hess-2015-54: Authors’ response (in blue italics) to comments by
Anonymous Referee #1 (in black). In green we indicate line numbers
within the latexdiff version of the manuscript (it can be found at the
end of this pdf document).

General Comments:

This manuscript titled “Operational aspects of asynchronous filtering for hydrological
forecasting” compares the traditional Ensemble Kalman fitler (EnKF) with its
modified version, asynchronous EnKF (AEnKF). The main difference is in the update
step, with the traditional EnKF using observation data from a single time step whereas
the AEnKF uses observation data from multiple time steps in the past.

The paper is well written and structured in a systematic manner. The results clearly
support the findings and make an important contribution to the data assimilation
literature.

Authors’ response: We appreciate that Referee #1 sees our manuscript as well
written, systematically structured and making an important contribution to the DA
literature. We discuss and answer her/his comments in detail below.

However, my main concern is how to identify the specific contribution from the
AEnKF approach. That is, are the improvements in the discharge forecast purely from
using multiple data points in the past at the update stage?

Authors’ response: Figure 7 shows the forecast accuracy of three different numbers
of data points in the past (W=0, 5 and 11). This figure shows clearly that the
differences in the forecast improvement of these various setups are purely due to
using multiple data points in the past at the analysis step. We will stress this more
clearly in the revised manuscript. [see LINES 532-535, also 377-379 + 424-426]

This question arises from the observation (in Figure 7) that the forecast improvements
in the AEnKF are very systematic for most lead times. Given that the forecast
improvements are systematic, I think it is safe to say that the improvements at the
update stage are also systematic. If this is true, that means that there is a linear
relationship between the updates made with a single observation data and those made
with multiple data points in the past. Practically, this is unlikely because you expect
different levels of updates especially for transition periods like dry to wet and vice-
versa (or low to peak flows and vice-versa).

Authors’ response: Results in Figure 7 show the average behavior (over many
forecasts) of an improved initial state on the forecast accuracy of the different filters.
We agree that updates may vary in time. This is a valid approach, since data
assimilation is expected to improve forecasts in an average sense. What we see is in
line with many other DA studies that show a similar kind of behavior (not only in
hydrology). That the improvements in forecast accuracy decay with lead time in a
systematic fashion is to be expected. It would be very strange if they wouldn’t, as the
model slowly returns to the model climatology each time a forecast is made (no
observations, so no updating). This is not a sign that a constant bias is present, but a
sign that an update of the initial condition lasts for a while. [see LINES 517-522]



On a related note, the level of improvement from EnKF to AEnKF seemed to be
relatively constant irrespective of the lead time (Figure 7). For me this is a worrying
sign because it looks as if you are able to identify and quantify this constant
difference (maybe call it bias) then you can get a better forecast. In other words, the
AEnKF seemed to have a better treatment of bias. It will be interesting to know how
the AEnKF will perform for low flows, normal flows, and peak flows independently.
That is, will updating the model with multiple data points in the past always have a
positive impact on forecasts made during low and peak flows?

Authors’ response: We will state in the revised manuscript that for the high flows, the
AEnKF with a longer time window W is able to make corrections that last longer on
average (this is not a constant bias) with respect to the shorter time window W.
Additionally, we will change the title to “Operational aspects of asynchronous
filtering for flood forecasting” [see TITLE], to emphasize that the presented study
investigates high flows only. We agree with the reviewer that characterization of the
statistical properties of the temporal flow dynamics (i.e. typical time scales of flood
peaks as compared to low flows) is a relevant issue. The length of the time window W
has to be seen relative to the time scale of the river flow dynamics. We assume that
for low flow conditions, the improved skill of longer W with respect to shorter W will

become negligible, as low flows exhibit less temporal dynamics than high flows. [see
LINES 650-660]

I think these are important questions the authors need to address, even if they do not
have results to support it at least a clarification is needed about which conditions their
methodology will mostly apply.

In Figure 6, the no-update looked pretty accurate and almost comparable to the
assimilation, but in Figure 7 the evaluation measures for no-update is very poor. This
is a stunning difference, please clarify.

Authors’ response: We agree that the no-update scenario matches the magnitude of
the major peak quite well, although it has quite a large spread. Additionally, when we
consider the ensemble mean of the no-update scenario with respect to the DA
scenarios, the accuracy deteriorates. This is shown in Figure 7 for the set of eight
flood peaks, while Figure 6 shows only one individual peak. [see LINES 483-487]

hess-2015-54: Authors’ response (in blue italics) to comments by Dr.
Ming Pan (in black). In green we indicate line numbers within the
latexdiff version of the manuscript (it can be found at the end of this
pdf document).

The work titled "Operational aspects of asynchronous filtering for hydrological
forecasting” by O. Rakovec et al. presented a data assimilation study for river
discharge simulations using the Asynchronous Ensemble Kalman Filter (AEnKF).
The experiments are mainly focused on testing the effects of two procedures: lumped
filter updates against observations from multiple time steps and partial updating of the
model states. The study is very carefully designed and carried out and the paper is



well organized and well written. In general, the study and presentation is of fairly
good scientific quality. I recommend its publication after minor revisions.

Authors’ response: We appreciate that Referee Dr. Ming Pan finds our manuscript
well written, carefully designed and well organized. We discuss and answer his
comments in detail below.

Here are my main concerns:

First of all, the AEnKF procedure needs some more justification and clarification. The
authors described the AEnKF as a "state augmentation". It is not exactly the case
because it only updates the current state X} and none of the previous ones from x|

to xk—W - (Of course, that probably shouldn’t matter much if we only care about the

forecasts.) Sakov et al. 2010 claimed that AEnKF is "formally equivalent to EnKS
solution." This statement is only true if the dynamic system is strictly linear (see
Equation 17 in Sakov et al. 2010). If the dynamic system is not linear, the step-by-
step updates will make a big difference w.r.t. the lumped updates because the
nonlinearity errors will accumulate during continuous and unconstrained model
integration. Is the river routing scheme (kinematic wave) linear? Is the hydrological
model linear? I guess not because otherwise the ensemble method wouldn’t be used.

Authors’ response: We describe the AEnKF approach as an augmentation of the state
matrix with past forecasted observations [see LINES 254-261 + Eq 13]. The Referee
is correct that xi—; to x;—w are not included in the augmented state matrix, but we do
not state that in the manuscript. If past model states would have been included in the
analysis, we should have spoken rather about a smoother than a filter. Additionally,
we will acknowledge in the revised manuscript that both the kinematic wave model for
the routing, and the hydrological model exhibit nonlinear behavior. Additionally, we
already mention on [LINES 98-102] that although “Kalman-type assimilation
methods were developed for an idealized modeling framework with perfectly linear
problems with Gaussian statistics, it has been demonstrated to work well for a large
number of different nonlinear dynamical models (Evensen, 2009)”. We also add a

note on the non-linearity of the hydrological as well as the routing scheme [see
LINES 214-216].

Given that, we can say the longer the update window W is, the more nonlinearity
errors to accumulate. However, longer windows will bring more information to the
updates. If the nonlinearity is not a problem, then the window should be as long as
necessary. Pan and Wood 2013 experimented a river discharge assimilation approach
that resorts to a full and explicit state augmentation over the longest necessary
window, i.e., across the maximum streamflow travel time of the river basin involved.
(Their study only works with a fully linear river routing scheme thus is free of
nonlinearity errors.)

Authors’ response: We thank the Referee for mentioning the interesting study by Pan
and Wood (2013). We will include a note on their results in the revised version of our
manuscript. [see LINES 660-663]

It is not clear whether the discharge observations at one gauge station are used to
update all the grid cells in the entire basin or just those within the subcatchment that
flows down to that gauge station. This is an important issue because the discharge



from one gauge does not contain any information about the grid cells outside (i.e.
downstream) of its own drainage area. Also, are the discharge data from all 6 river
gauges assimilated altogether simultaneously, or one gauge at a time? The discharge
from 6 gauges contain information of different lag times with respect to different grid
cells. See Pan and Wood 2013 for a fully explicit handling of such lags in time and
space.

Authors’ response: We assimilated all discharge gauges simultaneously in the case
study where four gauges (1,3,5,6) were assimilated. This is the same as was presented
by Rakovec et al (2012). This means that we did not apply any localization method
here. We will make this clearer in the revised manuscript. [see LINES 341-343] The
difference between forecast and analysis of individual model states is shown in a
spatial manner in Figure 5 for one time instant (see also Figure 4). These results
illustrate the effect of W and spatially distributed discharge observations on spatially
distributed innovations. Note that two other gauges (2 and 4) were left out from the
analysis for validation.

Another major concern I have is the very short length of the study period. All we can
see is just one winter event. It is really too short. We can’t even see a robust model
validation. We can’t see how the DA behaves under other conditions (like low flows).
This really limits the significance and robustness of any conclusion you can draw
here. If extension is impossible, the conclusions have too be very carefully
constrained.

Authors’ response: Although the exemplary Figures 6 and 8 present results for a
single flood event, the overall results presented in Figure 7 include all eight flood
events presented in Table 1, which is also written on [LINES 512-514] and in the
caption of Figure 7. The Referee is right however that our analysis can be generalized
only for high flows and not directly for low flow conditions. Therefore, we will
include a note in the revised manuscript stating that analysis of low flow conditions
was beyond the scope of the presented study. [see LINES 653-660 + 125+634+636]
Additionally, we will change the title as follows: Operational aspects of asynchronous
filtering for flood forecasting. [see TITLE]

I suggest the authors calculate the auto-correlation function of the innovation time
series. That’s the best way answer Referee 1’s concerns on systematic errors. The
EnKF types of methods are supposed to correct dynamic errors (i.e. time-random),
persisting biases are considered static (time-invariant) errors, and they should be
corrected using static methods.

Authors’ response: We thank the Referee Dr. Ming Pan for his suggestions, but we do
not consider calculating the innovation auto-correlations. However, Figure 7 shows
the RMSE (so +/- corrections contribute similarly) of many forecasts over many
events. It is impossible to deduce on the basis of Figure 7 that there is a constant bias.
That the forecast accuracy is decaying with leadtime is common to all DA studies, as
the model slowly returns to the model climatology.

Figure 6: I can’t distinguish between the lines of different shades of red (different lead
times). I can’t even count how many lines there are on the plots. This has to be
redone.



Authors’ response: We agree, we will improve quality and readability of Figure 6 in
the revised manuscript. Color scheme and the size of the figure are adjusted. [see
FIGURE 6]

References:

Evensen, G.: Data Assimilation: The Ensemble Kalman Filter, Springer,
doi:10.1007/978-3-642-03711-5, 2009.

Pan, M. and Wood, E. F.: Inverse streamflow routing, Hydrol. Earth Syst. Sci., 17,
4577-4588, doi:10.5194/hess-17-4577-2013, 2013.

Rakovec, O., Weerts, A. H., Hazenberg, P., Torfs, P. J. J. F., and Uijlenhoet, R.: State
updating of a distributed hydrological model with Ensemble Kalman Filtering: effects

of updating frequency and observation network density on forecast accuracy, Hydrol.
Earth Syst. Sci., 16, 3435-3449, doi:10.5194/hess-16-3435-2012, 2012.

hess-2015-54: Authors’ response (in blue italics) to comments by
Anonymous Referee #3 (in black). In green we indicate line numbers
within the latexdiff version of the manuscript (it can be found at the
end of this pdf document).

General evaluation:

This paper is interesting especially because it tests a methodology for data
assimilation, the asynchronous Ensemble Kalman Filter, which was not tested yet in
hydrology. The comparison of this method with EnKF warrants publication in my
opinion, but one critical point needs to be resolved.

Authors’ response: We appreciate that Referee #3 finds that the presented analysis
warrants publication. We discuss and answer her/his comments in detail below.

It was unclear to me whether in the experiments with EnKF and AEnKF the same
amount of observations was assimilated. It is logical that assimilating more data
would give a better result. Can the authors clarify this and also stress this more in the

paper.

Authors’ response: The amount of observations being assimilated into the model
depends on the magnitude of W. We tried to avoid statements suggesting that we did a
comparison of EnKF and AEnKF, because we rather evaluated AEnKF for different
lengths of W. We will state more clearly in the revised manuscript that the amount of
information differs for different values of W. [see LINES 375-377 + 424-426]

There are other points which make that the assimilation of discharge data in this
rainfall- runoff model shows significant deficiencies. These are the considered
uncertainty sources in the experimental set-up, the magnitude of the observation error
and the normality assumption for the observations, and considering a time lag for
updating model states with help of discharge data. These limitations should be
acknowledged in the paper in the abstract and the conclusions. I agree that the main
new point of the paper is the comparison of AEnKF and EnKF, and that we can live
with these limitations then, but they should be acknowledged.



Authors’ response: We will acknowledge these specific limitations (as further
explained below) more clearly in the abstract and the conclusions.

Altogether I believe moderate revision is needed.
Main points:

Section2.1: We will see later that rainfall is assumed deterministic, whereas all
uncertainty is attributed to soil moisture. A normal procedure would be to assume
rainfall uncertain as it is the most uncertain component for predictions with rainfall-
runoff simulations. In spite of what the authors say, in several studies uncertainty in
rainfall is considered in these studies. I think that this assumption should be more
critically evaluated in the manuscript and in the discussion and it would be good if the
authors discuss its implications. It would be good that this decision is also directly
visible in the abstract and conclusions, as it is important information for the
experiment.

Authors’ response: We agree with the reviewer that input uncertainty is a very
important issue. In previous contributions we investigated the effect of more complex
ways of perturbing the rainfall and its effect on forecast accuracy (see Rakovec et al.,
2012a,b, Noh et al., 2014). The noise on the soil moisture used in this study more or
less resulted in similar open loop simulations of the discharge as in the studies by
Rakovec et al mentioned above. The focus of this manuscript is on the filter itself
rather than on the effects of the applied noise. We will make this clearer in the revised
manuscript. [see LINES 8 + 354-360 + 666-670]

Page 3173, line 16-17: Why was inverse distance weighting used and not kriging?
Maybe add a short statement.

Authors’ response: We agree with the Referee that there are other ways of
interpolating rain gauge observations, such as kriging, which might be more
appropriate. However, evaluating the benefits of different rainfall interpolation
techniques was deemed beyond the scope of the study. We used a method used in
operational practice as this study is also oriented towards operational benefits of
AEnKF over EnKF. [see LINES 142-146]

Eq.10-12: It is unclear how discharge is treated here, this is not discussed. But it
seems that although discharge is typically not normally distributed, this is neglected
here. At least additional discussion would be important here.

Authors’ response: We don’t 100% understand the remark made by the Referee. Most
probably the reviewer feels that we should make a statement about the non-normality
of the discharge pdf. If that is the case, we already mention on [LINES 98-102] that
although “Kalman-type assimilation methods were developed for an idealized
modeling framework with perfectly linear problems with Gaussian statistics, it has
been demonstrated to work well for a large number of different nonlinear dynamical
models (Evensen, 2009)”.

Page 3180, Line 23: This is a simple error model. Why not uncertain precipitation and
parameters? This decision warrants more discussion, as already indicated above.



Authors’ response: As mentioned above, in previous contributions we investigated the
effect of more complex ways of perturbing the rainfall and its effect on forecast
accuracy (see Rakovec et al., 2012a,b, Noh et al., 2014). For this study it was
important that the error model produced reasonable results in the open-loop and did
not lead to any numerical instability. In the end perturbing the soil moisture has a
similar effect to perturbing the precipitation. [LINES 354-360]

Page 3180, Line 26: I suggest showing results from these calculations as for the
moment the paper is not very large and the number of figures not too high. It is
interesting to learn how many ensemble members are needed for which type of
model. For example, it is typically found that for distributed models the number of
ensemble members has to be larger, especially if parameter estimation is also
involved.

Authors’ response: We did not include a figure on the effect of the ensemble size,
because really negligible differences were observed. Nevertheless, we will include a
note that such a small ensemble size as presented in the manuscript would not be
possible if parameter estimation would be involved or if more complex error models
would be employed. More detailed analysis is left for further research beyond the
scope of this study. [LINES 364-367]

Page 3180, Line 27: A discussion on the magnitude of the observation error is needed.
Literature on observation errors for discharge measurements suggests in general a
much higher measurement error.

Authors’ response: We agree that the magnitude of the observation error could be
even larger, but we followed the approach of Clark et al (2008) and Weerts and El
Serafy, (2006). The latter explicitly state that a standard deviation of 0.1 represents a
large error. However, if an even larger observation error would be employed, we
expect marginal differences in the model performance among individual scenarios (in
a relative sense). Of course the forecast performance would deteriorate for all, as the
weight of the observations would become smaller.

Page 3182, Line 10-16: Sorry if I missed something, probably did not get it right. You
compare EnKF and AEnKF, where AEnKF assimilates the current observation and
ten observations for the past. Did you apply EnKF then for this time period at each
time step when data became available? This would mean, if you applied AEnKF with
W=10, did you apply EnKF with W=0 eleven times for this period, so that both
methods ingested the same amount of data. This is needed for a fair comparison, but it
is not clear to me if this has been done. Please clarify.

Authors’ response: The amount of observations being assimilated into the model
depends on the magnitude of W. We tried to avoid statements suggesting that we did a
comparison of EnKF and AEnKF, because we rather evaluated AEnKF for different
lengths of W. We will state more clearly in the revised manuscript that the amount of
information differs for different values of W. [see LINES 375-377 + 424-426]

Page 3185, Line 1-11: It is unclear how discharge is related to past soil moisture or
upper zone storage states. If it is used to update current soil moisture the procedure is
suboptimal I think as discharge will have a higher correlation with past UZ/SM-
conditions. If the time lag is not considered some of the conclusion (i.e., updating soil



moisture not important) might be related to this specific set-up. In this case, it would
be good to add some relaxing statement in the discussion.

Authors’ response: This is done through the Kalman gain. When the correlation is
lower the update will be smaller. AEnKF exploits the correlation between the present
state and the state not only at the previous time step, but also further in the past.
Therefore knowing the present state is sufficient to determine forecast. It may be
possible to use the correlation between discharge at the present time and UZ/SM in
the past for data assimilation, however, this is beyond the scope of this study.
Nevertheless, we speculate that this will only be useful in a smoothing context (i.e.
present discharge may bring information on UZ/SM in the past), not in a filtering
context as in the present study. [see LINES 553-564]

Page 3188, Line 2: “a rainfall-runoff model” instead of “hydrological model in
operational settings”.

Authors’ response: We thank the Referee for suggestion and we will include this
suggestion. [see LINE 685]

Figure 6. Extend caption to again mention the different scenarios that are displayed
here.

Authors’ response: We will extend the caption of Figure 6 such that it becomes self-
explanatory. Additionally, to improve readability of the figure, the color scheme and
the figure size were adjusted [see FIGURE 6]

Figure 7. Not so clear to me as there are a bit too many lines. Maybe you can find a
better solution.

Authors’ response: We agree that the current figure is rather small, which is due to
limited margins of the HESSD layout. We will make sure that the Figure 7 is large
enough in the final HESS layout, where more space for Figures is provided.

Editorial:
P3175, L 1: change to: “(..) as for the EnKF”.

Authors’ response: We thank the Referee for the suggestion and we will include this
suggestion in the revised manuscript. [see LINE 195]

P3176, L9: change to: “(..) the model states of the ensemble member are updated as
follows:”

Authors’ response: We will change this to “(..) the model states of the i" ensemble
member are updated as follows:”. [see LINES 235]
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Abstract. This study investigates the suitability of the Asyn-
chronous Ensemble Kalman Filter (AEnKF) and a parti-
tioned updating scheme for hydrological forecasting. The
AEnKF requires forward integration of the model for the
analysis and enables assimilation of current and past ob-
servations simultaneously at a single analysis step. The re-
sults of discharge assimilation into a grid-based hydrologi-
cal model (using a soil moisture error model) for the Upper
Ourthe catchment in the Belgian Ardennes show that includ-
ing past predictions and observations in the data assimilation
method improves the model forecasts. Additionally, we show
that elimination of the strongly non-linear relation between
the soil moisture storage and assimilated discharge observa-
tions from the model update becomes beneficial for improved
operational forecasting, which is evaluated using several val-
idation measures.

1 Introduction

Understanding the behaviour of extreme hydrological events
and the ability of hydrological modellers to improve the fore-
cast skill are distinct challenges of applied hydrology. Hy-
drological forecasts can be made more reliable and less un-
certain by recursively improving initial conditions. A com-
mon way of improving the initial conditions is to make use
of data assimilation (DA), a feedback mechanism or update
methodology which merges model estimates with available
real world observations (e.g., [Evensen, [1994] 2009 |Liu and
Guptal 2007; |[Reichle} 2008; [Liu et al.,|2012).

Data assimilation methods can be classified from differ-
ent perspectives. Traditionally, we distinguish between se-
quential and variational methods. The sequential methods are
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used to correct model state estimates by assimilating obser-
vations, when they become available. Examples of sequen-
tial methods are the popular Kalman and particle filters (e.g.,
Moradkhani et al.| [2005a) b; Weerts and El Serafy, 2006;
Zhou et al.,2006). The variational methods on the other hand
minimize a cost function over a simulation period, which in-
corporates the mismatch between the model and observations
(e.g.,|[Liu and Guptal 2007).

A next distinction can be made between synchronous and
asynchronous methods. Synchronous methods, also called
three-dimensional (3-D), assimilate observations which cor-
respond to the time of update. The Ensemble Kalman Filter
(EnKF, e.g., Evensen, 2003)) is a popular synchronous ap-
proach, which propagates an ensemble of model realizations
over time and estimates the background error covariance
matrix from the ensemble statistics. Asynchronous meth-
ods, also called four dimensional (4-D), refer to an updating
methodology, in which observations being assimilated into
the model originate from times different to the time of up-
date (Evensenl [1994] |2009; |Sakov et al., |[2010). The Ensem-
ble Kalman Smoother (EnKS) is a common example of an
asynchronous method (e.g.|[Evensen and Van Leeuwen, |2000;
Dunne and Entekhabil, |2006; [Crow and Ryu, 2009; [Li et al.)
2013). The EnKS extends the EnKF by introducing addi-
tional information by propagating the contribution of future
measurements backward in time. The EnKS reduces the er-
ror variance as compared to the EnKF for the past (Evensen),
2009). EnKS and EnKF are identical for forecasting (includ-
ing nowcasting).

The essential difference between a smoother and a filter
is that a smoother assimilates “future observations”, while
a filter assimilates “past observations”. This implies that for
operational forecasting purposes, we need a filter rather than
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a smoother. A smoother can help improve the model accu-
racy in the past (e.g. for re-analysis), but it does not help im-
prove forecast accuracy (Evensen, |2009). Therefore, |Sakov
et al.|(2010) introduced the Asynchronous Ensemble Kalman
Filter (AEnKF), which requires forward integration of the
model to obtain simulated results necessary for the analysis
and model updating at the analysis step using past observa-
tions over a time window. The difference among the EnKF,
EnKS and AEnKEF is schematized in Fig.

Sakov et al.| (2010) showed that the formulation of the
EnKS provides a method for asynchronous filtering, i.e. as-
similating past data at once, and that the AEnKF is a gener-
alization of the ensemble-based data assimilation technique.
Moreover, unlike the 4-D variational assimilation methods,
the AEnKF does not require any adjoint model (Sakov et al.,
2010). The AEnKF is particularly attractive from an opera-
tional forecasting perspective as more observations can be
used with hardly any extra additional computational time.
Additionally, such an approach can potentially account for
a better representation of the time-lag between the internal
model states and the catchment response in terms of the dis-
charge.

Discharge represents a widely used observation for assim-
ilation into hydrological models, because it provides inte-
grated catchment wetness estimates and is often available
at high temporal resolution (Pauwels and De Lannoy, [2006;
Teuling et al., 2010). Therefore, discharge is a popular vari-
able in data assimilation studies used for model state updat-
ing (e.g., |Weerts and El Serafy, 2006} Vrugt and Robinson,
2007; [Bloschl et al., [2008; (Clark et al., |2008; |[Komma et al.,
2008; |Pauwels and De Lannoyl 2009; Noh et al., |2011a}
Pauwels et al., 2013)) or dual state-parameter updating (e.g.
Moradkhani et al., [2005bj [Salamon and Feyen, 2009; Noh
et al.| 2011D).

The Kalman-type of assimilation methods was devel-
oped for an idealized modelling framework with perfect lin-
ear problems with Gaussian statistics, however, it has been
demonstrated to work well for a large number of different
nonlinear dynamical models (Evensen, [2009). It remains in-
teresting to evaluate whether elimination of the non-linear
nature from the model updating can be beneficial. For ex-
ample, | Xie and Zhang| (2013) introduced the idea of a par-
titioned update scheme to reduce the degrees of freedom
of the high-dimensional state-parameter estimation of a dis-
tributed hydrological model. In their study, the partitioned
update scheme enabled to better capture covariances between
states and parameters, which prevented spurious correlations
of the non-linear relations in the catchment response. Simi-
larly, decreasing the number of model states being perturbed
and updated was suggested by McMillan et al.| (2013)) to in-
crease the efficiency of the filtering algorithm while conserv-
ing the forecast quality. Such an approach was proposed es-
pecially to states with small innovations, which in their case
was mainly the soil moisture storage.
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In this study we present a follow-up of the work of
Rakovec et al.|(2012b)), in which discharge observations were
assimilated into a grid-based hydrological model for the Up-
per Ourthe catchment in the Belgian Ardennes by using the
EnKF. Here we scrutinize the applicability of the AEnKF us-
ing the same updating frequency (i.e. the same computational
costs) as in the previous study. To our knowledge this is the
first application of the AEnKF in a hydrelegieal-flood fore-
casting context. Firstly, the effect of assimilating past asyn-
chronous observations on the forecast accuracy is analyzed.
Secondly, the effect of a partitioned updating scheme is scru-
tinized.

2 Material and methods
2.1 Data and hydrological model

We carried out the analyses for the Upper Ourthe catchment
upstream of Tabreux (area ~ 1600 km?, Fig. , which is lo-
cated in the hilly region of the Belgian Ardennes, Western
Europe (Driessen et al, [2010). We employed a grid-based
spatially distributed HBV-96 model (Hydrologiska Byrans
Vattenbalansavdelning; [Lindstrom et al., [1997)), with spatial
resolution of 1km x 1km and hourly temporal resolution.
The model is forced using deterministic spatially distributed
rainfall fields, which were obtained by inverse distance in-
terpolation from about 40 rain gauges measuring at hourly
time step. Evaluation of the benefits of different rainfall

interpolation techniques was deemed beyond the scope of
the study. We used a method used in operational practice

as this study is also oriented towards operational benefits of
asynchronous filtering. Additionally, there are six discharge

gauges (hourly time step) situated within the catchment, from
which some are used for discharge assimilation and some for
independent validation.

For a more detailed description of the catchment and
model structure and definition of the hydrological states and
fluxes, we refer to Rakovec et al| (2012b) and to Fig. E}
Briefly, for each grid cell the model considers the following
model states: (1) snow (SN), (2) soil moisture (SM), (3) up-
per zone storage (UZ) and (4) lower zone storage (LZ). The
dynamics of the model states are governed by the following
model fluxes: rainfall, snowfall, snowmelt, actual evapora-
tion, seepage, capillary rise, direct runoff, percolation, quick
flow and base flow. The latter two fluxes force the kinematic
wave model (Chow et al., [1988}; [PCRaster, [2014)). This rout-
ing scheme calculates the overland flow using two additional
model states, the water level (H) and discharge ()) accumu-
lation over the drainage network. Model parameterization is
based on the work of [Booij| (2002) and [van Deursen| (2004).

In contrast to Rakovec et al| (2012b), in the current
study we employed the HBV-96 model built within a re-
cently developed open source modelling environment |(Open-
Streams| (2014), which is suitable for integrated hydrologi-
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cal modelling based on the Python programming language
with the PCRaster spatial processing engine (Karssenberg
et al., [2009; IPCRaster, |2014). The advantage of using Open-
Streams| (2014)) is that it enables direct communication with 2
OpenDA! (2014), an open source data assimilation toolbox.
OpenDA! (2014) provides a number of algorithms for model
calibration and assimilation and is suitable to be connected to
any kind of environmental model (e.g., Ridler et al., [2014)).
The import and export of hydrological and meteorological
data to the system is done using Delft Flood Early Warn-
ing System (Delft-FEWS, Werner et al.,2013)), an open shell
system for managing forecasting processes and/or handling ?
time series data. Delft-FEWS is a modular and highly con-
figurable system, which is used by the Dutch authorities for
the flood forecasting for the River Meuse basin (called RW-
sOS Rivers), in which the Upper Ourthe is located. The cur-
rent configuration is a stand-alone version of RWsOS Rivers,
however, it can be easily switched into a configuration with
real-time data import. 2

2.2 Data assimilation for model initialization

As stated in the introduction, we investigate the potential
added value of the Asynchronous EnKF (AEnKF) (Sakov
et al.l 2010) as compared to the traditional (synchronous)
EnKEF for operational flood forecasting. The derivation of the
AEnKEF (Sect.[2.2.2) is based on the equations using the same ,
updating frequency (i.e., same computational costs, differ-

ent number of observations) as for the EnKF (Sect. , as
among others presented by Rakovec et al.|(2012b)).

2.2.1 Ensemble Kalman Filter (EnKF)

First, we define a dynamic state space system as »
xp = f(xp—1,0,u;_1) + wy, (1)

where xj, is a state vector at time k, f is an operator (hy-
drological model) expressing the model state transition from
time step k — 1 to k in response to the model input uy_; and
time-invariant model parameters 6. The noise term wy, is as-
sumed to be Gaussian white noise (i.e., independent of time).
It incorporates the overall uncertainties in model structure,
parameters and model inputs.
Second, we define an observation process as

Y = h(xr) + Vi, )

where y;, is an observation vector derived from the model
state x;, and the model parameters through the i operator (in
our case the kinematic wave routing model generating dis-

30

40

charge). The noise term vy, is additive observational Gaus- =

sian white noise, with zero mean and covariance Rj. For
independent measurement errors, Ry, is diagonal. Note that

both the kinematic wave routing model h(.) as well as the
hydrological model f(.) exhibit nonlinear behavior.

After the model update at time k — 1, the model is used to
forecast model states at time k (Eq. [I). The grid-based model
states form a matrix, which consists of N state vectors xy
corresponding to N ensemble members:

X, = (zh,x2,..., 20 ), 3)
where
{132 = (SNi:m’SMi:vaZi:vaZzi:mvH{:m’Qi:m)£> 4)

SNt, SM*, UZ?, LZ?, H? and Q' are the HBV-96 model states
of the ith ensemble member (Sect. 2.1)), m gives the number
of grid cells and T is the transpose operator. The ensemble
mean

1L
i=1

is used to approximate the forecast error for each ensemble
member:

®)

(6)

The ensemble estimated model covariance matrix Py, is de-
fined as

1= 2 = N
E; = (x}, — Tk, x} — Thy. .., Tf, —

1
P,=-—E.,E..
FON—1 R

When observations become available, the model states of the
t1th ensemble member are updated as follows:

)

ay T =2)  Ky(ys — h(z) ) +vh), ®)

where :1:2"" is the analysis (posterior, or update) model state
matrix and wz’* is the forecast (prior) model state matrix. Ky,

is the Kalman gain, a weighting factor of the errors in model
and observations:

K, =P.H. (H,P.H! +R;) !, )

where P,HT is approximated by the forecasted covariance
between the model states and the forecasted discharge at
the observing locations, and H;P,HY is approximated by
the covariance of forecasted discharge at the observing loca-
tions (Houtekamer and Mitchell, [2001)):

P, H| = Nl_l_f;x;; —z)(h(x}) = h(zy)",  (10)
1 N
H Py = — ;(h(wk) —h(zy)) (h(@) —h(zr)",
(11)
where
h(xy) = livjh(xk) (12)
N <
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2.2.2 Asynchronous Ensemble Kalman Filter (AEnKF)

285

The AEnKF should not be considered as a new method,
but rather a simple modification of the (synchronous) EnKF
(Sect. 2.2.1) using a state augmentation approach. This
means that the 7th vector of model states (ac};,) at time k (see
Eq. 4] is augmented with the past forecasted observations
h(xi_,),...,h(x}_yu ) (.e., model outputs corresponding
to the observation locations) from W previous time steps,
which yields

mik 295
h(mkq)
@l=| M s) (13)
h(@}_y)
) ) ) 300
Remember that the size of x, and h(x}_,),....h(x}_y )
can significantly differ: @} contains the complete set of
model states, while h(x%,_,),...,h(x}_y-) contains only the

forecasted observations. Additionally, with the new state def-
inition comes a new augmented observer operator i, (in s
which I, with the corresponding subscript, stands for identity
elements on the diagonal matching the dimensions in Eq.[T3),

a new augmented observation vector ¥, and its correspond-
ing observation covariance matrix Ry

hy
~ e 0
hy = Iy ; (14)
O 310
I _w
Yk
Yr—1
Y, = Yr—2 (15)
. 315
Y—-w
Ry
~ mn, 0
R; = Ri_» . (16)™

0

Ri_w

Having these augmented equations for i};, fzk, y,, and f{k, 325
it is straightforward to carry out the assimilation in the same
manner as presented in Sect. Note that although current
and past observations are used to construct the augmented
state vector in the Eq. (I3), in practice Eq. (§) is solved only
to the current state :E}c (i.e. the indices that correspond to s
x}) and the rest is ignored. The presence of past observation
terms increases the dimension of P 1 and Kk (see Eqgs.[7|and
[O) in both directions (rows and columns). Each column of

Kk corresponds to an observation. The extra column of Kk
corresponds to the past observations. Hence, it is possible to
simply solve the equations for the first rows, which corre-
spond only to x}. Note that the first rows of K. also con-
tain the contributions of the past observations to the current
state. These contributions arise from the off-diagonal terms
of the augmented covariance P;. Finally, if the time win-
dow equals the current single time step, then W = 0 and the
AEnKEF problem reduces to the traditional EnKF.

From the operational point of view, it is preferable to have
a longer assimilation window, because less frequent assimi-
lation eliminates a disruption of the ensemble integration by
an update and a restart. When assimilation is done more fre-
quently, it will cause considerably higher calculation costs,
which can often be a burden for real-time operational set-
tings (Sakov et al., [2010). The AEnKF uses a longer assim-
ilation window and assimilates all observations in a single
update. This makes the AEnKF attractive to be used. The
added value of a longer assimilation window will be a sub-
ject for investigation in this work. Especially, it can provide
an improved representation of the time-lag between the inter-
nal model states and the catchment response in terms of the
discharge. Such an idea was investigated for example by |Li
et al.| (2013), who compared the effect of time-lag represen-
tation using the EnKF and EnKS.

2.3 Model uncertainty

In this study, we assume the source of model uncertainty to
be the HBV soil moisture, which provides boundary condi-
tions for surface runoff and represents interaction from in-
terception, evapotranspiration, infiltration and input uncer-
tainty by rainfall. The uncertainty is represented as a noise
term w as in Eq. (I). Based on expert knowledge, the noise
is modelled as an autoregressive process of order 1 with
a de-correlation time length of 4 h. The noise process is fur-
ther assumed spatially isotropic with a spatial de-correlation
length of 30 km. The noise is assumed to have a spatially uni-
form SD of 1 mm. The 2-D noise fields with such statistics
were generated by using OpenDA| (2014)) toolbox. This pa-
rameterization of the noise model ensures that the ensemble
spread in the simulated discharge corresponds well with the
control simulations as presented by [Rakovec et al.| (2012b)
(not shown). Ideally, all sources of uncertainty should be
accounted for in a DA scheme. However, this is not yet
a common approach in operational hydrologic data assimi-
lation. Moreover, as the objective of the current manuscript
is to compare the operational benefits of application of the
AEnKEF, we kept the noise model relatively simple. For more
work on the effect of noise specification on DA using com-
plex spatially distributed hydrological models see, Noh et al.
(2014).
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2.4 Experimental setup

This section provides a configuration setup of the filtering aso
methods (Sect.[2.2.Tand 2.2.2) to assimilate discharge obser-
vations into a spatially distributed hydrological model of the
Upper Ourthe catchment. The objective is to improve the hy-
drological forecast at the catchment outlet (at Tabreux, gauge
1 in Fig. [2) by assimilating up to four discharge gauges,
numbered as 1, 3, 5, 6 in Fig. [2] Note that discharge data
from multiple gauges are assimilated simultaneously and no

localization is employed in this study. Additionally, valida-
tion at an independent location is also performed. The dis-

charge assimilation is done every 24 h, however, the forecasts o0
are issued every 6h, i.e. 4 times a day, with different inde-
pendent starting points at 00:00, 06:00, 12:00, 18:00 UTC,
which is the same implementation as used by |[Rakovec et al.
(2012b)). This study analyses the 8 largest floods peaks ob-
served within the catchment since 1998. An overview is pro-
vided in Table [Tl

The ensemble of uncertain model simulations is ob-
tained by perturbing the soil moisture state (SM) with the 4
spatio-temporally correlated error model (Sect. @) With

this approach we ensured that the error model produced
reasonable results in the open-loop and did not lead to any
numerical instability. More complex ways of perturbing the
model and their effects on forecast accuracy were studied

were deemed beyond the scope of this manuscript. The
ensemble size in this study was defined to be 36 realizations

(for computational reasons). Note that increased ensemble
sizes of 72 and 144 realizations did not influence the results

(not shown). Nevertheless, such a small ensemble size «s

as presented in the manuscript would not be possible if
arameter estimation would be involved or if more complex
error models would be employed. The error in the discharge

observations is considered to be a normally distributed
observation error with a variance of (0.1 Qops, k)2 (after e.g. «20
Weerts and El Serafy, [2006; |Clark et al., 2008).

The experimental setup scrutinizes the problem of asyn-
chronous filtering from two perspectives. First, we inves-
tigate the effect of state augmentation using the past ob-
servations and assimilation of distributed observations on 4z
the state innovation (Sect. [3.1). Recall that the number of
observations being assimilated into_the model depends on
the magnitude of W. Furthermore, the choice of which model
states are included in the analysis step to be updated is anal-
ysed (Sects. [3.2] and [3.3). This means that besides updating s
all of the model states, we will test two other alternatives.
The first alternative will leave out from the model analysis
the soil moisture state (noSM), which is known to exhibit
the most non-linear relation to Q. The second alternative
will eliminate all the model states except for the two rout- «ss
ing ones (HQ). The scenarios of the partitioned state updat-
ing schemes are shown in Table 2] including the control run
without state updating (no update).

W
©
@

The performance of the data assimilation procedure re-
garding discharge forecasting is evaluated using the Ensem-
ble Verification System (EVS): a software tool for verifying
ensemble forecasts of hydrometeorological and hydrological
variables at discrete locations (Brown et al., 2010), which
provides a number of probabilistic verification measures. In
this study we used three popular measures: the root mean
square error (RMSE), the relative operating characteristic
(ROC) score and the Brier skill (BS) score. We refer to e.g.
Wilks| (2006); Brown et al.| (2010); Brown and Seo| (2013)),
and |Verkade et al.| (2013) for exact definitions of these mea-
sures. In summary, the perfect forecast in terms of the RMSE
has a value of 0, while positive values indicate errors in the
same units as the variable. The perfect forecast in terms of
the ROC and BS scores has a value of 1 and values smaller
than 1 indicate forecast deterioration.

3 Results

3.1 The effect of state augmentation and distributed ob-
servations on state innovation

To investigate and understand the effect of augmented op-
erators (Eqs. and [T3) on the innovation of spatially
distributed model states, we present the following example.
Figure[]shows discharge simulations and corresponding dis-
charge observations at 4 locations within the catchment on
31 December 2002, 00:00 UTC. Note that the magnitude
of the discharge observations is a function of the location
within the catchment; for downstream gauges the magni-
tude is larger than for the more upstream gauges. The dis-
charge observations are further distinguished according to
the time window length of the state augmentation, which is
set to W =0 and W = 11. The first example represents the
traditional EnKF algorithm, while the latter assimilates ob-
servations from a 12 h time window (i.e., 1 current observa-
tion and 11 past observations), which is arbitrarily defined as
a half of the 24 h assimilation time window. For some cases
alternative assimilation windows were tested, which did not
lead to noticeable differences however (not shown). Note that
the amount of information being assimilated into the model
differs for different values of IV,

The mean difference between the forecasted and updated
model states for the whole ensemble is illustrated in Fig. 5]
for four scenarios. These examples improve our understand-
ing about the behaviour of the updated model states in rela-
tion to the information content of the observations from two
perspectives: (1) the effect of assimilating also past obser-
vations in addition to observations at the current (analysis)
time, and (2) the effect of assimilating spatially distributed
observations into a grid-based hydrological model.

Let us first consider the traditional EnKF (i.e., no state
augmentation with W =0) to update all the grid-based
model states by assimilating the observation at the catchment
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outlet (gauge 1). We observe that the single observation is
measured approximately in the middle of the simulated en-
semble (see the open circle for gauge 1 in Fig. f). There-
fore, there is hardly any difference between the forecasted sss
and updated model states as we show in Fig. [Sh. In the sec-
ond scenario, we still assimilate only one gauge at the out-
let, however, we use the augmented operators with W = 11.
Because the mean of the ensemble simulations is predom-
inantly underestimated as compared to the assimilated ob- s
servations (see black dots in Fig. [d] for gauge 1), after the
update more water is added spatially equally into the sys-
tem, as shown in Fig. E}) In the third scenario, we include
all 4 gauges being assimilated into the model without any
augmentation. Because the model simulations at the interior sos
gauges are mostly overestimating the observations, water is
removed from the catchment during the update. Moreover,
since the model overestimation is largest at gauges 3 and 6,
we can also observe in Fig.[5k how well the EnKF is capable
of identifying corresponding regions in a spatial manner. In s1o
the fourth scenario (Fig. [5H) we still assimilate all 4 gauges,
however we augment the state with W = 11. We can observe
that the innovation of the model states gets even more spa-
tially differentiated; the updated SM and UZ model states in
the downstream part of the catchment increase the amount ss
of water in the system, while the updated SM and UZ model
states in the upstream part decrease the amount of water in
the system.

The presented educational examples showed an update for
several scenarios starting from the same initial conditions. sxo
This enabled a fair comparison between scenarios, however,
the sensitivity of state augmentation needs to be further scru-
tinized in terms of its cumulative effect over time.

3.2 The effect of the four partitioned update schemes s
and asynchronous assimilation on forecast accuracy

We present a qualitative interpretation of the hydrological
forecasts with a lead time of 48 h in Fig. [6] for different par-
titioned state updating schemes as defined in Table [2] in- s
cluding both a non-augmented state (W =0) and an aug-
mented state (W = 11). This analysis focuses on a charac-
teristic winter flood event (December 2002—January 2003)
being typical for a moderate temperate climate caused by
a fast-moving frontal stratiform system (Hazenberg et al.l ss
2011). We observe that the ensemble of the control runs (top
panel of Fig. [6) simulates the major flood peak reasonably

well, including the timing and the magnitude—, however, it

has a larger spread with respect to the assimilation scenarios.
Additionally, when we consider the ensemble mean of the s«

no-update scenario with respect to the assimilation scenarios,
the accuracy deteriorates. When discharge assimilation is

employed, an overall reduction of the uncertainty in the fore-
casted ensemble is observed. Nevertheless, the forecasted
flood peak becomes underestimated and the forecasted re- ss
cession remains overestimated, which is acceptable because

of the defined uncertainty in the observed discharge. This
happens in particular for the scenario in which all states
are updated; there are marginal differences between the non-
augmented and augmented model states. Furthermore, when
we leave out SM from the state update (noSM), we can
observe that the major flood peak is forecasted more accu-
rately, including the rising limb around 31 December 2002.
Moreover, for the augmented state with W = 11, the ensem-
ble spread becomes somewhat wider for lead times exceed-
ing 12 h than for the non-augmented state. Nevertheless, the
observations correspond approximately with the ensemble
mean. Finally, we present the effect of the scenario in which
only the two routing states are updated. The results suggest
that the flood peak is captured most accurately of all scenar-
ios, however with somewhat wider uncertainty bands. There-
fore, it seems more appropriate to exclude the UZ storage
(noSM scenario) in the model state updating, which repre-
sents water storage available for quick catchment response
in the concept of the HBV model.

Besides a qualitative interpretation of the forecasted hy-
drographs presented in Fig. [f] for one particular event, we
summarize these results in a more quantitative manner for
the whole set of 8 flood events (see Table [T)) in—terms—of
to_the lead time. Figure [7] shows the average behavior
(over many forecasts) of an improved initial state on the
forecast accuracy for the different filter settings, although
individual partial updates may vary in time.In general, the
improvements in forecast accuracy decay with lead time in a
systematic fashion as is to be expected.

Figure. [7h -shows the root-mean-square-error (RMSE) as a

function of lead time for different partitioned state updating
schemes and for three scenarios for the state augmentation at
the catchment outlet (Tabreux). The control model run with
no update has a constant RMSE of about 32m?3s~! and an
improved hydrological forecast has a RMSE lower than the
control run. The results suggest that all assimilation scenar-
ios improve the hydrological forecast, however with marked
differences between the scenarios.

We-eanTFigure[7h also clearly shows that the differences in
the forecast improvement of these various setups are purel

due to using multiple data points in the past at the analysis
step. We can further observe that updating all model states

except for SM (noSM scenario) consistently leads to the
most accurate forecasts across the whole range of lead times.
Additionally, state augmentation using W =5 and W =11
indicates improvements compared to the case without aug-
mentation (W = 0). However, for lead times longer than the
travel time from the most upstream gauges to the outlet (i.e.
exceeding 20 h), the difference between state augmentations
W =5 and W =11 diminishes. Moreover, when only the
two routing states (HQ scenario) are updated, the RMSE is
lowered for short lead times, but the improved effect does
not last as long as for the noSM scenario. The smallest im-
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provement at shorter lead times is achieved when all model eoo
states are updated (scenario all). This is due to the strongly
non-linear relation between the assimilated observations and
the SM storage, which is further articulated by the time-lag
between the state and the catchment response. Nevertheless,
for longer lead times it seems slightly better to update all eos
states rather than only the routing states. Discharge is related

to the SM and UZ storages through the Kalman gain. When
the correlation is lower the update will be smaller. AEnKF
exploits the correlation between the present discharge state
and the discharge state not only at the previous time step, st
but also_further in the past. It may be possible to use the
correlation between discharge at the present time and UZ/SM
in_the past for data assimilation, however, this is deemed
beyond the scope of this study. Nevertheless, we speculate
that this will only be useful in a smoothing context (i.e. the eis
present discharge may bring information on UZ/SM in the
past), not in a filtering context as in the present study.

Validation of the model setup in terms of the RMSE is pre-
sented in Fig. [/d for an independent evaluation of the fore-
casting results at Durbuy, an interior location, which was not ez
used for assimilation. These results show that an improve-
ment of discharge assimilation also occurs at the validation
location and that the pattern corresponds well to the results
presented in Fig. [7p. Such an analysis indicates that there is
no spurious update of the model states. 625

To present the results in a more robust way, we also ana-
lyzed them (at Tabreux) in terms of other probabilistic verifi-
cation measures: the relative operating characteristic (ROC)
score and the Brier skill (BS) score (see Fig. , ¢). Recall
that values of 1 represent a perfect forecast, while values
smaller than 1 indicate forecast deterioration. Similar to the
RMSE results, updating only the two routing states (HQ) is
most efficient for short lead times, but this skill disappears sz
quickly for longer lead times. In terms of the ROC and BS
scores, for a given augmentation size, there are marginal dif-
ferences between the scenarios which update all states (all)
and which leave the soil moisture out (noSM). However, it is
notable that the state augmentation case (W = 11) improves s
the forecast performance as compared to the no augmentation
case (W =0). Note that the state augmentation of W =5
was not carried out.

3.3 Temporal nature of model state innovations 640

To reveal the temporal nature of the model being updated
using the AEnKF, using W =0 and W = 11, we present in
Fig.[8n and b time series of normalized differences between
the ensemble means for the 3 partitioned update schemes and s
the ensemble mean for the no update scenario. The normal-
ization is achieved by dividing the aforementioned difference
by the no update scenario mean. In such a way we obtain the
relative change in each of the model states. For the AEnKF
using W = 0 (Fig. [Sh), we can observe that for the scenario eso
“all”, which updates all the model states, the magnitude of

the percentage change is approximately the same for all 4
model states and ranges up to 25 %. When all model states
except for the SM are updated, no changes in the SM stor-
age occur and the overall magnitude of the changes in the
other states is slightly decreased and smoothed. Furthermore,
when only the two routing states are updated (HQ), the SM
and UZ storages remain constant over time and we observe
a different temporal behaviour of the routing states in com-
parison with the previous cases. For the HQ scenario, the up-
dated time series have a clear zigzag shape, which indicates
that the effect of updating diminishes faster, because only
the river channel is updated. In contrast, the routing states
for the other cases show a more stable behaviour over time,
illustrated by the stepwise shape. These more persistent re-
sults correspond to the updates in the UZ storage, which is
used for a quick catchment response and has an impact for
a longer time. The benefits of including the UZ storage in the
update and leaving the SM storage out was already presented
from a different point of view in Fig.|7a for longer lead times.

For the AEnKF using W = 11 (Fig. [8p), we can observe
that the overall pattern of the temporal changes in the model
states is similar as for W =0, but the behaviour of using
W =11 shows somewhat larger variability. By assimilating
more observations (W = 11), we expect even a larger update,
assuming that more observations contain more information
about the unknown truth. Assuming the underlying forecast
model has a significant error, by assimilating more observa-
tions the Kalman filter will pull the model even closer to the
truth, yielding a larger abrupt update.

4 Conclusions

We applied the Asynchronous Ensemble Kalman Filter
(AEnKEF) (Sakov et al.||2010) and identified the effect of aug-
menting the state vector with past simulations and observa-
tions. To our knowledge this is the first application of the
AEnKF in hydrelogieal-flood forecasting. We showed that
the effect of an augmented assimilation vector improves the
hydrologicalflood forecasts, but the contribution gets smaller
for longer lead times. Overall, the AEnKF can be consid-
ered as an effective method for model state updating taking
into account more (e.g. all) observations at hardly any ad-
ditional computational burden. This makes it very suitable
for operational hydrological forecasting. When compared to
standard EnKF, the AEnKF allows the choice of a certain as-
similation window length, which adds a degree of freedom
to the data assimilation scheme. The optimal window is very
likely related to the catchment size (i.e. concentration time).
It was noted (not shown) that for the smaller upstream catch-
ments the optimal window was smaller than for the complete
Upper Ourthe catchment, although there was no negative ef-
fect of a longer assimilation window (W =5 vs. W =11).

For the high flows analysed in this study, the AEnKF with
a longer time window W is able to make corrections that
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last longer on average than with the shorter time window V. 7s
Characterization of the statistical properties of the temporal
flow dynamics (i.e., typical time scales of flood peaks as
compared to low flows) is however a relevant issue. The
length of the time window W has to be seen relative to the
time scale of the river flow dynamics. We assume that for ™
low flow conditions, the improved skill of longer WW_with
respect to shorter W will become negligible, as low flows
exhibit less temporal dynamics than high flows. We refer to
Pan and Wood|(2013) for an analysis about explicit handling
of lags in space and time, which uses a state augmentation

approach for a linear inverse streamflow routing model. Note 715
that it was not the objective of this study to determine the

optimal assimilation window for the AEnKF —given various

river flow dynamics. Another limitation of this study is
the relatively simple error model for perturbing only soil
moisture states. More complex ways of perturbing the model -

and their effects on forecast accuracy deserve more attention
in future studies.

We investigated the effect of a partitioned update scheme
recently suggested by [Xie and Zhang| (2013). We showed
that for the Upper Ourthe catchment reducing the number 725
of model states of a grid-based HBV model using AEnKF
can lead to better forecasts of the discharge. In terms of the
root-mean-square-error, the largest improvements in the fore-
cast accuracy were observed for the scenario where the soil
moisture was left out from the analysis (similar to the PDM
updating scheme presented by [Moorel |2007). This indicates
that elimination of the strongly non-linear relation between
the soil moisture storage (SM) and assimilated discharge ob-
servations can become beneficial for an improved forecast ,.4
when soil moisture observations are not considered. On the
other hand, it was recently demonstrated that hydrelogieal
model-in-operational-settings-a rainfall-runoff model can be
improved when constrained by remotely sensed soil moisture
(e.g.,|/Alvarez-Garreton et al.,[2014; Wanders et al., 20144l |b) 7
or in-situ soil moisture (e.g., Lee et al.,2011). Moreover, we
showed that keeping the quick catchment response storage
(upper zone; UZ) in the model analysis is important, espe-
cially for longer lead times, when compared to the scenario
in which only two routing storages were updated. The UZ
seems to compensate the effect of SM on discharge. The
fact that excluding SM extends the improvements suggests
that in our case the discharge forecasts with a lead time of
two days (and for major flood events) are less dependent 7so
on SM. A possible alternative to excluding the SM storage
from the analysis, would be to investigate the use of other
algorithms, for example the Maximum Likelihood Ensemble
Filter (MLEF) (Zupanskil, 2005} |[Rafieeinasab et al., [2014),
which is more suited for use with highly non-linear observa- e
tion operators.
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Figure 1. Illustration of the model updating procedure for the Ensemble Kalman Filter (EnKF), the Ensemble Kalman Smoother (EnKS), and
the Asynchronous Ensemble Kalman Filter (AEnKF). The horizontal axis stands for time, observations (d1, dz2, ds, d4) are given at regular
intervals. The blue arrows represent forward model integration, the red arrows denote introduction of observations and green arrows indicate
model update. The magenta arrows represent the model updates for the EnKS, therefore they go backward in time, as they are computed
following the EnKF update every time observations become available. The green dotted arrows denote past observations being assimilated

using the AEnKF. The schemes for the EnKF and the EnKS are after [Evensen| (2009).
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Figure 2. Topographic map of the Upper Ourthe (black line) including the river network (blue lines), rain gauges (plusses), six river gauges
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Figure 3. Left: catchment discretization using a grid-based approach including the channel delineation. Arrows indicate flow direction. Right:
schematic structure of the HBV-96 model for each grid cell. Model states are in bold and model fluxes in italics (afterRakovec et al., 2012b)).

1504 gauge 1 _|gauge 3

10

273
|

Discharge fn®s ]
o o

osasessvee® ceseeensss®

O_ —

29Dec0?2 31Dec02 29Dec02 31DecO:
Time [h]

Figure 4. Discharge ensemble forecasts (grey lines) and observations (points) at four locations (gauges 1, 3, 5, 6; see Fig. [2). Observations
being assimilated using the AEnKF are schematized according to the state augmentation size for two scenarios: assimilation of data from
the current time step W = 0 (open circle, traditional EnKF approach) and assimilation of data including the previous 11 time steps, W =11
(black dots). The observations are assimilated into the model states on 31 December 2002, 00:00 UTC.
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Table 1. Overview of the periods used in this study.

13

Period Number of Maximum observed
events discharge [m® s~

23 Oct 1998-15 Nov 1998 1 210

15 Feb 1999-5 Mar 1999 2 195

15 Jan 2002—6 Mar 2002 4 340

21 Dec 2002-7 Jan 2003 1 380

Table 2. Four partitioned state updating schemes (indicated in the first column) for 5 model states (indicated in the first row) being updated
and thus included in the model analysis. Model states are described in Sect. [2.1] and Fig. [§] and have following acronyms: discharge (Q),
water level (H), soil moisture storage (SM), snow storage (SN), upper zone storage (UZ), and lower zone storage (LZ).

Name Q H SM SN UZ LZ
No update
all v Vv vV VY
noSM v oV v vV
HQ VoV
(@ (b) (c) (d)
AENKF(W=0)  AEnKF(W=11  AENnKF(W=0)  AEnKF(W=11
up.all, as.1 up.all, as.1 up.all, as.135 up.all,as.135 1n
ﬁz (X=x):
’_}I o 131
' 56
H—. 19
Q o i
i i -9.4
-13.1
Q [m3/s]
= i5 07
B e 08
iy ! 0.3
B s 0.1
U 4. -0.1
H ik i -
o «t 3:23
-0.7
H [m]
i 228
16.3
9.8
33
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-22.8
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4 :
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25
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-4.1
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Figure 5. Mean difference between the forecasted (X ) and updated (X 1) model states on 31 December 2002 at 00:00 UTC for different
scenarios (shown in vertical panels). We show only 4 sensitive model states: discharge (Q), water level (H), soil moisture (SM) and upper
zone (UZ). We dropped out the insensitive lower zone (LZ). Notation W =0 and W = 11 indicates the size of the state augmentation.
Notation up.all indicates that all of the model states are updated. Notation as.“xx” indicates the gauges which are assimilated, see Fig. [2] for
their locations. The corresponding ensemble of model forecasts and observations being assimilated are shown in Fig. ]
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Figure 6. Ensemble of discharge forecasts for a typical event at the catchment outlet (Tabreux, gauge 1) for differentthree updating scenarios-

Fhe-controtrun- all, noSM, HQ (with-ne-updatesee Table[2 for definition)is-shewn-in-the-top-panet. The combined effect of the model states

being updated (3 scenarios shown in rows) and the length of the state augmentation vector (W) of past observations being assimilated
(2 scenarios in columns) is presented. Fhe-observations-are-shown-in-black-Gauges 1, 3, 5, and 6 are assimilated. The control run (with no

update) is shown in the left panel. The observations are shown in black.
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Figure 7. (a) Root-mean-square-error (RSME), (b) Relative operating characteristic (ROC), and (c¢) Brier skill score (BSS) at Tabreux (gauge
1) for different discharge observation vectors for which different model states are updated and with different lengths of the state augmentation
vector (W) of past observations being assimilated. The results incorporate a set of 8 flood events shown in Tablem Gauges 1, 3, 5, and 6 are
assimilated. For BSS, the reference forecast is the sample climatology and only values larger than the 25th percentile of the whole sample
are considered. (d) Same as (a) but the results are presented for Durbuy (gauge 2), a validation location which is not assimilated.
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Figure 8. Scaled difference between the ensemble mean for the 3 partitioned update schemes and the control run without data assimilation at
4 gauging locations (shown by different colors) within the Upper Ourthe catchment using the AEnKF with (a) W =0 and (b) W =11. We
dropped out the insensitive lower zone (LZ). Gauges 1, 3, 5, and 6 are assimilated. The results correspond to the same period as presented in

Fig.[g
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