainfall. Therefore the Sydney station was chosen to further analyse the impact of 35 

regime shifts on the IFD estimates (and associated bootstrap test).  We intend to extend the 36 

study to look at non-IPO related regime shifts at other stations around Australia but this is 37 

beyond the scope of the current paper. 38 

Comment 4: 39 

In future research, it is needed to consider the non-stationary models and the return period 40 

definitions (the number of exceedance event and the waiting time in Salas and Obeysekera 41 

(2013)) as suggested by referee 42 
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Thank you. We agree with this comment and this will be investigated as part of our ongoing 44 

research. 45 

All minor comments have been corrected in the revised paper. 46 
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Abstract 66 

Rainfall Intensity-Frequency-Duration (IFD) relationships are commonly required for the 67 

design and planning of water supply and management systems around the world. Currently 68 

IFD information is based on the ‘stationary climate assumption’ - that weather at any point in 69 

time will vary randomly and that the underlying climate statistics (including both averages 70 

and extremes) will remain constant irrespective of the period of record. However, the validity 71 

of this assumption has been questioned over the last 15 years, particularly in Australia, 72 

following an improved understanding of the significant impact of climate variability and 73 

change occurring on interannual to multidecadal timescales. This paper provides evidence of 74 

regime shifts in annual maxima rainfall timeseries using 96 daily rainfall stations and 66 sub-75 

daily rainfall stations across Australia. Further, the effect of these regime shifts on the 76 

resulting IFD estimates are explored for three long-term sub-daily rainfall records (Brisbane, 77 

Sydney and Melbourne) utilising insights into multidecadal climate variability. It is 78 

demonstrated that IFD relationships may under- or over-estimate the design rainfall 79 

depending on the length and time period spanned by the rainfall data used to develop the IFD 80 

information. It is recommended that regime shifts in annual maxima rainfall be explicitly 81 

considered and appropriately treated in the ongoing revisions of Engineers Australia’s guide 82 

to estimating and utilising IFD information, ‘Australian Rainfall and Runoff’, and that clear 83 

guidance needs to be provided on how to deal with the issue of regime shifts in extreme 84 

events (irrespective of whether this is due to natural or anthropogenic climate change). The 85 

findings of our study also have important implications for other regions of the world that 86 

exhibit considerable hydroclimatic variability and where IFD information is based on 87 

relatively short data sets.  88 

 89 



1. Introduction 90 

Information on rainfall event intensity, frequency and duration (IFD, or IDF as it is known in 91 

some countries) plays a critical role in the design of dams, bridges, stormwater drainage 92 

systems and floodplain management. Dependent upon the application, information is required 93 

for event-durations ranging from hours to several days. The development of IFD relationships 94 

were first proposed by Bernard (1932) and since then different versions of this relationship 95 

have been developed and applied worldwide (e.g. Bara et al. 2009, Chen 1983, Hershfield 96 

1961, IHP-VII 2008, Nhat et al. 2006, Raiford et al. 2007).  97 

Historically, in Australia, IFD design rainfall curves were developed by the Australian 98 

Bureau of Meteorology (BoM) for durations ranging from 5 minutes to 72 hours and Average 99 

Return Intervals (ARI) of 1 year to 100 years (however, recently additional durations and 100 

ARIs have also been developed). Up until very recently IFD information available to (and 101 

used by) engineers and hydrologists were developed 25 years ago, as part of Engineers 102 

Australia publication Australian Rainfall and Runoff (AR&R) in 1987. New IFD information 103 

was released early in 2013 after a major revision of IFD information carried out by Engineers 104 

Australia. Importantly, the revised IFD information is based on a longer and more extensive 105 

rainfall data set (http://www.bom.gov.au/water/designRainfalls/ifd/). However, the BoM and 106 

Engineers Australia still recommend to use the AR&R 1987 information for existing flood 107 

studies and the probabilistic rational method and to conduct sensitivity testing with the 108 

revised 2013 AR&R parameters including the new IFD design rainfalls 109 

(http://www.bom.gov.au/water/designRainfalls/ifd/index.shtml). 110 

At the time of writing, the revised IFD information does not take into account the impact of 111 

climate change on IFD estimates. This is part of ongoing research commissioned through 112 

Engineers Australia. It is also not yet clear how or if the role of natural climate variability is 113 

going to be considered. Of concern is the fact that currently, estimates of IFD are based on 114 



the assumption that “climatic trend, if it exists in a region, has negligible effect on the design 115 

intensities” (Pilgrim 1987). This is known as the ‘stationary climate assumption’  (i.e. the 116 

statistical properties of the rainfall do not change over time) and implies that the chance of an 117 

extreme event occurring is the same at any point in time (past or future). However, the 118 

validity of this assumption has been questioned over the last 15 years following 119 

demonstration of the significant impact of climate variability occurring on interannual to 120 

multidecadal timescales in Australia. For example, research has shown that annual maximum 121 

flood risk estimates in Australia vary depending on climate state (e.g. Ishak et al. 2013, Kiem 122 

et al. 2003, Leonard et al. 2008). Importantly these studies demonstrate that founding flood 123 

risk estimates on an unsuitable time period has the potential to significantly underestimate (or 124 

overestimate) the true risks. This may apply to design rainfall also given that current IFD 125 

estimates are based on varying lengths of data spanning different time periods (the latest IFD 126 

estimates are based on all daily-read stations with 30 or more years of record and all 127 

continuously-recording stations with more than 8 years of record).  128 

Khaliq et al. (2006) explained that the traditional idea of probability of exceedance and return 129 

period are no longer valid under non-stationarity. Recently, Jakob et al (2011a) found that 130 

rainfall quantile estimates derived for Sydney Observatory Hill for the period 1976 to 2005 131 

show significant decreases across durations from 6 minutes to 72 hours. Jakob et al (2011b) 132 

subsequently extended the sub-daily rainfall data analysis to 31 sites located in southeast 133 

Australia, assessing variations in frequency and magnitude of intense rainfall events across 134 

durations from 6 minutes to 72 hours. This study identified two different trends in the data 135 

sets, a decreasing trend in frequency of events at durations of 1-hour and longer for sites in 136 

the north of the study region, while sites in the south cluster displayed an increase in 137 

frequency of events, particularly for sub-hourly durations. Importantly Jakob (2011a, 2001b) 138 

concluded that, for at least some regions of Australia, trends found in historical records has 139 
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the potential to significantly affect design rainfall estimates. Westra and Sisson (2011) also 141 

investigated evidence of trends in extreme precipitation at sub-daily and daily timescales 142 

(1965-2005) using a spatial extreme value model. They identified a statistically significant 143 

increasing trend in precipitation extremes for the sub-daily data set, however at the daily 144 

timescale no change in annual maximum rainfall could be detected with the exception of 145 

southwest Western Australia (Westra and Sisson 2011). Further, Yilmaz and Perera (2014) 146 

conducted change point analysis for extreme rainfall data for storm durations ranging from 6 147 

minutes to 72 hours in Melbourne, and found evidence of regime shifts, concluding the year 148 

1966 as a statistically significant change point. Yilmaz et al (2014) then investigated changes 149 

in extreme rainfall through trend analysis, non-stationarity tests and non-stationary GPD 150 

models (NSGPD) for Melbourne. They found statistically significant extreme rainfall trends 151 

for storm durations of 30 minutes, 3 hours and 48 hours, however for above storm durations 152 

there was no evidence of a regime shift (which they termed ‘non-stationarity’) according to 153 

statistical non-stationarity tests and non-stationary GPD (Yilmaz et al (2014). 154 

A limitation of the analysis presented by Westra and Sisson (2011) and Jakob et al (2011a, 155 

2011b) is that they tested for linear trends in the rainfall data series based on the hypothesis 156 

that extreme rainfall events would have either decreased, increased or exhibited no trend over 157 

the time period being investigated. However these are not the only attributes of trend 158 

detection, since annual rainfall maxima may also cycle through interannual to multidecadal 159 

periods (note that Westra and Sisson (2011) also investigated possible links between extreme 160 

rainfall and annual fluctuations in the El Niño/Southern Oscillation (ENSO)). Therefore, 161 

depending on what time period the annual rainfall maxima data are derived from (in reference 162 

to any long term cycles or epochs) the observed trends may be misleading or even not 163 

apparent (leading to the misconception that regimes shifts are non-significant or not an 164 

important consideration). Recently Yilmaz et al (2014) investigated the potential impact of 165 



the Interdecadal Pacific Oscillation (IPO) on extreme rainfall and resulting IFD for a case 166 

study in Melbourne. They concluded that, the IPO negative phase can be the driver of higher 167 

rainfall intensities for long durations and high return periods. However, the trends in extreme 168 

rainfall data and differences in rainfall intensities for short storm durations and return periods 169 

could not be explained with the IPO influence. Given that Melbourne is located in south-east 170 

Australia, where the influence of the IPO is temporally variable due to other climate drivers 171 

operating (acting to enhance or suppress impacts, see Kiem and Verdon-Kidd 2010; 2009), 172 

the research by Yilmaz et al (2014) provides promise for developing relationships between 173 

extreme rainfall and the IPO for regions where the IPO may have a more consistent influence 174 

(due to fewer competing climate modes), such as north-eastern Australia. 175 

Therefore this paper aims to establish if there is evidence of regime shifts in the annual 176 

maxima rainfall timeseries (1-hour to 7-days) across Australia by testing for shifts (regardless 177 

of direction or timing) in the long term sub-daily and daily data. Further, the implications on 178 

IFD estimation are explored, along with the potential influence of the IPO on extreme rainfall 179 

and resulting IFD. Recommendations are then provided as to how these insights may be 180 

incorporated in future revisions of AR&R. 181 

2. Data and methods 182 

2.1 Data 183 

2.1.1 Rainfall data 184 

Sub-daily and daily rainfall data for Australia were obtained from the BoM. Sub-daily data 185 

records from continuously recording (i.e. pluviograph) rainfall stations in Australia tend to be 186 

relatively short, hindering the ability to conduct trend and attribution studies. In this study 187 

pluviograph rainfall stations were chosen with data spanning at least 40 years and at least 188 

90% complete, resulting in 66 stations (see Figure 1a). In order to address the concerns raised 189 



in the Introduction about short term data analysis (note that according to Raiford et al. (2007) 190 

ARI should not be extrapolated from more than twice the record length), three long-term data 191 

sets, highlighted in Figure 1a, were chosen for further analysis that contained data from at 192 

least 1913 onwards (Brisbane Aero, Sydney (Observatory Hill) and Melbourne Regional 193 

Office).  194 

Daily rainfall stations with data spanning the period 1900 to 2009 were selected in order to 195 

capture as much temporal variability as possible (see Figure 1b). These stations were filtered 196 

according to the amount of data missing in order to identify the highest quality stations 197 

recording rainfall during this period, resulting in 96 being considered suitable for further 198 

analysis. Due to variability in the quality and quantity of rainfall data in each State of 199 

Australia, the following selection criteria were applied: 200 

• New South Wales, Queensland and Victoria - selected stations are at least 97% 201 

complete; 202 

• Tasmania- selected stations are at least 90% complete; and 203 

• South Australia, Northern Territory and Western Australia - selected stations are at 204 

least 85% complete. 205 

*****Figure 1 about here**** 206 

2.1.2  Climate index data 207 

The climate of Australia has experienced a number of regime shifts in climate during its 208 

history, resulting in sustained periods of above average rainfall and storminess and 209 

abnormally cool temperatures, followed by the reverse conditions (i.e. droughts and elevated 210 

bushfire risk) (e.g. Erskine and Warner 1988, Franks and Kuczera 2002, Kiem et al. 2003, 211 

Kiem and Franks 2004, Verdon et al. 2004). These shifts have tended to occur every 20 to 30 212 



years and are associated with changes in the Interdecadal Pacific Oscillation (IPO, Power et 213 

al. 1999). The IPO represents variable epochs of warming (i.e. positive phase) and cooling 214 

(i.e. negative phase) in both hemispheres of the Pacific Ocean (Folland et al. 2002). 215 

Importantly, the IPO has been shown to influence the magnitude and frequency of flood and 216 

drought cycles across eastern Australia (Kiem et al. 2003, Kiem and Franks 2004). In New 217 

Zealand, the IPO is also associated with similar shifts in flood frequency (McKerchar and 218 

Henderson 2003). It has been noted that, following the abrupt shift in the IPO in the mid 219 

1970s, the period, amplitude, spatial structure and temporal evolution of ENSO markedly 220 

changed (Wang and An, 2001). Historically, during negative phases of the IPO there tends to 221 

be more La Niña (wet) events and fewer El Niño (dry) events (Kiem et al. 2003, Verdon and 222 

Franks 2006), resulting in an overall ‘wet’ epoch for eastern Australia and New Zealand . 223 

While during the positive phase of the IPO there tends to be a higher frequency of El Niño 224 

events and fewer La Niña events (Kiem et al. 2003, Verdon and Franks 2006), resulting in an 225 

overall ‘dry’ epoch. In this study negative phases of the IPO were defined as 1913-1920 and 226 

1945-1977, while positive phases included 1921-1944 and 1978 to 2010. 227 

2.2 Statistical tests 228 

A 20 year moving window was used to test for low frequency variability in the annual 229 

maxima timeseries (1-hour, 1-day and 7-day). A Mann-Whitney U test was then used to 230 

determine the statistical significance of possible regime shifts by testing if the first 10 years 231 

of data was significantly different from the second 10 years, within the 20 year window (the 232 

null-hypothesis in this case was that the data was independently distributed). If the difference 233 

in medians was found to be statistically significant (i.e. p-value < 0.05) and there was a 234 

change in sign of the median values (e.g. switch from negative to positive), a climate shift 235 

was postulated to have occurred during the 10th year of the window. The Mann-Whitney U 236 

test is a robust test that does not place implicit assumptions on the underlying distribution of 237 



the data (i.e. it is a distribution free test), which is particularly appropriate here due to the 238 

small number of years used in each window (Kundzewicz and Robson 2004). Note that a 239 

number of different size windows were also tested, however this did not change the results or 240 

conclusions. 241 

A second test was also applied to identify step changes in the 1-day and 7-day annual maxima 242 

time series known as the distribution free CUSUM with resampling (note that the test was not 243 

applied to the shorter sub-daily data as longer data sets are recommended for this method). 244 

CUSUM tests whether the means in two parts of a record are different (for an unknown time 245 

of change). The second test was applied as it does not require the use of a moving window 246 

(which is a limitation of the Mann-Whitney U test described above). However the CUSUM 247 

test sequentially splits the timeseries into two portions (which are not necessarily equal), 248 

which may be a problem if more than one cycle/shift is present in the timeseries.  249 

The existence of serial correlation (or autocorrelation) in a time series will affect the 250 

ability of tests (such as the Mann-Whitney U and CUSUM) to assess the site 251 

significance of a trend (e.g. Yu et al. 2003, Serinaldi and Kilsby 2015b). The presence 252 

of cross-correlation among sites in a network will also influence the ability of the test 253 

to evaluate the field significance of trends over the network (e.g. Yu et al. 2003, 254 

Douglas et al. 2000, Guerreiro et al. 2013). Therefore, prior to applying the change point 255 

analysis as described above, the Durbin-Watson (DW) statistic was used to test for 256 

autocorrelation in the annual maxima timeseries (Durbin and Watson (1950, 1951)). In this 257 

case the null hypothesis is that the residuals from an ordinary least-squares regression are not 258 

autocorrelated against the alternative that the residuals follow an AR1 process. All DW 259 

statistic values were found to be greater than the 1.562 (the upper bound for 1% significance 260 

and a sample size of ~100) providing no evidence to reject the null hypothesis. Therefore, 261 



any regime shifts detected using the change point methods above are not likely to be artefacts 262 

resulting from hidden persistence. 263 

The potential issue of cross- correlation was also investigated. It was found that less than 9% 264 

of all possible pairings of rainfall data sets display a significant (yet weak) correlation at the 265 

5% level (r >0.2, significance based on n=100). Only eight pairings (out of 4465) were 266 

correlated at 0.5 or higher.  It was also found that stations located more than 500km apart 267 

were unlikely to be correlated and that the strength of the correlation reduced as distance 268 

increased between the pairs. This is not surprising given annual maximum rainfall events are 269 

due to synoptic scale processes. Therefore observations relating to spatial consistency of 270 

regime shifts are unlikely to be due to spatial correlation between sites. 271 

2.3 IFD Calculation 272 

The standard process for obtaining IFD information for a location is to refer to the six master 273 

charts of rainfall intensity for various durations and ARIs covering all of Australia in Volume 274 

2 of AR&R 2001. Alternatively, IFD curves can be obtained for any location in Australia via 275 

the BoM website (both the AR&R 1987 and revised IFDs are available). This information is 276 

based on regionalised estimates of IFDs that are spatially and temporally consistent. 277 

However, this approach cannot be adopted when using the instrumental rainfall data required 278 

for the analysis presented in this study. As such, the IFD information generated for this 279 

project follows the methodology on which the IFDs were based for AR&R 1999 (note 280 

the1987 edition was republished in book form in 1999 with only the chapter on the estimation 281 

of extreme to large floods updated), which utilises point source data with no regionalisation. 282 

It should be noted that it is not the purpose of this paper to compare different methods of 283 

generating IFDs, rather, one method has been adopted in order to provide a comparative 284 

assessment of the impact of non stationarity on IFD estimation. The AR&R 1999 procedure 285 
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used to generate IFDs from raw rainfall data (i.e. point based estimates) is summarised as 287 

follows: 288 

• A log-Pearson III distribution was fitted to the annual maxima timeseries using the 289 

method of moments (for annual maxima series of 30 minutes to 72 hours duration). 290 

This is the standard distribution that has historically been adopted for generating IFDs 291 

in Australia; however other distributions have recently been tested as part of the 292 

revision of AR&R. To test if this distribution is suitable for the region being studied, 293 

the goodness of fit for the log-Pearson III was tested using a Kolmogorov Smirnov 294 

(KS) test. Here the null hypothesis is that the data fits the Log-Pearson lll distribution 295 

(the alternate is that the data does not follow the Log Pearson III distribution). All p-296 

values were greater than 0.05 (average	  p-‐value	  was	  0.75), for all series (30min to 72hr 297 

durations at Brisbane, Sydney and Melbourne), therefore we accept the null 298 

hypothesis at the 5% significance level.; 299 

• The coefficient of skewness was determined for each duration (30 minutes to 72 300 

hours); 301 

• The coefficient of skewness was then used to obtain a frequency factor, KY, for use 302 

with Log-Pearson III Distribution. KY was obtained from Table 2.2 (positive skew 303 

coefficients) and Table 2.3 (negative skew coefficients) in AR&R 1999 Book 4; 304 

• Rainfall intensities for a range of ARI were calculated using the following formula: 305 

• log RIY = M + KYS (1) 306 
Where:  RIY = rainfall intensity having an ARI of 1 in Y 307 

M = mean of the logarithms of the annual maxima rainfalls 308 

S= Standard deviation of the logarithms of the annual maxima rainfalls 309 

KY = frequency factor for the required ARI of 1 in Y 310 



• ARIs of 2 years to 10 years were adjusted to partial-duration series estimates. In 311 

AR&R 1999, the following correction factors were used (note: for ARI greater 312 

than 10 years, no corrected factor is required): 2 year ARI – 1.13, 5 year ARI - 313 

1.04, 10 year ARI – 1.0. 314 

It should be noted that this approach is likely to result in different estimates of IFDs than 315 

those obtained from the standard maps provided by AR&R 1999 or the revised IFD 316 

estimates released in 2013. Here we are using point based rainfall data, whereas AR&R 317 

1999 have derived regionalised estimates based on multiple rainfall stations with varying 318 

lengths of data, varying resolution (daily and pluviograph) and varying quality of records. 319 

It is recognised that analysis of rainfall data from single stations is often unreliable, is not 320 

temporally or spatially consistent and should generally not be used for design purposes. 321 

However, the use of point based rainfall data satisfies the specific aims of this study 322 

(which is a comparative analysis) and is therefore considered appropriate. 323 

3. Results 324 

3.1 Test for regime shifts in the annual maxima rainfall timeseries 325 

Significant step changes identified in the extreme rainfall timeseries are shown in Figure 2. 326 

Of the 66 sub-daily rainfall stations tested, 40 (61%) displayed at least one step change in the 327 

1-hour annual maxima timeseries (Figure 2a), with some stations exhibiting multiple shifts. 328 

Of the 96 daily rainfall stations tested, 86 displayed at least one step change in the 1-day 329 

annual maxima timeseries (Figure 2b), while 92 exhibited at least one shift in the 7-day 330 

annual maxima timeseries (Figure 2c), and some stations exhibited multiple shifts. Figure 2 331 

collectively shows that observed step changes (or regime shifts) in annual maxima rainfall are 332 

not confined to any one particular region of Australia, with most stations analysed exhibiting 333 

at least one statistically significant shift.  334 



****Figure 2 about here**** 335 

As shown in Figure 3, the CUSUM test yielded fewer stations with statistically significant 336 

step change in the annual maxima timeseries (only 18 stations out of 96) and many of these 337 

were clustered along the coastal fringe of eastern Australia (note that, although the total 338 

number of stations displaying significant change points was the same for both the 1-day and 339 

7-day annual maxima, in some cases the location of the stations differed between the two). 340 

However, as stated previously a limitation to this method is that only one significant change 341 

can be detected using the CUSUM test (given that the data is sequentially split into two 342 

portions during testing). This can be a problem if more than one step change or cycle in the 343 

data is present (see example timeseries in Figure 4). Therefore, while the number of stations 344 

displaying a step change is reduced using the alternative method, the results do in fact support 345 

the theory that regime shift(s) in the annual timeseries are present for some stations at 346 

different durations. 347 

****Figure 3 about here**** 348 

****Figure 4 about here**** 349 

The temporal consistency of step changes in the annual maxima timeseries was further 350 

investigated (Figure 5a) and it was found that the timing of observed shifts were not 351 

necessarily consistent across Australia. However, for some regions (e.g. the east coast of 352 

Australia) periods such as the 1940s (Figure 5b) and to a lesser degree 1970’s (Figure 5c)  353 

display a higher degree of spatial consistency. 354 

****Figure 5 about here**** 355 

Instability and storminess can result during periods when a number of climate driving 356 

mechanisms interact (e.g. El Niño/Southern Oscillation, Indian Ocean Dipole and the 357 



Southern Annular Mode) to influence the occurrence of regional weather systems such as east 358 

coast lows and cut off lows (Pook et al. 2006, Verdon-Kidd and Kiem 2009). However, the 359 

large-scale climate phenomena impact various regions of Australia at different times of the 360 

year and to varying degrees, therefore it is not surprising that the timing of shifts in the 361 

annual maxima timeseries varies spatially and temporally. This highlights the limitations of 362 

trying to assess and attribute variability in annual maxima rainfall based on a single climate 363 

driver (e.g. ENSO) or attempting to address the issue of climate trends for the whole of 364 

Australia using one simple approach or model. 365 

3.2 Effect of non-stationarity on IFD estimation 366 

Section 3.1 provided evidence of non-stationarity in the annual maxima timeseries for a range 367 

of durations. This non-stationarity may ultimately influence the IFD estimation depending on 368 

the length of data, and the time period it comes from, and therefore the underlying climatic 369 

state (or combination of states). Current IFD estimates for Australia (both the 1987 and 2013 370 

versions) are based on data as short as 30 years for the daily-read stations and 8 years for the 371 

sub-daily data. Therefore IFD estimates based on relatively short-term data sets may under- 372 

or over-estimate rainfall intensities, depending on where the data series fits within the long 373 

term context (i.e. before or after a shift in annual maxima).  374 

For many east coast stations a shift in 1-day annual maxima (along with the 7-day) occurred 375 

around the 1940s - 1950s and again in the 1970s. This timing also corresponds to well-known 376 

periods of change in the IPO (see Section 2.1.2 for a description of the IPO and its 377 

influences). Therefore, to further explore the issue of regime shifts, breakpoints in the IPO 378 

were used to stratify the annual maxima rainfall timeseries into IPO positive and negative 379 

epochs for the three long sub-daily data sets described in Section 2.1.1 (i.e. Brisbane, Sydney 380 

and Melbourne, see Figure 1a for location). The reason for selection of these stations was 381 



twofold. Firstly, for all three stations, a shift in the annual maxima timeseries (for 1-day and 382 

7-day) was observed during the 1940s and again in the 1970s, and secondly the stations 383 

contain long records of pluviograph data (the shortest being from 1913 onwards). Figure 6a 384 

shows the modulating effect of the IPO on total annual rainfall for the three east coast 385 

stations. Annual maxima at the three east coast stations during the two IPO epochs are also 386 

shown in Figure 6 (b-d) for event durations of 30 minutes to 72 hours (durations that are 387 

critical for flood design applications). A two-sample Kolmogorov-Smirnov (KS) test was 388 

applied to determine if the observed differences between the IPO positive and negative 389 

rainfall distributions are statistically significant. Here the null hypothesis is that the two 390 

samples are drawn from the same distribution.  391 

****Figure 6 about here**** 392 

It is evident from Figure 6a that the effect of the IPO on annual rainfall totals (as measured by 393 

the largest difference between the two rainfall distributions associated with each climate 394 

phase and the results of the KS test) is greatest for Sydney. Although there does appear to be 395 

some impact in Brisbane, the result was not statistically significant according to the KS test. 396 

Melbourne does not appear to be greatly influenced by the IPO in terms of annual rainfall 397 

variability. This is due to the fact that the southern regions of Australia are affected by other 398 

climate modes than those arising from the Pacific (i.e. the Southern Annular Mode and the 399 

Indian Ocean Dipole (e.g. Kiem and Verdon-Kidd 2010, Gallant et al, 2012)). Regions such 400 

as Brisbane and Sydney tend to be dominated by Pacific Ocean influences (e.g. Verdon et al. 401 

2004). Figure 6b shows annual maxima rainfall tends to be higher during IPO negative on 402 

average for durations 6 hours and longer at Brisbane (though not statistically significant 403 

according to the KS test), while Figure 6c confirms the same to be true for Sydney for 404 

durations 2 hours and longer (statistically significant at 95%). However, for Sydney, the 405 



outliers (represented by circles) tend to be larger during IPO positive, indicating that the less 406 

frequent events might be more intense during this phase. 407 

Irrespective of the fact that the annual rainfall totals for Melbourne do not show any 408 

significant difference between the two phases of the IPO, there does appear to be a consistent 409 

relationship between IPO and the sub-daily and daily statistics (Figure 6d), whereby the 410 

median of the IPO positive distribution is higher across all durations, however IPO negative 411 

is associated with less frequent but more extreme events (although results were not 412 

statistically significant based on the KS test). For events 24 hours and longer, the IPO 413 

negative distribution also shows a much higher degree of variability than smaller durations, 414 

with the ‘box and whiskers’ extending beyond the IPO positive counterpart for these longer 415 

durations. This suggests that while IPO might not be as dominant in southeastern Australia as 416 

it is further to the north it still has some influence that needs to be better understood. 417 

Based on the analysis presented in Figure 6 and the results of the KS test, the Sydney record 418 

was chosen to further investigate the effects of regime shifts on IFD estimation. IFD 419 

information was generated for the Sydney record using rainfall data from the two IPO phases 420 

and the methodology outlined in Section 2.1 for durations 6 minutes through to 72 hours and 421 

ARI 2 years to 200 years. In order to test the robustness of the point estimates of rainfall 422 

return levels and estimate the uncertainty in their calculation, a simple bootstrap procedure 423 

was carried out. Firstly the IPO positive and IPO negative rainfall timeseries were resampled 424 

with replacement to obtain two new B-samples. Then for each B-sample the log-Pearson III 425 

distribution was fitted and the rainfall intensities calculated for the various return intervals. 426 

The difference between the rainfall intensities (of the two B-samples) was then calculated. 427 

This procedure was repeated 100 times to build the empirical distribution of the differences 428 

(which represents the effects of sampling and parameter estimation uncertainties under the 429 

hypothesis of the existence of two different regimes). 430 



Figure 7 shows the difference in rainfall intensity between IPO positive and IPO negative 431 

estimates, along with the 95% confidence intervals (CIs) derived using the procedure above. 432 

****Figure 7 about here**** 433 

Figure 7 demonstrates clear differences in the resulting rainfall intensities for Sydney 434 

estimated for each duration and ARI using the two regimes (i.e. rainfall data from either IPO 435 

negative or IPO positive). The difference in rainfall intensity estimated is as great as 65% in 436 

some cases. In all cases, the magnitude of the difference in rainfall intensity estimated using 437 

the different data regimes is greater for less frequent events (e.g. 50-year, 100-year, 200-year 438 

ARIs), highlighting that uncertainty is greatest with less frequent events. The rainfall 439 

intensity is greater in IPO positive for the very short duration events (6 minutes) at all return 440 

intervals and for 30min duration events for return intervals of 10 years or more. Similarly, for 441 

the 24 and 72 hour duration events rainfall intensity in the positive IPO phase is higher for 442 

return intervals of 5 years or more. For 2 hour and 6 hour events, the negative phase results in 443 

higher intensity events for more frequent return levels (20 years or less) but lower intensities 444 

for less frequent events (50 years or more).  445 

4. Discussion and conclusions 446 

An analysis of regime shifts in the annual maxima timeseries (1-hour, 1-day and 7-day) has 447 

been carried out using a set of high quality rainfall stations across Australia. It was found that 448 

the annual maxima timeseries does indeed exhibit statistically significant step changes/shifts 449 

for the majority of stations for various durations. Further it was demonstrated using three 450 

long term sub-daily rainfall stations along the east coast that this impacts upon the resulting 451 

IFD estimation. The potential for Pacific Influences (i.e. the IPO) to influence the resulting 452 

IFD estimation was explored in order to demonstrate this issue. The authors acknowledge that 453 

the IPO is unlikely to be the only driver of variability in the annual maxima timeseries across 454 



Australia, and it is recommended that future research should aim to identify other potential 455 

drivers of this variability. 456 

These findings highlight the fact that in some instances the IFD estimates currently being 457 

used are likely to be either under- or over-estimated at any one time depending on the length 458 

of data, and climatic state, from which they were derived. This is a particular concern given 459 

that current regionalised IFD information is based on data of varying length (as short as 8 460 

year in the case of sub-daily data) spanning different time periods. An over estimation of 461 

rainfall intensity for a given duration could impact on construction costs, while the risks of 462 

underestimating rainfall intensities could result in failure of design criteria. That is, the risk is 463 

dependent on the application and length of time over which the risk is assessed. 464 

Further revisions of AR&R are currently underway to include an assessment of the potential 465 

impacts of climate change on IFD estimates. However, there are many uncertainties 466 

associated with climate change projections, particularly when extracting information on 467 

timescales shorter than a season and particularly for hydrological extremes (e.g. Blöschl and 468 

Montanari 2010, Kiem and Verdon-Kidd 2011, Koutsoyiannis et al. 2008, 2009, Montanari et 469 

al. 2010, Randall et al. 2007, Stainforth et al. 2007, Stephens et al. 2012, Verdon-Kidd and 470 

Kiem 2010). Therefore, assessing future changes in extreme events that occur over short 471 

durations (e.g. minutes to days) is inherently difficult. Furthermore, climate projections are 472 

presented in terms of a percent change from a particular baseline. However, the baseline is 473 

often inconsistent and ill-defined leading to very different estimates of risk depending on the 474 

time over which the baseline is calculated (as has been demonstrated in this paper). 475 

Importantly, for regions where large-scale climate drivers operate on a multi-year to multi-476 

decadal timescales and are known to influence extreme rainfall events, we can use this 477 

information to determine if the climate statistics on which the IFD are based are likely to be 478 

biased or missing crucial information.  479 



It is recommended that regime shifts in annual maxima rainfall be considered and 480 

appropriately treated in any further updates of AR&R. One way to do this may be to only 481 

utilise data sets of similar length ensuring that they span a sufficient number of years in order 482 

to capture data from epochs of both high or low annual maxima (to remove bias towards one 483 

climatic phase or another). However, it is acknowledged that this would potentially result in 484 

discarding a large amount of data. alternatively, a separate set of IFDs could be developed for 485 

use in high risk modelling for engineers who need to account for the ‘worst case’ (in a similar 486 

manner to climate change allowances). This second set of IFD could be developed based on 487 

the periods of elevated annual maxima alone (for those stations with clearly defined epochs 488 

of annual maxima) such that if we were to enter such an epoch, designs based on these 489 

estimates would be robust for the duration of such a period. Salas and Obeysekera (2014) 490 

provide similar recommendations to deal with changing exceedence probabilities over time. 491 

This would have to be assessed and calculated on a region by region basis given that 492 

Australia is a country associated with high spatial and temporal rainfall variability caused by 493 

numerous large-scale climate drivers and regional weather phenomena. Finally, any revised 494 

estimates of annual maxima should be compared in terms of uncertainty bounds (e.g. 495 

following Koutsoyiannis (2006)). Uncertainty analysis, which takes into account both the 496 

data availability and variability within the observation period would provide relevant 497 

information to practitioners about the reliability of IFD estimates.  498 

 This study has highlighted the existence of regime shifts in annual maxima rainfall data in 499 

Australia. The driving mechanisms of these regime shifts are likely to vary from location to 500 

location and decade to decade. However, these shifts are typical of many natural phenomena 501 

and can be described by processes characterized by long range dependence (or regime-502 

switching processes) and captured by hidden Markov models (or similar), resulting in a 503 

mixture of distributions that alternate stochastically according to the transition probability 504 



from one regime to the next (e.g. Serinaldi and Kilsby, 2015a). While the strategy of defining 505 

IFDs for two (or more) different regimes (e.g Serinaldi and Kilsby (2015a)) currently only 506 

partially solves the problem, as we often do not know the beginning or the end of a specific 507 

regime (be it rainfall or climate driver), recent work has focused on optimizing designs and 508 

planning strategies based on the range of what is plausible rather than a reliance on knowing 509 

the current and future climate state (e.g. Mortazavi-Naeini et al., 2015). At the same time, 510 

work is also underway on seamless prediction at a range of timescales and if/when this 511 

eventuates the results discussed here become even more important/useful. Nevertheless, the 512 

immediate usefulness of the insights presented here occurs when first establishing the IFD, as 513 

an approach similar to that employed here can be used to determine if the underlying data are 514 

biased to a mostly wet or mostly dry regime (or a mix of both) which then provides an 515 

indication as to whether the IFD is likely to be an over- or underestimate of the true risk. 516 

Importantly, this issue needs to be considered and accounted for when attempting to estimate 517 

IFD design rainfalls and prior to quantifying how those IFD estimates might change in both 518 

the near and long-term future. 519 

While the analysis presented here has been conducted using rainfall data from Australia 520 

alone, the recommendations provided are likely to be applicable for other regions of the 521 

world where IFD information is based on short term records and particularly for locations 522 

with a highly variable climate.  523 
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FIGURES 664 

 665 

  

a) b) 

Figure 1 a) Reference stations for sub-daily stations, b) Reference stations for daily rainfall. 666 

Note the three long term sub-daily stations used in the IFD analysis are also labelled. 667 



 
a) 

 
b) 

 
c) 
Figure 2 Stations (in red) with at least one statistically significant step change in the a) 1-668 

hour, b) 1-day, c) 7-day annual maximum rainfall (using the Mann-Whitney U test) 669 



 
a) 

 
b) 
Figure 3 Stations (in red) with at least one statistically significant step change in a) the 1-day 670 

and b) 7-day annual maximum rainfall (using the CUSUM test with resampling) 671 

  672 



 673 

Figure 4 Example of inadequate identification of non-stationarity using CUSUM test (red line 674 

highlights three distinct epochs of high/low rainfall, while green line demonstrates effect of 675 

splitting the data into two sections for CUSUM test) 676 

  677 



 
a) 

 
b) 

 
c) 
Figure 5 a) number of stations each decade displaying evidence of a step change in 1-day 678 

annual max, b) Stations (in red) with at least one statistically significant step change in the 1-679 

day annual max during 1940-1950 (using the Mann-Whitney U test), c) Stations (in red) with 680 

at least one statistically significant step change in the 1-day annual max during 1970-1980 681 

(using the Mann-Whitney U test) 682 
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d) 

Figure 6 Relationship between IPO and a) total annual rainfall, and annual maximum rainfall 683 

at various durations for b) Brisbane, c) Sydney and d) Melbourne. 684 
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 686 

Figure 7 Difference in rainfall intensity for each duration and ARI. Positive (negative) values 687 

represent an increase (decrease) in rainfall intensity during IPO positive compared to IPO 688 

negative 689 
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