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Abstract 20 

Rainfall Intensity-Frequency-Duration (IFD) relationships are commonly required for the 21 

design and planning of water supply and management systems around the world. Currently 22 

IFD information is based on the ‘stationary climate assumption’ - that weather at any point in 23 

time will vary randomly and that the underlying climate statistics (including both averages 24 

and extremes) will remain constant irrespective of the period of record. However, the validity 25 

of this assumption has been questioned over the last 15 years, particularly in Australia, 26 

following an improved understanding of the significant impact of climate variability and 27 

change occurring on interannual to multidecadal timescales. This paper provides evidence of 28 

regime shifts in annual maxima rainfall timeseries using 96 daily rainfall stations and 66 sub-29 

daily rainfall stations across Australia. Further, the effect of these regime shifts on the 30 

resulting IFD estimates are explored for three long-term sub-daily rainfall records (Brisbane, 31 

Sydney and Melbourne) utilising insights into multidecadal climate variability. It is 32 

demonstrated that IFD relationships may under- or over-estimate the design rainfall 33 

depending on the length and time period spanned by the rainfall data used to develop the IFD 34 

information. It is recommended that regime shifts in annual maxima rainfall be explicitly 35 

considered and appropriately treated in the ongoing revisions of Engineers Australia’s guide 36 

to estimating and utilising IFD information, ‘Australian Rainfall and Runoff’, and that clear 37 

guidance needs to be provided on how to deal with the issue of regime shifts in extreme 38 

events (irrespective of whether this is due to natural or anthropogenic climate change). The 39 

findings of our study also have important implications for other regions of the world that 40 

exhibit considerable hydroclimatic variability and where IFD information is based on 41 

relatively short data sets.  42 

 43 



1. Introduction 44 

Information on rainfall event intensity, frequency and duration (IFD, or IDF as it is known in 45 

some countries) plays a critical role in the design of dams, bridges, stormwater drainage 46 

systems and floodplain management. Dependent upon the application, information is required 47 

for event-durations ranging from hours to several days. The development of IFD relationships 48 

were first proposed by Bernard (1932) and since then different versions of this relationship 49 

have been developed and applied worldwide (e.g. Bara et al. 2009, Chen 1983, Hershfield 50 

1961, IHP-VII 2008, Nhat et al. 2006, Raiford et al. 2007).  51 

Historically, in Australia, IFD design rainfall curves were developed by the Australian 52 

Bureau of Meteorology (BoM) for durations ranging from 5 minutes to 72 hours and Average 53 

Return Intervals (ARI) of 1 year to 100 years (however, recently additional durations and 54 

ARIs have also been developed). Up until very recently IFD information available to (and 55 

used by) engineers and hydrologists were developed 25 years ago, as part of Engineers 56 

Australia publication Australian Rainfall and Runoff (AR&R) in 1987. New IFD information 57 

was released early in 2013 after a major revision of IFD information carried out by Engineers 58 

Australia. Importantly, the revised IFD information is based on a longer and more extensive 59 

rainfall data set (http://www.bom.gov.au/water/designRainfalls/ifd/). However, the BoM and 60 

Engineers Australia still recommend to use the AR&R 1987 information for existing flood 61 

studies and the probabilistic rational method and to conduct sensitivity testing with the 62 

revised 2013 AR&R parameters including the new IFD design rainfalls 63 

(http://www.bom.gov.au/water/designRainfalls/ifd/index.shtml). 64 

At the time of writing, the revised IFD information does not take into account the impact of 65 

climate change on IFD estimates. This is part of ongoing research commissioned through 66 

Engineers Australia. It is also not yet clear how or if the role of natural climate variability is 67 

going to be considered. Of concern is the fact that currently, estimates of IFD are based on 68 



the assumption that “climatic trend, if it exists in a region, has negligible effect on the design 69 

intensities” (Pilgrim 1987). This is known as the ‘stationary climate assumption’  (i.e. the 70 

statistical properties of the rainfall do not change over time) and implies that the chance of an 71 

extreme event occurring is the same at any point in time (past or future). However, the 72 

validity of this assumption has been questioned over the last 15 years following 73 

demonstration of the significant impact of climate variability occurring on interannual to 74 

multidecadal timescales in Australia. For example, research has shown that annual maximum 75 

flood risk estimates in Australia vary depending on climate state (e.g. Ishak et al. 2013, Kiem 76 

et al. 2003, Leonard et al. 2008). Importantly these studies demonstrate that founding flood 77 

risk estimates on an unsuitable time period has the potential to significantly underestimate (or 78 

overestimate) the true risks. This may apply to design rainfall also given that current IFD 79 

estimates are based on varying lengths of data spanning different time periods (the latest IFD 80 

estimates are based on all daily-read stations with 30 or more years of record and all 81 

continuously-recording stations with more than 8 years of record).  82 

Khaliq et al. (2006) explained that the traditional idea of probability of exceedance and return 83 

period are no longer valid under non-stationarity. Recently, Jakob et al (2011a) found that 84 

rainfall quantile estimates derived for Sydney Observatory Hill for the period 1976 to 2005 85 

show significant decreases across durations from 6 minutes to 72 hours. Jakob et al (2011b) 86 

subsequently extended the sub-daily rainfall data analysis to 31 sites located in southeast 87 

Australia, assessing variations in frequency and magnitude of intense rainfall events across 88 

durations from 6 minutes to 72 hours. This study identified two different trends in the data 89 

sets, a decreasing trend in frequency of events at durations of 1-hour and longer for sites in 90 

the north of the study region, while sites in the south cluster displayed an increase in 91 

frequency of events, particularly for sub-hourly durations. Importantly Jakob (2011a, 2001b) 92 

concluded that, for at least some regions of Australia, trends found in historical records has 93 



the potential to significantly affect design rainfall estimates. Westra and Sisson (2011) also 94 

investigated evidence of trends in extreme precipitation at sub-daily and daily timescales 95 

(1965-2005) using a spatial extreme value model. They identified a statistically significant 96 

increasing trend in precipitation extremes for the sub-daily data set, however at the daily 97 

timescale no change in annual maximum rainfall could be detected with the exception of 98 

southwest Western Australia (Westra and Sisson 2011). Further, Yilmaz and Perera (2014) 99 

conducted change point analysis for extreme rainfall data for storm durations ranging from 6 100 

minutes to 72 hours in Melbourne, and found evidence of regime shifts, concluding the year 101 

1966 as a statistically significant change point. Yilmaz et al (2014) then investigated changes 102 

in extreme rainfall through trend analysis, non-stationarity tests and non-stationary GPD 103 

models (NSGPD) for Melbourne. They found statistically significant extreme rainfall trends 104 

for storm durations of 30 minutes, 3 hours and 48 hours, however for above storm durations 105 

there was no evidence of a regime shift (which they termed ‘non-stationarity’) according to 106 

statistical non-stationarity tests and non-stationary GPD (Yilmaz et al (2014). 107 

A limitation of the analysis presented by Westra and Sisson (2011) and Jakob et al (2011a, 108 

2011b) is that they tested for linear trends in the rainfall data series based on the hypothesis 109 

that extreme rainfall events would have either decreased, increased or exhibited no trend over 110 

the time period being investigated. However these are not the only attributes of trend 111 

detection, since annual rainfall maxima may also cycle through interannual to multidecadal 112 

periods (note that Westra and Sisson (2011) also investigated possible links between extreme 113 

rainfall and annual fluctuations in the El Niño/Southern Oscillation (ENSO)). Therefore, 114 

depending on what time period the annual rainfall maxima data are derived from (in reference 115 

to any long term cycles or epochs) the observed trends may be misleading or even not 116 

apparent (leading to the misconception that regimes shifts are non-significant or not an 117 

important consideration). Recently Yilmaz et al (2014) investigated the potential impact of 118 



the Interdecadal Pacific Oscillation (IPO) on extreme rainfall and resulting IFD for a case 119 

study in Melbourne. They concluded that, the IPO negative phase can be the driver of higher 120 

rainfall intensities for long durations and high return periods. However, the trends in extreme 121 

rainfall data and differences in rainfall intensities for short storm durations and return periods 122 

could not be explained with the IPO influence. Given that Melbourne is located in south-east 123 

Australia, where the influence of the IPO is temporally variable due to other climate drivers 124 

operating (acting to enhance or suppress impacts, see Kiem and Verdon-Kidd 2010; 2009), 125 

the research by Yilmaz et al (2014) provides promise for developing relationships between 126 

extreme rainfall and the IPO for regions where the IPO may have a more consistent influence 127 

(due to fewer competing climate modes), such as north-eastern Australia. 128 

Therefore this paper aims to establish if there is evidence of regime shifts in the annual 129 

maxima rainfall timeseries (1-hour to 7-days) across Australia by testing for shifts (regardless 130 

of direction or timing) in the long term sub-daily and daily data. Further, the implications on 131 

IFD estimation are explored, along with the potential influence of the IPO on extreme rainfall 132 

and resulting IFD. Recommendations are then provided as to how these insights may be 133 

incorporated in future revisions of AR&R. 134 

2. Data and methods 135 

2.1 Data 136 

2.1.1 Rainfall data 137 

Sub-daily and daily rainfall data for Australia were obtained from the BoM. Sub-daily data 138 

records from continuously recording (i.e. pluviograph) rainfall stations in Australia tend to be 139 

relatively short, hindering the ability to conduct trend and attribution studies. In this study 140 

pluviograph rainfall stations were chosen with data spanning at least 40 years and at least 141 

90% complete, resulting in 66 stations (see Figure 1a). In order to address the concerns raised 142 



in the Introduction about short term data analysis (note that according to Raiford et al. (2007) 143 

ARI should not be extrapolated from more than twice the record length), three long-term data 144 

sets, highlighted in Figure 1a, were chosen for further analysis that contained data from at 145 

least 1913 onwards (Brisbane Aero, Sydney (Observatory Hill) and Melbourne Regional 146 

Office).  147 

Daily rainfall stations with data spanning the period 1900 to 2009 were selected in order to 148 

capture as much temporal variability as possible (see Figure 1b). These stations were filtered 149 

according to the amount of data missing in order to identify the highest quality stations 150 

recording rainfall during this period, resulting in 96 being considered suitable for further 151 

analysis. Due to variability in the quality and quantity of rainfall data in each State of 152 

Australia, the following selection criteria were applied: 153 

• New South Wales, Queensland and Victoria - selected stations are at least 97% 154 

complete; 155 

• Tasmania- selected stations are at least 90% complete; and 156 

• South Australia, Northern Territory and Western Australia - selected stations are at 157 

least 85% complete. 158 

*****Figure 1 about here**** 159 

2.1.2  Climate index data 160 

The climate of Australia has experienced a number of regime shifts in climate during its 161 

history, resulting in sustained periods of above average rainfall and storminess and 162 

abnormally cool temperatures, followed by the reverse conditions (i.e. droughts and elevated 163 

bushfire risk) (e.g. Erskine and Warner 1988, Franks and Kuczera 2002, Kiem et al. 2003, 164 

Kiem and Franks 2004, Verdon et al. 2004). These shifts have tended to occur every 20 to 30 165 



years and are associated with changes in the Interdecadal Pacific Oscillation (IPO, Power et 166 

al. 1999). The IPO represents variable epochs of warming (i.e. positive phase) and cooling 167 

(i.e. negative phase) in both hemispheres of the Pacific Ocean (Folland et al. 2002). 168 

Importantly, the IPO has been shown to influence the magnitude and frequency of flood and 169 

drought cycles across eastern Australia (Kiem et al. 2003, Kiem and Franks 2004). In New 170 

Zealand, the IPO is also associated with similar shifts in flood frequency (McKerchar and 171 

Henderson 2003). It has been noted that, following the abrupt shift in the IPO in the mid 172 

1970s, the period, amplitude, spatial structure and temporal evolution of ENSO markedly 173 

changed (Wang and An, 2001). Historically, during negative phases of the IPO there tends to 174 

be more La Niña (wet) events and fewer El Niño (dry) events (Kiem et al. 2003, Verdon and 175 

Franks 2006), resulting in an overall ‘wet’ epoch for eastern Australia and New Zealand . 176 

While during the positive phase of the IPO there tends to be a higher frequency of El Niño 177 

events and fewer La Niña events (Kiem et al. 2003, Verdon and Franks 2006), resulting in an 178 

overall ‘dry’ epoch. In this study negative phases of the IPO were defined as 1913-1920 and 179 

1945-1977, while positive phases included 1921-1944 and 1978 to 2010. 180 

2.2 Statistical tests 181 

A 20 year moving window was used to test for low frequency variability in the annual 182 

maxima timeseries (1-hour, 1-day and 7-day). A Mann-Whitney U test was then used to 183 

determine the statistical significance of possible regime shifts by testing if the first 10 years 184 

of data was significantly different from the second 10 years, within the 20 year window (the 185 

null-hypothesis in this case was that the data was independently distributed). If the difference 186 

in medians was found to be statistically significant (i.e. p-value < 0.05) and there was a 187 

change in sign of the median values (e.g. switch from negative to positive), a climate shift 188 

was postulated to have occurred during the 10th year of the window. The Mann-Whitney U 189 

test is a robust test that does not place implicit assumptions on the underlying distribution of 190 



the data (i.e. it is a distribution free test), which is particularly appropriate here due to the 191 

small number of years used in each window (Kundzewicz and Robson 2004). Note that a 192 

number of different size windows were also tested, however this did not change the results or 193 

conclusions. 194 

A second test was also applied to identify step changes in the 1-day and 7-day annual maxima 195 

time series known as the distribution free CUSUM with resampling (note that the test was not 196 

applied to the shorter sub-daily data as longer data sets are recommended for this method). 197 

CUSUM tests whether the means in two parts of a record are different (for an unknown time 198 

of change). The second test was applied as it does not require the use of a moving window 199 

(which is a limitation of the Mann-Whitney U test described above). However the CUSUM 200 

test sequentially splits the timeseries into two portions (which are not necessarily equal), 201 

which may be a problem if more than one cycle/shift is present in the timeseries.  202 

The existence of serial correlation (or autocorrelation) in a time series will affect the 203 

ability of tests (such as the Mann-Whitney U and CUSUM) to assess the site 204 

significance of a trend (e.g. Yu et al. 2003, Serinaldi and Kilsby 2015b). The presence 205 

of cross-correlation among sites in a network will also influence the ability of the test 206 

to evaluate the field significance of trends over the network (e.g. Yu et al. 2003, 207 

Douglas et al. 2000, Guerreiro et al. 2013). Therefore, prior to applying the change point 208 

analysis as described above, the Durbin-Watson (DW) statistic was used to test for 209 

autocorrelation in the annual maxima timeseries (Durbin and Watson (1950, 1951)). In this 210 

case the null hypothesis is that the residuals from an ordinary least-squares regression are not 211 

autocorrelated against the alternative that the residuals follow an AR1 process. All DW 212 

statistic values were found to be greater than the 1.562 (the upper bound for 1% significance 213 

and a sample size of ~100) providing no evidence to reject the null hypothesis. Therefore, 214 



any regime shifts detected using the change point methods above are not likely to be artefacts 215 

resulting from hidden persistence. 216 

The potential issue of cross- correlation was also investigated. It was found that less than 9% 217 

of all possible pairings of rainfall data sets display a significant (yet weak) correlation at the 218 

5% level (r >0.2, significance based on n=100). Only eight pairings (out of 4465) were 219 

correlated at 0.5 or higher.  It was also found that stations located more than 500km apart 220 

were unlikely to be correlated and that the strength of the correlation reduced as distance 221 

increased between the pairs. This is not surprising given annual maximum rainfall events are 222 

due to synoptic scale processes. Therefore observations relating to spatial consistency of 223 

regime shifts are unlikely to be due to spatial correlation between sites. 224 

2.3 IFD Calculation 225 

The standard process for obtaining IFD information for a location is to refer to the six master 226 

charts of rainfall intensity for various durations and ARIs covering all of Australia in Volume 227 

2 of AR&R 2001. Alternatively, IFD curves can be obtained for any location in Australia via 228 

the BoM website (both the AR&R 1987 and revised IFDs are available). This information is 229 

based on regionalised estimates of IFDs that are spatially and temporally consistent. 230 

However, this approach cannot be adopted when using the instrumental rainfall data required 231 

for the analysis presented in this study. As such, the IFD information generated for this 232 

project follows the methodology on which the IFDs were based for AR&R 1999 (note 233 

the1987 edition was republished in book form in 1999 with only the chapter on the estimation 234 

of extreme to large floods updated), which utilises point source data with no regionalisation. 235 

It should be noted that it is not the purpose of this paper to compare different methods of 236 

generating IFDs, rather, one method has been adopted in order to provide a comparative 237 

assessment of the impact of non stationarity on IFD estimation. The AR&R 1999 procedure 238 



used to generate IFDs from raw rainfall data (i.e. point based estimates) is summarised as 239 

follows: 240 

• A log-Pearson III distribution was fitted to the annual maxima timeseries using the 241 

method of moments (for annual maxima series of 30 minutes to 72 hours duration). 242 

This is the standard distribution that has historically been adopted for generating IFDs 243 

in Australia; however other distributions have recently been tested as part of the 244 

revision of AR&R. To test if this distribution is suitable for the region being studied, 245 

the goodness of fit for the log-Pearson III was tested using a Kolmogorov Smirnov 246 

(KS) test. Here the null hypothesis is that the data fits the Log-Pearson lll distribution 247 

(the alternate is that the data does not follow the Log Pearson III distribution). All p-248 

values were greater than 0.05 (average	
  p-­‐value	
  was	
  0.75), for all series (30min to 72hr 249 

durations at Brisbane, Sydney and Melbourne), therefore we accept the null 250 

hypothesis at the 5% significance level.; 251 

• The coefficient of skewness was determined for each duration (30 minutes to 72 252 

hours); 253 

• The coefficient of skewness was then used to obtain a frequency factor, KY, for use 254 

with Log-Pearson III Distribution. KY was obtained from Table 2.2 (positive skew 255 

coefficients) and Table 2.3 (negative skew coefficients) in AR&R 1999 Book 4; 256 

• Rainfall intensities for a range of ARI were calculated using the following formula: 257 

• log RIY = M + KYS (1) 258 
Where:  RIY = rainfall intensity having an ARI of 1 in Y 259 

M = mean of the logarithms of the annual maxima rainfalls 260 

S= Standard deviation of the logarithms of the annual maxima rainfalls 261 

KY = frequency factor for the required ARI of 1 in Y 262 



• ARIs of 2 years to 10 years were adjusted to partial-duration series estimates. In 263 

AR&R 1999, the following correction factors were used (note: for ARI greater 264 

than 10 years, no corrected factor is required): 2 year ARI – 1.13, 5 year ARI - 265 

1.04, 10 year ARI – 1.0. 266 

It should be noted that this approach is likely to result in different estimates of IFDs than 267 

those obtained from the standard maps provided by AR&R 1999 or the revised IFD 268 

estimates released in 2013. Here we are using point based rainfall data, whereas AR&R 269 

1999 have derived regionalised estimates based on multiple rainfall stations with varying 270 

lengths of data, varying resolution (daily and pluviograph) and varying quality of records. 271 

It is recognised that analysis of rainfall data from single stations is often unreliable, is not 272 

temporally or spatially consistent and should generally not be used for design purposes. 273 

However, the use of point based rainfall data satisfies the specific aims of this study 274 

(which is a comparative analysis) and is therefore considered appropriate. 275 

3. Results 276 

3.1 Test for regime shifts in the annual maxima rainfall timeseries 277 

Significant step changes identified in the extreme rainfall timeseries are shown in Figure 2. 278 

Of the 66 sub-daily rainfall stations tested, 40 (61%) displayed at least one step change in the 279 

1-hour annual maxima timeseries (Figure 2a), with some stations exhibiting multiple shifts. 280 

Of the 96 daily rainfall stations tested, 86 displayed at least one step change in the 1-day 281 

annual maxima timeseries (Figure 2b), while 92 exhibited at least one shift in the 7-day 282 

annual maxima timeseries (Figure 2c), and some stations exhibited multiple shifts. Figure 2 283 

collectively shows that observed step changes (or regime shifts) in annual maxima rainfall are 284 

not confined to any one particular region of Australia, with most stations analysed exhibiting 285 

at least one statistically significant shift.  286 



****Figure 2 about here**** 287 

As shown in Figure 3, the CUSUM test yielded fewer stations with statistically significant 288 

step change in the annual maxima timeseries (only 18 stations out of 96) and many of these 289 

were clustered along the coastal fringe of eastern Australia (note that, although the total 290 

number of stations displaying significant change points was the same for both the 1-day and 291 

7-day annual maxima, in some cases the location of the stations differed between the two). 292 

However, as stated previously a limitation to this method is that only one significant change 293 

can be detected using the CUSUM test (given that the data is sequentially split into two 294 

portions during testing). This can be a problem if more than one step change or cycle in the 295 

data is present (see example timeseries in Figure 4). Therefore, while the number of stations 296 

displaying a step change is reduced using the alternative method, the results do in fact support 297 

the theory that regime shift(s) in the annual timeseries are present for some stations at 298 

different durations. 299 

****Figure 3 about here**** 300 

****Figure 4 about here**** 301 

The temporal consistency of step changes in the annual maxima timeseries was further 302 

investigated (Figure 5a) and it was found that the timing of observed shifts were not 303 

necessarily consistent across Australia. However, for some regions (e.g. the east coast of 304 

Australia) periods such as the 1940s (Figure 5b) and to a lesser degree 1970’s (Figure 5c)  305 

display a higher degree of spatial consistency. 306 

****Figure 5 about here**** 307 

Instability and storminess can result during periods when a number of climate driving 308 

mechanisms interact (e.g. El Niño/Southern Oscillation, Indian Ocean Dipole and the 309 



Southern Annular Mode) to influence the occurrence of regional weather systems such as east 310 

coast lows and cut off lows (Pook et al. 2006, Verdon-Kidd and Kiem 2009). However, the 311 

large-scale climate phenomena impact various regions of Australia at different times of the 312 

year and to varying degrees, therefore it is not surprising that the timing of shifts in the 313 

annual maxima timeseries varies spatially and temporally. This highlights the limitations of 314 

trying to assess and attribute variability in annual maxima rainfall based on a single climate 315 

driver (e.g. ENSO) or attempting to address the issue of climate trends for the whole of 316 

Australia using one simple approach or model. 317 

3.2 Effect of non-stationarity on IFD estimation 318 

Section 3.1 provided evidence of non-stationarity in the annual maxima timeseries for a range 319 

of durations. This non-stationarity may ultimately influence the IFD estimation depending on 320 

the length of data, and the time period it comes from, and therefore the underlying climatic 321 

state (or combination of states). Current IFD estimates for Australia (both the 1987 and 2013 322 

versions) are based on data as short as 30 years for the daily-read stations and 8 years for the 323 

sub-daily data. Therefore IFD estimates based on relatively short-term data sets may under- 324 

or over-estimate rainfall intensities, depending on where the data series fits within the long 325 

term context (i.e. before or after a shift in annual maxima).  326 

For many east coast stations a shift in 1-day annual maxima (along with the 7-day) occurred 327 

around the 1940s - 1950s and again in the 1970s. This timing also corresponds to well-known 328 

periods of change in the IPO (see Section 2.1.2 for a description of the IPO and its 329 

influences). Therefore, to further explore the issue of regime shifts, breakpoints in the IPO 330 

were used to stratify the annual maxima rainfall timeseries into IPO positive and negative 331 

epochs for the three long sub-daily data sets described in Section 2.1.1 (i.e. Brisbane, Sydney 332 

and Melbourne, see Figure 1a for location). The reason for selection of these stations was 333 



twofold. Firstly, for all three stations, a shift in the annual maxima timeseries (for 1-day and 334 

7-day) was observed during the 1940s and again in the 1970s, and secondly the stations 335 

contain long records of pluviograph data (the shortest being from 1913 onwards). Figure 6a 336 

shows the modulating effect of the IPO on total annual rainfall for the three east coast 337 

stations. Annual maxima at the three east coast stations during the two IPO epochs are also 338 

shown in Figure 6 (b-d) for event durations of 30 minutes to 72 hours (durations that are 339 

critical for flood design applications). A two-sample Kolmogorov-Smirnov (KS) test was 340 

applied to determine if the observed differences between the IPO positive and negative 341 

rainfall distributions are statistically significant. Here the null hypothesis is that the two 342 

samples are drawn from the same distribution.  343 

****Figure 6 about here**** 344 

It is evident from Figure 6a that the effect of the IPO on annual rainfall totals (as measured by 345 

the largest difference between the two rainfall distributions associated with each climate 346 

phase and the results of the KS test) is greatest for Sydney. Although there does appear to be 347 

some impact in Brisbane, the result was not statistically significant according to the KS test. 348 

Melbourne does not appear to be greatly influenced by the IPO in terms of annual rainfall 349 

variability. This is due to the fact that the southern regions of Australia are affected by other 350 

climate modes than those arising from the Pacific (i.e. the Southern Annular Mode and the 351 

Indian Ocean Dipole (e.g. Kiem and Verdon-Kidd 2010, Gallant et al, 2012)). Regions such 352 

as Brisbane and Sydney tend to be dominated by Pacific Ocean influences (e.g. Verdon et al. 353 

2004). Figure 6b shows annual maxima rainfall tends to be higher during IPO negative on 354 

average for durations 6 hours and longer at Brisbane (though not statistically significant 355 

according to the KS test), while Figure 6c confirms the same to be true for Sydney for 356 

durations 2 hours and longer (statistically significant at 95%). However, for Sydney, the 357 



outliers (represented by circles) tend to be larger during IPO positive, indicating that the less 358 

frequent events might be more intense during this phase. 359 

Irrespective of the fact that the annual rainfall totals for Melbourne do not show any 360 

significant difference between the two phases of the IPO, there does appear to be a consistent 361 

relationship between IPO and the sub-daily and daily statistics (Figure 6d), whereby the 362 

median of the IPO positive distribution is higher across all durations, however IPO negative 363 

is associated with less frequent but more extreme events (although results were not 364 

statistically significant based on the KS test). For events 24 hours and longer, the IPO 365 

negative distribution also shows a much higher degree of variability than smaller durations, 366 

with the ‘box and whiskers’ extending beyond the IPO positive counterpart for these longer 367 

durations. This suggests that while IPO might not be as dominant in southeastern Australia as 368 

it is further to the north it still has some influence that needs to be better understood. 369 

Based on the analysis presented in Figure 6 and the results of the KS test, the Sydney record 370 

was chosen to further investigate the effects of regime shifts on IFD estimation. IFD 371 

information was generated for the Sydney record using rainfall data from the two IPO phases 372 

and the methodology outlined in Section 2.1 for durations 6 minutes through to 72 hours and 373 

ARI 2 years to 200 years. In order to test the robustness of the point estimates of rainfall 374 

return levels and estimate the uncertainty in their calculation, a simple bootstrap procedure 375 

was carried out. Firstly the IPO positive and IPO negative rainfall timeseries were resampled 376 

with replacement to obtain two new B-samples. Then for each B-sample the log-Pearson III 377 

distribution was fitted and the rainfall intensities calculated for the various return intervals. 378 

The difference between the rainfall intensities (of the two B-samples) was then calculated. 379 

This procedure was repeated 100 times to build the empirical distribution of the differences 380 

(which represents the effects of sampling and parameter estimation uncertainties under the 381 

hypothesis of the existence of two different regimes). 382 



Figure 7 shows the difference in rainfall intensity between IPO positive and IPO negative 383 

estimates, along with the 95% confidence intervals (CIs) derived using the procedure above. 384 

****Figure 7 about here**** 385 

Figure 7 demonstrates clear differences in the resulting rainfall intensities for Sydney 386 

estimated for each duration and ARI using the two regimes (i.e. rainfall data from either IPO 387 

negative or IPO positive). The difference in rainfall intensity estimated is as great as 65% in 388 

some cases. In all cases, the magnitude of the difference in rainfall intensity estimated using 389 

the different data regimes is greater for less frequent events (e.g. 50-year, 100-year, 200-year 390 

ARIs), highlighting that uncertainty is greatest with less frequent events. The rainfall 391 

intensity is greater in IPO positive for the very short duration events (6 minutes) at all return 392 

intervals and for 30min duration events for return intervals of 10 years or more. Similarly, for 393 

the 24 and 72 hour duration events rainfall intensity in the positive IPO phase is higher for 394 

return intervals of 5 years or more. For 2 hour and 6 hour events, the negative phase results in 395 

higher intensity events for more frequent return levels (20 years or less) but lower intensities 396 

for less frequent events (50 years or more).  397 

4. Discussion and conclusions 398 

An analysis of regime shifts in the annual maxima timeseries (1-hour, 1-day and 7-day) has 399 

been carried out using a set of high quality rainfall stations across Australia. It was found that 400 

the annual maxima timeseries does indeed exhibit statistically significant step changes/shifts 401 

for the majority of stations for various durations. Further it was demonstrated using three 402 

long term sub-daily rainfall stations along the east coast that this impacts upon the resulting 403 

IFD estimation. The potential for Pacific Influences (i.e. the IPO) to influence the resulting 404 

IFD estimation was explored in order to demonstrate this issue. The authors acknowledge that 405 

the IPO is unlikely to be the only driver of variability in the annual maxima timeseries across 406 



Australia, and it is recommended that future research should aim to identify other potential 407 

drivers of this variability. 408 

These findings highlight the fact that in some instances the IFD estimates currently being 409 

used are likely to be either under- or over-estimated at any one time depending on the length 410 

of data, and climatic state, from which they were derived. This is a particular concern given 411 

that current regionalised IFD information is based on data of varying length (as short as 8 412 

year in the case of sub-daily data) spanning different time periods. An over estimation of 413 

rainfall intensity for a given duration could impact on construction costs, while the risks of 414 

underestimating rainfall intensities could result in failure of design criteria. That is, the risk is 415 

dependent on the application and length of time over which the risk is assessed. 416 

Further revisions of AR&R are currently underway to include an assessment of the potential 417 

impacts of climate change on IFD estimates. However, there are many uncertainties 418 

associated with climate change projections, particularly when extracting information on 419 

timescales shorter than a season and particularly for hydrological extremes (e.g. Blöschl and 420 

Montanari 2010, Kiem and Verdon-Kidd 2011, Koutsoyiannis et al. 2008, 2009, Montanari et 421 

al. 2010, Randall et al. 2007, Stainforth et al. 2007, Stephens et al. 2012, Verdon-Kidd and 422 

Kiem 2010). Therefore, assessing future changes in extreme events that occur over short 423 

durations (e.g. minutes to days) is inherently difficult. Furthermore, climate projections are 424 

presented in terms of a percent change from a particular baseline. However, the baseline is 425 

often inconsistent and ill-defined leading to very different estimates of risk depending on the 426 

time over which the baseline is calculated (as has been demonstrated in this paper). 427 

Importantly, for regions where large-scale climate drivers operate on a multi-year to multi-428 

decadal timescales and are known to influence extreme rainfall events, we can use this 429 

information to determine if the climate statistics on which the IFD are based are likely to be 430 

biased or missing crucial information.  431 



It is recommended that regime shifts in annual maxima rainfall be considered and 432 

appropriately treated in any further updates of AR&R. One way to do this may be to only 433 

utilise data sets of similar length ensuring that they span a sufficient number of years in order 434 

to capture data from epochs of both high or low annual maxima (to remove bias towards one 435 

climatic phase or another). However, it is acknowledged that this would potentially result in 436 

discarding a large amount of data. alternatively, a separate set of IFDs could be developed for 437 

use in high risk modelling for engineers who need to account for the ‘worst case’ (in a similar 438 

manner to climate change allowances). This second set of IFD could be developed based on 439 

the periods of elevated annual maxima alone (for those stations with clearly defined epochs 440 

of annual maxima) such that if we were to enter such an epoch, designs based on these 441 

estimates would be robust for the duration of such a period. Salas and Obeysekera (2014) 442 

provide similar recommendations to deal with changing exceedence probabilities over time. 443 

This would have to be assessed and calculated on a region by region basis given that 444 

Australia is a country associated with high spatial and temporal rainfall variability caused by 445 

numerous large-scale climate drivers and regional weather phenomena. Finally, any revised 446 

estimates of annual maxima should be compared in terms of uncertainty bounds (e.g. 447 

following Koutsoyiannis (2006)). Uncertainty analysis, which takes into account both the 448 

data availability and variability within the observation period would provide relevant 449 

information to practitioners about the reliability of IFD estimates.  450 

 This study has highlighted the existence of regime shifts in annual maxima rainfall data in 451 

Australia. The driving mechanisms of these regime shifts are likely to vary from location to 452 

location and decade to decade. However, these shifts are typical of many natural phenomena 453 

and can be described by processes characterized by long range dependence (or regime-454 

switching processes) and captured by hidden Markov models (or similar), resulting in a 455 

mixture of distributions that alternate stochastically according to the transition probability 456 



from one regime to the next (e.g. Serinaldi and Kilsby, 2015a). While the strategy of defining 457 

IFDs for two (or more) different regimes (e.g Serinaldi and Kilsby (2015a)) currently only 458 

partially solves the problem, as we often do not know the beginning or the end of a specific 459 

regime (be it rainfall or climate driver), recent work has focused on optimizing designs and 460 

planning strategies based on the range of what is plausible rather than a reliance on knowing 461 

the current and future climate state (e.g. Mortazavi-Naeini et al., 2015). At the same time, 462 

work is also underway on seamless prediction at a range of timescales and if/when this 463 

eventuates the results discussed here become even more important/useful. Nevertheless, the 464 

immediate usefulness of the insights presented here occurs when first establishing the IFD, as 465 

an approach similar to that employed here can be used to determine if the underlying data are 466 

biased to a mostly wet or mostly dry regime (or a mix of both) which then provides an 467 

indication as to whether the IFD is likely to be an over- or underestimate of the true risk. 468 

Importantly, this issue needs to be considered and accounted for when attempting to estimate 469 

IFD design rainfalls and prior to quantifying how those IFD estimates might change in both 470 

the near and long-term future. 471 

While the analysis presented here has been conducted using rainfall data from Australia 472 

alone, the recommendations provided are likely to be applicable for other regions of the 473 

world where IFD information is based on short term records and particularly for locations 474 

with a highly variable climate.  475 



5. Acknowledgements 476 

The authors wish to acknowledge the Australian BoM for supplying the rainfall data used in 477 

this study and the UK Meteorological Office for kindly making the IPO data available. We 478 

would also like to thank Mr Andrew Magee for assisting with statistical analysis of the 479 

rainfall data and the two reviewers of the paper who provided feedback that greatly improved 480 

the paper. 481 

6. References 482 

Bara, M., Gaal, L., Kohnova, S., Szolgay, J. and Hlavcova, K. (2009) Estimation of IDF 483 

curves of extreme rainfall by simple scaling in Slovakia. Contributions to Geophysics and 484 

Geodesy, 39(3), 187–206. 485 

Bernard, M. M. (1932) Formulas for rainfall intensities of long duration. Transactions, 486 

ASCE, 96, 592-624. 487 

Blöschl, G. and Montanari, A. (2010) Climate change impacts - throwing the dice?. 488 

Hydrological Processes, 24, 374–381,10.1002/hyp.7574. 489 

Chen C. L. (1983) Rainfall intensity-duration-frequency formulas. ASCE J. Hydraulic Eng., 490 

109, 1603–1621. 491 

Douglas EM, Vogel RM, Kroll CN. (2000) Trends in floods and low flows in the United 492 

States: impact of spatial correlation. Journal of Hydrology 240: 90–105. 493 

Durbin, J. and Watson, G. S. (1950). Testing for Serial Correlation in Least Squares 494 

Regression, I. Biometrika 37 (3–4): 409–428. doi:10.1093/biomet/37.3-4.409. 495 

JSTOR 2332391. 496 



Durbin, J.; Watson, G. S. (1951). Testing for Serial Correlation in Least Squares Regression, 497 

II. Biometrika 38 (1–2): 159–179. doi:10.1093/biomet/38.1-2.159. JSTOR 2332325 498 

Erskine, W. D. and Warner, R. F. (1988) Geomorphic effects of alternating flood and drought 499 

dominated regimes on a coastal NSW river, in: Fluvial Geomorphology of Australia. 500 

Academic Press, Sydney, Australia, p 223-244. 501 

Folland, C. K., Parker, D. E., Colman, A. W. and Washington, R. (1999) Large scale modes 502 

of ocean surface temperature since the late nineteenth century, in: Beyond El Nino: Decadal 503 

and Interdecadal Climate Variability. Springer, Berlin, p 73-102. 504 

Franks, S. W. and Kuczera, G. (2002) Flood frequency analysis: Evidence and implications 505 

of secular climate variability, New South Wales, Water Resources Research 38(5), 506 

doi:10.1029/2001WR000232. 507 

Gallant, A.J.E., Kiem, A.S., Verdon-Kidd, D.C., Stone, R.C. and Karoly, D.J. (2012) 508 

Understanding climate processes in the Murray-­‐Darling Basin: Utility and limitations for 509 

natural resources management, Hydrological and Earth System Sciences, 16, 2049-2068. 510 

Guerreiro S.B., Kilsby C.G., Serinaldi F. (2014) Analysis of time variation of rainfall in 511 

transnational basins in Iberia: abrupt changes or trends? Int J Climatol 34(1):114–133 512 

Hershfield D.M. (1961) Rainfall Frequency atlas of the United States for durations from 30 513 

minutes to 24 hours and return period s from 1 to 100 years, tech. paper 40, U.S. Department 514 

of Comm., Weather Bureau, Washington, D.C. 515 

International Hydrological Programme IHP-VII | Technical Documents in Hydrology | No. 2, 516 

(2008) Asian Pacific FRIEND, Rainfall Intensity Duration Frequency (IDF), Analysis for the 517 

Asia Pacific Region, Edited by: Trevor M. Daniell and Guillermo Q. Tabios III, Reported by 518 



Regional Steering Committee for Southeast Asia and the Pacific, UNESCO Office, Jakarta 519 

2008. 520 

Ishak, E.H., Rahman, A., Westra, S., Sharma, A., and. Kuczera, G. (2013) Evaluating the 521 

non-stationarity of Australian annual maximum flood, Journal of Hydrology, 494, 134-145. 522 

Jakob, D., Karoly, D.J. and Seed, A. (2011a) Non-stationarity in daily and sub-daily intense 523 

rainfall – Part 1: Sydney, Australia, Nat. Hazards Earth Syst. Sci., 11, 2263–2271. 524 

Jakob, D., Karoly, D.J. and Seed, A.  (2011b) Non-stationarity in daily and sub-daily intense 525 

rainfall – Part 2: Regional assessment for sites in south-east Australia, Nat. Hazards Earth 526 

Syst. Sci., 11, 2273–2284. 527 

Khaliq, M. N., Ouarda, T. B. M. J., Ondo, J.-C., Gachon, P., and Bobee, B. (2006) Frequency 528 

analysis of a sequence of dependent and/or non-stationary hydro-meteorological 529 

observations: A review, J. Hydrology, 329, 534–552. 530 

Kiem, A.S. and S. W. Franks (2004), Multi-decadal variability of drought risk - Eastern 531 

Australia, Hydrological Processes, 18(11), 2039-2050. 532 

Kiem, A.S., Franks, S.W. and Kuczera, G. (2003) Multi-decadal variability of flood risk. 533 

Geophysical Research Letters, 30(2), 1035, doi:10.1029/2002GL015992. 534 

Kiem AS, Verdon-Kidd DC (2009), 'Climatic drivers of Victorian streamflow: Is ENSO the 535 

dominant influence?', Australian Journal of Water Resources, 13 17-29. 536 

Kiem AS, Verdon-Kidd DC (2010), 'Towards understanding hydroclimatic change in 537 

Victoria, Australia - preliminary insights into the 'Big Dry'', Hydrology and Earth System 538 

Sciences, 14 433-445. 539 



Kiem, A.S. and Verdon-Kidd, D.C. (2011) Steps towards ‘useful’ hydroclimatic scenarios for 540 

water resource management in the Murray-Darling Basin. Water Resources Research 47, 541 

W00G06, doi:10.1029/2010WR009803. 542 

Koutsoyiannis, D. (2006) Nonstationarity versus scaling hydrology. Journal of Hydrology, 543 

324, 1-4, 239-254, doi: 10.1016/j.jhydrol.2005.09.022. 544 

Koutsoyiannis, D., Efstratiadis, A., Mamassis, N. and Christofides, A. (2008) On the 545 

credibility of climate predictions. Hydrological Sciences Journal, 53 (4), 671–684. 546 

Koutsoyiannis, D., Montanari, A., Lins, H.F. and Cohn, T.A. (2009) Climate, hydrology and 547 

freshwater: towards an interactive incorporation of hydrological experience into climate 548 

research—DISCUSSION of “The implications of projected climate change for freshwater 549 

resources and their management”. Hydrological Sciences Journal 54 (2), 394–405. 550 

Koutsoyiannis D., Montanari A. (2014) Negligent killing of scientific concepts: the 551 

stationarity case Hydrol Sci J http://dx.doi.org/10.1080/02626667.2014.959959 552 

Kundzewicz, Z. W. and Robson, A. J. (2004) Change detection in hydrological records – a 553 

review of the methodology. Hydrological Sciences Journal, 49(1), 7-19 554 

Leonard, M., Metcalfe A. and Lambert, M. (2008) Frequency analysis of rainfall and 555 

streamflow extremes accounting for seasonal and climatic partitions, Journal of Hydrology, 556 

348( 1-2), 135-147 557 

McKerchar, A. I. and Henderson, R. D. (2003) Shifts in flood and low-flow regimes in New 558 

Zealand due to inter-decadal climate variations. Hydrological Sciences Journal 48(4), 637-559 

654. 560 



Montanari, A., Blöschl, G., Sivapalan, M. and Savenije, H. (2010) Getting on target. Public 561 

Service Review: Science and Technology, 7, 167-169. 562 

Nhat L., Y. Tachikawa and K. Takara (2006) Establishment of Intensity-Duration-Frequency 563 

Curves for Precipitation in the Monsoon Area of Vietnam, Annuals of Disas. Prev.Res.Inst., 564 

Kyoto Univ., No. 49  565 

Pilgrim, D.H, (1987) Australian Rainfall & Runoff - A Guide to Flood Estimation, Institution 566 

of Engineers, Australia, Barton, ACT 567 

Pook, M. J., McIntosh, P. C. and Meyers, G. A. (2006) The Synoptic Decomposition of Cool-568 

Season Rainfall in the Southeastern Australian Cropping Region. Journal of Applied 569 

Meteorology & Climatology, 45, 1156-1170. 570 

Power, S., Casey, T., Folland, C., Colman, A. and Mehta, V. (1999) Inter-decadal modulation 571 

of the impact of ENSO on Australia. Climate Dynamics 15(5), 319-324. 572 

Pui, A, Sharma, A, Santoso, A and Westra, S. (2012) Impact of ENSO, Indian Ocean Dipole, 573 

and Southern Annular Mode on Daily to Subdaily Rainfall Characteristics in East Australia. 574 

Mon. Wea. Rev., 140, 1665–1682. 575 

Raiford J.P., N.M. Aziz, A.A. Khan and D.N. Powell, (2007) Rainfall Depth-Duration-576 

Frequency Relationships for South Carolina, North Carolina, and Georgia. American Journal 577 

of Environmental Science 3(2), 78-84. 578 

Randall, D.A., Wood, R.A., Bony, S., Colman, R., Fichefet, T., Fyfe, J., Kattsov, V., Pitman, 579 

A., Shukla, J., Srinivasan, J., Stouffer, R.J., Sumi, A. and Taylor, K.E. (2007) Climate 580 

Models and Their Evaluation. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., 581 

Averyt, K.B., Tignor, M. and Miller, H.L. (Eds.) Climate Models and Their Evaluation, 582 

Cambridge University Press, Cambridge, United Kingdom and New York, USA. 583 



Salas J.D., Obeysekera J. (2014) Revisiting the concepts of return period and risk for 584 

nonstationary hydrologic extreme events. J Hydrol Eng, 19(3):554–68. 585 

Serinaldi F., Kilsby C.G. (2015a),Stationarity is undead: Uncertainty dominates the 586 

distribution of extremes. Advances in Water Resources, 77, 17-36 587 

Serinaldi F., Kilsby C.G. (2015b) The importance of prewhitening in change point analysis 588 

under	
  persistence.	
  Stochastic	
  Environmental	
  Research	
  and	
  Risk	
  Assessment 589 

Stainforth, D.A., Allen, M.R., Tredger, E.R. and Smith, L.A. (2007) Confidence, uncertainty 590 

and decision-support relevance in climate predictions. Philosophical Transactions of the 591 

Royal Society, 365, 2145-2161; doi:10.1098/rsta.2007.2074. 592 

Stephens, E.M., Edwards, T.L. and Demeritt, D. (2012) Communicating probabilistic 593 

information from climate model ensembles—lessons from numerical weather prediction. 594 

WIREs Climate Change 2012 (3), 409–426, doi:10.1002/wcc.187. 595 

Verdon-Kidd, D.C. and Kiem, A.S. (2009) On the relationship between large-scale climate 596 

modes and regional synoptic patterns that drive Victorian rainfall, Hydrological and Earth 597 

System Sciences, 13, 467-479. 598 

Verdon-Kidd, D.C. and Kiem, A.S. (2010) Quantifying drought risk in a non-stationary 599 

climate. Journal of Hydrometeorology 11(4), 1019-1031. 600 

Verdon, D. C., A. M. Wyatt, A. S. Kiem and S. W. Franks (2004), Multi-decadal variability 601 

of rainfall and streamflow - Eastern Australia. Water Resources Research, 40, W10201, 602 

doi:10210.11029/12004WR003234. 603 

Westra, S. and Sisson, S.A (2011) Detection of non-stationarity in precipitation extremes 604 

using a max-stable process model, Journal of Hydrology, 406, 119-128. 605 



Yilmaz, A. G., Hossain, I., and Perera, B. J. C. (2014) Effect of climate change and 606 

variability on extreme rainfall intensity–frequency–duration relationships: a case study of 607 

Melbourne, Hydrol. Earth Syst. Sci., 18, 4065-4076, doi:10.5194/hess-18-4065-2014. 608 

Yilmaz, A. and Perera, B. (2014) Extreme Rainfall Nonstationarity Investigation and 609 

Intensity-Frequency-Duration Relationship, J. Hydrol. Eng., 19, 1160–1172, 610 

doi:10.1061/(ASCE)HE.1943- 5584.0000878. 611 

Yue S, Pilon P, Phinney B. (2003) Canadian streamflow trend detection: impacts of serial and 612 

cross-correlation. Hydrological Sciences Journal 48(1): 51–64.  613 

 614 

  615 



FIGURES 616 

 617 

  

a) b) 

Figure 1 a) Reference stations for sub-daily stations, b) Reference stations for daily rainfall. 618 

Note the three long term sub-daily stations used in the IFD analysis are also labelled. 619 



 
a) 

 
b) 

 
c) 
Figure 2 Stations (in red) with at least one statistically significant step change in the a) 1-620 

hour, b) 1-day, c) 7-day annual maximum rainfall (using the Mann-Whitney U test) 621 



 
a) 

 
b) 
Figure 3 Stations (in red) with at least one statistically significant step change in a) the 1-day 622 

and b) 7-day annual maximum rainfall (using the CUSUM test with resampling) 623 

  624 



 625 

Figure 4 Example of inadequate identification of non-stationarity using CUSUM test (red line 626 

highlights three distinct epochs of high/low rainfall, while green line demonstrates effect of 627 

splitting the data into two sections for CUSUM test) 628 

  629 



 
a) 

 
b) 

 
c) 
Figure 5 a) number of stations each decade displaying evidence of a step change in 1-day 630 

annual max, b) Stations (in red) with at least one statistically significant step change in the 1-631 

day annual max during 1940-1950 (using the Mann-Whitney U test), c) Stations (in red) with 632 

at least one statistically significant step change in the 1-day annual max during 1970-1980 633 

(using the Mann-Whitney U test) 634 
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b) 

 

c) 

 

d) 

Figure 6 Relationship between IPO and a) total annual rainfall, and annual maximum rainfall 635 

at various durations for b) Brisbane, c) Sydney and d) Melbourne. 636 
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 638 

Figure 7 Difference in rainfall intensity for each duration and ARI. Positive (negative) values 639 

represent an increase (decrease) in rainfall intensity during IPO positive compared to IPO 640 

negative 641 
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