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General Comments:  

This manuscript titled “Operational aspects of asynchronous filtering for hydrological 
forecasting” compares the traditional Ensemble Kalman fitler (EnKF) with its 
modified version, asynchronous EnKF (AEnKF). The main difference is in the update 
step, with the traditional EnKF using observation data from a single time step whereas 
the AEnKF uses observation data from multiple time steps in the past.  

The paper is well written and structured in a systematic manner. The results clearly 
support the findings and make an important contribution to the data assimilation 
literature.  

Authors’ response: We appreciate that Referee #1 sees our manuscript as well 
written, systematically structured and making an important contribution to the DA 
literature. We discuss and answer her/his comments in detail below.  

However, my main concern is how to identify the specific contribution from the 
AEnKF approach. That is, are the improvements in the discharge forecast purely from 
using multiple data points in the past at the update stage?  

Authors’ response: Figure 7 shows the forecast accuracy of three different numbers 
of data points in the past (W=0, 5 and 11). This figure shows clearly that the 
differences in the forecast improvement of these various setups are purely due to 
using multiple data points in the past at the analysis step. We will stress this more 
clearly in the revised manuscript. [see LINES 532-535, also 377-379 + 424-426] 

This question arises from the observation (in Figure 7) that the forecast improvements 
in the AEnKF are very systematic for most lead times. Given that the forecast 
improvements are systematic, I think it is safe to say that the improvements at the 
update stage are also systematic. If this is true, that means that there is a linear 
relationship between the updates made with a single observation data and those made 
with multiple data points in the past. Practically, this is unlikely because you expect 
different levels of updates especially for transition periods like dry to wet and vice-
versa (or low to peak flows and vice-versa). 

Authors’ response: Results in Figure 7 show the average behavior (over many 
forecasts) of an improved initial state on the forecast accuracy of the different filters. 
We agree that updates may vary in time. This is a valid approach, since data 
assimilation is expected to improve forecasts in an average sense. What we see is in 
line with many other DA studies that show a similar kind of behavior (not only in 
hydrology). That the improvements in forecast accuracy decay with lead time in a 
systematic fashion is to be expected. It would be very strange if they wouldn’t, as the 
model slowly returns to the model climatology each time a forecast is made (no 
observations, so no updating). This is not a sign that a constant bias is present, but a 
sign that an update of the initial condition lasts for a while. [see LINES 517-522] 



On a related note, the level of improvement from EnKF to AEnKF seemed to be 
relatively constant irrespective of the lead time (Figure 7). For me this is a worrying 
sign because it looks as if you are able to identify and quantify this constant 
difference (maybe call it bias) then you can get a better forecast. In other words, the 
AEnKF seemed to have a better treatment of bias. It will be interesting to know how 
the AEnKF will perform for low flows, normal flows, and peak flows independently. 
That is, will updating the model with multiple data points in the past always have a 
positive impact on forecasts made during low and peak flows? 

Authors’ response: We will state in the revised manuscript that for the high flows, the 
AEnKF with a longer time window W is able to make corrections that last longer on 
average (this is not a constant bias) with respect to the shorter time window W.  
Additionally, we will change the title to “Operational aspects of asynchronous 
filtering for flood forecasting” [see TITLE], to emphasize that the presented study 
investigates high flows only. We agree with the reviewer that characterization of the 
statistical properties of the temporal flow dynamics (i.e. typical time scales of flood 
peaks as compared to low flows) is a relevant issue. The length of the time window W 
has to be seen relative to the time scale of the river flow dynamics. We assume that 
for low flow conditions, the improved skill of longer W with respect to shorter W will 
become negligible, as low flows exhibit less temporal dynamics than high flows. [see 
LINES 650-660] 
 
 
I think these are important questions the authors need to address, even if they do not 
have results to support it at least a clarification is needed about which conditions their 
methodology will mostly apply. 

In Figure 6, the no-update looked pretty accurate and almost comparable to the 
assimilation, but in Figure 7 the evaluation measures for no-update is very poor. This 
is a stunning difference, please clarify. 

Authors’ response: We agree that the no-update scenario matches the magnitude of 
the major peak quite well, although it has quite a large spread. Additionally, when we 
consider the ensemble mean of the no-update scenario with respect to the DA 
scenarios, the accuracy deteriorates. This is shown in Figure 7 for the set of eight 
flood peaks, while Figure 6 shows only one individual peak. [see LINES 483-487]  

 

hess-2015-54: Authors’ response (in blue italics) to comments by Dr. 
Ming Pan (in black). In green we indicate line numbers within the 
latexdiff version of the manuscript (it can be found at the end of this 
pdf document). 

The work titled "Operational aspects of asynchronous filtering for hydrological 
forecasting” by O. Rakovec et al. presented a data assimilation study for river 
discharge simulations using the Asynchronous Ensemble Kalman Filter (AEnKF). 
The experiments are mainly focused on testing the effects of two procedures: lumped 
filter updates against observations from multiple time steps and partial updating of the 
model states. The study is very carefully designed and carried out and the paper is 



well organized and well written. In general, the study and presentation is of fairly 
good scientific quality. I recommend its publication after minor revisions. 

Authors’ response: We appreciate that Referee Dr. Ming Pan finds our manuscript 
well written, carefully designed and well organized. We discuss and answer his 
comments in detail below.  

Here are my main concerns: 

First of all, the AEnKF procedure needs some more justification and clarification. The 
authors described the AEnKF as a "state augmentation". It is not exactly the case 
because it only updates the current state xk and none of the previous ones from xk−1 
to xk−W . (Of course, that probably shouldn’t matter much if we only care about the 
forecasts.) Sakov et al. 2010 claimed that AEnKF is "formally equivalent to EnKS 
solution." This statement is only true if the dynamic system is strictly linear (see 
Equation 17 in Sakov et al. 2010). If the dynamic system is not linear, the step-by-
step updates will make a big difference w.r.t. the lumped updates because the 
nonlinearity errors will accumulate during continuous and unconstrained model 
integration. Is the river routing scheme (kinematic wave) linear? Is the hydrological 
model linear? I guess not because otherwise the ensemble method wouldn’t be used. 

Authors’ response: We describe the AEnKF approach as an augmentation of the state 
matrix with past forecasted observations [see LINES 254-261 + Eq 13]. The Referee 
is correct that xk−1 to xk−W are not included in the augmented state matrix, but we do 
not state that in the manuscript. If past model states would have been included in the 
analysis, we should have spoken rather about a smoother than a filter. Additionally, 
we will acknowledge in the revised manuscript that both the kinematic wave model for 
the routing, and the hydrological model exhibit nonlinear behavior. Additionally, we 
already mention on [LINES 98-102] that although “Kalman-type assimilation 
methods were developed for an idealized modeling framework with perfectly linear 
problems with Gaussian statistics, it has been demonstrated to work well for a large 
number of different nonlinear dynamical models (Evensen, 2009)”. We also add a 
note on the non-linearity of the hydrological as well as the routing scheme [see 
LINES 214-216]. 

Given that, we can say the longer the update window W is, the more nonlinearity 
errors to accumulate. However, longer windows will bring more information to the 
updates. If the nonlinearity is not a problem, then the window should be as long as 
necessary. Pan and Wood 2013 experimented a river discharge assimilation approach 
that resorts to a full and explicit state augmentation over the longest necessary 
window, i.e., across the maximum streamflow travel time of the river basin involved. 
(Their study only works with a fully linear river routing scheme thus is free of 
nonlinearity errors.) 

Authors’ response: We thank the Referee for mentioning the interesting study by Pan 
and Wood (2013). We will include a note on their results in the revised version of our 
manuscript.  [see LINES 660-663] 

It is not clear whether the discharge observations at one gauge station are used to 
update all the grid cells in the entire basin or just those within the subcatchment that 
flows down to that gauge station. This is an important issue because the discharge 



from one gauge does not contain any information about the grid cells outside (i.e. 
downstream) of its own drainage area. Also, are the discharge data from all 6 river 
gauges assimilated altogether simultaneously, or one gauge at a time? The discharge 
from 6 gauges contain information of different lag times with respect to different grid 
cells. See Pan and Wood 2013 for a fully explicit handling of such lags in time and 
space. 

Authors’ response: We assimilated all discharge gauges simultaneously in the case 
study where four gauges (1,3,5,6) were assimilated. This is the same as was presented 
by Rakovec et al (2012). This means that we did not apply any localization method 
here. We will make this clearer in the revised manuscript. [see LINES 341-343]  The 
difference between forecast and analysis of individual model states is shown in a 
spatial manner in Figure 5 for one time instant (see also Figure 4). These results 
illustrate the effect of W and spatially distributed discharge observations on spatially 
distributed innovations. Note that two other gauges (2 and 4) were left out from the 
analysis for validation. 

Another major concern I have is the very short length of the study period. All we can 
see is just one winter event. It is really too short. We can’t even see a robust model 
validation. We can’t see how the DA behaves under other conditions (like low flows). 
This really limits the significance and robustness of any conclusion you can draw 
here. If extension is impossible, the conclusions have too be very carefully 
constrained. 

Authors’ response: Although the exemplary Figures 6 and 8 present results for a 
single flood event, the overall results presented in Figure 7 include all eight flood 
events presented in Table 1, which is also written on [LINES 512-514] and in the 
caption of Figure 7. The Referee is right however that our analysis can be generalized 
only for high flows and not directly for low flow conditions. Therefore, we will 
include a note in the revised manuscript stating that analysis of low flow conditions 
was beyond the scope of the presented study. [see LINES 653-660 + 125+634+636] 
Additionally, we will change the title as follows: Operational aspects of asynchronous 
filtering for flood forecasting. [see TITLE] 
   
I suggest the authors calculate the auto-correlation function of the innovation time 
series. That’s the best way answer Referee 1’s concerns on systematic errors. The 
EnKF types of methods are supposed to correct dynamic errors (i.e. time-random), 
persisting biases are considered static (time-invariant) errors, and they should be 
corrected using static methods. 

Authors’ response: We thank the Referee Dr. Ming Pan for his suggestions,	
  but we do 
not consider calculating the innovation auto-correlations. However, Figure 7 shows 
the RMSE (so +/- corrections contribute similarly) of many forecasts over many 
events. It is impossible to deduce on the basis of Figure 7 that there is a constant bias. 
That the forecast accuracy is decaying with leadtime is common to all DA studies, as 
the model slowly returns to the model climatology. 

Figure 6: I can’t distinguish between the lines of different shades of red (different lead 
times). I can’t even count how many lines there are on the plots. This has to be 
redone. 



Authors’ response: We agree, we will improve quality and readability of Figure 6 in 
the revised manuscript. Color scheme and the size of the figure are adjusted. [see 
FIGURE 6]  
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General evaluation: 

This paper is interesting especially because it tests a methodology for data 
assimilation, the asynchronous Ensemble Kalman Filter, which was not tested yet in 
hydrology. The comparison of this method with EnKF warrants publication in my 
opinion, but one critical point needs to be resolved.  

Authors’ response: We appreciate that Referee #3 finds that the presented analysis 
warrants publication. We discuss and answer her/his comments in detail below.  

It was unclear to me whether in the experiments with EnKF and AEnKF the same 
amount of observations was assimilated. It is logical that assimilating more data 
would give a better result. Can the authors clarify this and also stress this more in the 
paper. 

Authors’ response: The amount of observations being assimilated into the model 
depends on the magnitude of W. We tried to avoid statements suggesting that we did a 
comparison of EnKF and AEnKF, because we rather evaluated AEnKF for different 
lengths of W. We will state more clearly in the revised manuscript that the amount of 
information differs for different values of W. [see LINES 375-377 + 424-426] 

There are other points which make that the assimilation of discharge data in this 
rainfall- runoff model shows significant deficiencies. These are the considered 
uncertainty sources in the experimental set-up, the magnitude of the observation error 
and the normality assumption for the observations, and considering a time lag for 
updating model states with help of discharge data. These limitations should be 
acknowledged in the paper in the abstract and the conclusions. I agree that the main 
new point of the paper is the comparison of AEnKF and EnKF, and that we can live 
with these limitations then, but they should be acknowledged. 



Authors’ response: We will acknowledge these specific limitations (as further 
explained below) more clearly in the abstract and the conclusions.  

Altogether I believe moderate revision is needed. 

Main points: 

Section2.1: We will see later that rainfall is assumed deterministic, whereas all 
uncertainty is attributed to soil moisture. A normal procedure would be to assume 
rainfall uncertain as it is the most uncertain component for predictions with rainfall-
runoff simulations. In spite of what the authors say, in several studies uncertainty in 
rainfall is considered in these studies. I think that this assumption should be more 
critically evaluated in the manuscript and in the discussion and it would be good if the 
authors discuss its implications. It would be good that this decision is also directly 
visible in the abstract and conclusions, as it is important information for the 
experiment. 

Authors’ response: We agree with the reviewer that input uncertainty is a very 
important issue. In previous contributions we investigated the effect of more complex 
ways of perturbing the rainfall and its effect on forecast accuracy (see Rakovec et al., 
2012a,b, Noh et al., 2014). The noise on the soil moisture used in this study more or 
less resulted in similar open loop simulations of the discharge as in the studies by 
Rakovec et al mentioned above. The focus of this manuscript is on the filter itself 
rather than on the effects of the applied noise. We will make this clearer in the revised 
manuscript. [see LINES 8 + 354-360 + 666-670] 

Page 3173, line 16-17: Why was inverse distance weighting used and not kriging? 
Maybe add a short statement. 

Authors’ response: We agree with the Referee that there are other ways of 
interpolating rain gauge observations, such as kriging, which might be more 
appropriate. However, evaluating the benefits of different rainfall interpolation 
techniques was deemed beyond the scope of the study. We used a method used in 
operational practice as this study is also oriented towards operational benefits of 
AEnKF over EnKF. [see LINES 142-146] 

Eq.10-12: It is unclear how discharge is treated here, this is not discussed. But it 
seems that although discharge is typically not normally distributed, this is neglected 
here. At least additional discussion would be important here. 

Authors’ response: We don’t 100% understand the remark made by the Referee. Most 
probably the reviewer feels that we should make a statement about the non-normality 
of the discharge pdf. If that is the case, we already mention on  [LINES 98-102] that 
although “Kalman-type assimilation methods were developed for an idealized 
modeling framework with perfectly linear problems with Gaussian statistics, it has 
been demonstrated to work well for a large number of different nonlinear dynamical 
models (Evensen, 2009)”. 

Page 3180, Line 23: This is a simple error model. Why not uncertain precipitation and 
parameters? This decision warrants more discussion, as already indicated above. 



Authors’ response: As mentioned above, in previous contributions we investigated the 
effect of more complex ways of perturbing the rainfall and its effect on forecast 
accuracy (see Rakovec et al., 2012a,b, Noh et al., 2014). For this study it was 
important that the error model produced reasonable results in the open-loop and did 
not lead to any numerical instability. In the end perturbing the soil moisture has a 
similar effect to perturbing the precipitation. [LINES 354-360]  

Page 3180, Line 26: I suggest showing results from these calculations as for the 
moment the paper is not very large and the number of figures not too high. It is 
interesting to learn how many ensemble members are needed for which type of 
model. For example, it is typically found that for distributed models the number of 
ensemble members has to be larger, especially if parameter estimation is also 
involved. 

Authors’ response: We did not include a figure on the effect of the ensemble size, 
because really negligible differences were observed. Nevertheless, we will include a 
note that such a small ensemble size as presented in the manuscript would not be 
possible if parameter estimation would be involved or if more complex error models 
would be employed. More detailed analysis is left for further research beyond the 
scope of this study. [LINES 364-367]   

Page 3180, Line 27: A discussion on the magnitude of the observation error is needed. 
Literature on observation errors for discharge measurements suggests in general a 
much higher measurement error. 

Authors’ response: We agree that the magnitude of the observation error could be 
even larger, but we followed the approach of Clark et al (2008) and Weerts and El 
Serafy, (2006). The latter explicitly state that a standard deviation of 0.1 represents a 
large error. However, if an even larger observation error would be employed, we 
expect marginal differences in the model performance among individual scenarios (in 
a relative sense). Of course the forecast performance would deteriorate for all, as the 
weight of the observations would become smaller. 

Page 3182, Line 10-16: Sorry if I missed something, probably did not get it right. You 
compare EnKF and AEnKF, where AEnKF assimilates the current observation and 
ten observations for the past. Did you apply EnKF then for this time period at each 
time step when data became available? This would mean, if you applied AEnKF with 
W=10, did you apply EnKF with W=0 eleven times for this period, so that both 
methods ingested the same amount of data. This is needed for a fair comparison, but it 
is not clear to me if this has been done. Please clarify. 

Authors’ response: The amount of observations being assimilated into the model 
depends on the magnitude of W. We tried to avoid statements suggesting that we did a 
comparison of EnKF and AEnKF, because we rather evaluated AEnKF for different 
lengths of W. We will state more clearly in the revised manuscript that the amount of 
information differs for different values of W. [see LINES 375-377 + 424-426] 

Page 3185, Line 1-11: It is unclear how discharge is related to past soil moisture or 
upper zone storage states. If it is used to update current soil moisture the procedure is 
suboptimal I think as discharge will have a higher correlation with past UZ/SM- 
conditions. If the time lag is not considered some of the conclusion (i.e., updating soil 



moisture not important) might be related to this specific set-up. In this case, it would 
be good to add some relaxing statement in the discussion. 

Authors’ response: This is done through the Kalman gain. When the correlation is 
lower the update will be smaller. AEnKF exploits the correlation between the present 
state and the state not only at the previous time step, but also further in the past. 
Therefore knowing the present state is sufficient to determine forecast. It may be 
possible to use the correlation between discharge at the present time and UZ/SM in 
the past for data assimilation, however, this is beyond the scope of this study. 
Nevertheless, we speculate that this will only be useful in a smoothing context (i.e. 
present discharge may bring information on UZ/SM in the past), not in a filtering 
context as in the present study. [see LINES 553-564] 

Page 3188, Line 2: “a rainfall-runoff model” instead of “hydrological model in 
operational settings”. 

Authors’ response: We thank the Referee for suggestion and we will include this 
suggestion. [see LINE 685] 

Figure 6. Extend caption to again mention the different scenarios that are displayed 
here. 

Authors’ response: We will extend the caption of Figure 6 such that it becomes self-
explanatory. Additionally, to improve readability of the figure, the color scheme and 
the figure size were adjusted [see FIGURE 6]  

Figure 7. Not so clear to me as there are a bit too many lines. Maybe you can find a 
better solution. 

Authors’ response: We agree that the current figure is rather small, which is due to 
limited margins of the HESSD layout. We will make sure that the Figure 7 is large 
enough in the final HESS layout, where more space for Figures is provided.  

Editorial: 

P3175, L 1: change to: “(..) as for the EnKF”. 

Authors’ response: We thank the Referee for the suggestion and we will include this 
suggestion in the revised manuscript. [see LINE 195]  

P3176, L9: change to: “(..) the model states of the ensemble member are updated as 
follows:” 

Authors’ response: We will change this to “(..) the model states of the ith ensemble 
member are updated as follows:”. [see LINES 235] 
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Abstract. This study investigates the suitability of the Asyn-
chronous Ensemble Kalman Filter (AEnKF) and a parti-
tioned updating scheme for hydrological forecasting. The
AEnKF requires forward integration of the model for the
analysis and enables assimilation of current and past ob-5

servations simultaneously at a single analysis step. The re-
sults of discharge assimilation into a grid-based hydrologi-
cal model

:::::
(using

:
a
:::
soil

::::::::
moisture

:::::
error

::::::
model) for the Upper

Ourthe catchment in the Belgian Ardennes show that includ-
ing past predictions and observations in the data assimilation10

method improves the model forecasts. Additionally, we show
that elimination of the strongly non-linear relation between
the soil moisture storage and assimilated discharge observa-
tions from the model update becomes beneficial for improved
operational forecasting, which is evaluated using several val-15

idation measures.

1 Introduction

Understanding the behaviour of extreme hydrological events
and the ability of hydrological modellers to improve the fore-
cast skill are distinct challenges of applied hydrology. Hy-20

drological forecasts can be made more reliable and less un-
certain by recursively improving initial conditions. A com-
mon way of improving the initial conditions is to make use
of data assimilation (DA), a feedback mechanism or update
methodology which merges model estimates with available25

real world observations (e.g., Evensen, 1994, 2009; Liu and
Gupta, 2007; Reichle, 2008; Liu et al., 2012).

Data assimilation methods can be classified from differ-
ent perspectives. Traditionally, we distinguish between se-
quential and variational methods. The sequential methods are30

used to correct model state estimates by assimilating obser-
vations, when they become available. Examples of sequen-
tial methods are the popular Kalman and particle filters (e.g.,
Moradkhani et al., 2005a, b; Weerts and El Serafy, 2006;
Zhou et al., 2006). The variational methods on the other hand35

minimize a cost function over a simulation period, which in-
corporates the mismatch between the model and observations
(e.g., Liu and Gupta, 2007).

A next distinction can be made between synchronous and
asynchronous methods. Synchronous methods, also called40

three-dimensional (3-D), assimilate observations which cor-
respond to the time of update. The Ensemble Kalman Filter
(EnKF, e.g., Evensen, 2003) is a popular synchronous ap-
proach, which propagates an ensemble of model realizations
over time and estimates the background error covariance45

matrix from the ensemble statistics. Asynchronous meth-
ods, also called four dimensional (4-D), refer to an updating
methodology, in which observations being assimilated into
the model originate from times different to the time of up-
date (Evensen, 1994, 2009; Sakov et al., 2010). The Ensem-50

ble Kalman Smoother (EnKS) is a common example of an
asynchronous method (e.g. Evensen and Van Leeuwen, 2000;
Dunne and Entekhabi, 2006; Crow and Ryu, 2009; Li et al.,
2013). The EnKS extends the EnKF by introducing addi-
tional information by propagating the contribution of future55

measurements backward in time. The EnKS reduces the er-
ror variance as compared to the EnKF for the past (Evensen,
2009). EnKS and EnKF are identical for forecasting (includ-
ing nowcasting).

The essential difference between a smoother and a filter60

is that a smoother assimilates “future observations”, while
a filter assimilates “past observations”. This implies that for
operational forecasting purposes, we need a filter rather than
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a smoother. A smoother can help improve the model accu-
racy in the past (e.g. for re-analysis), but it does not help im-65

prove forecast accuracy (Evensen, 2009). Therefore, Sakov
et al. (2010) introduced the Asynchronous Ensemble Kalman
Filter (AEnKF), which requires forward integration of the
model to obtain simulated results necessary for the analysis
and model updating at the analysis step using past observa-70

tions over a time window. The difference among the EnKF,
EnKS and AEnKF is schematized in Fig. 1.

Sakov et al. (2010) showed that the formulation of the
EnKS provides a method for asynchronous filtering, i.e. as-
similating past data at once, and that the AEnKF is a gener-75

alization of the ensemble-based data assimilation technique.
Moreover, unlike the 4-D variational assimilation methods,
the AEnKF does not require any adjoint model (Sakov et al.,
2010). The AEnKF is particularly attractive from an opera-
tional forecasting perspective as more observations can be80

used with hardly any extra additional computational time.
Additionally, such an approach can potentially account for
a better representation of the time-lag between the internal
model states and the catchment response in terms of the dis-
charge.85

Discharge represents a widely used observation for assim-
ilation into hydrological models, because it provides inte-
grated catchment wetness estimates and is often available
at high temporal resolution (Pauwels and De Lannoy, 2006;
Teuling et al., 2010). Therefore, discharge is a popular vari-90

able in data assimilation studies used for model state updat-
ing (e.g., Weerts and El Serafy, 2006; Vrugt and Robinson,
2007; Blöschl et al., 2008; Clark et al., 2008; Komma et al.,
2008; Pauwels and De Lannoy, 2009; Noh et al., 2011a;
Pauwels et al., 2013) or dual state-parameter updating (e.g.95

Moradkhani et al., 2005b; Salamon and Feyen, 2009; Noh
et al., 2011b).

The Kalman-type of assimilation methods was devel-
oped for an idealized modelling framework with perfect lin-
ear problems with Gaussian statistics, however, it has been100

demonstrated to work well for a large number of different
nonlinear dynamical models (Evensen, 2009). It remains in-
teresting to evaluate whether elimination of the non-linear
nature from the model updating can be beneficial. For ex-
ample, Xie and Zhang (2013) introduced the idea of a par-105

titioned update scheme to reduce the degrees of freedom
of the high-dimensional state-parameter estimation of a dis-
tributed hydrological model. In their study, the partitioned
update scheme enabled to better capture covariances between
states and parameters, which prevented spurious correlations110

of the non-linear relations in the catchment response. Simi-
larly, decreasing the number of model states being perturbed
and updated was suggested by McMillan et al. (2013) to in-
crease the efficiency of the filtering algorithm while conserv-
ing the forecast quality. Such an approach was proposed es-115

pecially to states with small innovations, which in their case
was mainly the soil moisture storage.

In this study we present a follow-up of the work of
Rakovec et al. (2012b), in which discharge observations were
assimilated into a grid-based hydrological model for the Up-120

per Ourthe catchment in the Belgian Ardennes by using the
EnKF. Here we scrutinize the applicability of the AEnKF us-
ing the same updating frequency (i.e. the same computational
costs) as in the previous study. To our knowledge this is the
first application of the AEnKF in a hydrological

::::
flood fore-125

casting context. Firstly, the effect of assimilating past asyn-
chronous observations on the forecast accuracy is analyzed.
Secondly, the effect of a partitioned updating scheme is scru-
tinized.

2 Material and methods130

2.1 Data and hydrological model

We carried out the analyses for the Upper Ourthe catchment
upstream of Tabreux (area ∼ 1600 km2, Fig. 2), which is lo-
cated in the hilly region of the Belgian Ardennes, Western
Europe (Driessen et al., 2010). We employed a grid-based135

spatially distributed HBV-96 model (Hydrologiska Byråns
Vattenbalansavdelning; Lindström et al., 1997), with spatial
resolution of 1km× 1km and hourly temporal resolution.
The model is forced using deterministic spatially distributed
rainfall fields, which were obtained by inverse distance in-140

terpolation from about 40 rain gauges measuring at hourly
time step.

:::::::::
Evaluation

:::
of

:::
the

:::::::
benefits

:::
of

::::::::
different

::::::
rainfall

::::::::::
interpolation

::::::::::
techniques

::::
was

:::::::
deemed

::::::
beyond

::::
the

:::::
scope

::
of

::
the

::::::
study.

:::
We

:::::
used

::
a

::::::
method

:::::
used

::
in
::::::::::

operational
:::::::

practice

::
as

:::
this

:::::
study

::
is

::::
also

:::::::
oriented

:::::::
towards

:::::::::
operational

:::::::
benefits

::
of145

:::::::::::
asynchronous

:::::::
filtering.

:
Additionally, there are six discharge

gauges (hourly time step) situated within the catchment, from
which some are used for discharge assimilation and some for
independent validation.

For a more detailed description of the catchment and150

model structure and definition of the hydrological states and
fluxes, we refer to Rakovec et al. (2012b) and to Fig. 3.
Briefly, for each grid cell the model considers the following
model states: (1) snow (SN), (2) soil moisture (SM), (3) up-
per zone storage (UZ) and (4) lower zone storage (LZ). The155

dynamics of the model states are governed by the following
model fluxes: rainfall, snowfall, snowmelt, actual evapora-
tion, seepage, capillary rise, direct runoff, percolation, quick
flow and base flow. The latter two fluxes force the kinematic
wave model (Chow et al., 1988; PCRaster, 2014). This rout-160

ing scheme calculates the overland flow using two additional
model states, the water level (H) and discharge (Q) accumu-
lation over the drainage network. Model parameterization is
based on the work of Booij (2002) and van Deursen (2004).

In contrast to Rakovec et al. (2012b), in the current165

study we employed the HBV-96 model built within a re-
cently developed open source modelling environment Open-
Streams (2014), which is suitable for integrated hydrologi-
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cal modelling based on the Python programming language
with the PCRaster spatial processing engine (Karssenberg170

et al., 2009; PCRaster, 2014). The advantage of using Open-
Streams (2014) is that it enables direct communication with
OpenDA (2014), an open source data assimilation toolbox.
OpenDA (2014) provides a number of algorithms for model
calibration and assimilation and is suitable to be connected to175

any kind of environmental model (e.g., Ridler et al., 2014).
The import and export of hydrological and meteorological

data to the system is done using Delft Flood Early Warn-
ing System (Delft-FEWS, Werner et al., 2013), an open shell
system for managing forecasting processes and/or handling180

time series data. Delft-FEWS is a modular and highly con-
figurable system, which is used by the Dutch authorities for
the flood forecasting for the River Meuse basin (called RW-
sOS Rivers), in which the Upper Ourthe is located. The cur-
rent configuration is a stand-alone version of RWsOS Rivers,185

however, it can be easily switched into a configuration with
real-time data import.

2.2 Data assimilation for model initialization

As stated in the introduction, we investigate the potential
added value of the Asynchronous EnKF (AEnKF) (Sakov190

et al., 2010) as compared to the traditional (synchronous)
EnKF for operational flood forecasting. The derivation of the
AEnKF (Sect. 2.2.2) is based on the equations using the same
updating frequency (i.e., same computational costs, differ-
ent number of observations)

::
as for the EnKF (Sect. 2.2.1), as195

among others presented by Rakovec et al. (2012b).

2.2.1 Ensemble Kalman Filter (EnKF)

First, we define a dynamic state space system as

xk = f(xk−1,θ,uk−1)+ωk, (1)

where xk is a state vector at time k, f is an operator (hy-200

drological model) expressing the model state transition from
time step k−1 to k in response to the model input uk−1 and
time-invariant model parameters θ. The noise term ωk is as-
sumed to be Gaussian white noise (i.e., independent of time).
It incorporates the overall uncertainties in model structure,205

parameters and model inputs.
Second, we define an observation process as

yk = h(xk)+νk, (2)

where yk is an observation vector derived from the model
state xk and the model parameters through the h operator (in210

our case the kinematic wave
::::::
routing

:
model generating dis-

charge). The noise term νk is additive observational Gaus-
sian white noise, with zero mean and covariance Rk. For
independent measurement errors, Rk is diagonal.

::::
Note

:::
that

::::
both

:::
the

::::::::
kinematic

:::::
wave

:::::::
routing

:::::
model

::::
h(.)

:::
as

::::
well

::
as

:::
the215

::::::::::
hydrological

::::::
model

:::
f(.)

::::::
exhibit

::::::::
nonlinear

::::::::
behavior.

:

After the model update at time k− 1, the model is used to
forecast model states at time k (Eq. 1). The grid-based model
states form a matrix, which consists of N state vectors xk

corresponding to N ensemble members:220

Xk = (x1
k,x

2
k, . . . ,x

N
k ), (3)

where

xi
k = (SNi

1:m,SMi
1:m,UZi

1:m,LZi
1:m,Hi

1:m,Qi
1:m)Tk , (4)

SNi, SMi, UZi, LZi, Hi and Qi are the HBV-96 model states
of the ith ensemble member (Sect. 2.1), m gives the number225

of grid cells and T is the transpose operator. The ensemble
mean

xk =
1

N

N∑
i=1

xi
k (5)

is used to approximate the forecast error for each ensemble
member:230

Ek = (x1
k −xk,x

2
k −xk, . . . ,x

N
k −xk). (6)

The ensemble estimated model covariance matrix Pk is de-
fined as

Pk =
1

N − 1
Ek ET

k . (7)

When observations become available, the model states of
::
the235

ith ensemble member are updated as follows:

xi,+
k = xi,−

k +Kk(yk −h(xi,−
k )+νi

k), (8)

where xi,+
k is the analysis (posterior, or update) model state

matrix and xi,−
k is the forecast (prior) model state matrix. Kk

is the Kalman gain, a weighting factor of the errors in model240

and observations:

Kk =PkH
T
k (HkPkH

T
k +Rk)

−1, (9)

where PkH
T
k is approximated by the forecasted covariance

between the model states and the forecasted discharge at
the observing locations, and HkPkH

T
k is approximated by245

the covariance of forecasted discharge at the observing loca-
tions (Houtekamer and Mitchell, 2001):

PkH
T
k =

1

N − 1

N∑
i=1

(xi
k −xk)(h(x

i
k)−h(xk))

T , (10)

HkPkH
T
k =

1

N − 1

N∑
i=1

(h(xi
k)−h(xk))(h(x

i
k)−h(xk))

T ,

(11)250

where

h(xk) =
1

N

N∑
i=1

h(xi
k). (12)
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2.2.2 Asynchronous Ensemble Kalman Filter (AEnKF)

The AEnKF should not be considered as a new method,
but rather a simple modification of the (synchronous) EnKF255

(Sect. 2.2.1) using a state augmentation approach. This
means that the ith vector of model states (xi

k) at time k (see
Eq. 4) is augmented with the past forecasted observations
h(xi

k−1), . . . ,h(x
i
k−W ) (i.e., model outputs corresponding

to the observation locations) from W previous time steps,260

which yields

x̃i
k =


xi
k

h(xi
k−1)

h(xi
k−2)
...

h(xi
k−W )

 . (13)

Remember that the size of xi
k and h(xi

k−1), . . . ,h(x
i
k−W )

can significantly differ: xi
k contains the complete set of

model states, while h(xi
k−1), . . . ,h(x

i
k−W ) contains only the265

forecasted observations. Additionally, with the new state def-
inition comes a new augmented observer operator h̃k (in
which I , with the corresponding subscript, stands for identity
elements on the diagonal matching the dimensions in Eq. 13),
a new augmented observation vector ỹk and its correspond-270

ing observation covariance matrix R̃k:

h̃k =


hk

Ik−1 0
Ik−2

0 . . .
Ik−W

 , (14)

ỹk =


yk

yk−1

yk−2

...
yk−W

 , (15)

R̃k =


Rk

Rk−1 0
Rk−2

0 . . .
Rk−W

 . (16)

Having these augmented equations for x̃i
k, h̃k, ỹk and R̃k,275

it is straightforward to carry out the assimilation in the same
manner as presented in Sect. 2.2.1. Note that although current
and past observations are used to construct the augmented
state vector in the Eq. (13), in practice Eq. (8) is solved only
to the current state x̃i

k (i.e. the indices that correspond to280

xi
k) and the rest is ignored. The presence of past observation

terms increases the dimension of P̃k and K̃k (see Eqs. 7 and
9) in both directions (rows and columns). Each column of

K̃k corresponds to an observation. The extra column of K̃k

corresponds to the past observations. Hence, it is possible to285

simply solve the equations for the first rows, which corre-
spond only to xi

k. Note that the first rows of K̃k also con-
tain the contributions of the past observations to the current
state. These contributions arise from the off-diagonal terms
of the augmented covariance P̃k. Finally, if the time win-290

dow equals the current single time step, then W = 0 and the
AEnKF problem reduces to the traditional EnKF.

From the operational point of view, it is preferable to have
a longer assimilation window, because less frequent assimi-
lation eliminates a disruption of the ensemble integration by295

an update and a restart. When assimilation is done more fre-
quently, it will cause considerably higher calculation costs,
which can often be a burden for real-time operational set-
tings (Sakov et al., 2010). The AEnKF uses a longer assim-
ilation window and assimilates all observations in a single300

update. This makes the AEnKF attractive to be used. The
added value of a longer assimilation window will be a sub-
ject for investigation in this work. Especially, it can provide
an improved representation of the time-lag between the inter-
nal model states and the catchment response in terms of the305

discharge. Such an idea was investigated for example by Li
et al. (2013), who compared the effect of time-lag represen-
tation using the EnKF and EnKS.

2.3 Model uncertainty

In this study, we assume the source of model uncertainty to310

be the HBV soil moisture, which provides boundary condi-
tions for surface runoff and represents interaction from in-
terception, evapotranspiration, infiltration and input uncer-
tainty by rainfall. The uncertainty is represented as a noise
term ω as in Eq. (1). Based on expert knowledge, the noise315

is modelled as an autoregressive process of order 1 with
a de-correlation time length of 4 h. The noise process is fur-
ther assumed spatially isotropic with a spatial de-correlation
length of 30 km. The noise is assumed to have a spatially uni-
form SD of 1 mm. The 2-D noise fields with such statistics320

were generated by using OpenDA (2014) toolbox. This pa-
rameterization of the noise model ensures that the ensemble
spread in the simulated discharge corresponds well with the
control simulations as presented by Rakovec et al. (2012b)
(not shown). Ideally, all sources of uncertainty should be325

accounted for in a DA scheme. However, this is not yet
a common approach in operational hydrologic data assimi-
lation. Moreover, as the objective of the current manuscript
is to compare the operational benefits of application of the
AEnKF, we kept the noise model relatively simple. For more330

work on the effect of noise specification on DA using com-
plex spatially distributed hydrological models see, Noh et al.
(2014).
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2.4 Experimental setup

This section provides a configuration setup of the filtering335

methods (Sect. 2.2.1 and 2.2.2) to assimilate discharge obser-
vations into a spatially distributed hydrological model of the
Upper Ourthe catchment. The objective is to improve the hy-
drological forecast at the catchment outlet (at Tabreux, gauge
1 in Fig. 2) by assimilating up to four discharge gauges,340

numbered as 1, 3, 5, 6 in Fig. 2.
::::
Note

::::
that

::::::::
discharge

::::
data

::::
from

:::::::
multiple

::::::
gauges

:::
are

::::::::::
assimilated

::::::::::::
simultaneously

::::
and

::
no

:::::::::
localization

::
is
:::::::::

employed
::
in

::::
this

:::::
study.

:
Additionally, valida-

tion at an independent location is also performed. The dis-
charge assimilation is done every 24 h, however, the forecasts345

are issued every 6 h, i.e. 4 times a day, with different inde-
pendent starting points at 00:00, 06:00, 12:00, 18:00 UTC,
which is the same implementation as used by Rakovec et al.
(2012b). This study analyses the 8 largest floods peaks ob-
served within the catchment since 1998. An overview is pro-350

vided in Table 1.
The ensemble of uncertain model simulations is ob-

tained by perturbing the soil moisture state (SM) with the
spatio-temporally correlated error model (Sect. 2.3).

::::
With

:::
this

::::::::
approach

::::
we

:::::::
ensured

::::
that

:::
the

:::::
error

::::::
model

::::::::
produced355

:::::::::
reasonable

:::::
results

:::
in

:::
the

:::::::::
open-loop

:::
and

:::
did

::::
not

::::
lead

::
to

:::
any

::::::::
numerical

:::::::::
instability.

:::::
More

:::::::
complex

:::::
ways

::
of

:::::::::
perturbing

:::
the

:::::
model

::::
and

::::
their

::::::
effects

:::
on

:::::::
forecast

::::::::
accuracy

:::::
were

::::::
studied

:::::
before

:::::::::::::::::::::::::::::::::::::::::::
(see Rakovec et al., 2012a; Noh et al., 2014) and

::::
were

:::::::
deemed

:::::::
beyond

::::
the

:::::
scope

:::
of

::::
this

::::::::::
manuscript.

:
The360

ensemble size in this study was defined to be 36 realizations
(for computational reasons). Note that increased ensemble
sizes of 72 and 144 realizations did not influence the results
(not shown).

:::::::::::
Nevertheless,

:::::
such

::
a
:::::
small

:::::::::
ensemble

::::
size

::
as

::::::::
presented

:::
in

:::
the

::::::::::
manuscript

::::::
would

::::
not

:::
be

:::::::
possible

::
if365

::::::::
parameter

:::::::::
estimation

:::::
would

:::
be

:::::::
involved

:::
or

:
if
:::::
more

:::::::
complex

::::
error

::::::
models

::::::
would

::
be

:::::::::
employed.

:
The error in the discharge

observations is considered to be a normally distributed
observation error with a variance of (0.1Qobs,k)

2 (after e.g.
Weerts and El Serafy, 2006; Clark et al., 2008).370

The experimental setup scrutinizes the problem of asyn-
chronous filtering from two perspectives. First, we inves-
tigate the effect of state augmentation using the past ob-
servations and assimilation of distributed observations on
the state innovation (Sect. 3.1).

:::::
Recall

::::
that

:::
the

:::::::
number

::
of375

::::::::::
observations

:::::
being

::::::::::
assimilated

::::
into

:::
the

::::::
model

::::::::
depends

::
on

::
the

:::::::::
magnitude

::
of

:::
W. Furthermore, the choice of which model

states are included in the analysis step to be updated is anal-
ysed (Sects. 3.2, and 3.3). This means that besides updating
all of the model states, we will test two other alternatives.380

The first alternative will leave out from the model analysis
the soil moisture state (noSM), which is known to exhibit
the most non-linear relation to Q. The second alternative
will eliminate all the model states except for the two rout-
ing ones (HQ). The scenarios of the partitioned state updat-385

ing schemes are shown in Table 2, including the control run
without state updating (no update).

The performance of the data assimilation procedure re-
garding discharge forecasting is evaluated using the Ensem-
ble Verification System (EVS): a software tool for verifying390

ensemble forecasts of hydrometeorological and hydrological
variables at discrete locations (Brown et al., 2010), which
provides a number of probabilistic verification measures. In
this study we used three popular measures: the root mean
square error (RMSE), the relative operating characteristic395

(ROC) score and the Brier skill (BS) score. We refer to e.g.
Wilks (2006); Brown et al. (2010); Brown and Seo (2013),
and Verkade et al. (2013) for exact definitions of these mea-
sures. In summary, the perfect forecast in terms of the RMSE
has a value of 0, while positive values indicate errors in the400

same units as the variable. The perfect forecast in terms of
the ROC and BS scores has a value of 1 and values smaller
than 1 indicate forecast deterioration.

3 Results

3.1 The effect of state augmentation and distributed ob-405

servations on state innovation

To investigate and understand the effect of augmented op-
erators (Eqs. 13, 14, and 15) on the innovation of spatially
distributed model states, we present the following example.
Figure 4 shows discharge simulations and corresponding dis-410

charge observations at 4 locations within the catchment on
31 December 2002, 00:00 UTC. Note that the magnitude
of the discharge observations is a function of the location
within the catchment; for downstream gauges the magni-
tude is larger than for the more upstream gauges. The dis-415

charge observations are further distinguished according to
the time window length of the state augmentation, which is
set to W = 0 and W = 11. The first example represents the
traditional EnKF algorithm, while the latter assimilates ob-
servations from a 12 h time window (i.e., 1 current observa-420

tion and 11 past observations), which is arbitrarily defined as
a half of the 24 h assimilation time window. For some cases
alternative assimilation windows were tested, which did not
lead to noticeable differences however (not shown).

::::
Note

:::
that

::
the

:::::::
amount

::
of

::::::::::
information

:::::
being

::::::::::
assimilated

::::
into

:::
the

:::::
model425

:::::
differs

:::
for

:::::::
different

::::::
values

::
of

:::
W .

:

The mean difference between the forecasted and updated
model states for the whole ensemble is illustrated in Fig. 5
for four scenarios. These examples improve our understand-
ing about the behaviour of the updated model states in rela-430

tion to the information content of the observations from two
perspectives: (1) the effect of assimilating also past obser-
vations in addition to observations at the current (analysis)
time, and (2) the effect of assimilating spatially distributed
observations into a grid-based hydrological model.435

Let us first consider the traditional EnKF (i.e., no state
augmentation with W = 0) to update all the grid-based
model states by assimilating the observation at the catchment
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outlet (gauge 1). We observe that the single observation is
measured approximately in the middle of the simulated en-440

semble (see the open circle for gauge 1 in Fig. 4). There-
fore, there is hardly any difference between the forecasted
and updated model states as we show in Fig. 5a. In the sec-
ond scenario, we still assimilate only one gauge at the out-
let, however, we use the augmented operators with W = 11.445

Because the mean of the ensemble simulations is predom-
inantly underestimated as compared to the assimilated ob-
servations (see black dots in Fig. 4 for gauge 1), after the
update more water is added spatially equally into the sys-
tem, as shown in Fig. 5b. In the third scenario, we include450

all 4 gauges being assimilated into the model without any
augmentation. Because the model simulations at the interior
gauges are mostly overestimating the observations, water is
removed from the catchment during the update. Moreover,
since the model overestimation is largest at gauges 3 and 6,455

we can also observe in Fig. 5c how well the EnKF is capable
of identifying corresponding regions in a spatial manner. In
the fourth scenario (Fig. 5d) we still assimilate all 4 gauges,
however we augment the state with W = 11. We can observe
that the innovation of the model states gets even more spa-460

tially differentiated; the updated SM and UZ model states in
the downstream part of the catchment increase the amount
of water in the system, while the updated SM and UZ model
states in the upstream part decrease the amount of water in
the system.465

The presented educational examples showed an update for
several scenarios starting from the same initial conditions.
This enabled a fair comparison between scenarios, however,
the sensitivity of state augmentation needs to be further scru-
tinized in terms of its cumulative effect over time.470

3.2 The effect of the four partitioned update schemes
and asynchronous assimilation on forecast accuracy

We present a qualitative interpretation of the hydrological
forecasts with a lead time of 48 h in Fig. 6 for different par-
titioned state updating schemes as defined in Table 2, in-475

cluding both a non-augmented state (W = 0) and an aug-
mented state (W = 11). This analysis focuses on a charac-
teristic winter flood event (December 2002–January 2003)
being typical for a moderate temperate climate caused by
a fast-moving frontal stratiform system (Hazenberg et al.,480

2011). We observe that the ensemble of the control runs (top
panel of Fig. 6) simulates the major flood peak reasonably
well, including the timing and the magnitude.

:
,
::::::::
however,

:
it

:::
has

:
a
:::::
larger

::::::
spread

::::
with

::::::
respect

::
to

:::
the

::::::::::
assimilation

::::::::
scenarios.

::::::::::
Additionally,

::::::
when

:::
we

:::::::
consider

:::
the

:::::::::
ensemble

:::::
mean

::
of

:::
the485

::::::::
no-update

:::::::
scenario

::::
with

::::::
respect

::
to

:::
the

::::::::::
assimilation

::::::::
scenarios,

::
the

::::::::
accuracy

:::::::::::
deteriorates.

:
When discharge assimilation is

employed, an overall reduction of the uncertainty in the fore-
casted ensemble is observed. Nevertheless, the forecasted
flood peak becomes underestimated and the forecasted re-490

cession remains overestimated, which is acceptable because

of the defined uncertainty in the observed discharge. This
happens in particular for the scenario in which all states
are updated; there are marginal differences between the non-
augmented and augmented model states. Furthermore, when495

we leave out SM from the state update (noSM), we can
observe that the major flood peak is forecasted more accu-
rately, including the rising limb around 31 December 2002.
Moreover, for the augmented state with W = 11, the ensem-
ble spread becomes somewhat wider for lead times exceed-500

ing 12 h than for the non-augmented state. Nevertheless, the
observations correspond approximately with the ensemble
mean. Finally, we present the effect of the scenario in which
only the two routing states are updated. The results suggest
that the flood peak is captured most accurately of all scenar-505

ios, however with somewhat wider uncertainty bands. There-
fore, it seems more appropriate to exclude the UZ storage
(noSM scenario) in the model state updating, which repre-
sents water storage available for quick catchment response
in the concept of the HBV model.510

Besides a qualitative interpretation of the forecasted hy-
drographs presented in Fig. 6 for one particular event, we
summarize these results in a more quantitative manner for
the whole set of 8 flood events (see Table 1) in terms of
the root-mean-square-error (RMSE) vs. lead time. This is515

shown in Fig.
::::
using

:::::
three

::::::::
statistical

:::::::::
measures

::::
with

::::::
respect

::
to

:::
the

:::::
lead

:::::
time.

::::::
Figure

::
7
::::::

shows
::::

the
:::::::

average
::::::::

behavior

::::
(over

:::::
many

:::::::::
forecasts)

:::
of

::
an

:::::::::
improved

::::::
initial

::::
state

:::
on

:::
the

::::::
forecast

::::::::
accuracy

:::
for

::::
the

:::::::
different

:::::
filter

::::::::
settings,

:::::::
although

::::::::
individual

::::::
partial

:::::::
updates

::::
may

::::
vary

::
in

:::::
time.

::
In

:::::::
general,

:::
the520

:::::::::::
improvements

::
in
:::::::
forecast

::::::::
accuracy

:::::
decay

::::
with

::::
lead

::::
time

::
in

:
a

::::::::
systematic

:::::::
fashion

::
as

::
is

::
to

::
be

::::::::
expected.

:

::::::
Figure. 7a

:::::
shows

:::
the

:::::::::::::::::::
root-mean-square-error

:::::::
(RMSE)

::
as

:
a

:::::::
function

::
of

::::
lead

::::
time

:
for different partitioned state updating

schemes and for three scenarios for the state augmentation at525

the catchment outlet (Tabreux). The control model run with
no update has a constant RMSE of about 32 m3 s−1 and an
improved hydrological forecast has a RMSE lower than the
control run. The results suggest that all assimilation scenar-
ios improve the hydrological forecast, however with marked530

differences between the scenarios.
We can

:::::
Figure

:::
7a

:::
also

::::::
clearly

::::::
shows

:::
that

:::
the

:::::::::
differences

::
in

::
the

:::::::
forecast

::::::::::::
improvement

::
of

:::::
these

::::::
various

::::::
setups

:::
are

:::::
purely

:::
due

::
to

:::::
using

:::::::
multiple

::::
data

::::::
points

::
in

:::
the

::::
past

::
at

:::
the

:::::::
analysis

::::
step.

:::
We

:::
can

:::::::
further observe that updating all model states535

except for SM (noSM scenario) consistently leads to the
most accurate forecasts across the whole range of lead times.
Additionally, state augmentation using W = 5 and W = 11
indicates improvements compared to the case without aug-
mentation (W = 0). However, for lead times longer than the540

travel time from the most upstream gauges to the outlet (i.e.
exceeding 20 h), the difference between state augmentations
W = 5 and W = 11 diminishes. Moreover, when only the
two routing states (HQ scenario) are updated, the RMSE is
lowered for short lead times, but the improved effect does545

not last as long as for the noSM scenario. The smallest im-
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provement at shorter lead times is achieved when all model
states are updated (scenario all). This is due to the strongly
non-linear relation between the assimilated observations and
the SM storage, which is further articulated by the time-lag550

between the state and the catchment response. Nevertheless,
for longer lead times it seems slightly better to update all
states rather than only the routing states.

::::::::
Discharge

:
is
::::::
related

::
to

:::
the

:::
SM

:::
and

::::
UZ

:::::::
storages

:::::::
through

:::
the

:::::::
Kalman

::::
gain.

:::::
When

::
the

::::::::::
correlation

::
is

:::::
lower

:::
the

::::::
update

::::
will

:::
be

::::::
smaller.

:::::::
AEnKF555

::::::
exploits

:::
the

::::::::::
correlation

:::::::
between

:::
the

:::::::
present

::::::::
discharge

::::
state

:::
and

:::
the

::::::::
discharge

:::::
state

:::
not

:::::
only

::
at

:::
the

::::::::
previous

::::
time

::::
step,

:::
but

::::
also

::::::
further

::
in

:::
the

:::::
past.

::
It

::::
may

:::
be

:::::::
possible

:::
to

:::
use

:::
the

:::::::::
correlation

:::::::
between

::::::::
discharge

::
at

::
the

:::::::
present

::::
time

:::
and

::::::
UZ/SM

::
in

:::
the

::::
past

:::
for

::::
data

:::::::::::
assimilation,

::::::::
however,

::::
this

::
is
:::::::

deemed560

::::::
beyond

:::
the

:::::
scope

:::
of

:::
this

::::::
study.

:::::::::::
Nevertheless,

:::
we

::::::::
speculate

:::
that

::::
this

:::
will

::::
only

:::
be

:::::
useful

:::
in

:
a
:::::::::
smoothing

:::::::
context

:::
(i.e.

:::
the

::::::
present

::::::::
discharge

::::
may

:::::
bring

::::::::::
information

:::
on

:::::::
UZ/SM

::
in

:::
the

::::
past),

:::
not

::
in
::

a
:::::::
filtering

::::::
context

::
as

::
in

:::
the

:::::::
present

:::::
study.

Validation of the model setup in terms of the RMSE is pre-565

sented in Fig. 7d for an independent evaluation of the fore-
casting results at Durbuy, an interior location, which was not
used for assimilation. These results show that an improve-
ment of discharge assimilation also occurs at the validation
location and that the pattern corresponds well to the results570

presented in Fig. 7a. Such an analysis indicates that there is
no spurious update of the model states.

To present the results in a more robust way, we also ana-
lyzed them (at Tabreux) in terms of other probabilistic verifi-
cation measures: the relative operating characteristic (ROC)575

score and the Brier skill (BS) score (see Fig. 7b, c). Recall
that values of 1 represent a perfect forecast, while values
smaller than 1 indicate forecast deterioration. Similar to the
RMSE results, updating only the two routing states (HQ) is
most efficient for short lead times, but this skill disappears580

quickly for longer lead times. In terms of the ROC and BS
scores, for a given augmentation size, there are marginal dif-
ferences between the scenarios which update all states (all)
and which leave the soil moisture out (noSM). However, it is
notable that the state augmentation case (W = 11) improves585

the forecast performance as compared to the no augmentation
case (W = 0). Note that the state augmentation of W = 5
was not carried out.

3.3 Temporal nature of model state innovations

To reveal the temporal nature of the model being updated590

using the AEnKF, using W = 0 and W = 11, we present in
Fig. 8a and b time series of normalized differences between
the ensemble means for the 3 partitioned update schemes and
the ensemble mean for the no update scenario. The normal-
ization is achieved by dividing the aforementioned difference595

by the no update scenario mean. In such a way we obtain the
relative change in each of the model states. For the AEnKF
using W = 0 (Fig. 8a), we can observe that for the scenario
“all”, which updates all the model states, the magnitude of

the percentage change is approximately the same for all 4600

model states and ranges up to 25 %. When all model states
except for the SM are updated, no changes in the SM stor-
age occur and the overall magnitude of the changes in the
other states is slightly decreased and smoothed. Furthermore,
when only the two routing states are updated (HQ), the SM605

and UZ storages remain constant over time and we observe
a different temporal behaviour of the routing states in com-
parison with the previous cases. For the HQ scenario, the up-
dated time series have a clear zigzag shape, which indicates
that the effect of updating diminishes faster, because only610

the river channel is updated. In contrast, the routing states
for the other cases show a more stable behaviour over time,
illustrated by the stepwise shape. These more persistent re-
sults correspond to the updates in the UZ storage, which is
used for a quick catchment response and has an impact for615

a longer time. The benefits of including the UZ storage in the
update and leaving the SM storage out was already presented
from a different point of view in Fig. 7a for longer lead times.

For the AEnKF using W = 11 (Fig. 8b), we can observe
that the overall pattern of the temporal changes in the model620

states is similar as for W = 0, but the behaviour of using
W = 11 shows somewhat larger variability. By assimilating
more observations (W = 11), we expect even a larger update,
assuming that more observations contain more information
about the unknown truth. Assuming the underlying forecast625

model has a significant error, by assimilating more observa-
tions the Kalman filter will pull the model even closer to the
truth, yielding a larger abrupt update.

4 Conclusions

We applied the Asynchronous Ensemble Kalman Filter630

(AEnKF) (Sakov et al., 2010) and identified the effect of aug-
menting the state vector with past simulations and observa-
tions. To our knowledge this is the first application of the
AEnKF in hydrological

::::
flood

:
forecasting. We showed that

the effect of an augmented assimilation vector improves the635

hydrological
:::::
flood forecasts, but the contribution gets smaller

for longer lead times. Overall, the AEnKF can be consid-
ered as an effective method for model state updating taking
into account more (e.g. all) observations at hardly any ad-
ditional computational burden. This makes it very suitable640

for operational hydrological forecasting. When compared to
standard EnKF, the AEnKF allows the choice of a certain as-
similation window length, which adds a degree of freedom
to the data assimilation scheme. The optimal window is very
likely related to the catchment size (i.e. concentration time).645

It was noted (not shown) that for the smaller upstream catch-
ments the optimal window was smaller than for the complete
Upper Ourthe catchment, although there was no negative ef-
fect of a longer assimilation window (W = 5 vs. W = 11).

:::
For

:::
the

::::
high

:::::
flows

::::::::
analysed

::
in

::::
this

:::::
study,

:::
the

:::::::
AEnKF

::::
with650

:
a
::::::
longer

::::
time

:::::::
window

:::
W

::
is
::::

able
:::

to
:::::
make

::::::::::
corrections

:::
that
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:::
last

:::::
longer

:::
on

::::::
average

::::
than

::::
with

:::
the

::::::
shorter

::::
time

:::::::
window

:::
W .

:::::::::::::
Characterization

::
of
::::

the
::::::::
statistical

::::::::
properties

:::
of

:::
the

:::::::
temporal

::::
flow

::::::::
dynamics

:::::
(i.e.,

::::::
typical

::::
time

::::::
scales

::
of

:::::
flood

::::::
peaks

::
as

::::::::
compared

::
to

::::
low

::::::
flows)

::
is
::::::::

however
::
a
:::::::
relevant

:::::
issue.

::::
The655

:::::
length

::
of

:::
the

:::::
time

:::::::
window

::
W

::::
has

::
to

::
be

:::::
seen

::::::
relative

::
to

:::
the

::::
time

::::
scale

:::
of

:::
the

::::
river

:::::
flow

:::::::::
dynamics.

:::
We

:::::::
assume

:::
that

:::
for

:::
low

::::
flow

::::::::::
conditions,

:::
the

::::::::
improved

:::::
skill

::
of

::::::
longer

:::
W

::::
with

::::::
respect

::
to

::::::
shorter

:::
W

::::
will

:::::::
become

:::::::::
negligible,

:::
as

:::
low

:::::
flows

::::::
exhibit

:::
less

::::::::
temporal

::::::::
dynamics

::::
than

::::
high

::::::
flows.

:::
We

::::
refer

::
to660

::::::::::::::::::::
Pan and Wood (2013) for

:::
an

:::::::
analysis

::::
about

:::::::
explicit

:::::::
handling

::
of

::::
lags

::
in

:::::
space

:::
and

:::::
time,

::::::
which

::::
uses

:
a
:::::

state
:::::::::::
augmentation

:::::::
approach

:::
for

:
a
:::::
linear

:::::::
inverse

:::::::::
streamflow

::::::
routing

::::::
model. Note

that it was not the objective of this study to determine the
optimal assimilation window for the AEnKF .

::::
given

::::::
various665

::::
river

::::
flow

:::::::::
dynamics.

::::::::
Another

:::::::::
limitation

:::
of

::::
this

:::::
study

::
is

::
the

:::::::::
relatively

::::::
simple

:::::
error

::::::
model

:::
for

:::::::::
perturbing

:::::
only

:::
soil

:::::::
moisture

:::::
states.

:::::
More

::::::::
complex

::::
ways

::
of

:::::::::
perturbing

:::
the

:::::
model

:::
and

::::
their

::::::
effects

::
on

:::::::
forecast

::::::::
accuracy

::::::
deserve

:::::
more

:::::::
attention

::
in

:::::
future

::::::
studies.

:
670

We investigated the effect of a partitioned update scheme
recently suggested by Xie and Zhang (2013). We showed
that for the Upper Ourthe catchment reducing the number
of model states of a grid-based HBV model using AEnKF
can lead to better forecasts of the discharge. In terms of the675

root-mean-square-error, the largest improvements in the fore-
cast accuracy were observed for the scenario where the soil
moisture was left out from the analysis (similar to the PDM
updating scheme presented by Moore, 2007). This indicates
that elimination of the strongly non-linear relation between680

the soil moisture storage (SM) and assimilated discharge ob-
servations can become beneficial for an improved forecast
when soil moisture observations are not considered. On the
other hand, it was recently demonstrated that hydrological
model in operational settings

:
a
::::::::::::
rainfall-runoff

::::::
model can be685

improved when constrained by remotely sensed soil moisture
(e.g., Alvarez-Garreton et al., 2014; Wanders et al., 2014a, b)
or in-situ soil moisture (e.g., Lee et al., 2011). Moreover, we
showed that keeping the quick catchment response storage
(upper zone; UZ) in the model analysis is important, espe-690

cially for longer lead times, when compared to the scenario
in which only two routing storages were updated. The UZ
seems to compensate the effect of SM on discharge. The
fact that excluding SM extends the improvements suggests
that in our case the discharge forecasts with a lead time of695

two days (and for major flood events) are less dependent
on SM. A possible alternative to excluding the SM storage
from the analysis, would be to investigate the use of other
algorithms, for example the Maximum Likelihood Ensemble
Filter (MLEF) (Zupanski, 2005; Rafieeinasab et al., 2014),700

which is more suited for use with highly non-linear observa-
tion operators.
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Figure 1. Illustration of the model updating procedure for the Ensemble Kalman Filter (EnKF), the Ensemble Kalman Smoother (EnKS), and
the Asynchronous Ensemble Kalman Filter (AEnKF). The horizontal axis stands for time, observations (d1, d2, d3, d4) are given at regular
intervals. The blue arrows represent forward model integration, the red arrows denote introduction of observations and green arrows indicate
model update. The magenta arrows represent the model updates for the EnKS, therefore they go backward in time, as they are computed
following the EnKF update every time observations become available. The green dotted arrows denote past observations being assimilated
using the AEnKF. The schemes for the EnKF and the EnKS are after Evensen (2009).
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Figure 2. Topographic map of the Upper Ourthe (black line) including the river network (blue lines), rain gauges (plusses), six river gauges
(white circles labeled with numbers: 1 = Tabreux, 2 = Durbuy, 3 = Hotton, 4 = Nisramont, 5 = Mabompre, 6 = Ortho). Projection is in the
Universal Transverse Mercator (UTM) 31N coordinate system. After Rakovec et al. (2012b).
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Figure 3. Left: catchment discretization using a grid-based approach including the channel delineation. Arrows indicate flow direction. Right:
schematic structure of the HBV-96 model for each grid cell. Model states are in bold and model fluxes in italics (after Rakovec et al., 2012b).
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being assimilated using the AEnKF are schematized according to the state augmentation size for two scenarios: assimilation of data from
the current time step W = 0 (open circle, traditional EnKF approach) and assimilation of data including the previous 11 time steps, W = 11
(black dots). The observations are assimilated into the model states on 31 December 2002, 00:00 UTC.
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Table 1. Overview of the periods used in this study.

Period Number of Maximum observed
events discharge [m3 s−1]

23 Oct 1998–15 Nov 1998 1 210
15 Feb 1999–5 Mar 1999 2 195
15 Jan 2002–6 Mar 2002 4 340
21 Dec 2002–7 Jan 2003 1 380

Table 2. Four partitioned state updating schemes (indicated in the first column) for 5 model states (indicated in the first row) being updated
and thus included in the model analysis. Model states are described in Sect. 2.1 and Fig. 3 and have following acronyms: discharge (Q),
water level (H), soil moisture storage (SM), snow storage (SN), upper zone storage (UZ), and lower zone storage (LZ).

Name Q H SM SN UZ LZ

No update
all

√ √ √ √ √ √

noSM
√ √ √ √ √

HQ
√ √

Q

H

SM

UZ

−13.1
−9.4
−5.6
−1.9

1.9
5.6
9.4

13.1

Q [m3/s]

−0.7
−0.5
−0.3
−0.1

0.1
0.3
0.5
0.7

H [m]

−22.8
−16.3
−9.8
−3.3

3.3
9.8

16.3
22.8

SM [mm]

−5.8
−4.1
−2.5
−0.8

0.8
2.5
4.1
5.8

UZ [mm]

1

N
∑
N

(X−−X+):

(a) (b) (c) (d)

AEnKF(W=0) AEnKF(W=11) AEnKF(W=0) AEnKF(W=11)
up.all, as.1 up.all, as.1 up.all, as.1356 up.all, as.1356

Figure 5. Mean difference between the forecasted (X−) and updated (X+) model states on 31 December 2002 at 00:00 UTC for different
scenarios (shown in vertical panels). We show only 4 sensitive model states: discharge (Q), water level (H), soil moisture (SM) and upper
zone (UZ). We dropped out the insensitive lower zone (LZ). Notation W = 0 and W = 11 indicates the size of the state augmentation.
Notation up.all indicates that all of the model states are updated. Notation as.“xx” indicates the gauges which are assimilated, see Fig. 2 for
their locations. The corresponding ensemble of model forecasts and observations being assimilated are shown in Fig. 4.
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Figure 6. Ensemble of discharge forecasts for a typical event at the catchment outlet (Tabreux, gauge 1) for different
::::
three updating scenarios.

The control run :
:::
all,

:::::
noSM,

:::
HQ

:
(with no update

::
see

::::
Table

::
2
::
for

::::::::
definition)is shown in the top panel. The combined effect of the model states

being updated (3 scenarios shown in rows) and the length of the state augmentation vector (W ) of past observations being assimilated
(2
:

scenarios in columns) is presented. The observations are shown in black. Gauges 1, 3, 5, and 6 are assimilated.
:::
The

:::::
control

:::
run

::::
(with

:::
no

:::::
update)

::
is
:::::
shown

::
in

:::
the

:::
left

::::
panel.

::::
The

:::::::::
observations

:::
are

:::::
shown

::
in

::::
black.
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Figure 7. (a) Root-mean-square-error (RSME), (b) Relative operating characteristic (ROC), and (c) Brier skill score (BSS) at Tabreux (gauge
1) for different discharge observation vectors for which different model states are updated and with different lengths of the state augmentation
vector (W ) of past observations being assimilated. The results incorporate a set of 8 flood events shown in Table 1. Gauges 1, 3, 5, and 6 are
assimilated. For BSS, the reference forecast is the sample climatology and only values larger than the 25th percentile of the whole sample
are considered. (d) Same as (a) but the results are presented for Durbuy (gauge 2), a validation location which is not assimilated.
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Figure 8. Scaled difference between the ensemble mean for the 3 partitioned update schemes and the control run without data assimilation at
4 gauging locations (shown by different colors) within the Upper Ourthe catchment using the AEnKF with (a) W = 0 and (b) W = 11. We
dropped out the insensitive lower zone (LZ). Gauges 1, 3, 5, and 6 are assimilated. The results correspond to the same period as presented in
Fig. 6.
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