
We would like to thank Dr Serinaldi and the anonymous reviewer for their review of the 1 

paper “Non-stationarity in annual maxima rainfall across Australia-implications for Intensity-2 

Frequency-Duration (IFD) relationships”. We have considered the Reviewers’ comments and 3 

provided detailed descriptions of how each comment will be addressed in the revised 4 

manuscript below: 5 

Response to Reviewer 1 (Dr Serinaldi) 6 

Specific comments 7 

Dr Serinaldi’s specific comments center around three main themes. The first is the use of 8 

change point analysis to test for non-stationarity in a data series, the second is the application 9 

of the CUSUM test (and identifying multiple change points) and the third is the use of the 10 

term “regime shift” in preference to “non-stationarity” when discussing variability in the 11 

annual maxima rainfall timeseries. Each of these issues were further built on in the technical 12 

remarks provided by Dr Serinaldi and therefore are addressed in detail below. 13 

Technical remarks  14 

1. Please, consider to check the significance of (bias-corrected) serial correlation (if this 15 
was not done) because it can affect the results of change point analyses (see e.g. 16 
Serinaldi and Kilsby (2015a) and references therein for a discussion on Mann-17 
Kendall and Pettitt, which however holds true also for e.g. CUSUM and similar). As 18 
shown above, apparent regime shifts can be artifacts resulting from hidden 19 
persistence. 20 

Response: In response to the Dr Serinaldi’s suggestion, the Durbin-Watson (DW) statistic 21 

was used to test for autocorrelation (serial correlation) in the annual maxima timeseries 22 

(Durbin and Watson (1950, 1951)). The Durbin-Watson statistic tests the null hypothesis that 23 

the residuals from an ordinary least-squares regression are not autocorrelated against the 24 

alternative that the residuals follow an AR1 process. The Durbin-Watson statistic ranges in 25 

value from 0 to 4. A value near 2 indicates non-autocorrelation; a value toward 0 indicates 26 



positive autocorrelation; a value toward 4 indicates negative autocorrelation. Typically, 27 

tabulated bounds are used to test the hypothesis of zero autocorrelation against the alternative 28 

of positive first-order autocorrelation. For the sample size in our case (~100) and a linear 29 

trend model with intercept the dlower = 1.522 and dupper=1.562 for 1% significance.   30 

All DW statistic values were found to be greater than the 1.562 (the upper bound for 1% 31 

significance) providing no evidence to reject the null hypothesis (see figure 1 showing the 32 

distribution of all DW statistic values for the 1-day annual maxima timeseries at each site).   33 

A discussion of the DW test results are included in the revised paper (Section 2.2) to 34 

demonstrate that the annual maxima data does not suffer from serial correlation and therefore 35 

the statistical tests used in the change point analysis is appropriate.  36 

 37 

Figure 1: Box plot of Durbin-Watson statistic for the 1 day-annul maxima timeseries at 96 38 

stations (red line indicates  dupper=1.562 for 1% significance) 39 

2. P3453L20-25: In my opinion, such lines reflect some confusion on this topic. Trends 40 
or change points in finite time series do not imply nonstationarity. Nonstationarity 41 
cannot be in principle significant or not significant, because it is an assumption made 42 
on the underlying process that can be introduced only if we know the underlying 43 
nonstationary dynamics (physical equations, well-defined changes with a clear cause 44 
such as flow regime changes due to dams operation, etc.). Please consider to reword 45 



this type of sentences throughout the text in light of the discussion and references 46 
above. 47 

 48 

Response: Dr Serinaldi’s review has highlighted some important points regarding the use of 49 

the term “stationarity” and if/where it is applicable in our study. In particular he questioned 50 

whether the term “regime shifts” was more fitting in describing our findings of change points 51 

in the annual maxima rainfall timeseries that are possibly attributable to climate shifts.  Dr 52 

Serinaldi stated that (following Koutsoyiannis and Montanari, 2014; Serinaldi and Kilsby, 53 

2015) stationarity is a concept referring to models rather than to timeseries. In our case the 54 

model is the IFD curve. Thus the text that describes the assumptions in the IFD development 55 

of stationarity in the underlying processes (i.e. the statistical properties of the rainfall do not 56 

change over time and that the chance of an extreme event occurring is the same at any point 57 

in time (past or future)) is relevant, however we agree that the text discussing change points 58 

in the rainfall data may be misleading where the term non-stationarity has also been used. 59 

However it is interesting to note that many studies have also used the word stationarity and 60 

non-stationarity when describing similar timeseries (e.g. Ishak et al. 2013, Westra and Sisson 61 

2011,  Wagesho et al 2013, Wilby 1998,  etc), therefore there appears to be widespread 62 

disagreement on the use of this term. Despite this, on further review of the journal papers 63 

provided by the Reviewer we agree that in our case the term “regime shift” is more suitable. 64 

Given the above we have revised the text in the paper to reflect this. In particular, we have 65 

use the term non-stationarity only when referring to the IFD development, however the 66 

sections of the paper that are focused on identifying change points in the rainfall timeseries 67 

have been edited and the term “regime shift” has been used in preference. Further, as per the 68 

reviewer’s suggestion (in his specific comments) we also changed the title of the paper to 69 

“Regime shifts in annual maxima rainfall across Australia – implications for Intensity–70 



Frequency–Duration (IFD) relationships”. The associated text also includes the references 71 

provided by the reviewer. 72 

3. P3457L25: Please consider to reword, e.g. “LP3 was not rejected at x% significance 73 
level for all series (or n series out of N)”. 74 

 75 

Response: The sentence in question was reworded as suggested to read “Here the null 76 

hypothesis is that the data fits the Log-Pearson lll distribution (the alternate is that the data 77 

does not follow the Log Pearson III distribution). All p-values were greater than 0.05 78 

(average	  p-‐value	  was	  0.75), for all series (30min to 72hr durations at Brisbane, Sydney and 79 

Melbourne), therefore we accept the null hypothesis at the 5% significance level. 80 

4. P3458L12-15: I do not know AR&R, but it is not clear to me why return periods 81 
defined on annual maxima should be adjusted for PDS. Usually we do the opposite 82 
when we start from PDS and we need the actual AMAX return periods (under suitable 83 
conditions such as Poisson arrival dynamics, etc.). Please clarify. 84 

 85 

Response: The methodology adopted in this paper to calculate return periods of annual 86 

maxima specifically follows that outlined in Australian Rainfall and Runoff (1987), 87 

Engineers Australia’s guide to estimating and utilising IFD information. Published IFD 88 

currently used by industry in Australia are based on this method. The updated IFD (which are 89 

NOT currently used in operation) are based on a revised statistical methods (for example, a 90 

Generalised Extreme Value (GEV) frequency distribution was fitted to the annual maxima 91 

rather than Log Pearson III and extension of sub-daily rainfall statistics to daily read stations 92 

is conducted with Bayesian Generalised Least Squares Regression rather than PCA). The 93 

purpose of adopting the AR&R 1987 method was to assess the implications of varying data 94 

lengths and climatic variability on the resulting IFD (which have been historically used and 95 

are currently still in use) and to highlight the issue of underlying variability in the annual 96 



maxima that should be appropriately considered and addressed in the current (and future) 97 

revision of the IFD estimates.  98 

5. P3459L9: As mentioned above, step changes and nonstationarity are very different 99 
concepts and surely not synonyms. 100 

 101 

Response: This has been revised and clarified as per discussion above (Comment 2). 102 

6. P3459L17-24: Leaving aside the use of the term nonstationarity, CUSUM identifies 103 
automatically the change point location and does not split the time series in two 104 
halves. If the Authors mean that the test proceeds based on subsequent dyadic 105 
partitions, this is right, but for such short time series it is actually quite difficult (and 106 
not meaningful) to go beyond 2-4 changes. Please note that many other refined 107 
techniques are available for segmentation... of course, a question rises about the 108 
(physical) meaning of such refined segmentations... 109 

 110 

Response: This has been clarified in the text. The data is not split in equal halves for the 111 

CUSUM test, it is split into two portions, which may or may not be equal. However, unless a 112 

moving window is used (say 20 years as we did for the Mann- Whitney, multiple regime 113 

shifts could still be missed using this method.   114 

7. P3459L25-P3460L10: Following the previous remark, my interpretation of 115 
P3473Fig5 is a bit different. The almost uniform spread of changes across the 116 
decades denotes that such changes occur quite randomly, and sincerely I cannot see a 117 
tendency to cluster in the east coast. We may see something in panel (b), but the 118 
spatial distribution of the stations is not uniform and we cannot exclude that such 119 
stations are spatially correlated, as they are subject to similar climate forcings (thus 120 
reducing the evidence for changes). Note that spatial correlation is another factor 121 
that can strongly affect the outcome of such a type of tests (see e.g. Douglas et al. 122 
(2000), Yue et al. (2003), Guerreiro et al. (2014), among others) 123 

 124 

Response: We agree with the Reviewer that there is almost a uniform spread of changes 125 

across the decades based on panel (a). We state in the paper that “, the large-scale climate 126 

phenomena impact various regions of Australia at different times of the year and to varying 127 



degrees, therefore it is not surprising that the timing of shifts in the annual maxima timeseries 128 

varies spatially and temporally.” However has been further clarified in the revised paper.  129 

The clustering along the east coast can only be clearly seen in panel B. The text has been 130 

revised to clarify this.  131 

The spatial correlation of the annual maxima timeseries was investigated as per the 132 

reviewer’s suggestion. We found that less than 9% of all possible pairings of rainfall data sets 133 

display a significant (yet weak) correlation at the 5% level (r >0.2, significance based on 134 

n=100). Only 8 pairings (out of 4465) were correlated at 0.5 or higher.  It was also found that 135 

stations located more than 500km apart were unlikely to be correlated and that the strength of 136 

the correlation reduced as distance increased between the pairs (see Figure 2).  137 

 138 



 139 

 140 

8. Section 3.2: Again, my interpretation of P3474Fig6 and P3475Fig7 is a bit different. 141 
If I’m right, box plots for IPO(-) summarize the distribution of 41 AMAX (1913-1920 142 
and 1945-1977), while we have 67 AMAX for IPO(+) box plots. For such sample 143 
sizes, inferring difference in distribution based on box plots is a bit hard (at least). My 144 
suggestion is to use some formal two-sample goodness-of-fit tests such as the two-145 
sample Kolmogorov-Smirnov or similar, thus accounting for sampling uncertainty 146 
and different sample sizes. In any case, comparing box plots (overlooking the large 147 
uncertainty of the quantile estimates) is not informative and does not provide a 148 
quantitative assessment, especially in this case where differences between IPO(-) and 149 
IPO(+) regimes are really hard to recognize. 150 

 151 

Response: As suggested a two sample KS test was applied to the data (to test the 152 

significance of the difference between the two IPO distributions). It was found only the 153 

results for the Sydney were statistically significant (p-value <0.1). A discussion of the 154 

two-sample KS test have been included in the revised paper as suggested. Given the 155 

results of the significance test we only further investigate the impact of the IPO step 156 

induced regime shifts on the IFD for Sydney (rather than all three stations).  157 

9. The same holds for P3475Fig7: if I’m right, this diagram shows the differences Δ (in 158 
%) between the point estimates of rainfall return levels obtained by LP3 distributions 159 
fitted on 41 and 67 AMAX. It is almost superfluous to highlight how large the 160 
uncertainty of such a point estimates can be. I suggest a fairer check based on a 161 
simple bootstrap procedure. For each duration: 162 



1. resample with replacement IPO(-) and IPO(+) time series to obtain two new B-163 
samples; 164 

2. for each B-sample refit LP3, compute the required LP3 return levels and calculate the 165 
difference Δ(B) as for the observed data; 166 

3. repeat previous steps B times (e.g. 1000) and store the obtained B differences (for 167 
each ARI). These values can be used to build the empirical distribution of the 168 
differences Δ(B) 

i , i = 1, ...,B. This distribution describes the effects of sampling and 169 
parameter estimation uncertainties under the hypothesis of existence of two different 170 
regimes; 171 

4. Use the B Δ(B) 
i values to build confidence intervals (CIs) at a given confidence level 172 

(e.g.95%). If these CIs include Δ = 0, then there is not evidence for a significant 173 
difference, otherwise we can conclude the opposite. 174 

 175 

I think this is a better way to provide a quantitative assessment. Of course, conclusions 176 

concern the effects of possible regime shifts and not of nonstationarity. Section 3.2  177 

should be reworded according to the results of the analyses suggested above. 178 

Response: We would like to thank Dr Serinaldi for this suggestion and we have completed 179 

the analysis as per the steps outlined above. This has resulted in a more robust test of the 180 

effects of the IPO induced regime shifts. As per the previous comment, we only apply this 181 

method to the Sydney station (since this was the only station where the KS statistic was 182 

significant).  Figure 7 has been replaced by the figure below that shows the percentage 183 

difference in the rainfall intensity estimate between the IPO positive and negative phases. 184 

Positive (negative) values represent an increase (decrease) in rainfall intensity during IPO 185 

positive compared to IPO negative. The relationships observed are robust for most durations 186 

and return intervals given that the CIs do not include 0 (other than 30mins 5 years, 2 hours 50 187 

years, 6 hours 20 years and 24 hour s5 years).  188 

 189 



 190 

 191 

10. Section 4: as for Section 3.2, this section should be reworded according to the 192 
updated results. 193 

 194 

Response: Noted, this has been revised. 195 

11. Please avoid sentences such as that in P3464L27-29 and P3465L1-3: even after more 196 
accurate analyses, there is not way to make unquestionable conclusions about 197 
nonstationarity if we do not identify a well-defined mechanism of evolution which is 198 
almost perfectly predictable (at least, at the time scales of interest). 199 

 200 

Response: The sentence “Based on the results of this study, and literature cited within this 201 

paper, we emphasise that there undoubtedly is non-stationarity in historical short duration 202 

rainfall extremes but the characteristics and causes of this non-stationarity vary from 203 

location to location and decade to decade – something which must be considered and 204 

accounted for when attempting to estimate IFD design rainfalls and prior to quantifying 205 
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how those IFD estimates might change in the future.” will be revised and expanded to 206 

read “This study has highlighted the existence of regime shifts in annual maxima rainfall 207 

data in Australia. The driving mechanisms of these regime shifts are likely to vary from 208 

location to location and decade to decade. However, these shifts are typical of many 209 

natural phenomena and can be described by processes characterized by long range 210 

dependence (or regime-switching processes) and captured by hidden Markov models (or 211 

similar), resulting in a mixture of distributions that alternate stochastically according to 212 

the transition probability from one regime to the next (e.g. Serinaldi and Kilsby, 2015a). 213 

While the strategy of defining IFDs for two (or more) different regimes (e.g Serinaldi 214 

andKilsby (2015a)) currently only partially solves the problem, as we often do not know 215 

the beginning or the end of a specific regime (be it rainfall or climate driver), recent work 216 

has focused on optimizing designs and planning strategies based on the range of what is 217 

plausible rather than a reliance on knowing the current and future climate state (e.g. 218 

Mortazavi-Naeini et al., 2015). At the same time, work is also underway on seamless 219 

prediction at a range of timescales and if/when this eventuates the results discussed here 220 

become even more important/useful. Nevertheless, the immediate usefulness of the 221 

insights presented here occurs when first establishing the IFD, as an approach similar to 222 

that employed here can be used to determine if the underlying data are biased to a mostly 223 

wet or mostly dry regime (or a mix of both) which then provides an indication as to 224 

whether the IFD is likely to be an over- or underestimate of the true risk. Importantly, this 225 

issue needs to be considered and accounted for when attempting to estimate IFD design 226 

rainfalls and prior to quantifying how those IFD estimates might change in both the near 227 

and long-term future.” 228 

 229 



Response to Reviewer 2 (Anonymous reviewer)  230 

Specific comments: 231 

1. Recent studies (Montanari and Koutsoyiannis, WRR, 2014; and references therein, 232 
Koutosoyiannis, JH, 2006) show that modeling approaches which consider non- 233 
stationarity of real world time series without examining the properties of the 234 
stochastic processes, may be inappropriate. The way the authors test and claim for 235 
non- stationarity in the extremes is inadequate and quite limited. In fact, it has been 236 
shown in some studies (Serinaldi and Kilsby, AWR, 2015) that non-stationary models 237 
may increase the uncertainties and that traditional concepts should still be retained 238 
as bench- marks. Thus, the authors’ skepticism about the BoM and ARR’s existing 239 
approaches may not be justified.  240 

Response: Based on this review and the review of our paper provided by Dr Serinaldi we 241 

have improved the paper as follows: 242 

a. We have Included a test for serial correlation (Section 2.2) using the Durbin-Watson 243 

(DW) statistic.  The Durbin-Watson statistic tests the null hypothesis that the residuals 244 

from an ordinary least-squares regression are not autocorrelated against the alternative 245 

that the residuals follow an AR1 process. All DW statistic values were found to be 246 

greater than the 1.562 (the upper bound for 1% significance) providing no evidence to 247 

reject the null hypothesis (see figure below showing the distribution of all DW 248 

statistic values for the 1-day annual maxima timeseries at each site).   249 

b. We have addressed the issue of potential spatial correlation among rainfall sites.  We 250 

found that less than 9% of all possible pairings of rainfall data sets display a 251 

significant (yet weak) correlation at the 5% level (r >0.2, significance based on 252 

n=100). Only 8 pairings (out of 4465) were correlated at 0.5 or higher.  It was also 253 

found that stations located more than 500km apart were unlikely to be correlated and 254 

that the strength of the correlation reduced as distance increased between the pairs. 255 

This is not surprising given annual maximum rainfall events are due to synoptic scale 256 

processes. This is include in revised Section 2.2 of the paper. 257 

c. We have revised the text in the paper with respect to the use of the term non-258 

stationarity. In particular, we use the term non-stationarity only when referring to the 259 

IFD development (which is deemed appropriate given the IFD is essentially a model), 260 

however the sections of the paper that are focused on identifying change points in the 261 

rainfall timeseries have been edited and the term “regime shift” has been used in 262 



preference. Further, we have also change the title of the paper to “Regime-shifts in 263 

annual maxima rainfall across Australia – implications for Intensity–Frequency–264 

Duration (IFD) relationships”. The associated text also includes the references 265 

provided by the reviewer 266 

 267 

2. Also, the definition of return period itself (and equivalently that of ARI) may change 268 
in the non-stationary setting (Salas and Obeysekara, ASCE JHE, 2013). Moreover, 269 
although the title mentions "– implications for Intensity–Frequency–Duration (IFD) 270 
relationships", this paper only presents a discussion (Section 3.2) which contains 271 
rather generic discussion on how non-stationarity may affect such relationships, 272 
without carrying out any analysis on how the observed-period IFD relationships 273 
actually change because of non-stationarity (such as that done by Cheng and 274 
AghaKouchak, Sc. Re- ports, 2014), bringing into question the novelty, utility and 275 
scientific contribution of this study.  276 

Response: We agree with the reviewer that the ARI may change in the non-stationary 277 

setting. In fact, that is the point we are making in our paper; that depending on when the 278 

data is sampled from to generate the IFD, it may be biased to either a wet or a dry phase 279 

(or surplus or absence of high intensity events) and therefore would have consequences 280 

on the resulting return period for individual rainfall depths. Indeed we suggest in our 281 

discussion “that a separate set of IFDs could be developed for use in high risk modelling 282 

for engineers who need to account for the ‘worst case’ (in a similar manner to climate 283 

change allowances). This second set of IFDs could be developed based on the periods of 284 

elevated annual maxima alone (for those stations with clearly defined epochs of annual 285 

maxima) such that if we were to enter such an epoch, designs based on these estimates 286 

would be robust for the duration of such a period.” We disagree with the reviewer that we 287 

do not show how nonstationarity (which we will now term regime shifts) may affect the 288 

IFD relationships. This is demonstrated in Section 3.2 “Effect of non-stationarity on IFD 289 

estimation” where we recalculate the IFD curves for the difference phases of the IPO. 290 

Importantly we show that the return period is different for the various rainfall depths and 291 

durations depending on the underlying rainfall dataset (i.e. depending on whether it is 292 



sampled from the IPO positive or IPO negative distributions).  293 

3. The authors mention, in their conclusions, "The research presented here demonstrates 294 
that information currently available on natural variability..can act as a guide to the 295 
base- line..." - this is a fat-fetched conclusion. The present research, however, doesn’t 296 
provide any guidelines on how this baseline can be defined.  297 

Response: This has been clarified in the revised paper. Our intention here was to 298 

emphasize that, for regions where large-scale climate drivers operate on a multi-year to 299 

multi-decadal timescales and are known to influence extreme rainfall events, we can use 300 

this information to determine if the climate statistics on which the IFD are based are 301 

likely to be biased or missing crucial information.  302 

4. Is IPO the same as PDO (Pacific Decadal Oscillations)? If it was known apriori that 303 
locations such as Melbourne are not affected by the IPO, why was it chosen for the 304 
analysis? Perhaps a more appropriate approach would consider several natural 305 
variability modes, as well as forced changes and investigate their individual effects on 306 
rainfall extremes.  307 

Response: The IPO is not the same as the PDO. The IPO is a Pacific Basin wide 308 

phenomena rather than just the north Pacific that is represented by the PDO. There are 309 

similarities between the two timeseries however and they are significantly correlated.  310 

According to Salinger et al 2001 “The IPO may be a Pacific-wide manifestation of the 311 

PDO, excluding subdecadal time scales, and seems to be part of a continuous spectrum of 312 

low frequency modulation of ENSO, and so may be partly stochastic”. 313 

It is true that some existing studies suggest that the IPO signal on rainfall tends to be 314 

weaker in Melbourne due to competing influences from the Southern Ocean, however we 315 

cannot say that Melbourne rainfall/climate is “not affected by the IPO”. Some studies 316 

suggest IPO significantly effects rainfall characteristic in Melbourne (e.g. Verdon et al 317 

2004, Gallant et al 2012) while others do not, therefore in our study we do not make any 318 

assumptions about IPO effects on rainfall maxima in Melbourne and include it in our 319 

investigation. Our results suggest there is a relationship where “all events (other than 72 320 



hours) with a 2-year ARI are associated with a higher rainfall intensity estimate in IPO 321 

positive for Melbourne, however the reverse is true for the less frequent events.”    322 

While we agree with the reviewer that there are several modes of natural climate 323 

variability that may have an effect the extreme rainfall from year to year, in our study we 324 

were specifically interested in climate drivers that are likely to force a regime shift in 325 

extreme rainfall (similar to that observed for flood risk). Therefore we were interested in 326 

drivers that operate on a decadal to multi-decadal timescale (as is the case for the IPO). 327 

Other drivers (such as ENSO, Indian Ocean Dipole, Southern Annular Mode) tend to 328 

influence rainfall in Australia on much shorter timescales. However, if this method was to 329 

be applied to regions other than east coast Australia (i.e. where IPO is known not to be 330 

the primary driver on decadal to multi-decadal timescales), other potential sources of 331 

decadal to multi-decadal variability would need to be identified.   332 

5. GEV distribution is usually deemed appropriate for annual maxima. How does the 333 
GEV distribution fit the data at hand? How are spatial dependence between extremes 334 
taken into account? Why not consider peak-over-threshold approach? 335 

Response: The Reviewer’s point is correct, the GEV distribution does indeed fit the 336 

annual maxima data well. In fact the updated IFD (which are NOT currently used in 337 

operation) are based on a revised statistical methods that includes fitting the GEV 338 

distribution to the data in preference to the Log Pearson III. However, the methodology 339 

adopted in this paper (including fitting the Log Pearson III) to calculate return periods of 340 

annual maxima deliberately follows that outlined in Australian Rainfall and Runoff 341 

(1987), Engineers Australia’s guide to estimating and utilising IFD information. The 342 

purpose of adopting the AR&R 1987 method was to assess the implications of varying 343 

data lengths and climatic variability on the resulting IFD (which have been historically 344 

used and are currently still in use) and to highlight the issue of underlying variability in 345 



the annual maxima that should be appropriately considered and addressed in current and 346 

future revisions of the IFD estimates. Further, as an additional check the KS goodness of 347 

fit test was applied to test if the Log Pearson III was a reasonable fit to the data. Here the 348 

null hypothesis is that the data fits the Log-Pearson lll distribution (the alternate is that the 349 

data does not follow the Log Pearson III distribution). All p-values were greater than 0.05 350 

(average p-value was 0.75), for all series (30min to 72hr durations at Brisbane, Sydney 351 

and Melbourne), therefore we accept the null hypothesis at the 5% significance level.  352 

This has been clarified in the revised paper. 353 

6. Claims such as "we emphasize that there undoubtedly is non-stationarity in historical 354 
short duration rainfall extremes" might be inappropriate for reasons stated above  355 

Response: We agree and this has been revised and the discussion extended. The following 356 

text replaces the sentence above: 357 

“This study has highlighted the existence of regime shifts in annual maxima rainfall data 358 

in Australia. The driving mechanisms of these regime shifts are likely to vary from 359 

location to location and decade to decade. However, these shifts are typical of many 360 

natural phenomena and can be described by processes characterized by long range 361 

dependence (or regime-switching processes) and captured by hidden Markov models (or 362 

similar), resulting in a mixture of distributions that alternate stochastically according to 363 

the transition probability from one regime to the next (e.g. Serinaldi and Kilsby, 2015a). 364 

While the strategy of defining IFDs for two (or more) different regimes (e.g Serinaldi 365 

andKilsby (2015a)) currently only partially solves the problem, as we often do not know 366 

the beginning or the end of a specific regime (be it rainfall or climate driver), recent work 367 

has focused on optimizing designs and planning strategies based on the range of what is 368 

plausible rather than a reliance on knowing the current and future climate state (e.g. 369 

Mortazavi-Naeini et al., 2015). At the same time, work is also underway on seamless 370 



prediction at a range of timescales and if/when this eventuates the results discussed here 371 

become even more important/useful. Nevertheless, the immediate usefulness of the 372 

insights presented here occurs when first establishing the IFD, as an approach similar to 373 

that employed here can be used to determine if the underlying data are biased to a mostly 374 

wet or mostly dry regime (or a mix of both) which then provides an indication as to 375 

whether the IFD is likely to be an over- or underestimate of the true risk. Importantly, this 376 

issue needs to be considered and accounted for when attempting to estimate IFD design 377 

rainfalls and prior to quantifying how those IFD estimates might change in both the near 378 

and long-term future.” 379 

7. Literature review pertains mostly to studies on Australian datasets, whereas much 380 
work on similar ideas are also carried out elsewhere.  381 
 382 

Response: The literature review has been extended to include the references mentioned by 383 
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• Guerreiro S.B., Kilsby C.G., Serinaldi F. (2014) Analysis of time variation of rainfall 387 
in transnational basins in Iberia: abrupt changes or trends? Int J Climatol 34(1):114–388 
133  389 

• Koutsoyiannis D., Montanari A. (2014) Negligent killing of scientific concepts: the 390 
sta- tionarity case Hydrol Sci J http://dx.doi.org/10.1080/02626667.2014.959959  391 

• Salas J.D., Obeysekera J. (2014) Revisiting the concepts of return period and risk for 392 
nonstationary hydrologic extreme events. J Hydrol Eng, 19(3):554–68.  393 

• Serinaldi F., Kilsby C.G. (2015a),Stationarity is undead: Uncertainty dominates the 394 
distribution of extremes. Advances in Water Resources, 77, 17-36  395 

• Serinaldi F., Kilsby C.G. (2015b) . Stochastic Environmental Research and Risk 396 
Assessment  397 

• Yue S, Pilon P, Phinney B. (2003) Canadian streamflow trend detection: impacts of 398 
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Abstract 423 

Rainfall Intensity-Frequency-Duration (IFD) relationships are commonly required for the 424 

design and planning of water supply and management systems around the world. Currently 425 

IFD information is based on the ‘stationary climate assumption’ - that weather at any point in 426 

time will vary randomly and that the underlying climate statistics (including both averages 427 

and extremes) will remain constant irrespective of the period of record. However, the validity 428 

of this assumption has been questioned over the last 15 years, particularly in Australia, 429 

following an improved understanding of the significant impact of climate variability and 430 

change occurring on interannual to multidecadal timescales. This paper provides evidence of 431 

regime shifts in annual maxima rainfall timeseries using 96 daily rainfall stations and 66 sub-432 

daily rainfall stations across Australia. Further, the effect of these regime shifts on the 433 

resulting IFD estimates are explored for three long-term sub-daily rainfall records (Brisbane, 434 

Sydney and Melbourne) utilising insights into multidecadal climate variability. It is 435 

demonstrated that IFD relationships may under- or over-estimate the design rainfall 436 

depending on the length and time period spanned by the rainfall data used to develop the IFD 437 

information. It is recommended that regime shifts in annual maxima rainfall be explicitly 438 

considered and appropriately treated in the ongoing revisions of Engineers Australia’s guide 439 

to estimating and utilising IFD information, ‘Australian Rainfall and Runoff’, and that clear 440 

guidance needs to be provided on how to deal with the issue of regime shifts in extreme 441 

events (irrespective of whether this is due to natural or anthropogenic climate change). The 442 

findings of our study also have important implications for other regions of the world that 443 

exhibit considerable hydroclimatic variability and where IFD information is based on 444 

relatively short data sets.  445 

 446 
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1. Introduction 452 

Information on rainfall event intensity, frequency and duration (IFD, or IDF as it is known in 453 

some countries) plays a critical role in the design of dams, bridges, stormwater drainage 454 

systems and floodplain management. Dependent upon the application, information is required 455 

for event-durations ranging from hours to several days. The development of IFD relationships 456 

were first proposed by Bernard (1932) and since then different versions of this relationship 457 

have been developed and applied worldwide (e.g. Bara et al. 2009, Chen 1983, Hershfield 458 

1961, IHP-VII 2008, Nhat et al. 2006, Raiford et al. 2007).  459 

Historically, in Australia, IFD design rainfall curves were developed by the Australian 460 

Bureau of Meteorology (BoM) for durations ranging from 5 minutes to 72 hours and Average 461 

Return Intervals (ARI) of 1 year to 100 years (however, recently additional durations and 462 

ARIs have also been developed). Up until very recently IFD information available to (and 463 

used by) engineers and hydrologists were developed 25 years ago, as part of Engineers 464 

Australia publication Australian Rainfall and Runoff (AR&R) in 1987. New IFD information 465 

was released early in 2013 after a major revision of IFD information carried out by Engineers 466 

Australia. Importantly, the revised IFD information is based on a longer and more extensive 467 

rainfall data set (http://www.bom.gov.au/water/designRainfalls/ifd/). However, the BoM and 468 

Engineers Australia still recommend to use the AR&R 1987 information for existing flood 469 

studies and the probabilistic rational method and to conduct sensitivity testing with the 470 

revised 2013 AR&R parameters including the new IFD design rainfalls 471 

(http://www.bom.gov.au/water/designRainfalls/ifd/index.shtml). 472 

At the time of writing, the revised IFD information does not take into account the impact of 473 

climate change on IFD estimates. This is part of ongoing research commissioned through 474 

Engineers Australia. It is also not yet clear how or if the role of natural climate variability is 475 

going to be considered. Of concern is the fact that currently, estimates of IFD are based on 476 



the assumption that “climatic trend, if it exists in a region, has negligible effect on the design 477 

intensities” (Pilgrim 1987). This is known as the ‘stationary climate assumption’ n (i.e. 478 

thestatistical properties of the rainfall do not change over time) and implies that the chance of 479 

an extreme event occurring is the same at any point in time (past or future). However, the 480 

validity of this assumption has been questioned over the last 15 years following 481 

demonstration of the significant impact of climate variability occurring on interannual to 482 

multidecadal timescales in Australia. For example, research has shown that annual maximum 483 

flood risk estimates in Australia vary depending on climate state (e.g. Ishak et al. 2013, Kiem 484 

et al. 2003, Leonard et al. 2008). Importantly these studies demonstrate that founding flood 485 

risk estimates on an unsuitable time period has the potential to significantly underestimate (or 486 

overestimate) the true risks. This may apply to design rainfall also given that current IFD 487 

estimates are based on varying lengths of data spanning different time periods (the latest IFD 488 

estimates are based on all daily-read stations with 30 or more years of record and all 489 

continuously-recording stations with more than 8 years of record).  490 

Khaliq et al. (2006) explained that the traditional idea of probability of exceedance and return 491 

period are no longer valid under non-stationarity. Recently, Jakob et al (2011a) found that 492 

rainfall quantile estimates derived for Sydney Observatory Hill for the period 1976 to 2005 493 

show significant decreases across durations from 6 minutes to 72 hours. Jakob et al (2011b) 494 

subsequently extended the sub-daily rainfall data analysis to 31 sites located in southeast 495 

Australia, assessing variations in frequency and magnitude of intense rainfall events across 496 

durations from 6 minutes to 72 hours. This study identified two different trends in the data 497 

sets, a decreasing trend in frequency of events at durations of 1-hour and longer for sites in 498 

the north of the study region, while sites in the south cluster displayed an increase in 499 

frequency of events, particularly for sub-hourly durations. Importantly Jakob (2011a, 2001b) 500 

concluded that, for at least some regions of Australia, trends found in historical records has 501 
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the potential to significantly affect design rainfall estimates. Westra and Sisson (2011) also 506 

investigated evidence of trends in extreme precipitation at sub-daily and daily timescales 507 

(1965-2005) using a spatial extreme value model. They identified a statistically significant 508 

increasing trend in precipitation extremes for the sub-daily data set, however at the daily 509 

timescale no change in annual maximum rainfall could be detected with the exception of 510 

southwest Western Australia (Westra and Sisson 2011). Further, Yilmaz and Perera (2014) 511 

conducted change point analysis for extreme rainfall data for storm durations ranging from 6 512 

minutes to 72 hours in Melbourne, and found evidence of regime shifts, concluding the year 513 

1966 as a statistically significant change point. Yilmaz et al (2014) then investigated changes 514 

in extreme rainfall through trend analysis, non-stationarity tests and non-stationary GPD 515 

models (NSGPD) for Melbourne. They found statistically significant extreme rainfall trends 516 

for storm durations of 30 minutes, 3 hours and 48 hours, however for above storm durations 517 

there was no evidence of a regime shift (which they termed ‘non-stationarity’) according to 518 

statistical non-stationarity tests and non-stationary GPD (Yilmaz et al (2014). 519 

A limitation of the analysis presented by Westra and Sisson (2011) and Jakob et al (2011a, 520 

2011b) is that they tested for linear trends in the rainfall data series based on the hypothesis 521 

that extreme rainfall events would have either decreased, increased or exhibited no trend over 522 

the time period being investigated. However these are not the only attributes of trend 523 

detection, since annual rainfall maxima may also cycle through interannual to multidecadal 524 

periods (note that Westra and Sisson (2011) also investigated possible links between extreme 525 

rainfall and annual fluctuations in the El Niño/Southern Oscillation (ENSO)). Therefore, 526 

depending on what time period the annual rainfall maxima data are derived from (in reference 527 

to any long term cycles or epochs) the observed trends may be misleading or even not 528 

apparent (leading to the misconception that regimes shifts are non-significant or not an 529 

important consideration). Recently Yilmaz et al (2014) investigated the potential impact of 530 

Danielle Verdon-Kidd� 11/9/2015 3:33 PM
Deleted: non-stationarity531 

Danielle Verdon-Kidd� 11/9/2015 3:34 PM
Deleted: non stationarity532 

Danielle Verdon-Kidd� 11/9/2015 3:34 PM
Deleted: non-stationarity 533 

Danielle Verdon-Kidd� 11/9/2015 3:42 PM
Deleted:  non-stationarity534 

Danielle Verdon-Kidd� 11/9/2015 3:43 PM
Deleted: non-stationarity535 
Danielle Verdon-Kidd� 11/9/2015 3:43 PM
Deleted:  is536 



the Interdecadal Pacific Oscillation (IPO) on extreme rainfall and resulting IFD for a case 537 

study in Melbourne. They concluded that, the IPO negative phase can be the driver of higher 538 

rainfall intensities for long durations and high return periods. However, the trends in extreme 539 

rainfall data and differences in rainfall intensities for short storm durations and return periods 540 

could not be explained with the IPO influence. Given that Melbourne is located in south-east 541 

Australia, where the influence of the IPO is temporally variable due to other climate drivers 542 

operating (acting to enhance or suppress impacts, see Kiem and Verdon-Kidd 2010; 2009), 543 

the research by Yilmaz et al (2014) provides promise for developing relationships between 544 

extreme rainfall and the IPO for regions where the IPO may have a more consistent influence 545 

(due to fewer competing climate modes), such as north-eastern Australia. 546 

Therefore this paper aims to establish if there is evidence of regime shifts in the annual 547 

maxima rainfall timeseries (1-hour to 7-days) across Australia by testing for shifts (regardless 548 

of direction or timing) in the long term sub-daily and daily data. Further, the implications on 549 

IFD estimation are explored, along with the potential influence of the IPO on extreme rainfall 550 

and resulting IFD. Recommendations are then provided as to how these insights may be 551 

incorporated in future revisions of AR&R. 552 

2. Data and methods 553 

2.1 Data 554 

2.1.1 Rainfall data 555 

Sub-daily and daily rainfall data for Australia were obtained from the BoM. Sub-daily data 556 

records from continuously recording (i.e. pluviograph) rainfall stations in Australia tend to be 557 

relatively short, hindering the ability to conduct trend and attribution studies. In this study 558 

pluviograph rainfall stations were chosen with data spanning at least 40 years and at least 559 

90% complete, resulting in 66 stations (see Figure 1a). In order to address the concerns raised 560 
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in the Introduction about short term data analysis (note that according to Raiford et al. (2007) 569 

ARI should not be extrapolated from more than twice the record length), three long-term data 570 

sets, highlighted in Figure 1a, were chosen for further analysis that contained data from at 571 

least 1913 onwards (Brisbane Aero, Sydney (Observatory Hill) and Melbourne Regional 572 

Office).  573 

Daily rainfall stations with data spanning the period 1900 to 2009 were selected in order to 574 

capture as much temporal variability as possible (see Figure 1b). These stations were filtered 575 

according to the amount of data missing in order to identify the highest quality stations 576 

recording rainfall during this period, resulting in 96 being considered suitable for further 577 

analysis. Due to variability in the quality and quantity of rainfall data in each State of 578 

Australia, the following selection criteria were applied: 579 

• New South Wales, Queensland and Victoria - selected stations are at least 97% 580 

complete; 581 

• Tasmania- selected stations are at least 90% complete; and 582 

• South Australia, Northern Territory and Western Australia - selected stations are at 583 

least 85% complete. 584 

*****Figure 1 about here**** 585 

2.1.2  Climate index data 586 

The climate of Australia has experienced a number of regime shifts in climate during its 587 

history, resulting in sustained periods of above average rainfall and storminess and 588 

abnormally cool temperatures, followed by the reverse conditions (i.e. droughts and elevated 589 

bushfire risk) (e.g. Erskine and Warner 1988, Franks and Kuczera 2002, Kiem et al. 2003, 590 

Kiem and Franks 2004, Verdon et al. 2004). These shifts have tended to occur every 20 to 30 591 
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years and are associated with changes in the Interdecadal Pacific Oscillation (IPO, Power et 596 

al. 1999). The IPO represents variable epochs of warming (i.e. positive phase) and cooling 597 

(i.e. negative phase) in both hemispheres of the Pacific Ocean (Folland et al. 2002). 598 

Importantly, the IPO has been shown to influence the magnitude and frequency of flood and 599 

drought cycles across eastern Australia (Kiem et al. 2003, Kiem and Franks 2004). In New 600 

Zealand, the IPO is also associated with similar shifts in flood frequency (McKerchar and 601 

Henderson 2003). It has been noted that, following the abrupt shift in the IPO in the mid 602 

1970s, the period, amplitude, spatial structure and temporal evolution of ENSO markedly 603 

changed (Wang and An, 2001). Historically, during negative phases of the IPO there tends to 604 

be more La Niña (wet) events and fewer El Niño (dry) events (Kiem et al. 2003, Verdon and 605 

Franks 2006), resulting in an overall ‘wet’ epoch for eastern Australia and New Zealand . 606 

While during the positive phase of the IPO there tends to be a higher frequency of El Niño 607 

events and fewer La Niña events (Kiem et al. 2003, Verdon and Franks 2006), resulting in an 608 

overall ‘dry’ epoch. In this study negative phases of the IPO were defined as 1913-1920 and 609 

1945-1977, while positive phases included 1921-1944 and 1978 to 2010. 610 

2.2 Statistical tests 611 

A 20 year moving window was used to test for low frequency variability in the annual 612 

maxima timeseries (1-hour, 1-day and 7-day). A Mann-Whitney U test was then used to 613 

determine the statistical significance of possible regime shifts by testing if the first 10 years 614 

of data was significantly different from the second 10 years, within the 20 year window (the 615 

null-hypothesis in this case was that the data was independently distributed). If the difference 616 

in medians was found to be statistically significant (i.e. p-value < 0.05) and there was a 617 

change in sign of the median values (e.g. switch from negative to positive), a climate shift 618 

was postulated to have occurred during the 10th year of the window. The Mann-Whitney U 619 

test is a robust test that does not place implicit assumptions on the underlying distribution of 620 
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the data (i.e. it is a distribution free test), which is particularly appropriate here due to the 622 

small number of years used in each window (Kundzewicz and Robson 2004). Note that a 623 

number of different size windows were also tested, however this did not change the results or 624 

conclusions. 625 

A second test was also applied to identify step changes in the 1-day and 7-day annual maxima 626 

time series known as the distribution free CUSUM with resampling (note that the test was not 627 

applied to the shorter sub-daily data as longer data sets are recommended for this method). 628 

CUSUM tests whether the means in two parts of a record are different (for an unknown time 629 

of change). The second test was applied as it does not require the use of a moving window 630 

(which is a limitation of the Mann-Whitney U test described above). However the CUSUM 631 

test sequentially splits the timeseries into two potions (which are not necessarily equal), 632 

which may be a problem if more than one cycle/shift is present in the timeseries.  633 

The existence of serial correlation (or autocorrelation) in a time series will affect the 634 

ability of tests (such as the Mann-Whitney U and CUSUM) to assess the site 635 

significance of a trend (e.g. Yu et al. 2003, Serinaldi and Kilsby 2015b). The presence 636 

of cross-correlation among sites in a network will also influence the ability of the test 637 

to evaluate the field significance of trends over the network (e.g. Yu et al. 2003, 638 

Douglas et al. 2000, Guerreiro et al. 2013). Therefore, prior to applying the change point 639 

analysis as described above, the Durbin-Watson (DW) statistic was used to test for 640 

autocorrelation in the annual maxima timeseries (Durbin and Watson (1950, 1951)). In this 641 

case the null hypothesis is that the residuals from an ordinary least-squares regression are not 642 

autocorrelated against the alternative that the residuals follow an AR1 process. All DW 643 

statistic values were found to be greater than the 1.562 (the upper bound for 1% significance 644 

and a sample size of ~100) providing no evidence to reject the null hypothesis. Therefore, 645 
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any regime shifts detected using the change point methods above are not likely to be artefacts 648 

resulting from hidden persistence. 649 

The potential issue of cross- correlation was also investigated. It	  was	  found	  that	  less	  than	  9%	  650 

of	  all	  possible	  pairings	  of	  rainfall	  data	  sets	  display	  a	  significant	  (yet	  weak)	  correlation	  at	  the	  651 

5%	   level	   (r	   >0.2,	   significance	   based	   on	   n=100).	   Only	   eight	   pairings	   (out	   of	   4465)	   were	  652 

correlated	  at	  0.5	  or	  higher.	  	  It	  was	  also	  found	  that	  stations	  located	  more	  than	  500km	  apart	  653 

were	  unlikely	  to	  be	  correlated	  and	  that	  the	  strength	  of	  the	  correlation	  reduced	  as	  distance	  654 

increased	  between	  the	  pairs.	  This	  is	  not	  surprising	  given	  annual	  maximum	  rainfall	  events	  are	  655 

due	   to	   synoptic	   scale	   processes.	   Therefore	   observations	   relating	   to	   spatial	   consistency	   of	  656 

regime	  shifts	  are	  unlikely	  to	  be	  due	  to	  spatial	  correlation	  between	  sites. 657 

2.1 IFD Calculation 658 

The standard process for obtaining IFD information for a location is to refer to the six master 659 

charts of rainfall intensity for various durations and ARIs covering all of Australia in Volume 660 

2 of AR&R 2001. Alternatively, IFD curves can be obtained for any location in Australia via 661 

the BoM website (both the AR&R 1987 and revised IFDs are available). This information is 662 

based on regionalised estimates of IFDs that are spatially and temporally consistent. 663 

However, this approach cannot be adopted when using the instrumental rainfall data required 664 

for the analysis presented in this study. As such, the IFD information generated for this 665 

project follows the methodology on which the IFDs were based for AR&R 1999 which 666 

utilises point source data with no regionalisation. It should be noted that it is not the purpose 667 

of this paper to compare different methods of generating IFDs, rather, one method has been 668 

adopted in order to provide a comparative assessment of the impact of non stationarity on 669 

IFD estimation. The AR&R 1999 procedure used to generate IFDs from raw rainfall data (i.e. 670 

point based estimates) is summarised as follows: 671 
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• A log-Pearson III distribution was fitted to the annual maxima timeseries using the 673 

method of moments (for annual maxima series of 30 minutes to 72 hours duration). 674 

This is the standard distribution that has historically been adopted for generating IFDs 675 

in Australia; however other distributions have recently been tested as part of the 676 

revision of AR&R. To test if this distribution is suitable for the region being studied, 677 

the goodness of fit for the log-Pearson III was tested using a Kolmogorov Smirnov 678 

(KS) test. Here the null hypothesis is that the data fits the Log-Pearson lll distribution 679 

(the alternate is that the data does not follow the Log Pearson III distribution). All p-680 

values were greater than 0.05 (average	  p-‐value	  was	  0.75), for all series (30min to 72hr 681 

durations at Brisbane, Sydney and Melbourne), therefore we accept the null 682 

hypothesis at the 5% significance level.; 683 

• The coefficient of skewness was determined for each duration (30 minutes to 72 684 

hours); 685 

• The coefficient of skewness was then used to obtain a frequency factor, KY, for use 686 

with Log-Pearson III Distribution. KY was obtained from Table 2.2 (positive skew 687 

coefficients) and Table 2.3 (negative skew coefficients) in AR&R 1999 Book 4; 688 

• Rainfall intensities for a range of ARI were calculated using the following formula: 689 

• log RIY = M + KYS (1) 690 

Where:  RIY = rainfall intensity having an ARI of 1 in Y 691 

M = mean of the logarithms of the annual maxima rainfalls 692 

S= Standard deviation of the logarithms of the annual maxima rainfalls 693 

KY = frequency factor for the required ARI of 1 in Y 694 

• ARIs of 2 years to 10 years were adjusted to partial-duration series estimates. In 695 

AR&R 1999, the following correction factors were used (note: for ARI greater 696 
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than 10 years, no corrected factor is required): 2 year ARI – 1.13, 5 year ARI - 700 

1.04, 10 year ARI – 1.0. 701 

It should be noted that this approach is likely to result in different estimates of IFDs than 702 

those obtained from the standard maps provided by AR&R 1999 or the revised IFD 703 

estimates released in 2013. Here we are using point based rainfall data, whereas AR&R 704 

1999 have derived regionalised estimates based on multiple rainfall stations with varying 705 

lengths of data, varying resolution (daily and pluviograph) and varying quality of records. 706 

It is recognised that analysis of rainfall data from single stations is often unreliable, is not 707 

temporally or spatially consistent and should generally not be used for design purposes. 708 

However, the use of point based rainfall data satisfies the specific aims of this study 709 

(which is a comparative analysis) and is therefore considered appropriate. 710 

3. Results 711 

3.1 Test for regime shifts in the annual maxima rainfall timeseries 712 

Significant step changes identified in the extreme rainfall timeseries are shown in Figure 2. 713 

Of the 66 sub-daily rainfall stations tested, 40 (61%) displayed at least one step change in the 714 

1-hour annual maxima timeseries (Figure 2a), with some stations exhibiting multiple shifts. 715 

Of the 96 daily rainfall stations tested, 86 displayed at least one step change in the 1-day 716 

annual maxima timeseries (Figure 2b), while 92 exhibited at least one shift in the 7-day 717 

annual maxima timeseries (Figure 2c), and some stations exhibited multiple shifts. Figure 2 718 

collectively shows that observed step changes (or regime shifts) in annual maxima rainfall are 719 

not confined to any one particular region of Australia, with most stations analysed exhibiting 720 

at least one statistically significant shift.  721 

****Figure 2 about here**** 722 
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As shown in Figure 3, the CUSUM test yielded fewer stations with statistically significant 725 

step change in the annual maxima timeseries (only 18 stations out of 96) and many of these 726 

were clustered along the coastal fringe of eastern Australia (note that, although the total 727 

number of stations displaying significant change points was the same for both the 1-day and 728 

7-day annual maxima, in some cases the location of the stations differed between the two). 729 

However, as stated previously a limitation to this method is that only one significant change 730 

can be detected using the CUSUM test (given that the data is sequentially split into two 731 

portions during testing). This can be a problem if more than one step change or cycle in the 732 

data is present (see example timeseries in Figure 4). Therefore, while the number of stations 733 

displaying a step change is reduced using the alternative method, the results do in fact support 734 

the theory that regime shift(s) in the annual timeseries are present for some stations at 735 

different durations. 736 

****Figure 3 about here**** 737 

****Figure 4 about here**** 738 

The temporal consistency of step changes in the annual maxima timeseries was further 739 

investigated (Figure 5a) and it was found that the timing of observed shifts were not 740 

necessarily consistent across Australia. However, for some regions (e.g. the east coast of 741 

Australia) periods such as the 1940s (Figure 5b) and to a lesser degree 1970’s (Figure 5c)  742 

display a higher degree of spatial consistency. 743 

****Figure 5 about here**** 744 

Instability and storminess can result during periods when a number of climate driving 745 

mechanisms interact (e.g. El Niño/Southern Oscillation, Indian Ocean Dipole and the 746 

Southern Annular Mode) to influence the occurrence of regional weather systems such as east 747 
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coast lows and cut off lows (Pook et al. 2006, Verdon-Kidd and Kiem 2009). However, the 756 

large-scale climate phenomena impact various regions of Australia at different times of the 757 

year and to varying degrees, therefore it is not surprising that the timing of shifts in the 758 

annual maxima timeseries varies spatially and temporally. This highlights the limitations of 759 

trying to assess and attribute variability in annual maxima rainfall based on a single climate 760 

driver (e.g. ENSO) or attempting to address the issue of climate trends for the whole of 761 

Australia using one simple approach or model. 762 

3.2 Effect of non-stationarity on IFD estimation 763 

Section 3.1 provided evidence of non-stationarity in the annual maxima timeseries for a range 764 

of durations. This non-stationarity may ultimately influence the IFD estimation depending on 765 

the length of data, and the time period it comes from, and therefore the underlying climatic 766 

state (or combination of states). Current IFD estimates for Australia (both the 1987 and 2013 767 

versions) are based on data as short as 30 years for the daily-read stations and 8 years for the 768 

sub-daily data. Therefore IFD estimates based on relatively short-term data sets may under- 769 

or over-estimate rainfall intensities, depending on where the data series fits within the long 770 

term context (i.e. before or after a shift in annual maxima).  771 

For many east coast stations a shift in 1-day annual maxima (along with the 7-day) occurred 772 

around the 1940s - 1950s and again in the 1970s. This timing also corresponds to well-known 773 

periods of change in the IPO (see Section 2.1.2 for a description of the IPO and its 774 

influences). Therefore, to further explore the issue of regime shifts, breakpoints in the IPO 775 

were used to stratify the annual maxima rainfall timeseries into IPO positive and negative 776 

epochs for the three long sub-daily data sets described in Section 2.1.1 (i.e. Brisbane, Sydney 777 

and Melbourne, see Figure 1a for location). The reason for selection of these stations was 778 

twofold. Firstly, for all three stations, a shift in the annual maxima timeseries (for 1-day and 779 
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7-day) was observed during the 1940s and again in the 1970s, and secondly the stations 782 

contain long records of pluviograph data (the shortest being from 1913 onwards). Figure 6a 783 

shows the modulating effect of the IPO on total annual rainfall for the three east coast 784 

stations. Annual maxima at the three east coast stations during the two IPO epochs are also 785 

shown in Figure 6 (b-d) for event durations of 30 minutes to 72 hours (durations that are 786 

critical for flood design applications). A two-sample Kolmogorov-Smirnov (KS) test was 787 

applied to determine if the observed differences between the IPO positive and negative 788 

rainfall distributions are statistically significant. Here the null hypothesis is that the two 789 

samples are drawn from the same distribution.  790 

****Figure 6 about here**** 791 

It is evident from Figure 6a that the effect of the IPO on annual rainfall totals (as measured by 792 

the largest difference between the two rainfall distributions associated with each climate 793 

phase and the results of the KS test) is greatest for Sydney. Although there does appear to be 794 

some impact in Brisbane, the result was not statistically significant according to the KS test. 795 

Melbourne does not appear to be greatly influenced by the IPO in terms of annual rainfall 796 

variability. This is due to the fact that the southern regions of Australia are affected by other 797 

climate modes than those arising from the Pacific (i.e. the Southern Annular Mode and the 798 

Indian Ocean Dipole (e.g. Kiem and Verdon-Kidd 2010, Gallant et al, 2012)). Regions such 799 

as Brisbane and Sydney tend to be dominated by Pacific Ocean influences (e.g. Verdon et al. 800 

2004). Figure 6b shows annual maxima rainfall tends to be higher during IPO negative on 801 

average for durations 6 hours and longer at Brisbane (though not statistically significant 802 

according to the KS test), while Figure 6c confirms the same to be true for Sydney for 803 

durations 2 hours and longer (statistically significant at 95%). However, for Sydney, the 804 

outliers (represented by circles) tend to be larger during IPO positive, indicating that the less 805 

frequent events might be more intense during this phase. 806 

Luke Kidd� 17/9/2015 10:29 PM
Deleted: Brisbane and 807 
Luke Kidd� 17/9/2015 10:29 PM
Deleted: ,808 
Luke Kidd� 17/9/2015 10:30 PM
Deleted: while 809 

Luke Kidd� 17/9/2015 10:32 PM
Deleted:  using a Wilcoxon Rank Sum test810 
Luke Kidd� 17/9/2015 10:32 PM
Deleted: Interestingly, it was found that IPO 811 
positive periods have resulted in higher annual 812 
maxima for durations 30 minutes and 2 hours at 813 
Brisbane. This result is consistent with Yilmaz et al 814 
(2014) who also found that the IPO could be 815 
responsible for higher rainfall intensities for long 816 
durations and high return periods but not so for short 817 
storm durations and return periods. 818 



Irrespective of the fact that the annual rainfall totals for Melbourne do not show any 819 

significant difference between the two phases of the IPO, there does appear to be a consistent 820 

relationship between IPO and the sub-daily and daily statistics (Figure 6d), whereby the 821 

median of the IPO positive distribution is higher across all durations, however IPO negative 822 

is associated with less frequent but more extreme events (although results were not 823 

statistically significant based on the KS test). For events 24 hours and longer, the IPO 824 

negative distribution also shows a much higher degree of variability than smaller durations, 825 

with the ‘box and whiskers’ extending beyond the IPO positive counterpart for these longer 826 

durations. This suggests that while IPO might not be as dominant in southeastern Australia as 827 

it is further to the north it still has some influence that needs to be better understood. 828 

Based on the analysis presented in Figure 6 and the results of the KS test, the Sydney record 829 

was chosen to further investigate the effects of regime shifts on IFD estimation. IFD 830 

information was generated for the Sydney record using rainfall data from the two IPO phases 831 

and the methodology outlined in Section 2.1 for durations 6 minutes through to 72 hours and 832 

ARI 2 years to 200 years. In order to test the robustness of the point estimates of rainfall 833 

return levels and estimate the uncertainty in their calculation, a simple bootstrap procedure 834 

was carried out. Firstly the IPO positive and IPO negative rainfall timeseries were resampled 835 

with replacement to obtain two new B-samples. Then for each B-sample the log-Pearson III 836 

distribution was fitted and the rainfall intensities calculated for the various return intervals. 837 

The difference between the rainfall intensities (of the two B-samples) was then calculated. 838 

This procedure was repeated 100 times to build the empirical distribution of the differences 839 

(which represents the effects of sampling and parameter estimation uncertainties under the 840 

hypothesis of the existence of two different regimes). 841 

Figure 7 shows the difference in rainfall intensity between IPO positive and IPO negative 842 

estimates, along with the 95% confidence intervals (CIs) derived using the procedure above. 843 
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****Figure 7 about here**** 846 

Figure 7 demonstrates clear differences in the resulting rainfall intensities for Sydney 847 

estimated for each duration and ARI using the two regimes (i.e. rainfall data from either IPO 848 

negative or IPO positive). The difference in rainfall intensity estimated is as great as 65% in 849 

some cases.. In all cases, the magnitude of the difference in rainfall intensity estimated using 850 

the different data regimes is greater for less frequent events (e.g. 50-year, 100-year, 200-year 851 

ARIs), highlighting that uncertainty is greatest with less frequent events. The rainfall 852 

intensity is greater in IPO positive for the very short duration events (6 minutes) at all return 853 

intervals and for 30min duration events for return intervals of 10 years or more. Similarly, for 854 

the 24 and 72 hour duration events rainfall intensity in the positive IPO phase is higher for 855 

return intervals of 5 years or more. For 2 hour and 6 hour events, the negative phase results in 856 

higher intensity events for more frequent return levels (20 years or less) but lower intensities 857 

for less frequent events (50 years or more).  858 

4. Discussion and conclusions 859 

An analysis of regime shifts in the annual maxima timeseries (1-hour, 1-day and 7-day) has 860 

been carried out using a set of high quality rainfall stations across Australia. It was found that 861 

the annual maxima timeseries does indeed exhibit statistically significant step changes/shifts 862 

for the majority of stations for various durations. Further it was demonstrated using three 863 

long term sub-daily rainfall stations along the east coast that this impacts upon the resulting 864 

IFD estimation. The potential for Pacific Influences (i.e. the IPO) to influence the resulting 865 

IFD estimation was explored in order to demonstrate this issue. The authors acknowledge that 866 

the IPO is unlikely to be the only driver of variability in the annual maxima timeseries across 867 

Australia, and it is recommended that future research should aim to identify other potential 868 

drivers of this variability. 869 
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These findings highlight the fact that in some instances the IFD estimates currently being 904 

used are likely to be either under- or over-estimated at any one time depending on the length 905 

of data, and climatic state, from which they were derived. This is a particular concern given 906 

that current regionalised IFD information is based on data of varying length (as short as 8 907 

year in the case of sub-daily data) spanning different time periods. An over estimation of 908 

rainfall intensity for a given duration could impact on construction costs, while the risks of 909 

underestimating rainfall intensities could result in failure of design criteria. That is, the risk is 910 

dependent on the application and length of time over which the risk is assessed. 911 

Further revisions of AR&R are currently underway to include an assessment of the potential 912 

impacts of climate change on IFD estimates. However, there are many uncertainties 913 

associated with climate change projections, particularly when extracting information on 914 

timescales shorter than a season and particularly for hydrological extremes (e.g. Blöschl and 915 

Montanari 2010, Kiem and Verdon-Kidd 2011, Koutsoyiannis et al. 2008, 2009, Montanari et 916 

al. 2010, Randall et al. 2007, Stainforth et al. 2007, Stephens et al. 2012, Verdon-Kidd and 917 

Kiem 2010). Therefore, assessing future changes in extreme events that occur over short 918 

durations (e.g. minutes to days) is inherently difficult. Furthermore, climate projections are 919 

presented in terms of a percent change from a particular baseline. However, the baseline is 920 

often inconsistent and ill-defined leading to very different estimates of risk depending on the 921 

time over which the baseline is calculated (as has been demonstrated in this paper). 922 

Importantly, for regions where large-scale climate drivers operate on a multi-year to multi-923 

decadal timescales and are known to influence extreme rainfall events, we can use this 924 

information to determine if the climate statistics on which the IFD are based are likely to be 925 

biased or missing crucial information.  926 

It is recommended that regime shifts in annual maxima rainfall be considered and 927 

appropriately treated in any further updates of AR&R. One way to do this may be to only 928 
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utilise data sets of similar length ensuring that they span a sufficient number of years in order 936 

to capture data from epochs of both high or low annual maxima (to remove bias towards one 937 

climatic phase or another). However, it is acknowledged that this would potentially result in 938 

discarding a large amount of data. alternatively, a separate set of IFDs could be developed for 939 

use in high risk modelling for engineers who need to account for the ‘worst case’ (in a similar 940 

manner to climate change allowances). This second set of IFD could be developed based on 941 

the periods of elevated annual maxima alone (for those stations with clearly defined epochs 942 

of annual maxima) such that if we were to enter such an epoch, designs based on these 943 

estimates would be robust for the duration of such a period. Salas and Obeysekera (2014) 944 

provide similar recommendations to deal with changing exceedence probabilities over time . 945 

This would have to be assessed and calculated on a region by region basis given that 946 

Australia is a country associated with high spatial and temporal rainfall variability caused by 947 

numerous large-scale climate drivers and regional weather phenomena. Finally, any revised 948 

estimates of annual maxima should be compared in terms of uncertainty bounds (e.g. 949 

following Koutsoyiannis (2006)). Uncertainty analysis, which takes into account both the 950 

data availability and variability within the observation period would provide relevant 951 

information to practitioners about the reliability of IFD estimates.  952 

 This study has highlighted the existence of regime shifts in annual maxima rainfall data in 953 

Australia. The driving mechanisms of these regime shifts are likely to vary from location to 954 

location and decade to decade. However, these shifts are typical of many natural phenomena 955 

and can be described by processes characterized by long range dependence (or regime-956 

switching processes) and captured by hidden Markov models (or similar), resulting in a 957 

mixture of distributions that alternate stochastically according to the transition probability 958 

from one regime to the next (e.g. Serinaldi and Kilsby, 2015a). While the strategy of defining 959 

IFDs for two (or more) different regimes (e.g Serinaldi andKilsby (2015a)) currently only 960 
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partially solves the problem, as we often do not know the beginning or the end of a specific 973 

regime (be it rainfall or climate driver), recent work has focused on optimizing designs and 974 

planning strategies based on the range of what is plausible rather than a reliance on knowing 975 

the current and future climate state (e.g. Mortazavi-Naeini et al., 2015). At the same time, 976 

work is also underway on seamless prediction at a range of timescales and if/when this 977 

eventuates the results discussed here become even more important/useful. Nevertheless, the 978 

immediate usefulness of the insights presented here occurs when first establishing the IFD, as 979 

an approach similar to that employed here can be used to determine if the underlying data are 980 

biased to a mostly wet or mostly dry regime (or a mix of both) which then provides an 981 

indication as to whether the IFD is likely to be an over- or underestimate of the true risk. 982 

Importantly, this issue needs to be considered and accounted for when attempting to estimate 983 

IFD design rainfalls and prior to quantifying how those IFD estimates might change in both 984 

the near and long-term future. 985 

While the analysis presented here has been conducted using rainfall data from Australia 986 

alone, the recommendations provided are likely to be applicable for other regions of the 987 

world where IFD information is based on short term records and particularly for locations 988 

with a highly variable climate.  989 
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FIGURES 1132 

 1133 

  

a) b) 

Figure 1 a) Reference stations for sub-daily stations, b) Reference stations for daily rainfall. 1134 

Note the three long term sub-daily stations used in the IFD analysis are also labelled. 1135 



 
a) 

 
b) 

 
c) 
Figure 2 Stations (in red) with at least one statistically significant step change in the a) 1-1136 

hour, b) 1-day, c) 7-day annual maximum rainfall (using the Mann-Whitney U test) 1137 



 
a) 

 
b) 
Figure 3 Stations (in red) with at least one statistically significant step change in a) the 1-day 1138 

and b) 7-day annual maximum rainfall (using the CUSUM test with resampling) 1139 

  1140 



 1141 

Figure 4 Example of inadequate identification of non-stationarity using CUSUM test (red line 1142 

highlights three distinct epochs of high/low rainfall, while green line demonstrates effect of 1143 

splitting the data into two sections for CUSUM test) 1144 

  1145 



 
a) 

 
b) 

 
c) 
Figure 5 a) number of stations each decade displaying evidence of a step change in 1-day 1146 

annual max, b) Stations (in red) with at least one statistically significant step change in the 1-1147 

day annual max during 1940-1950 (using the Mann-Whitney U test), c) Stations (in red) with 1148 

at least one statistically significant step change in the 1-day annual max during 1970-1980 1149 

(using the Mann-Whitney U test) 1150 
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a) 

 

 

b) 

 

c) 

 

d) 

Figure 6 Relationship between IPO and a) total annual rainfall, and annual maximum rainfall 1151 

at various durations for b) Brisbane, c) Sydney and d) Melbourne. 1152 
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 1154 

Figure 7 Difference in rainfall intensity for each duration and ARI. Positive (negative) values 1155 

represent an increase (decrease) in rainfall intensity during IPO positive compared to IPO 1156 

negative 1157 
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