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Abstract

Accurate measurements of rainfall are important in many hydrological and meteorological
applications, for instance, flash-flood early-warning systems, hydraulic structures design,
irrigation, weather forecasting, and climate modelling. Whenever possible, link networks
measure and store the received power of the electromagnetic signal at regular intervals. The5

decrease in power can be converted to rainfall intensity, and is largely due to the attenuation
by raindrops along the link paths. Such alternative technique fulfills the continuous strive for
measurements of rainfall in time and space at higher resolutions, especially in places where
traditional rain gauge networks are scarce or poorly maintained.

Rainfall maps from microwave link networks have recently been introduced at country-10

wide scales. Despite their potential in rainfall estimation at high spatiotemporal resolutions,
the uncertainties present in rainfall maps from link networks are not yet fully comprehended.
The aim of this work is to identify and quantify the sources of uncertainty present in inter-
polated rainfall maps from link rainfall depths. In order to disentangle these sources of
uncertainty, we classified them into two categories: (1) those associated with the individ-15

ual microwave link measurements, i.e., the errors involved in single-link rainfall retrievals
such as wet antenna attenuation, sampling interval of measurements, wet/dry period clas-
sification, dry weather baseline attenuation, quantization of the received power, drop size
distribution (DSD), and multi-path propagation; (2) those associated with mapping, i.e., the
combined effect of the interpolation methodology and the spatial density of link measure-20

ments.
We computed ∼3500 rainfall maps from real and simulated link rainfall depths for 12 days

for the land surface of the Netherlands. Simulated link rainfall depths refer to path-averaged
rainfall depths obtained from radar data. The ∼3500 real and simulated rainfall maps were
compared against quality-controlled gauge-adjusted radar rainfall fields (assumed to be the25

ground truth). Thus, we were able to not only identify and quantify the sources of uncer-
tainty in such rainfall maps, but also to test the actual and optimal performance of one
commercial microwave network from one of the cellular providers in the Netherlands. Er-
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rors in microwave link measurements were found to be the source that contributes most to
the overall uncertainty.

1 Introduction

Accurate rainfall estimates are crucial inputs for hydrological models, especially those em-
ployed for forecasting flash floods, due to the short time scales in which they develop. Rain-5

fall rates can be retrieved from microwave links because rain droplets attenuate the elec-
tromagnetic signal between transmitter and receiver along the microwave link path. The
principles behind rainfall estimates from microwave attenuation were investigated by At-
las and Ulbrich (1977). They established the nearly linear relationship between the rainfall
intensity and the specific attenuation of the signal for frequencies between 10 and 35GHz.10

Messer et al. (2006) and Leijnse et al. (2007) used commercial microwave links to esti-
mate rainfall rates. Note that networks of such links have not been designed for that pur-
pose. In the last decade several studies have developed methods to improve rainfall es-
timates from microwave link measurements (Leijnse et al., 2008, 2010; Overeem et al.,
2011; Schleiss et al., 2013; Chwala et al., 2014). In addition, Goldshtein et al. (2009) and15

Zinevich et al. (2008, 2009, 2010) proposed methods to estimate rainfall fields via commer-
cial microwave networks. Giuli et al. (1991) had previously reconstructed rainfall fields from
simulated microwave attenuation measurements. Overeem et al. (2011) developed an al-
gorithm to estimate rainfall from minimum and maximum received signal levels over 15min
intervals, in which the wet antenna effect is corrected for, and where wet and dry spells are20

identified from the removal of signal losses not related to rainfall by using nearby links.
Rainfall fields can generally be retrieved from commercial microwave link networks at

a higher resolution than rain gauge networks. This holds not only for the spatial resolution
(usually microwave links outnumber rain gauges) but also for the temporal resolution (mi-
crowave link measurements can be obtained for 1 sec, 1min, 15min or daily intervals at25

either instantaneous or minimum-and-maximum samples of Received Signal Level (RSL)
measurements (Messer et al., 2012)). The massive deployment of microwave links provides
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a complementary network to measure rainfall, especially in countries where rain gauges
are scarce or poorly maintained, and where ground-based weather radars are not (yet)
deployed (Doumounia et al., 2014).

Recently, Overeem et al. (2013) obtained 15min and daily rainfall depths from one
commercial microwave link network for 12days for the land surface of the Netherlands5

(∼35000km2; ∼1750 links). They interpolated these rainfall depths to obtain rainfall fields to
be compared against gauge-adjusted radar rainfall maps. Although the associated biases
were small, the corresponding uncertainties were not. The coefficient of determination, i.e.,
the square of the correlation coefficient, between link-based and gauge-adjusted radar rain-
fall maps was 0.49 for the 15min time scale, and 0.73 for the daily time scale. They did not10

explore the sources of error that impeded these correlations to reach higher values, though.
Here, we address this issue with the aim to unravel and understand the sources of error
(and their uncertainties) present in the methodology proposed by Overeem et al. (2013)
to estimate rainfall fields. We split the overall uncertainty in rainfall maps from commercial
microwave networks into two main sources of error: (1) those associated with the individ-15

ual microwave link measurements such as wet antenna attenuation, sampling interval of
measurements, wet/dry period classification, dry weather baseline attenuation, drop size
distribution (DSD), and multi-path propagation; (2) those associated with mapping, that is,
the combined effect of the interpolation methodology and the spatial density of microwave
link measurements. Note that not all the links in the network continuously report data. Only20

the overall effects of measurement and interpolation errors are addressed here, but not all
measurement errors separately.

This paper is organized as follows: Sect. 2 describes the data sets and methodology de-
veloped by Overeem et al. (2013) to estimate rainfall maps, jointly with the methodologies
for this work to derive rainfall maps to identify and quantify error sources. Section 3 com-25

pares the results obtained here with those presented in Overeem et al. (2013). Section 4
highlights our major findings. Finally, Sects. 5 and 6 provide a summary, conclusions and
recommendations.
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2 Materials and methods

2.1 Data

Two categories of data were used: link data, and radar data. These two data sets are fully
independent given that each one originates from a different source: microwave link mea-
surements, and a combination of radar and rain gauge measurements, respectively. Link5

and radar data contain rainfall depths from the 12-day validation period studied by Overeem
et al. (2013), which is spread across the months of June, August and September 2011. This
validation period was selected because of its large number of rainfall events. Figure 1 con-
ceptually illustrates the steps we followed to quantify uncertainties in rainfall maps from link
networks.10

2.1.1 Link data (LINK)

Link data refers to rainfall depths retrieved from measurements of the attenuation of electro-
magnetic signals from one commercial microwave link network in the Netherlands. Overeem
et al. (2011, 2013) thoroughly explain the methodology to convert measurements of the de-
crease in the received power to rainfall depths, with reference to a level representative of dry15

weather. Briefly explained, their methodology is based on four steps: (1) a link is considered
to be affected by rainfall if the received power jointly decreases with that one of nearby links;
(2) a reference signal level representative of dry weather, i.e., the median signal level of all
dry periods in the previous 24 h is determined, and the signal subtracted from this reference
level; the result is the attenuation estimate; (3) microwave links for which accumulated (over20

one day) specific attenuation deviates too much (from that one of nearby links) are excluded
from the analysis; (4) 15min average rainfall intensities are computed from a weighted av-
erage of minimum and maximum rainfall intensities obtained by a power-law correlation of
specific attenuation (Atlas and Ulbrich, 1977). These rainfall intensities are expressed as
path-averaged rainfall depths, and are assumed to be representative of the rainfall across25

the link path. Full details of the algorithm can be found in Overeem et al. (2011, 2013).
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Data from up to 1751 link paths are available, with path lengths from 0.13 to 20.26km, and
frequencies from 12.8 to 39.4GHz (Fig. 2). It is also clear that the network is designed such
that the link frequency decreases as path length increases, mainly because low-frequency
links suffer less from rain attenuation.

Figure 3 presents the spatial distribution of one commercial link network from one of the5

providers in the Netherlands, as well as the temporal availability for each link path. Due
to data storage problems, wet/dry classification, and outlier removal, it is not feasible to
have link data for all the possible link paths in the network (1751) for every time step. The
temporal availability per link varies from 0.9 to 99.9%, with a global average over the entire
12-day dataset of 83.5%.10

The spatial distribution of the network has two characteristics: (1) there is a strong con-
trast between urban and rural areas with regard to the spatial distribution of the network;
and (2) there are gaps in the network, because of complete absence of link data or low
data availability. Analyses of the link path orientations show no preferred orientations, i.e.,
a uniform distribution (such analyses are not presented in this paper).15

2.1.2 Radar data

Radar data is taken from the climatological rainfall data set1 of two C-band Doppler weather
radars operated by the Royal Netherlands Meteorological Institute (KNMI) (Overeem et al.,
2009a, b, 2011). The composite image of rainfall depths has a temporal resolution of 5min,
and a spatial resolution (pixel size) of 0.92km2 (rounded to 1km2 in figures, tables, and20

subsequent analyses), for the entire land surface of the Netherlands (38063 pixels). This
composite image is adjusted with rainfall depths from one automatic and one manual rain
gauge network (32 and 325 gauges, respectively) also operated by KNMI. The spatial and
temporal resolution, and its accuracy, make this data set a reliable source of rainfall data.
We used the same radar data set as in Overeem et al. (2013).25

1KNMI climatological rainfall data sets are freely available at the IS-ENES climate4impact
portal: http://climate4impact.eu/impactportal/data/catalogbrowser.jsp?catalog=http://opendap.knmi.
nl/knmi/thredds/./radarprecipclim.xml.
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2.2 Simulated link rainfall depths

Simulated link rainfall depths are averages of radar data based on the topology and time-
availability features of the link network. The purpose of simulated link rainfall depths is
twofold: (1) to evaluate the performance of the link network assuming that all links provide
perfect measurements of path-averaged rainfall at the 15 min interval; (2) to evaluate the5

performance of the link network if all links would be available all the time.
Because link data was obtained in intervals of 15min, sets of three consecutive 5min

radar composite images were summed up on a pixel-by-pixel basis. The simulation allows
us to separate mapping errors from other errors. For detailed studies on the effects of link
length and frequency, temporal sampling, power resolution, and wet antenna attenuation in10

link measurements see Leijnse et al. (2008, 2010). After the addition of 5min radar com-
posite images, the link network topology was overlaid on the 15min radar composite image,
and all pixels under every single link path were selected. Then, for every link path and its
associated pixels, rainfall depths were averaged. This was a weighted average in which the
weight was taken as the fraction of the total link path that overlaps one radar pixel. For15

instance, if a 1 km link path was located 0.6km over one pixel and 0.4km over a contiguous
pixel, the average rainfall depth was the sum of 60% of the first pixel’s rainfall depth plus
40% of the second pixel’s rainfall depth.

Not all link data is available for all the possible link paths in the network (1751) at every
time step. In addition to the performance of the actual topology of the network, the complete20

availability of radar data allowed us to simulate the optimal performance of the link network,
i.e., the performance that could theoretically be achieved if all links (1751) would be available
all the time.

2.3 Rainfall maps

The rainfall depths from actual link measurements and both types of simulation (actual25

and 100% network availability) were spatially interpolated to obtain 15min rainfall maps
with a spatial resolution of 1km2. In all rainfall maps the land surface of the Netherlands
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was represented by 38063 pixels. For any given time step, interpolated rainfall maps were
compared on a pixel-by-pixel basis against the radar rainfall fields. Hence, 15min rainfall
maps were obtained for the 12-day validation period, i.e., 1152 rainfall maps in total for each
of the four sets of rainfall maps considered (namely radar, actual links, simulated links with
partial availability, and simulated links with 100% availability). In subsequent figures and5

tables, these four datasets will be identified as “RADAR”, “LINK”, “partSIM”, and “fullSIM”,
respectively (see Fig. 1). 15min rainfall maps were accumulated to daily rainfall maps, i.e.,
12 daily rainfall maps per data set.

Ordinary Kriging (OK) was employed to generate rainfall maps, because it is the simplest
and most straightforward method that accounts for the local variability of the stochastic10

process, rainfall in this case (Cressie, 1990; Haining et al., 2010). Kriging is ideally suited
for interpolation of highly irregularly-spaced data points. Nevertheless, this method comes
with its own limitations, and a number of assumptions should be made for the method to be
valid, e.g., isotropy and statistical stationarity. These assumptions are further explained in
Sect. 6. The path-averaged link rainfall estimates are assigned to the point at the center of15

the link, so that these point data can be used in the OK interpolation. This conversion from
line-scale to point-scale data is part of our mapping method, and hence errors resulting
from this conversion are part of the mapping uncertainty.

Any kriging method heavily relies on the function that describes the spatial covariance,
i.e., the semivariogram. The semivariogram is a continuous function that describes how20

the spatial dependence of a random variable changes with distance and direction (Isaaks
and Srivastava, 1989, chap. 7). Like Overeem et al. (2013), we chose the semivariogram
approach of van de Beek et al. (2011) because it is a simple isotropic spherical model de-
veloped for the Netherlands on the basis of a 30-year climatological rainfall data set. van de
Beek et al. (2011) concluded that the seasonality in range and sill of the semivariogram can25

be described by cosine-function models with the day-of-year as the independent variable.
Note that they assumed the nugget to be zero. van de Beek et al. (2012) also developed
two methodologies that allowed for the spherical semivariogram to be downscaled from
daily to hourly time steps. We chose their second methodology, namely power-law scaling
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of cosine function parameters, because it was shown to perform better. This downscaling
methodology was based on hourly rainfall data aggregated to 2, 3, 4, 6, 8, 12 and 24h. Here
we extended this power-law downscaling to smaller time scales, namely 0.25h, i.e., 15min.

For the LINK, partSIM, and fullSIM datasets, 15min rainfall maps were obtained as fol-
lows: first, the spherical semivariogram parameters were computed and downscaled for the5

given day of the year. Hence, a single semivariogram is applied to all 15min time steps
within that given day. The nugget was defined as 10% of the sill. Second, rainfall depths
were assigned to the coordinates of the link paths’ middle points. Third, rainfall depths were
interpolated over the spatial grid of the radar data set. The interpolation algorithm always
selects the closest 100 rainfall depths to the pixel for which the interpolation is carried out.10

This selection was established to speed up the interpolation process. 24h rainfall maps
were obtained from the aggregation of 15min rainfall maps.

2.4 Error and uncertainty metrics

To quantify the uncertainty in rainfall maps from microwave link networks, we used three
metrics: (1) the relative bias, (2) the coefficient of variation, and (3) the coefficient of deter-15

mination.
The relative bias is a relative measure of the average error between the interpolated and

radar rainfall fields (considered to be the ground truth):

relative bias =
Rres

Rradar
=

∑n
i=1Rres,i∑n
i=1Rradar,i

(1)

where Rres,i =Rint,i−Rradar,i20

In Eq. (1), n represents all possible pixels and time steps for the 12-day validation period.
The coefficient of variation is a dimensionless measure of dispersion, which is defined as

the standard deviation divided by the mean (Haan, 1977). In this case we took the standard
deviation of the residuals divided by the mean of the reference field, i.e., the mean of the
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radar rainfall field:

CV =

√
1

n−1

∑n
i=1

(
Rres,i−Rres

)2
Rradar

(2)

The coefficient of variation is a measure of uncertainty (similar to the root mean squared
error). For instance, a CV = 0 would indicate a hypothetical case with no bias and no un-
certainty, i.e. a case in which all data points would fall exactly on the 1 : 1 line.5

The coefficient of determination is a measure of the strength of the linear dependence
between two random variables, interpolated and radar rainfall depths, in this case. It is
simply defined as the square of the correlation coefficient between the interpolated and
radar rainfall depths:

r2 =

[∑n
i=1

(
Rradar,i−Rradar

)
·
(
Rint,i−Rint

)]2[∑n
i=1

(
Rradar,i−Rradar

)2] · [∑n
i=1

(
Rint,i−Rint

)2] (3)10

The coefficient of determination represents the fraction of the variance of the reference
variable that can be explained by a linear regression. In a case of perfect linear correlation,
i.e., r2 = 1, all data points would fall on a straight line without any scatter. Hence, the linear
regression would be able to explain 100% of the variance of the reference variable in that
case. However, perfect linearity does not imply unbiased estimation because the regression15

line could not necessarily coincide with the 1 : 1 line, even if it captures all variability.

3 Results

From the actual and simulated link rainfall depths, rainfall maps were obtained for three
cases: (1) 15min rainfall maps from interpolation of 15min rainfall depths; (2) 24h rainfall
maps from the sum of these 15min rainfall maps; and (3) 15min rainfall maps from interpo-20

lation of 15min rainfall depths, in which each pixel (interpolated rainfall depth) was averaged

10
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with the surrounding pixels within a 9×9pixel-square. The reason for this posterior average
of the rainfall depths was to limit representativeness errors in time (Overeem et al., 2013).
Incidentally, this area (∼81km2) roughly corresponds to the spatial extent of typical water
management units in the Netherlands.

Appendix 6 presents five examples of 24h and 15min rainfall maps. Overeem et al. (2013,5

Supporting Information) showed daily comparisons between actual link rainfall maps and
radar rainfall fields for the 12-day validation period. Here, we present five of those 12 cases
for reference. These comparisons are extended to both types of simulated link rainfall maps
(actual and 100% network availability) (Fig. 7). Five comparisons of 15min rainfall maps are
also presented (Fig. 8). These examples provide information on the improvement in rainfall10

fields when the sources of error studied here are removed.
For any given time step, interpolated rainfall maps were compared on a pixel-by-pixel

basis against radar rainfall fields. This pixel-by-pixel comparison was done via scatter den-
sity plots of interpolated against radar rainfall depths (ground-truth). Figure 4 presents an
array of scatter plots, for the three cases of spatiotemporal aggregation, for the actual and15

both types of simulated link rainfall depths (actual and 100% network availability). Each of
the scatter plots in Fig. 4 corresponds to all 15min (or 24h) rainfall maps within the 12-day
validation period. These plots show paired rainfall depths of interpolated and radar rainfall
maps, for any pair in which the radar rainfall depth is larger than 0.1mm.

The scatter density plot of Fig. 5 corresponds to the actual and simulated link rainfall20

depths (actual availability) at the locations of the links, i.e., before any interpolation was
applied. Only those pairs for which at least one rainfall depth exceeded 0.1mm were plotted.

Table 1 summarizes the values of the relative bias, the coefficient of variation (of the
residuals), and the coefficient of determination (i.e., the squared correlation coefficient) for
the three cases of spatiotemporal aggregation, for the actual and both types of simulated25

link rainfall depths.
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4 Discussion

From left to right and from top to bottom, the general picture that arises from Fig. 4 and
Table 1 is: (1) a reduced systematic error (relative bias); (2) a smaller random error (CV);
and (3) a stronger linear dependence (r2). This suggests a general improvement of the
interpolated link rainfall depths with respect to the radar rainfall depths, as more sources of5

error are removed from the analysis.
Figure 4a, d and g show the relation between the actual link and radar rainfall depths, for

the three cases of spatiotemporal aggregation. The scatter in these plots can be attributed
to all possible sources of error in rainfall maps from microwave link measurements, i.e.,
those associated with the link measurements themselves and those associated with the10

interpolation of individual measurements (mapping).
The dark blue shading close to the 1 : 1 line for small rainfall depths in all panels of

Fig. 4 indicates a good agreement between rainfall estimates from microwave links and
radar (note that the color scale is logarithmic). Conversely, for larger rainfall depths the
scatter seems to relatively increase for the actual link measurements (panels a, d, g), while15

it decreases for the simulated link measurements (all other panels). Such deviations must
be the result of errors in individual link measurements as well as the combination of limited
spatial coverage of the link network (Fig. 3) with the strong variability of rainfall in space.
The relative contribution of the measurement errors to the total error hence increases with
rainfall amounts.20

From Fig. 4 and Table 1, it is clear as well that the relative bias is most sensitive to the
spatial and temporal aggregation level. If all paired rainfall accumulations would have been
used (and not only those in which at least the radar rainfall depth exceeds 0.1mm) one
would expect the relative bias to be exactly the same for all aggregation levels, because
both aggregation and computation of the bias are linear operators (Eq. 1).25

There is a limited improvement in terms of the coefficients of variation and determination,
when the scatter plots in the second column of Fig. 4 are compared to those in the third col-
umn, as well as their respective statistics in Table 1. This means that the main reduction of
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uncertainty is achieved when the actual link measurements are replaced with the simulated
microwave link measurements, rather than to increase the actual link network availability to
100% for all links. This implies that a significant fraction of the overall uncertainty must be
due to errors and uncertainties in the link measurements themselves, rather than due to
errors and uncertainties associated with mapping, at which rainfall maps are reconstructed.5

Figure 4c, f, and i and the last column of Table 1 indicate the best possible performance
that can be achieved with the employed link network (if all links would yield perfect mea-
surements of path-averaged rainfall all the time). The remaining scatter can be attributed to
the interpolation methodology (including the assignment of line-average rainfall intensities
to the link’s centre point), the spatial variability of rainfall, and the effect of other factors10

such as the variable and limited density of the link network (more links in urban than in rural
areas).

When 15min rainfall depths at the 1 km2 spatial scale (Fig. 4a–c) are summed to daily
rainfall depths (Fig. 4g–i), the discrepancies in rainfall estimates at 15min tend to cancel
each other. This explains the sharp decrease in the coefficient of variation, and the sharp15

increase in the coefficient of determination between 15min and 24h rainfall accumulations,
which implies a certain degree of independence among the errors in the 15min accumula-
tions.

Figure 5 compares simulated against actual link rainfall depths, before any interpolation
was applied. This indicates the performance of the 1751 individual links in terms of rainfall20

retrieval, regardless of the errors and uncertainties introduced by interpolation (mapping).
Note that the coefficient of variation is larger than that of the 1km2, 15min rainfall accumu-
lations presented in panel a of Fig. 4; and that the coefficient of determination is between
those coefficients presented in panels a and d of Fig. 4. If we would assume that rainfall re-
trieval and mapping errors are independent, we would expect the CV in Fig. 4 to be greater25

than that in Fig. 5. This means that there is a clear interplay between these two type of
errors, and that the assumption of independence does not hold. This may be explained by
the fact that we use Kriging with a variogram that includes a nugget. In areas with a dense
link network, the weight of each individual link is relatively small in the computation of the

13
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interpolated rainfall field. This reduces the effect of large errors in a given link. In areas with
lower link densities the nugget of the employed variogram has a similar reducing effect on
large errors.

From Fig. 6 it can be seen that a higher density in the link network guarantees good cor-
relation between the estimated values of rainfall and the ground-truth, and a low coefficient5

of variation of the residuals. From the left panel (Fig. 6a) it can be concluded that lower
link densities also contribute (and in large proportion) to higher correlation coefficients. This
means that without considering errors in link measurements, these latter being the largest
source of uncertainty in country-wide rainfall fields, the network density and the mapping
methodology considered here are, respectively, high and good enough to retrieve accurate10

rainfall fields at such country-wide scales (at least in the Netherlands).

5 Summary and conclusions

Our goal was to quantify the errors and uncertainties in rainfall maps from commercial mi-
crowave link networks. In general, these errors can be attributed to different sources like
wet antenna attenuation, sampling interval of measurements, wet/dry period classification,15

dry weather baseline attenuation, drop size distribution (DSD), multi-path propagation, in-
terpolation methodology and algorithm, the availability of microwave link measurements,
and the variability of rainfall itself across time and space. For the purpose of this paper we
classified all possible sources of error into two categories: (1) those associated with the
link measurements themselves (retrieval algorithm included), and (2) those associated with20

mapping. Only the overall effects of physical and interpolation errors were addressed here;
not all physical errors separately.

To quantify the errors and uncertainties that can be attributed to these two categories,
rainfall maps created from three sets of link rainfall depths were compared: actual link mea-
surements, simulated link measurements with the actual network availability, and simulated25

link measurements with 100% network availability assumed. Simulated link rainfall depths
are not affected by errors and uncertainties attributed to actual link measurements, there-
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fore we could estimate uncertainties attributed to mapping. Based on a pixel-by-pixel com-
parison, interpolated rainfall maps of the Netherlands were compared against radar rainfall
fields (considered to be the ground-truth). These comparisons were carried out on the ba-
sis of scatter density plots and three metrics: relative bias, coefficient of variation (CV), and
coefficient of determination (r2).5

We found that measurement errors themselves are the source of error that contributes
most to the overall uncertainty in rainfall maps from commercial microwave link networks.

In a standard operational framework, data from commercial microwave link networks may
not be continuously available for the entire network. Such data gaps affect the accuracy of
the retrieved rainfall intensities. Because we were able to simulate rainfall depths on the10

basis of radar composites, we could investigate the hypothetical case in which data from
a commercial link network would be available for all time steps, and for all possible link paths
in the network. This best-case scenario could explain an additional 10% of the variance
explained by error-free link measurements with actual network availability for the 15min
accumulation (3% for the 24h accumulation). Note that these percentages are particular15

for the region and period considered in this study. Nevertheless, even the best-case sce-
nario showed a remaining and significant amount of uncertainty that could not be removed
in rainfall maps. This means that the space–time variability of rainfall is such that it would
require an even more dense and robust network of microwave links to generate more accu-
rate rainfall maps at country-wide scales. The uncertainties in link rainfall retrievals found in20

this paper are partly explained by the combined effects of rainfall space variability along the
link, nonlinearity of the retrieval relation, imperfect temporal sampling strategy, quantization
of the received power (data stored in integer number of dBs), and wet antenna attenuation
(and correction) investigated by Leijnse et al. (2008, in particular Fig. 13, upper-right panel
on p. 1487). They reported a CV of ∼1.0, which explains a significant part of the CV (1.44)25

given in Fig. 5. Daily rainfall maps from microwave links showed less uncertainty compared
to 15min rainfall maps, because errors present in 15min rainfall maps tend to cancel each
other when 15min rainfall maps are aggregated.
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6 Constraints and recommendations

The kriging algorithm we used was that of Pebesma (1997); Pebesma and Wesseling
(1998). The interpolated maps from simulated link rainfall depths represent the outcome
of a process in which a linear feature (link path) obtained from the average of volume sam-
ples (radar data) is assigned to a point (link path middle point). Each of these features (area,5

line, volume, point) represents what in geostatistics is referred to as support, i.e., the spatial
resolution at which the random variable is analyzed (Cressie and Wikle, 2011, chap 4.1).
The arbitrary change from line to point support introduces a source of error that is implicitly
included in the errors related to mapping.

Apart from its simplicity and the 30 year rainfall dataset on which it is based, we also10

chose the isotropic spherical semivariogram of van de Beek et al. (2011), because a con-
sistent semivariogram model estimated from link data was not feasible for 15min rainfall
intensities. Isotropic semivariograms assume equal spatial dependence in all possible di-
rections. Rainfall is generally a phenomenon that exhibits anisotropy in time and space
(Lepioufle et al., 2012; Velasco-Forero et al., 2012; Guillot and Lebel, 1999; Amani and15

Lebel, 1997). Nevertheless, it is reasonable to assume isotropy for the Netherlands given
its relative small area and flat topography. OK assumes the mean to be constant and un-
known within the region of interpolation. When this unknown mean presents substantial
changes over short distances, the assumption of statistical stationarity is no longer valid.
Universal Kriging, Kriging with External Drift, and Regression Kriging (RK) are more sophis-20

ticated interpolation techniques that incorporate trends to account for non-stationarity (e.g.,
Schuurmans et al. (2007)). The performance of these geostatistical techniques to retrieve
link rainfall maps was beyond the scope of this research.

If a similar study were to be carried out in a country with different conditions than those
present in the Netherlands, three issues should be considered: (1) the spatial and oper-25

ational configuration of the link network, (2) the climatology of the region where the link
network operates, and (3) the spatial scale at which the analysis is carried out.
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The first issue, the spatial and operational configuration of the link network, refers to
the distribution of link frequencies, lengths, and densities of link networks around the world.
For instance, the commercial microwave link network used in this study has an average link-
path length of 3.1km, a mean frequency of 36.0GHz, and a global average density of 83.5%
across the Netherlands (Figs. 2 and 3). Other regions may have more extensive urban5

and/or rural areas. In particular, for rural areas one expects to find longer link paths, and
therefore lower microwave frequencies. Another issue related to the lower frequencies, e.g.
7GHz, is the low sensitivity to rainfall and the non-linearity of the R–k relationship, mostly
in tropical regions (Doumounia et al., 2014). This non-linearity will lead to biases in rainfall
intensities in cases of large rainfall variability along the link path (positive biases at lower10

frequencies where the exponent of the R–k power law is smaller than 1; see Leijnse et al.,
2010). Thus, the performance of the rainfall retrieval algorithm for such link networks will
differ from the performance found in this study. For instance, in places where link paths are
longer (tens of km) the error due to spatial variability of rainfall along the link path becomes
more important (Berne and Uijlenhoet, 2007; Leijnse et al., 2008, 2010). Moreover, less15

dense networks with long link paths will provide less detailed information about rainfall.
The second issue, the climatology of the region refers to the local pattern of rainfall that

characterizes different regions around the world. The rainfall characteristics of the Nether-
lands are different from the ones encountered in e.g. (sub-)tropical regions. For instance,
the spherical semivariogram model applied here was derived from climatological rain gauge20

data for the Netherlands. Furthermore, rainfall characteristics such as raindrop size distribu-
tions or the distribution of rainfall intensities will affect the optimal values of the parameters
of the retrieval algorithm. Therefore, for regions with different rainfall climatologies than the
Netherlands, variations should be considered not only in the interpolation methodology but
also in the algorithms and their parameters to retrieve rainfall intensities.25

The third issue refers to the spatial scale at which rainfall maps are reconstructed. The
analyses presented here focused on 15min (and 24h) maps at 1 and 81km2, and the differ-
ences in error characteristics are significant. For larger regions, for instance, the uncertainty
attributed to mapping could play a major role in the overall error distribution. Still, the scale
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at which rainfall can effectively be retrieved depends greatly on the density of the under-
lying link network. This means that in regions with a much lower link density than in the
Netherlands, the effective spatial resolution for which rainfall maps can be derived will be
lower.

Appendix: Comparison of 24h and 15min rainfall maps5

In Fig. 7, the LINK column (top and bottom rows – 20110907_08:00 and 20110819_08:00)
shows how daily rainfall depths are greatly overestimated by link data, especially in places
where there is intense rainfall, and the density of the network is higher. Simulated rain-
fall depths (actual availability) show improvement of rainfall fields with regard to link-based
rainfall fields. Conversely to actual link rainfall maps, simulated rainfall fields based on the10

actual availability of the network present a slight underestimation of rainfall depths. Simu-
lated link rainfall fields (actual and 100% network availability) are similar because the effect
of actual or 100% availability among 15min intervals is smoothed out by the sum of 15min
rainfall fields.

Figure 8 shows how accurate rainfall events are captured across the Netherlands at15

15min intervals. Note how the accuracy is improved for the best-case scenario of 100%
network availability (fullSIM column).
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Table 1. Relative bias, and coefficients of variation and determination for the three cases of spa-
tiotemporal aggregation (15min [1km2], 15min [81km2], 24h [1km2]), for the three sets of link mea-
surements, i.e., the actual and both types of simulated link rainfall depths (actual and 100% network
availability).

LINK partSIM fullSIM

Relative bias [%]

15min [1km2] −14.3 −13.0 −9.3
15min [81km2] −9.1 −9.1 −5.6
24 h [1km2] +1.6 −0.8 +0.7

Coefficient of variation – CV

15min [1km2] 1.216 0.871 0.748
15min [81km2] 0.995 0.586 0.435
24 h [1km2] 0.523 0.262 0.224

Coefficient of determination – r2

15min [1km2] 0.366 0.605 0.709
15min [81km2] 0.496 0.770 0.873
24 h [1km2] 0.720 0.903 0.928
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Figure 1. Flowchart to visualize the hierarchical process to identify and quantify uncertainties in
rainfall maps from link networks. From top to bottom: (1–2) raw data is selected and rainfall depths
simulated; (3–4) through the interpolation methodology rainfall maps are obtained; (5) from the com-
parison between rainfall maps scatter plots are created; and (6) from the comparison between these
scatter plots (and their metrics) the error sources are quantified. ε1 and ε2 represent the categories
in which the sources of error are classified. Specifically, ε1 indicates the error from microwave link
rainfall retrievals, and ε2 indicates the error related to mapping. ε∗2 indicates the best-case for the
mapping-related error (i.e., all links are available all of the time). The number between brackets (1–2)
indicates the number of data for every single map or data set.
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Figure 2. Scatter density plot of microwave link frequencies vs. link path lengths for the 12-day
validation period. The color scale is logarithmic.
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Figure 3. Topology of the T-Mobile NL microwave link network used for this study. The color scale of
the microwave network represents the temporal availability of the link data for the 12-day validation
period. The average availability is 83.5%.
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Figure 4. Scatter density plots of interpolated link rainfall depths vs. radar rainfall depths for 15min
and 24 hours. Top row (a, b, c): 15min rainfall depths; middle row (d, e, f): 15min rainfall depths
averaged with the surrounding pixels within a 9× 9 pixel-square; bottom row (g, h, i): daily sum
of 15min rainfall depths. Left column (a, d, g): actual link rainfall maps vs. radar rainfall fields;
centre column (b, e, h): simulated link rainfall maps (actual availability) vs. radar rainfall fields; right
column (c, f, i): simulated link rainfall maps (100% availability) vs. radar rainfall maps. (d) and (g)
are comparable to Overeem et al. (2013). The color scale is logarithmic.
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Figure 5. Scatter density plot of simulated link rainfall depths (actual availability) vs. actual link
rainfall depths for all 15min time steps in the 12-day validation period. Both simulated and actual link
rainfall depths are path-averaged rainfall depths. The color scale is logarithmic.
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Figure 6. Scatter density plots of coefficient of determination (r2) and coefficient of variation (CV)
vs. microwave link density (averaged over 155 km2), for the fullSIM case at 15min and 1 km2 spatial
scale. The color scale is logarithmic.
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Figure 7. Comparison of daily interpolated rainfall maps with regard to radar rainfall fields (ground
truth, left column). The rows show five of the 12 days of the validation period. Daily rainfall maps
were aggregated from 15min rainfall maps. The row labels indicate the end UTC for which the maps
were obtained.
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Figure 8. Comparison of 15min interpolated rainfall maps with regard to radar rainfall fields (ground
truth, left column). The rows show five of the 1152 time steps (cases) present in the 12-day validation
period. The row labels indicate the start UTC for which the maps were obtained.
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