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Abstract

This study investigates the suitability of the Asynchronous Ensemble Kalman Filter
(AEnKF) and a partitioned updating scheme for hydrological forecasting. The AEnKF
requires forward integration of the model for the analysis and enables assimilation of
current and past observations simultaneously at a single analysis step. The results of5

discharge assimilation into a grid-based hydrological model for the Upper Ourthe catch-
ment in the Belgian Ardennes show that including past predictions and observations in
the data assimilation method improves the model forecasts. Additionally, we show that
elimination of the strongly non-linear relation between the soil moisture storage and
assimilated discharge observations from the model update becomes beneficial for im-10

proved operational forecasting, which is evaluated using several validation measures.

1 Introduction

Understanding the behaviour of extreme hydrological events and the ability of hydrolog-
ical modellers to improve the forecast skill are distinct challenges of applied hydrology.
Hydrological forecasts can be made more reliable and less uncertain by recursively im-15

proving initial conditions. A common way of improving the initial conditions is to make
use of data assimilation (DA), a feedback mechanism or update methodology which
merges model estimates with available real world observations (e.g., Evensen, 1994,
2009; Liu and Gupta, 2007; Reichle, 2008; Liu et al., 2012).

Data assimilation methods can be classified from different perspectives. Traditionally,20

we distinguish between sequential and variational methods. The sequential methods
are used to correct model state estimates by assimilating observations, when they be-
come available. Examples of sequential methods are the popular Kalman and particle
filters (e.g., Moradkhani et al., 2005a, b; Weerts and El Serafy, 2006; Zhou et al., 2006).
The variational methods on the other hand minimize a cost function over a simulation25
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period, which incorporates the mismatch between the model and observations (e.g.,
Liu and Gupta, 2007).

A next distinction can be made between synchronous and asynchronous methods.
Synchronous methods, also called three-dimensional (3-D), assimilate observations
which correspond to the time of update. The Ensemble Kalman Filter (EnKF, e.g.,5

Evensen, 2003) is a popular synchronous approach, which propagates an ensemble
of model realizations over time and estimates the background error covariance matrix
from the ensemble statistics. Asynchronous methods, also called four dimensional (4-
D), refer to an updating methodology, in which observations being assimilated into the
model originate from times different to the time of update (Evensen, 1994, 2009; Sakov10

et al., 2010). The Ensemble Kalman Smoother (EnKS) is a common example of an
asynchronous method (e.g. Evensen and Van Leeuwen, 2000; Dunne and Entekhabi,
2006; Crow and Ryu, 2009; Li et al., 2013). The EnKS extends the EnKF by intro-
ducing additional information by propagating the contribution of future measurements
backward in time. The EnKS reduces the error variance as compared to the EnKF15

for the past (Evensen, 2009). EnKS and EnKF are identical for forecasting (including
nowcasting).

The essential difference between a smoother and a filter is that a smoother assim-
ilates “future observations”, while a filter assimilates “past observations”. This implies
that for operational forecasting purposes, we need a filter rather than a smoother.20

A smoother can help improve the model accuracy in the past (e.g. for re-analysis), but
it does not help improve forecast accuracy (Evensen, 2009). Therefore, Sakov et al.
(2010) introduced the Asynchronous Ensemble Kalman Filter (AEnKF), which requires
forward integration of the model to obtain simulated results necessary for the analysis
and model updating at the analysis step using past observations over a time window.25

The difference among the EnKF, EnKS and AEnKF is schematized in Fig. 1.
Sakov et al. (2010) showed that the formulation of the EnKS provides a method for

asynchronous filtering, i.e. assimilating past data at once, and that the AEnKF is a gen-
eralization of the ensemble-based data assimilation technique. Moreover, unlike the
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4-D variational assimilation methods, the AEnKF does not require any adjoint model
(Sakov et al., 2010). The AEnKF is particularly attractive from an operational forecast-
ing perspective as more observations can be used with hardly any extra additional
computational time. Additionally, such an approach can potentially account for a better
representation of the time-lag between the internal model states and the catchment5

response in terms of the discharge.
Discharge represents a widely used observation for assimilation into hydrological

models, because it provides integrated catchment wetness estimates and is often avail-
able at high temporal resolution (Pauwels and De Lannoy, 2006; Teuling et al., 2010).
Therefore, discharge is a popular variable in data assimilation studies used for model10

state updating (e.g., Weerts and El Serafy, 2006; Vrugt and Robinson, 2007; Blöschl
et al., 2008; Clark et al., 2008; Komma et al., 2008; Pauwels and De Lannoy, 2009; Noh
et al., 2011a; Pauwels et al., 2013) or dual state-parameter updating (e.g. Moradkhani
et al., 2005b; Salamon and Feyen, 2009; Noh et al., 2011b).

The Kalman-type of assimilation methods was developed for an idealized modelling15

framework with perfect linear problems with Gaussian statistics, however, it has been
demonstrated to work well for a large number of different nonlinear dynamical models
(Evensen, 2009). It remains interesting to evaluate whether elimination of the non-linear
nature from the model updating can be beneficial. For example, Xie and Zhang (2013)
introduced the idea of a partitioned update scheme to reduce the degrees of freedom20

of the high-dimensional state-parameter estimation of a distributed hydrological model.
In their study, the partitioned update scheme enabled to better capture covariances be-
tween states and parameters, which prevented spurious correlations of the non-linear
relations in the catchment response. Similarly, decreasing the number of model states
being perturbed and updated was suggested by McMillan et al. (2013) to increase the25

efficiency of the filtering algorithm while conserving the forecast quality. Such an ap-
proach was proposed especially to states with small innovations, which in their case
was mainly the soil moisture storage.
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In this study we present a follow-up of the work of Rakovec et al. (2012), in which
discharge observations were assimilated into a grid-based hydrological model for the
Upper Ourthe catchment in the Belgian Ardennes by using the EnKF. Here we scruti-
nize the applicability of the AEnKF using the same updating frequency (i.e. the same
computational costs) as in the previous study. To our knowledge this is the first applica-5

tion of the AEnKF in a hydrological forecasting context. Firstly, the effect of assimilating
past asynchronous observations on the forecast accuracy is analyzed. Secondly, the
effect of a partitioned updating scheme is scrutinized.

2 Material and methods

2.1 Data and hydrological model10

We carried out the analyses for the Upper Ourthe catchment upstream of Tabreux
(area ∼ 1600 km2, Fig. 2), which is located in the hilly region of the Belgian Ardennes,
Western Europe (Driessen et al., 2010). We employed a grid-based spatially distributed
HBV-96 model (Hydrologiska Byråns Vattenbalansavdelning; Lindström et al., 1997),
with spatial resolution of 1km×1km and hourly temporal resolution. The model is forced15

using deterministic spatially distributed rainfall fields, which were obtained by inverse
distance interpolation from about 40 rain gauges measuring at hourly time step. Ad-
ditionally, there are six discharge gauges (hourly time step) situated within the catch-
ment, from which some are used for discharge assimilation and some for independent
validation.20

For a more detailed description of the catchment and model structure and definition
of the hydrological states and fluxes, we refer to Rakovec et al. (2012) and to Fig. 3.
Briefly, for each grid cell the model considers the following model states: (1) snow (SN),
(2) soil moisture (SM), (3) upper zone storage (UZ) and (4) lower zone storage (LZ).
The dynamics of the model states are governed by the following model fluxes: rainfall,25

snowfall, snowmelt, actual evaporation, seepage, capillary rise, direct runoff, percola-
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tion, quick flow and base flow. The latter two fluxes force the kinematic wave model
(Chow et al., 1988; PCRaster, 2014). This routing scheme calculates the overland flow
using two additional model states, the water level (H) and discharge (Q) accumula-
tion over the drainage network. Model parameterization is based on the work of Booij
(2002) and van Deursen (2004).5

In contrast to Rakovec et al. (2012), in the current study we employed the HBV-
96 model built within a recently developed open source modelling environment Open-
Streams (2014), which is suitable for integrated hydrological modelling based on the
Python programming language with the PCRaster spatial processing engine (Karssen-
berg et al., 2009; PCRaster, 2014). The advantage of using OpenStreams (2014) is10

that it enables direct communication with OpenDA (2014), an open source data assim-
ilation toolbox. OpenDA (2014) provides a number of algorithms for model calibration
and assimilation and is suitable to be connected to any kind of environmental model
(e.g., Ridler et al., 2014).

The import and export of hydrological and meteorological data to the system is done15

using Delft Flood Early Warning System (Delft-FEWS, Werner et al., 2013), an open
shell system for managing forecasting processes and/or handling time series data.
Delft-FEWS is a modular and highly configurable system, which is used by the Dutch
authorities for the flood forecasting for the River Meuse basin (called RWsOS Rivers),
in which the Upper Ourthe is located. The current configuration is a stand-alone version20

of RWsOS Rivers, however, it can be easily switched into a configuration with real-time
data import.

2.2 Data assimilation for model initialization

As stated in the introduction, we investigate the potential added value of the Asyn-
chronous EnKF (AEnKF) (Sakov et al., 2010) as compared to the traditional (syn-25

chronous) EnKF for operational flood forecasting. The derivation of the AEnKF
(Sect. 2.2.2) is based on the equations using the same updating frequency (i.e., same
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computational costs, different number of observations) for the EnKF (Sect. 2.2.1), as
among others presented by Rakovec et al. (2012).

2.2.1 Ensemble Kalman Filter (EnKF)

First, we define a dynamic state space system as

xk = f (xk−1,θ ,uk−1)+ωk , (1)5

where xk is a state vector at time k, f is an operator (hydrological model) expressing
the model state transition from time step k−1 to k in response to the model input uk−1
and time-invariant model parameters θ . The noise termωk is assumed to be Gaussian
white noise (i.e., independent of time). It incorporates the overall uncertainties in model
structure, parameters and model inputs.10

Second, we define an observation process as

yk = h(xk)+ νk , (2)

where yk is an observation vector derived from the model state xk and the model
parameters through the h operator (in our case the kinematic wave model generating
discharge). The noise term νk is additive observational Gaussian white noise, with zero15

mean and covariance Rk . For independent measurement errors, Rk is diagonal.
After the model update at time k −1, the model is used to forecast model states at

time k (Eq. 1). The grid-based model states form a matrix, which consists of N state
vectors xk corresponding to N ensemble members:

Xk = (x1
k ,x2

k , . . .,xNk ), (3)20

where

xik = (SNi
1:m,SMi

1:m,UZi
1:m,LZi

1:m,H i
1:m,Qi

1:m)Tk , (4)
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SNi , SMi , UZi , LZi , H i and Qi are the HBV-96 model states of the i th ensemble mem-
ber (Sect. 2.1), m gives the number of grid cells and T is the transpose operator. The
ensemble mean

xk =
1
N

N∑
i=1

xik (5)

is used to approximate the forecast error for each ensemble member:5

Ek = (x1
k −xk ,x2

k −xk , . . .,xNk −xk). (6)

The ensemble estimated model covariance matrix Pk is defined as

Pk =
1

N −1
Ek ET

k . (7)

When observations become available, the model states of i th ensemble member are
updated as follows:10

x
i ,+
k = xi ,−k +Kk(yk −h(xi ,−k )+ ν ik), (8)

where xi ,+k is the analysis (posterior, or update) model state matrix and xi ,−k is the
forecast (prior) model state matrix. Kk is the Kalman gain, a weighting factor of the
errors in model and observations:

Kk = PkHT
k(HkPkHT

k +Rk)−1, (9)15

where PkHT
k is approximated by the forecasted covariance between the model states

and the forecasted discharge at the observing locations, and HkPkHT
k is approximated
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by the covariance of forecasted discharge at the observing locations (Houtekamer and
Mitchell, 2001):

PkHT
k =

1
N −1

N∑
i=1

(xik −xk)(h(xik)−h(xk))T , (10)

HkPkHT
k =

1
N −1

N∑
i=1

(h(xik)−h(xk))(h(xik)−h(xk))T , (11)5

where

h(xk) =
1
N

N∑
i=1

h(xik). (12)

2.2.2 Asynchronous Ensemble Kalman Filter (AEnKF)

The AEnKF should not be considered as a new method, but rather a simple modifi-
cation of the (synchronous) EnKF (Sect. 2.2.1) using a state augmentation approach.10

This means that the i th vector of model states (xik) at time k (see Eq. 4) is augmented
with the past forecasted observations h(xik−1), . . .,h(xik−W ) (i.e., model outputs corre-
sponding to the observation locations) from W previous time steps, which yields

x̃
i
k =


x
i
k

h(xik−1)
h(xik−2)

...
h(xik−W )

 . (13)
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Remember that the size of xik and h(xik−1), . . .,h(xik−W ) can significantly differ: xik con-

tains the complete set of model states, while h(xik−1), . . .,h(xik−W ) contains only the
forecasted observations. Additionally, with the new state definition comes a new aug-
mented observer operator h̃k (in which I, with the corresponding subscript, stands for
identity elements on the diagonal matching the dimensions in Eq. 13), a new aug-5

mented observation vector ỹk and its corresponding observation covariance matrix
R̃k :

h̃k =


hk

Ik−1 0
Ik−2

0
. . .

Ik−W

 , (14)

ỹk =


yk
yk−1
yk−2

...
yk−W

 , (15)

R̃k =


Rk

Rk−1 0
Rk−2

0
. . .

Rk−W

 . (16)10

Having these augmented equations for x̃ik , h̃k , ỹk and R̃k , it is straightforward to carry
out the assimilation in the same manner as presented in Sect. 2.2.1. Note that although
current and past observations are used to construct the augmented state vector in the
Eq. (13), in practice Eq. (8) is solved only to the current state x̃ik (i.e. the indices that
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correspond to xik) and the rest is ignored. The presence of past observation terms
increases the dimension of P̃k and K̃k (see Eqs. 7 and 9) in both directions (rows
and columns). Each column of K̃k corresponds to an observation. The extra column
of K̃k corresponds to the past observations. Hence, it is possible to simply solve the
equations for the first rows, which correspond only to xik . Note that the first rows of5

K̃k also contain the contributions of the past observations to the current state. These
contributions arise from the off-diagonal terms of the augmented covariance P̃k . Finally,
if the time window equals the current single time step, then W = 0 and the AEnKF
problem reduces to the traditional EnKF.

From the operational point of view, it is preferable to have a longer assimilation win-10

dow, because less frequent assimilation eliminates a disruption of the ensemble in-
tegration by an update and a restart. When assimilation is done more frequently, it
will cause considerably higher calculation costs, which can often be a burden for real-
time operational settings (Sakov et al., 2010). The AEnKF uses a longer assimilation
window and assimilates all observations in a single update. This makes the AEnKF15

attractive to be used. The added value of a longer assimilation window will be a subject
for investigation in this work. Especially, it can provide an improved representation of
the time-lag between the internal model states and the catchment response in terms
of the discharge. Such an idea was investigated for example by Li et al. (2013), who
compared the effect of time-lag representation using the EnKF and EnKS.20

2.3 Model uncertainty

In this study, we assume the source of model uncertainty to be the HBV soil moisture,
which provides boundary conditions for surface runoff and represents interaction from
interception, evapotranspiration, infiltration and input uncertainty by rainfall. The uncer-
tainty is represented as a noise term ω as in Eq. (1). Based on expert knowledge, the25

noise is modelled as an autoregressive process of order 1 with a de-correlation time
length of 4 h. The noise process is further assumed spatially isotropic with a spatial
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de-correlation length of 30 km. The noise is assumed to have a spatially uniform SD
of 1 mm. The 2-D noise fields with such statistics were generated by using OpenDA
(2014) toolbox. This parameterization of the noise model ensures that the ensemble
spread in the simulated discharge corresponds well with the control simulations as
presented by Rakovec et al. (2012) (not shown). Ideally, all sources of uncertainty5

should be accounted for in a DA scheme. However, this is not yet a common approach
in operational hydrologic data assimilation. Moreover, as the objective of the current
manuscript is to compare the operational benefits of application of the AEnKF, we kept
the noise model relatively simple. For more work on the effect of noise specification on
DA using complex spatially distributed hydrological models see, Noh et al. (2014).10

2.4 Experimental setup

This section provides a configuration setup of the filtering methods (Sect. 2.2.1
and 2.2.2) to assimilate discharge observations into a spatially distributed hydrologi-
cal model of the Upper Ourthe catchment. The objective is to improve the hydrological
forecast at the catchment outlet (at Tabreux, gauge 1 in Fig. 2) by assimilating up to15

four discharge gauges, numbered as 1, 3, 5, 6 in Fig. 2. Additionally, validation at an
independent location is also performed. The discharge assimilation is done every 24 h,
however, the forecasts are issued every 6 h, i.e. 4 times a day, with different indepen-
dent starting points at 00:00, 06:00, 12:00, 18:00 UTC, which is the same implementa-
tion as used by Rakovec et al. (2012). This study analyses the 8 largest floods peaks20

observed within the catchment since 1998. An overview is provided in Table 1.
The ensemble of uncertain model simulations is obtained by perturbing the soil mois-

ture state (SM) with the spatio-temporally correlated error model (Sect. 2.3). The en-
semble size in this study was defined to be 36 realizations (for computational reasons).
Note that increased ensemble sizes of 72 and 144 realizations did not influence the25

results (not shown). The error in the discharge observations is considered to be a nor-
mally distributed observation error with a variance of (0.1Qobs,k)2 (after e.g. Weerts
and El Serafy, 2006; Clark et al., 2008).
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The experimental setup scrutinizes the problem of asynchronous filtering from two
perspectives. First, we investigate the effect of state augmentation using the past
observations and assimilation of distributed observations on the state innovation
(Sect. 3.1). Furthermore, the choice of which model states are included in the anal-
ysis step to be updated is analysed (Sects. 3.2, and 3.3). This means that besides5

updating all of the model states, we will test two other alternatives. The first alternative
will leave out from the model analysis the soil moisture state (noSM), which is known
to exhibit the most non-linear relation to Q. The second alternative will eliminate all the
model states except for the two routing ones (HQ). The scenarios of the partitioned
state updating schemes are shown in Table 2, including the control run without state10

updating (no update).
The performance of the data assimilation procedure regarding discharge forecasting

is evaluated using the Ensemble Verification System (EVS): a software tool for verify-
ing ensemble forecasts of hydrometeorological and hydrological variables at discrete
locations (Brown et al., 2010), which provides a number of probabilistic verification15

measures. In this study we used three popular measures: the root mean square er-
ror (RMSE), the relative operating characteristic (ROC) score and the Brier skill (BS)
score. We refer to e.g. Wilks (2006); Brown et al. (2010); Brown and Seo (2013), and
Verkade et al. (2013) for exact definitions of these measures. In summary, the perfect
forecast in terms of the RMSE has a value of 0, while positive values indicate errors in20

the same units as the variable. The perfect forecast in terms of the ROC and BS scores
has a value of 1 and values smaller than 1 indicate forecast deterioration.
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3 Results

3.1 The effect of state augmentation and distributed observations on state
innovation

To investigate and understand the effect of augmented operators (Eqs. 13, 14, and
15) on the innovation of spatially distributed model states, we present the following5

example. Figure 4 shows discharge simulations and corresponding discharge obser-
vations at 4 locations within the catchment on 31 December 2002, 00:00 UTC. Note
that the magnitude of the discharge observations is a function of the location within the
catchment; for downstream gauges the magnitude is larger than for the more upstream
gauges. The discharge observations are further distinguished according to the time10

window length of the state augmentation, which is set to W = 0 and W = 11. The first
example represents the traditional EnKF algorithm, while the latter assimilates obser-
vations from a 12 h time window (i.e., 1 current observation and 11 past observations),
which is arbitrarily defined as a half of the 24 h assimilation time window. For some
cases alternative assimilation windows were tested, which did not lead to noticeable15

differences however (not shown).
The mean difference between the forecasted and updated model states for the whole

ensemble is illustrated in Fig. 5 for four scenarios. These examples improve our under-
standing about the behaviour of the updated model states in relation to the information
content of the observations from two perspectives: (1) the effect of assimilating also20

past observations in addition to observations at the current (analysis) time, and (2) the
effect of assimilating spatially distributed observations into a grid-based hydrological
model.

Let us first consider the traditional EnKF (i.e., no state augmentation with W = 0) to
update all the grid-based model states by assimilating the observation at the catchment25

outlet (gauge 1). We observe that the single observation is measured approximately in
the middle of the simulated ensemble (see the open circle for gauge 1 in Fig. 4). There-
fore, there is hardly any difference between the forecasted and updated model states
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as we show in Fig. 5a. In the second scenario, we still assimilate only one gauge at the
outlet, however, we use the augmented operators with W = 11. Because the mean of
the ensemble simulations is predominantly underestimated as compared to the assim-
ilated observations (see black dots in Fig. 4 for gauge 1), after the update more water
is added spatially equally into the system, as shown in Fig. 5b. In the third scenario,5

we include all 4 gauges being assimilated into the model without any augmentation.
Because the model simulations at the interior gauges are mostly overestimating the
observations, water is removed from the catchment during the update. Moreover, since
the model overestimation is largest at gauges 3 and 6, we can also observe in Fig. 5c
how well the EnKF is capable of identifying corresponding regions in a spatial manner.10

In the fourth scenario (Fig. 5d) we still assimilate all 4 gauges, however we augment the
state with W = 11. We can observe that the innovation of the model states gets even
more spatially differentiated; the updated SM and UZ model states in the downstream
part of the catchment increase the amount of water in the system, while the updated
SM and UZ model states in the upstream part decrease the amount of water in the15

system.
The presented educational examples showed an update for several scenarios start-

ing from the same initial conditions. This enabled a fair comparison between scenarios,
however, the sensitivity of state augmentation needs to be further scrutinized in terms
of its cumulative effect over time.20

3.2 The effect of the four partitioned update schemes and asynchronous
assimilation on forecast accuracy

We present a qualitative interpretation of the hydrological forecasts with a lead time
of 48 h in Fig. 6 for different partitioned state updating schemes as defined in Table 2,
including both a non-augmented state (W = 0) and an augmented state (W = 11). This25

analysis focuses on a characteristic winter flood event (December 2002–January 2003)
being typical for a moderate temperate climate caused by a fast-moving frontal strat-
iform system (Hazenberg et al., 2011). We observe that the ensemble of the control
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runs (top panel of Fig. 6) simulates the major flood peak reasonably well, including
the timing and the magnitude. When discharge assimilation is employed, an overall
reduction of the uncertainty in the forecasted ensemble is observed. Nevertheless, the
forecasted flood peak becomes underestimated and the forecasted recession remains
overestimated, which is acceptable because of the defined uncertainty in the observed5

discharge. This happens in particular for the scenario in which all states are updated;
there are marginal differences between the non-augmented and augmented model
states. Furthermore, when we leave out SM from the state update (noSM), we can
observe that the major flood peak is forecasted more accurately, including the rising
limb around 31 December 2002. Moreover, for the augmented state with W = 11, the10

ensemble spread becomes somewhat wider for lead times exceeding 12 h than for the
non-augmented state. Nevertheless, the observations correspond approximately with
the ensemble mean. Finally, we present the effect of the scenario in which only the two
routing states are updated. The results suggest that the flood peak is captured most ac-
curately of all scenarios, however with somewhat wider uncertainty bands. Therefore,15

it seems more appropriate to exclude the UZ storage (noSM scenario) in the model
state updating, which represents water storage available for quick catchment response
in the concept of the HBV model.

Besides a qualitative interpretation of the forecasted hydrographs presented in Fig. 6
for one particular event, we summarize these results in a more quantitative manner for20

the whole set of 8 flood events (see Table 1) in terms of the root-mean-square-error
(RMSE) vs. lead time. This is shown in Fig. 7a for different partitioned state updating
schemes and for three scenarios for the state augmentation at the catchment out-
let (Tabreux). The control model run with no update has a constant RMSE of about
32 m3 s−1 and an improved hydrological forecast has a RMSE lower than the control25

run. The results suggest that all assimilation scenarios improve the hydrological fore-
cast, however with marked differences between the scenarios.

We can observe that updating all model states except for SM (noSM scenario) con-
sistently leads to the most accurate forecasts across the whole range of lead times.
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Additionally, state augmentation using W = 5 and W = 11 indicates improvements com-
pared to the case without augmentation (W = 0). However, for lead times longer than
the travel time from the most upstream gauges to the outlet (i.e. exceeding 20 h), the dif-
ference between state augmentations W = 5 and W = 11 diminishes. Moreover, when
only the two routing states (HQ scenario) are updated, the RMSE is lowered for short5

lead times, but the improved effect does not last as long as for the noSM scenario.
The smallest improvement at shorter lead times is achieved when all model states are
updated (scenario all). This is due to the strongly non-linear relation between the as-
similated observations and the SM storage, which is further articulated by the time-lag
between the state and the catchment response. Nevertheless, for longer lead times it10

seems slightly better to update all states rather than only the routing states.
Validation of the model setup in terms of the RMSE is presented in Fig. 7d for an

independent evaluation of the forecasting results at Durbuy, an interior location, which
was not used for assimilation. These results show that an improvement of discharge
assimilation also occurs at the validation location and that the pattern corresponds well15

to the results presented in Fig. 7a. Such an analysis indicates that there is no spurious
update of the model states.

To present the results in a more robust way, we also analyzed them (at Tabreux) in
terms of other probabilistic verification measures: the relative operating characteristic
(ROC) score and the Brier skill (BS) score (see Fig. 7b, c). Recall that values of 120

represent a perfect forecast, while values smaller than 1 indicate forecast deterioration.
Similar to the RMSE results, updating only the two routing states (HQ) is most efficient
for short lead times, but this skill disappears quickly for longer lead times. In terms of
the ROC and BS scores, for a given augmentation size, there are marginal differences
between the scenarios which update all states (all) and which leave the soil moisture25

out (noSM). However, it is notable that the state augmentation case (W = 11) improves
the forecast performance as compared to the no augmentation case (W = 0). Note that
the state augmentation of W = 5 was not carried out.
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3.3 Temporal nature of model state innovations

To reveal the temporal nature of the model being updated using the AEnKF, using
W = 0 and W = 11, we present in Fig. 8a and b time series of normalized differences
between the ensemble means for the 3 partitioned update schemes and the ensemble
mean for the no update scenario. The normalization is achieved by dividing the afore-5

mentioned difference by the no update scenario mean. In such a way we obtain the
relative change in each of the model states. For the AEnKF using W = 0 (Fig. 8a), we
can observe that for the scenario “all”, which updates all the model states, the magni-
tude of the percentage change is approximately the same for all 4 model states and
ranges up to 25 %. When all model states except for the SM are updated, no changes10

in the SM storage occur and the overall magnitude of the changes in the other states
is slightly decreased and smoothed. Furthermore, when only the two routing states are
updated (HQ), the SM and UZ storages remain constant over time and we observe
a different temporal behaviour of the routing states in comparison with the previous
cases. For the HQ scenario, the updated time series have a clear zigzag shape, which15

indicates that the effect of updating diminishes faster, because only the river chan-
nel is updated. In contrast, the routing states for the other cases show a more stable
behaviour over time, illustrated by the stepwise shape. These more persistent results
correspond to the updates in the UZ storage, which is used for a quick catchment re-
sponse and has an impact for a longer time. The benefits of including the UZ storage20

in the update and leaving the SM storage out was already presented from a different
point of view in Fig. 7a for longer lead times.

For the AEnKF using W = 11 (Fig. 8b), we can observe that the overall pattern of
the temporal changes in the model states is similar as for W = 0, but the behaviour
of using W = 11 shows somewhat larger variability. By assimilating more observations25

(W = 11), we expect even a larger update, assuming that more observations contain
more information about the unknown truth. Assuming the underlying forecast model
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has a significant error, by assimilating more observations the Kalman filter will pull the
model even closer to the truth, yielding a larger abrupt update.

4 Conclusions

We applied the Asynchronous Ensemble Kalman Filter (AEnKF) (Sakov et al., 2010)
and identified the effect of augmenting the state vector with past simulations and ob-5

servations. To our knowledge this is the first application of the AEnKF in hydrological
forecasting. We showed that the effect of an augmented assimilation vector improves
the hydrological forecasts, but the contribution gets smaller for longer lead times. Over-
all, the AEnKF can be considered as an effective method for model state updating
taking into account more (e.g. all) observations at hardly any additional computational10

burden. This makes it very suitable for operational hydrological forecasting. When com-
pared to standard EnKF, the AEnKF allows the choice of a certain assimilation window
length, which adds a degree of freedom to the data assimilation scheme. The optimal
window is very likely related to the catchment size (i.e. concentration time). It was noted
(not shown) that for the smaller upstream catchments the optimal window was smaller15

than for the complete Upper Ourthe catchment, although there was no negative effect
of a longer assimilation window (W = 5 vs. W = 11). Note that it was not the objective
of this study to determine the optimal assimilation window for the AEnKF.

We investigated the effect of a partitioned update scheme recently suggested by
Xie and Zhang (2013). We showed that for the Upper Ourthe catchment reducing the20

number of model states of a grid-based HBV model using AEnKF can lead to better
forecasts of the discharge. In terms of the root-mean-square-error, the largest improve-
ments in the forecast accuracy were observed for the scenario where the soil mois-
ture was left out from the analysis (similar to the PDM updating scheme presented by
Moore, 2007). This indicates that elimination of the strongly non-linear relation between25

the soil moisture storage (SM) and assimilated discharge observations can become
beneficial for an improved forecast when soil moisture observations are not consid-
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ered. On the other hand, it was recently demonstrated that hydrological model in op-
erational settings can be improved when constrained by remotely sensed soil moisture
(e.g., Alvarez-Garreton et al., 2014; Wanders et al., 2014a, b) or in-situ soil moisture
(e.g., Lee et al., 2011). Moreover, we showed that keeping the quick catchment re-
sponse storage (upper zone; UZ) in the model analysis is important, especially for5

longer lead times, when compared to the scenario in which only two routing storages
were updated. The UZ seems to compensate the effect of SM on discharge. The fact
that excluding SM extends the improvements suggests that in our case the discharge
forecasts with a lead time of two days (and for major flood events) are less dependent
on SM. A possible alternative to excluding the SM storage from the analysis, would be10

to investigate the use of other algorithms, for example the Maximum Likelihood Ensem-
ble Filter (MLEF) (Zupanski, 2005; Rafieeinasab et al., 2014), which is more suited for
use with highly non-linear observation operators.
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Table 1. Overview of the periods used in this study.

Period Number of Maximum observed
events discharge [m3 s−1]

23 Oct 1998–15 Nov 1998 1 210
15 Feb 1999–5 Mar 1999 2 195
15 Jan 2002–6 Mar 2002 4 340
21 Dec 2002–7 Jan 2003 1 380

3194

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/3169/2015/hessd-12-3169-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/3169/2015/hessd-12-3169-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
12, 3169–3203, 2015

Asynchronous
filtering for

hydrological
forecasting

O. Rakovec et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 2. Four partitioned state updating schemes (indicated in the first column) for 5 model
states (indicated in the first row) being updated and thus included in the model analysis. Model
states are described in Sect. 2.1 and Fig. 3 and have following acronyms: discharge (Q), water
level (H), soil moisture storage (SM), snow storage (SN), upper zone storage (UZ), and lower
zone storage (LZ).

Name Q H SM SN UZ LZ

No update
all

√ √ √ √ √ √

noSM
√ √ √ √ √

HQ
√ √
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Updates

Updates

Time

Time

Figure 1. Illustration of the model updating procedure for the Ensemble Kalman Filter (EnKF),
the Ensemble Kalman Smoother (EnKS), and the Asynchronous Ensemble Kalman Filter
(AEnKF). The horizontal axis stands for time, observations (d1, d2, d3, d4) are given at regular
intervals. The blue arrows represent forward model integration, the red arrows denote introduc-
tion of observations and green arrows indicate model update. The magenta arrows represent
the model updates for the EnKS, therefore they go backward in time, as they are computed
following the EnKF update every time observations become available. The green dotted arrows
denote past observations being assimilated using the AEnKF. The schemes for the EnKF and
the EnKS are after Evensen (2009).
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Figure 2. Topographic map of the Upper Ourthe (black line) including the river network (blue
lines), rain gauges (plusses), six river gauges (white circles labeled with numbers: 1 = Tabreux,
2 = Durbuy, 3 = Hotton, 4 = Nisramont, 5 = Mabompre, 6 = Ortho). Projection is in the Universal
Transverse Mercator (UTM) 31N coordinate system. After Rakovec et al. (2012).
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Figure 3. Left: catchment discretization using a grid-based approach including the channel
delineation. Arrows indicate flow direction. Right: schematic structure of the HBV-96 model for
each grid cell. Model states are in bold and model fluxes in italics (after Rakovec et al., 2012).

3198

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/3169/2015/hessd-12-3169-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/3169/2015/hessd-12-3169-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
12, 3169–3203, 2015

Asynchronous
filtering for

hydrological
forecasting

O. Rakovec et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
is

ch
ar

ge
 [m

3 s−1
]  

   
   

   
   

   
   

   
   

   
   

   
  

0

50

100

150
●

●
●

●
●

●
● ● ● ● ● ● ●

gauge 1

●
● ● ● ● ● ● ● ● ● ● ● ●

gauge 3

                                       Time [h]

29Dec02 31Dec02

0

50

100

150

●● ● ● ● ● ● ● ● ● ● ● ●

gauge 5

29Dec02 31Dec02

●● ● ● ● ● ● ● ● ● ● ● ●

gauge 6

Figure 4. Discharge ensemble forecasts (grey lines) and observations (points) at four locations
(gauges 1, 3, 5, 6; see Fig. 2). Observations being assimilated using the AEnKF are schema-
tized according to the state augmentation size for two scenarios: assimilation of data from the
current time step W = 0 (open circle, traditional EnKF approach) and assimilation of data in-
cluding the previous 11 time steps, W = 11 (black dots). The observations are assimilated into
the model states on 31 December 2002, 00:00 UTC.
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Figure 5. Mean difference between the forecasted (X−) and updated (X+) model states on 31
December 2002 at 00:00 UTC for different scenarios (shown in vertical panels). We show only 4
sensitive model states: discharge (Q), water level (H), soil moisture (SM) and upper zone (UZ).
We dropped out the insensitive lower zone (LZ). Notation W = 0 and W = 11 indicates the size
of the state augmentation. Notation up.all indicates that all of the model states are updated.
Notation as.“xx” indicates the gauges which are assimilated, see Fig. 2 for their locations. The
corresponding ensemble of model forecasts and observations being assimilated are shown in
Fig. 4.
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Figure 6. Ensemble of discharge forecasts for a typical event at the catchment outlet (Tabreux,
gauge 1) for different updating scenarios. The control run (with no update) is shown in the top
panel. The combined effect of the model states being updated (3 scenarios shown in rows)
and the length of the state augmentation vector (W ) of past observations being assimilated (2
scenarios in columns) is presented. The observations are shown in black. Gauges 1, 3, 5, and
6 are assimilated.
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Figure 7. (a) Root-mean-square-error (RSME), (b) Relative operating characteristic (ROC),
and (c) Brier skill score (BSS) at Tabreux (gauge 1) for different discharge observation vectors
for which different model states are updated and with different lengths of the state augmentation
vector (W ) of past observations being assimilated. The results incorporate a set of 8 flood
events shown in Table 1. Gauges 1, 3, 5, and 6 are assimilated. For BSS, the reference forecast
is the sample climatology and only values larger than the 25th percentile of the whole sample
are considered. (d) Same as (a) but the results are presented for Durbuy (gauge 2), a validation
location which is not assimilated.
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Figure 8. Scaled difference between the ensemble mean for the 3 partitioned update schemes
and the control run without data assimilation at 4 gauging locations (shown by different col-
ors) within the Upper Ourthe catchment using the AEnKF with (a) W = 0 and (b) W = 11. We
dropped out the insensitive lower zone (LZ). Gauges 1, 3, 5, and 6 are assimilated. The results
correspond to the same period as presented in Fig. 6.
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