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Abstract

Efforts to improve the understanding of past climatic or hydrologic variability have received
a great deal of attention in various fields of geosciences such as glaciology, dendrochronol-
ogy, sedimentology and hydrology. Based on different proxies, each research community
produces different kinds of climatic or hydrologic reanalyses at different spatio-temporal
scales and resolutions. When considering climate or hydrology, many studies have been
devoted to characterising variability, trends or breaks using observed time series represent-
ing different regions or climates of the world. However, in hydrology, these studies have
usually been limited to short temporal scales (mainly a few decades and more rarely a cen-
tury) because they require observed time series (which suffer from a limited spatio-temporal
density).

This paper introduces ANATEM, a new method that combines local observations and
large-scale climatic information (such as the 20CR Reanalysis) to build long-term air tem-
perature and precipitation time series with a high spatio-temporal resolution (one day and a
few km2). ANATEM was tested on the air temperature and precipitation time series of 22 wa-
tersheds situated in the Durance River basin, in the French Alps. Based on a multi-criteria
and multi-scale diagnosis, the results show that ANATEM improves the performance of
classical statistical models. The ANATEM model has been validated for the regional scale,
improving the spatial homogeneity of performances on independent long-term time series.
It was able to capture regional low-frequency variability over more than a century (1883–
2010).

1 Introduction

Multi-decadal variations of climate variables, intrinsically arising from the chaotic and non-
linear nature the climate system, have long been observed for a number of large as well as
local scale climate features (Madden, 1976).

2



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

In a non-stationary climate, multi-decadal variations can remain substantially above or
below the long-term trend. In climate projections for the coming decades, they often lead
to large uncertainties (e.g. Hawkins and Sutton, 2009; Deser et al., 2012). For precipitation
or hydrometeorological variables such as streamflow, these uncertainties can even surpass
uncertainties due to climate models (e.g. Terray and Boé, 2013; Lafaysse et al., 2014).

Unfortunately, most climate change impact studies still fail to account for them. For exam-
ple, projected climatic and hydrological scenarios for a given future lead time are classically
compared to a so-called reference period (around 30 years of data) expected to be repre-
sentative of the recent climate context. As shown by Hänggi and Weingartner (2011) with
a 200-years runoff time series of the Rhine at Basel, the hydrological reference features
are however likely to highly depend on the period used for their estimation. In such a case,
the relevance of conclusions and/or adaptation recommendations formulated on the basis
of such a study may be questionable. In our opinion, they suffer from a certain lack of large
historical perspective, which would at least require characterising the multi-scale variability
of climate variables.

Today, characterising the multi-scale variability of climate variables would appear to be
important (if not mandatory) in order to put future climate projections into perspective. Nu-
merous studies worldwide have investigated past variability of climate and related variables.
In hydrology for instance, the following studies could be considered as representative for
France (Renard, 2006), Spain (Lorenzo-Lacruz et al., 2012), Germany (Renner and Bern-
hofer, 2011), Europe (Stahl et al., 2010), Canada (Zhang et al., 2001), western North Amer-
ica (Rood et al., 2005) or Australia (CSIRO, 2010). They are based on a set of observed time
series available for the region of interest. However, given that the density of observations
was significantly lower before 1960 (Hannah et al., 2011), most time series usually cover
a few decades only, which is obviously not sufficient for a relevant analysis of multi-decadal
variations (Mathevet and Garçon, 2010; Hannaford et al., 2013). Long-term historical time
series (covering a period longer than 100 years) are of course the ideal material for such
an analysis. Such historical series have been used for the Loire river in France (Renard,
2006), the Columbia and Missouri rivers in the USA (Rood et al., 2005), the Murray-Darling
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basin in Australia (CSIRO, 2010) and, more recently, for a larger set of French stations by
Boé and Habets (2013). Long-term streamflow time series are rare, with a typically very low
spatial density. Some could still be recovered from various national and regional archive
sources but the recovery process is long and requires demanding digitising and quality
check phases. Finally, the temporal homogeneity of data is often questionable (e.g. be-
cause of the evolution of measurement practices as shown in Kuentz et al., 2012, 2014,
anthropogenic influences, etc.), hindering the use of some series for variability analysis.

Characterising the low-frequency variability of climate and related variables from obser-
vations is therefore seldom possible. An alternative is to reconstruct the past temporal vari-
ations of the variable of interest. A number of reconstruction approaches have been pre-
sented for numerous fields of geosciences. They use environmental markers such as tree
rings (Frank and Esper, 2005) or lake sediments (Wilhelm et al., 2013, 2012), narrative ev-
idence of droughts (Pfister et al., 2006) or geochemical tracers in ice cores from glaciers
(Jouzel et al., 2007). Simulations provide an efficient way to reconstruct past flow variations.
Simulated discharge times series are obtained using a hydrological model forced with past
variations of meteorological variables available for the region. When meteorological obser-
vations required for such analysis do not cover the whole target period, they can also be
reconstructed. A classical reconstruction is obtained using external data (proxy data) from
long-term series of observations available from one or several neighbouring stations. The
most popular reconstruction approach is based on linear (multiple-)regression models but
a variety of other approaches have been proposed, including non-linear multiple regression
(e.g. neural networks), kriging methods and copula based methods (Coulibaly and Evora,
2007; Teegavarapu, 2012; Bárdossy and Pegram, 2014).

Local meteorological data can alternatively be reconstructed from past climate variations.
The recent release of two major atmospheric reanalyses covering the entire 20th century
(from 1871 for the NOAA 20CR, Compo et al., 2011 and from 1900 for the ECMWF ERA-
20C, Poli et al., 2013) provides a great opportunity for such a reconstruction. Unfortunately,
their spatial and temporal resolutions rarely fit the resolution needs (typically sub-daily time
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step, up to 1000 km2) of hydrological applications. In such a case, the required local mete-
orological data can be obtained through downscaling.

This study compares 3 different statistical approaches for the reconstruction of high-
resolution precipitation and temperature data. Reconstructions are respectively obtained
from observations available at a neighbouring station, from large-scale (meso-scale) at-
mospheric variables extracted from the 20CR reanalysis and from a combination of both.
Although the first two approaches have already been applied in similar studies, the last is an
original approach in that makes use of both local observations and large-scale atmospheric
information. The principle of reconstructions obtained with the 3 approaches is illustrated in
Fig. 1. Reconstructions are built at a daily time step for the 22 subcatchments of the Upper
Durance River basin, a mesoscale catchment located in the south-eastern Alps. They have
been produced for hydrological reconstructions covering the past 140 years. An exhaustive
evaluation of the whole hydrological reconstruction process can be found in Kuentz (2013).

The Upper Durance River basin as well as the meteorological and atmospheric data
are presented in Sect. 2. The three reconstruction models are presented in Sect. 3 and
evaluated and compared in Sect. 4. Section 5 briefly discusses the low-frequency climatic
variability reconstructed over the 1870–2010 period. Finally, conclusions and perspectives
emanating from this work are given in Sect. 6.

2 Data

2.1 Case study location and spatial climatic inputs

The three methods have been applied for the reconstruction of mean areal temperature and
precipitations of 22 sub-basins of the Durance River basin, a mesoscale alpine watershed
located in south-eastern France (Fig. 2). The main characteristics of the watersheds are
detailed in Table 1.

Bounded in the north by the Écrins mountain range of the Alps and in the south by the
Mediterranean Sea, the various subcatchments display very different climates. Upstream

5



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

hydrological regimes are dominated by snow with high snowmelt flows in late spring and
early summer. When moving downstream, they become more Mediterranean with additional
autumn floods due to large rainfall amounts in that period.

For each watershed, daily mean areal air temperature and precipitation data over the
1948–2010 period have been taken from the SPAZM meteorological analysis produced
by Gottardi et al. (2012). In the following, the 1948–2010 period will be referred to as the
“observation period” and the SPAZM series will be referred to as “observations” even though
they are not direct recordings, but rather mean areal air temperature and precipitation series
aggregated at the watershed scale from local observations of temperature and precipitation
(Gottardi et al., 2012).

2.2 Long local reference series

To reconstruct the mean areal air temperatures and precipitation of the 22 watersheds, it
was first necessary to search for the longest observed series on or near the Durance wa-
tershed. In a technical report published in 1892, Imbeaux (1892) reported 4 air temperature
and 40 precipitation measurement stations in the watershed and its neighbourhood. Unfor-
tunately, most of the data from these stations have been lost and only very few and incom-
plete series remain available today. For precipitation, it was possible to rebuild a 1883–2010
series for the Gap location by merging two sources of data, provided respectively by Elec-
tricité de France (EDF) and Météo-France. For air temperature, the nearest daily series
found, provided by Météo-France, was for Marseille and covers the period 1868–2010.

For a qualitative assessment of the reconstructed series, 5 monthly time series from the
HISTALP project database (monthly series, Auer et al., 2007) were also used. They also go
back to the 1870’s. For air temperature, the selected stations are located around the south-
eastern part of the Alps, at Genova University, Milano-Brera, Montpellier, Nice airport and
Nîmes airport. For precipitation, they are closer to the Durance watershed, located in the
cities of Aix-en-Provence, Nice (Cap-Ferrat), Orange, Saint-Paul-les-Durance and Toulon.
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2.3 Large-scale climatic data

Large-scale atmospheric data (describing meso-scale circulation) were extracted from the
“20th Century Reanalysis” (“20CR”, Compo et al., 2011) from the project of the same name,
supported by the US Department of Energy and the Climate Program Office of the National
Oceanic and Atmospheric Administration (NOAA). This reanalysis was produced by assim-
ilating only sea level pressure data, making it possible to go back to the end of the 19th
century. The reanalysis covers the 1871–2010 period. In the present work, the large-scale
variables used for the reconstruction are the fields of 700 and 1000 hPa geopotential heights
in the rectangular spatial domain situated between longitudes 8◦W and 12◦ E and latitudes
38◦N and 50◦N.

3 Methodology: combining two sources of information

In climatology and hydrology, the reconstruction of past climatic data is usually necessary
to estimate missing values, assess data quality or build long-term climatic reanalyses. Dif-
ferent methods are classically used to reconstruct climatic observations. Some of them are
solely based on the series being reconstructed (long-term average or regime methods, tem-
poral interpolation techniques. . . ), others are based on external data (proxy data) used to
calibrate and run a reconstruction model. For climatic reconstructions, proxy data could be
either observations of the same variable as the one to be reconstructed or observations of
different variables assumed to be linked to it.

In the following section, the three methods used for the reconstruction are presented.
The first one uses local neighbour observations of a similar proxy (respectively, air temper-
ature or precipitation observation). The second is basically a downscaling approach using
regional large-scale information of a different proxy (geopotential fields). The third approach
uses both proxies.

As in most reconstruction works, these methods rely on a period over which both data
at the reconstruction point and proxy information are available (see Fig. 1). This period will
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be referred to as the observation period. The reconstruction period is the period over which
the reconstruction model is applied, corresponding to the period where proxy information is
available but data is missing at the reconstruction point (in the following, the reconstruction
are also presented for the observation period).

3.1 Local information

A classical method used for climatic reconstructions is based on regression-like models,
where predictors should be well correlated with the data to be reconstructed. This model is
calibrated against observations during the observation period.

In the following, the principle of the local model (LM) is to reconstruct the target series
(referred to as Tg) from a local neighbour series (referred to as Ne) using a classical linear
regression model.

3.1.1 Air temperature reconstruction

For air temperature reconstruction, the LM model classically uses an additive correction,
assumed to be constant over time and mainly influenced by the altitude difference between
the target and neighbour series. However, even when the target and neighbour series are
very well correlated, residuals of such a model usually exhibit a strong seasonal pattern.
In this case, the LM model can be slightly improved by applying an additive correction
that varies over time. In the present case, it is represented by a daily harmonic function,
calibrated on the interannual mean monthly residuals of the differences between the target
series and the neighbour series.

The local model for air temperature reconstruction can thus be written as:

LM : T̂LM(d) = TNe(d) +β(d) + ε(d) (1)

where T̂LM(d) is the estimate of the target air temperature for day d, TNe(d) is the value of
the neighbour series temperature for the same day, β(d) is the correction, depending on
the calendar day of the year, and ε(d) is a residual assumed to have zero mean.

8
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In the present study this model has been used in a deterministic way, that is without
considering the residual term. Uncertainty is accounted for in the mixed model as explained
in Sect. 3.3.

3.1.2 Precipitation reconstruction

For precipitation reconstruction, the LM model classically uses a multiplicative correction,
assumed to be constant over time. This multiplicative correction is compatible with the
asymmetrical distribution of precipitation values (never negative). The correction factor is
taken to be constant throughout the year. The improvement obtained by using a variable
correction has been assessed and shown to be negligible (Kuentz, 2013). The constant
multiplicative correction factor is calibrated over the observation period as:

α =
P Tg

PNe
(2)

where PNe is the mean value of the neighbour series and P Tg is the mean value of the
target series, both calculated over the observation period.

The local model used for precipitation reconstruction reads:

LM : P̂LM(d) = α · PNe(d) + ε(d) (3)

where P̂LM(d) is the estimate of the target precipitation for day d, PNe(d) is the value of
the neighbour series precipitation for this same day and ε(d) is a residual with zero mean.
Once again, a simple version of this model with a residual term equal to zero is used in the
present work.

3.2 Large-scale climatic information: the analogue method

The second reconstruction model is based on the analogue method introduced by Lorenz
(1969). Currently, this method is largely used to produce meteorological scenarios in the
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context of weather forecasting (Van Den Dool, 1989; Horton et al., 2012) or climate projec-
tions (Teng et al., 2012; Bourqui et al., 2011; Hingray et al., 2013). The method is seldom
applied to the reconstruction of climatic series as done by Timbal et al. (2006). Neverthe-
less, the release of the long atmospheric reanalyses for the 20th century opens the door to
more such uses, allowing the reconstruction of long climatic series covering the entire 20th
century.

The analogue method is based on the fact that local meteorological variables are strongly
influenced by the state of the atmosphere and its meso-scale circulation. Provided that a
sufficiently long archive with concomitant local and large-scale observations is available, it
is therefore possible to produce local meteorological scenarios for any other day for which
the required large-scale atmospheric predictors are available. For this, the n days that are
the most similar to the target day in terms of atmospheric circulation are first identified in
the archive. The surface meteorological variables observed for one of those analogue days
are then used as the weather scenario for the target day.

In the present case, the archive is the SPAZM meteorological analysis (Gottardi et al.,
2012) covering the 1948–2010 observation period. As large-scale atmospheric predictors
are available for each day of the 1883–2010 period covered by the 20CR atmospheric
reanalysis, the method allows the reconstruction of a 127-year time series of daily and local
meteorological variables.

The analogue method has some parameters to be set such as the type and level of
predictors, the number of analogue days selected for the prediction, the spatial domain
used to compute the similarity criterion or the similarity criterion itself. Numerous variations
of the analogue method have been developed. In the present work, the analogue model
(ANA) presented by Obled et al. (2002) and further explored by Bontron and Obled (2005),
Ben Daoud et al. (2010), Horton et al. (2012) and Chardon et al. (2014) is used. Its main
features are presented below.

– The predictors are the 700 and 1000 hPa geopotential height fields at times 00:00
and 24:00. For the spatial domain of the present study, these geopotential fields were
found to be the most informative predictors by Bontron (2004).

10
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– The similarity criterion is proposed by Teweles and Wobus (1954). This score is based
on the shape of the geopotential fields and has been shown to perform better than
a classical Euclidean distance for this type of use (e.g. Wetterhall et al., 2005).

– The spatial domain used to estimate the similarity includes all grid points between
longitudes 8◦W and 12◦ E and latitudes 38 and 50◦N, with a step of 2◦.

– A moving calendar filter is used for the determination of candidate analogue days: for
each target day, candidate analogue days are the days included in a 60-day interval
around the calendar day of the target.

The reconstruction is deterministic when only one analogue is used (classically the nearest
analogue). The analogue day can be also selected among the n nearest analogues. An
ensemble of reconstructions can be produced when all n nearest analogues are succes-
sively used for the reconstruction. In the following, the ensemble is simply defined with the
empirical distribution of the n observations from the n nearest analogues respectively. This
ensemble of reconstructions makes it possible to evaluate the uncertainty in the reconstruc-
tion. The ensemble of reconstructions obtained with the ANA model for the variable X and
day d will be written as [X(dk)]k=1...n where [dk]k=1...n refers to the n nearest analogue
days selected for day d. In the present case, the ensemble of reconstructions is obtained
from the 50 nearest analogues (n= 50).

3.3 Mixing formulation: the ANATEM model

Both local and large-scale predictors are available for the 1870–2010 period. The local
model (LM) and the analogue model (ANA) can therefore be used to produce two different
reconstructions of precipitation or air temperature for this period, one based on local ob-
served data (another station with available data), the other from large-scale atmospheric
information (meso-scale variables). The originality and strength of the ANATEM model in-
troduced here lies in an approach that combines the two previous models. In this way, it can
take advantage of both local and large scale information and produce an original represen-
tation of uncertainties, conditioned by atmospheric circulation patterns.

11
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The principle of ANATEM is the following: for any target day, the analogue model allows
the identification of n analogue days in terms of atmospheric circulation (see Section 3.2).
The local model is then used to obtain an estimate of the variable to be reconstructed
(precipitation or air temperature at the target site) for each of the selected analogue days.
These n estimates are respectively compared with the corresponding observed values for
these n days, allowing the calculation of n predictions errors. These n error values are
finally used to define the error distribution associated with the prediction obtained with the
local model for the target day d. The prediction obtained with ANATEM for the target day is
therefore probabilistic.

3.3.1 Air temperature reconstruction

The probabilistic air temperature prediction from the ANATEM model for day d has the
following expression:[
T̂ k

ANATEM(d)
]
k=1...n

= T̂LM(d) +
[
T (dk)− T̂LM(dk)

]
k=1...n

(4)

where
[
T̂ k

ANATEM(d)
]
k=1...n

is the ensemble of reconstructed values for the target day d

(ANATEM stands for "Combined Model" and refers to the ANATEM model), T̂LM(d) the air
temperature estimate obtained with LM for target day d, dk the kth analogue day selected
for target day d, T (dk) the observed air temperature for this kth analogue day and T̂LM(dk)
the air temperature estimate obtained with the local model (LM) for the same day dk.

In this expression,
[
T (dk)− T̂LM(dk)

]
is the error obtained with the LM model when it is

applied to estimate the temperature of the kth analogue day dk.
The statistical dressing of the LM prediction for the target day d can be simply represented

on a graph in a (TLM,T ) space, as shown in Fig. 3 (right). In this figure, the green point is
the value obtained for the target day with the LM model. The different blue crosses in the
y direction around this estimate define the distribution of the n errors obtained with the LM
model respectively applied to the n analogue days. Each cross is simply the intercept of

12
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two lines: the vertical line at the T̂LM(d) value on the x axis and the 1:1 line passing through
the point (T̂LM(dk), T (dk)). This is illustrated for a given analogue day in Fig. 3 (left).

For the example shown in Fig. 3, over the n analogue days with meso-scale situations
similar to that of day d, the local model estimate TLM was on the average higher than the
observed temperature at the target point. Applying this error distribution to the reconstructed
day d leads to a negative correction on most of the ensemble. While the value of the local
model was −9.8◦C, the 50 air temperature values produced by the ANATEM model have
a mean of −11.2◦C and their 10 and 90% quantiles are respectively −13.1 and −9.3◦C.

3.3.2 Precipitation reconstruction

Although the ANATEM model uses the same basic principle for precipitation reconstruc-
tion, a somewhat different formulation is proposed to account for the specific features of
precipitation (asymmetric distribution and many zero values).

The additive correction formulation used for the probabilistic reconstruction of tempera-
ture (Eq. 4) is not suitable here. It can actually produce negative values as illustrated in
Fig. 4 (left), elaborated following the same principle as explained in Fig. 3 (right).

An alternative formulation uses a multiplicative correction for each analogue date. The
probabilistic reconstruction is here defined by the following expression:

[
P̂ k

MULT(d)
]
k=1...n

= P̂LM(d) ·

[
P (dk)

P̂LM (dk)

]
k=1...n

. (5)

The multiplicative formulation obviously avoids the estimation of negative precipitation val-
ues. A graphical representation of this reconstruction strategy is given in Fig. 4 (right). As
illustrated, the reconstructed values appear to be reasonable for common values, but can
be unreasonably high in certain cases.

In the following, the probabilistic reconstruction of precipitation has therefore been built
with a correction model intended to have a multiplicative behaviour for low values of P̂LM(d)
and an additive behaviour for high values of P̂LM(d). Its analytical formulation and its asymp-

13
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totic behaviour when x tends to zero or infinity (through a Taylor expansion) have the fol-
lowing expressions:

P̂ k
ANATEM(d) = f(x(d)) =

x(d)2 + a(dk) ·x(d)

x(d) + b(dk)
(6)

where x(d) = P̂LM(d) and a(dk) and b(dk) are parameters to be expressed as a function
of P (dk) and P̂LM (dk). In what follows, for the sake of simplicity, the day indexes will be
omitted from a(dk), b(dk) and x(d).

P̂ k
ANATEM(d) =

x2 + a ·x
x+ b

= x · x+ a

x+ b
∼

x→0
x · a

b
(7)

P̂ k
ANATEM(d) =

x2 + a ·x
x+ b

= x ·
(

1 +
a

x

)
·
(

1 +
b

x

)−1
∼

x→+∞
x+ (a− b) (8)

The two model parameters a and b are defined as in the work of Dufour and Garçon (1997)
for the assimilation of streamflow data in a hydrological model. The parameters are defined
as a function of P (dk) and P̂LM (dk) in order to reach a compromise between a good
multiplicative behaviour for low values and a good additive behaviour for high values.

Two conditions have been set to define the parameters:

– The slope of the tangent to the curve at x= 0 must be
(

P (dk)

P̂LM (dk)

)2
;

– When P (dk) = P̂LM (dk), the equality P̂ k
ANATEM(d) = P̂LM(d) must be obtained.

These two conditions lead to the following expressions for the parameters:

14



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

a= P (dk) and b=

(
P̂LM (dk)

)2
P (dk)

. (9)

More detailed calculations of the asymptotic behaviour when x tends to zero or infinity
and the use of the two conditions are provided in the supplementary material published
along with this paper.

The probabilistic reconstruction obtained with ANATEM for precipitation finally reads:

[
P̂ k

ANATEM(d)
]
k=1...n

=

 P̂LM(d)
2

+P (dk) · P̂LM(d)

P̂LM(d) + P̂LM (dk)
2

P (dk)


k=1...n

. (10)

The graphical representation of this formulation is shown in Fig. 5. The graph on the left side
shows the curve corresponding to Eq. (10) applied for one analogue day dk and the graph
on the right side shows the ensemble of curves associated respectively with the n analogue
days. The distribution of the reconstructed values [P̂ k

ANATEM(d)]k=1...n is represented by the
boxplot.

In the case of very different values of P (dk) and P̂LM (dk), Eq. (10) can potentially pro-
duce unreasonably high values of corrected precipitation P̂ k

ANATEM(d). In order to avoid such
values the following filters have been applied:

– if P (dk)> 10 · P̂LM (dk) then the value of P (dk) = 10 · P̂LM (dk), and

– if P (dk)< 1
10 · P̂LM (dk) then the value of P (dk) = 1

10 · P̂LM (dk).

The filtering threshold (10) has been chosen arbitrarily. A sensitivity analysis with different
values from 2 to 100 showed that this threshold has little impact on reconstruction perfor-
mance. This is true because very few analogue days are generally affected by this filtering
operation. The filters are represented by blue zones in Fig. 5.

For the example day shown in Fig. 5, the local model LM gives a reconstructed value
of 15.0 mm. The mean and the 10 and 90% percentiles of the probabilistic reconstruction
obtained with ANATEM are respectively 14.8, 7.8 and 21.0 mm.
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4 Analysis of ANA, LM and ANATEM performance

4.1 Evaluation process

The data presented in Sect. 2 can be used to reconstruct the daily air temperature and
precipitation series for the 22 selected watersheds over the period 1883–2010. The recon-
struction is deterministic for the LM model. For ANATEM and ANA, 50 reconstructed time
series are generated. In the present section, the three reconstruction models are evaluated
based on their reconstruction skill for the 1948–2010 observation period.

The evaluation is based on three criteria. The ratio β between the mean estimated value
and mean observed value of the variable evaluates the bias of the reconstruction. The ratio
between the standard deviations of the reconstructed and observed time series (α) evalu-
ates the ability of the reconstruction to reproduce the observed variability of the variable.
The coefficient of correlation r between the observed and reconstructed series additionally
measures the ability of the reconstruction to reproduce the observed temporal variations
(e.g. alternating dry/wet or warm/cold periods). The overall performance obtained for these
three criteria is summarised by the Kling–Gupta Efficiency criterion (KGE; Gupta et al.,
2009) defined as follows:

KGE = 1−
√

(1− r)2 + (1−α)2 + (1−β)2. (11)

The ability of the reconstruction to reproduce the variability and variations of observations
was evaluated for multiple temporal resolutions: daily (high-frequency variability), monthly
(accounting thus for the infra-annual variability) and annual (low-frequency variability) reso-
lutions. For the annual resolution, the series are aggregated by hydrological year, i.e. from
1 October to 30 September.

In the following sections, the performance of the three models for an illustrative watershed
(Ubaye River at Barcelonette) is first presented. The evaluation relies (1) on the graphical
comparison of the observed and reconstructed annual series for the 1948–2010 period
and (2) on the distributions obtained for r, α, β and KGE when estimated for the daily,
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monthly and annual time step from the 50 ensembles. Then, the results obtained for the 22
watersheds of the Durance basin are presented.

4.2 Performance for the Ubaye River at Barcelonnette watershed

4.2.1 Air temperature reconstruction

Figure 6 presents the mean annual time series of mean air temperature for the watershed.
These figures first show that the observed temperature has increased over the last 60 years,
with a mean value of around 3◦C in the 50’s and a mean value of around 4◦C nowadays. The
ANA model does not capture the temporal evolution and the variability of air temperature, as
opposed to the LM and ANATEM models. Note also that the spread of the ANA ensembles
is much higher than that of the ANATEM ensembles. These observations are consistent
with the distributions obtained for the different criteria at the annual time step (Fig. 7, right):

– ANA shows a limited mean bias (β close to 1), but a rather poor temporal correlation
and significant bias of variability, which is exhibited by relatively low mean values of r,
α and KGE (between 0.2 and 0.6, not visible in the figure);

– LM and ANATEM show very good temporal correlations (mean r greater than 0.9)
and limited mean and variability bias. The two models show slightly different skills: LM
shows no mean bias (by construction) but a significant variability bias (mean α less
than 0.9) whereas ANATEM shows a limited mean and variability bias (mean β and
mean α greater than 0.95).

Figure 7 also shows the distributions of the criteria for daily and monthly time steps. The
hierarchy of the performance of the three models is the same for both time steps, with KGE
values ranging from 0.77 to 0.87 for ANA, 0.95 to 0.98 for LM and 0.93 to 0.97 for ANATEM.
Moreover, the mean criteria are higher at a monthly time step than at a daily time step,
while the annual time step performance is the lowest. This means that these models have
greater difficult in reproducing inter-annual or daily variability than intra-annual variability
(this is partly due to the seasonality of air temperature). The LM model performed slightly
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better than ANATEM at daily and monthly time steps. Conversely, ANATEM performs better
than LM at annual time steps.

4.2.2 Precipitation reconstruction

Figure 8 presents the observed and reconstructed annual time series of mean precipita-
tion on the watershed. As shown, observed annual precipitation presents a high variability,
ranging from 1000 mm yr−1 over certain periods to 1500 to 2000 mm yr−1 for some excep-
tional years. All three models capture relatively well this variability and are able to reproduce
wet and dry periods. The spread of the ANA ensembles is much greater than that of the
ANATEM ensembles.

The distributions of criteria at the annual time step (Fig. 9, right part) confirm these state-
ments:

– ANA shows a moderate correlation (mean r close to 0.5), while LM and ANATEM
show a rather good correlation (mean r greater than 0.8);

– LM shows no mean bias (by construction), while ANA and ANATEM show a moderate
mean bias (less than 0.05);

– ANA shows a noticeable variability bias (up to 0.15), while LM and ANATEM show
a limited variability bias (around 0.03).

The hierarchy of the performance of the three models is the same for both daily and monthly
time steps, with KGE values ranging from 0.35 to 0.7 for ANA, 0.78 to 0.88 for LM and 0.73
to 0.85 for ANATEM (Fig. 9). ANA performance is clearly poor at a daily time step, with
a very limited correlation (r less than 0.4). The mean criteria are higher at a monthly time
step and similar at daily and annual time steps. As for air temperature, this highlights the
difficulty the models have to reproduce the low- and high-frequency variability while the
intra-annual variability is well-captured.
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4.3 Performance for all 22 watersheds

For the sake of readability, only one time series is considered for each model. ANA and
ANATEM probabilistic reconstructions are represented by the mean time series derived
from the ensemble (the daily reconstructed value for a given day is the mean of the 50
probabilistic reconstructions for this day). For the sake of simplicity, these mean time series
will be referred to as the reconstructed time series in the following. As will be illustrated
later, note that these ensemble mean time series logically present a much lower temporal
variability than each individual component of the reconstruction ensemble. In the following,
the performance of a given model will be presented with the distributions of r, α, β and
KGE criteria obtained for the 22 watersheds at the daily, monthly and annual time steps.

4.3.1 Air temperature reconstruction

The main results obtained for air temperature reconstruction are (Fig. 10):

– At daily and monthly time steps, the ANA model suffers from a limited positive mean
bias (mean β around 1.03) and a significant negative variability bias (mean α from
0.85 to 0.88). Correlation with observations is very good (mean r greater than 0.93). At
the annual time step, ANA fails to capture the low-frequency variability and trend, with
a very low correlation (mean r close to 0.53, not shown in the figure) and a very strong
negative variability bias (mean α close to 0.42, not shown in the figure). At different
time steps and for different criteria, ANA exhibits a rather good spatial robustness
of performance (i.e. homogeneity of the results at a regional scale, which could be
related to a rather limited spread of the distribution compared to LM and ANATEM
models, as shown by the distance between quantiles 0.1 and 0.9).

– At all the different time steps, the LM model provides very satisfactory results. It shows
no mean bias (by construction) and a moderate to limited variability bias (mean α
between 0.91 and 0.99). The high- to low-frequency variability is very well captured
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(mean r between 0.92 and 0.99). LM shows moderate spatial robustness for correla-
tion and variability bias, for daily and annual time steps.

– At all the different time steps, the ANATEM model provides very satisfactory results.
It shows a moderate mean negative bias (mean β close to 0.97) and a limited to
moderate variability bias (mean α between 0.95 and 0.98). The high-frequency to low-
frequency variability is very well captured (mean r between 0.94 and 0.99). ANATEM
exhibits moderate robustness concerning mean bias and concerning correlation and
variability bias, for daily and annual time steps.

The LM and ANATEM models clearly outperform the ANA model. LM is characterised by
a very good correlation and no mean bias, but a moderate variability bias. ANATEM is
characterised by a very good correlation, and limited mean and variability bias. Model per-
formance is better and more robust at a monthly time step, compared to daily and annual
time steps. ANATEM exhibits a slightly better spatial robustness of performance than LM.
This is also expressed by mean KGE values, ranging from 0.25 to 0.87 for ANA, 0.88 to
0.99 for LM and 0.92 to 0.97 for ANATEM respectively.

4.3.2 Precipitation reconstruction

The three models present slightly different results for precipitation reconstruction (Fig. 11):

– At a daily time step, ANA suffers from a very moderate mean negative mean bias
(mean β close to 0.95) and a strong variability bias (mean α around 0.55). It also
shows a limited correlation (mean r close to 0.65). At monthly and annual time steps,
ANA shows a moderate to limited mean bias (mean β close to 0.95), a significant
variability bias (mean α around 0.8) and an acceptable level of correlation (mean r
between 0.7 to 0.8).

– At all the different time steps, the LM model shows very satisfactory results. It shows
no mean bias (by construction) and a limited variability bias (mean α from 0.97 to
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1.05). The high-frequency to low-frequency variability is well captured (mean r be-
tween 0.77 and 0.84).

– At all the different time steps, the ANATEM model shows very satisfactory results. It
shows a limited negative mean bias (mean β around 0.96) and a limited variability
bias (mean α from 0.94 to 1.02). The high-frequency to low-frequency variability is
well captured (mean r between 0.75 and 0.87).

The LM and ANATEM models thus perform better than the ANA model, particularly in terms
of correlation. LM is characterised by a good correlation, no mean bias and a limited variabil-
ity bias. ANATEM is also characterised by a good correlation, limited mean and variability
bias. Model performance is better and more robust at a monthly time step compared to
daily and annual time steps. The spatial robustness of performance is slightly lower for the
variability criterion than for the other criteria. LM shows the lowest spatial robustness, then
ANATEM and finally ANA. This is again illustrated by the mean KGE values ranging from
0.43 to 0.71 for ANA, from 0.75 to 0.83 for LM and from 0.76 to 0.84 for ANATEM.

4.4 Spatial patterns of model performance

In the present section, the spatial patterns of performance (in terms of correlation, at a daily
time step) of the three models and the spatial patterns of the gain in performance obtained
with ANATEM reconstructions when either compared to ANA or LM alternatives will be
discussed.

4.4.1 Air temperature reconstruction

For temperature reconstructions, the spatial patterns of model performance are presented
in Fig. 12. For ANA, the performance of the reconstruction appears to be mostly indepen-
dent of the location of the watershed, with a mean correlation ranging from to 0.92 to 0.94
(Fig. 12a). For LM (Fig. 12b), the location of the watershed had a slightly higher influence
on the performance, with a mean correlation ranging from 0.95 to 0.98. This spatial pattern
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has a clear south-west to north-east structure, with a decrease in model performance driven
by the distance from the local reference time series (located in Marseille, south-west of the
watersheds). Finally, for the ANATEM model (Fig. 12c), the location of the watershed (i.e.
distance from Marseille) also influences the performance of the reconstruction, with a mean
correlation ranging from 0.97 to 0.99. However, ANATEM shows slightly better performance
than LM and ANA and the range of correlation values is slightly smaller than for LM.

The contribution of the LM (resp. ANA) model to the performance of the ANATEM model
is presented in Fig. 14a (resp. 14b). It is estimated by the difference between the perfor-
mance of the ANATEM and ANA (resp. LM) models. The contribution of the LM model is
much higher than that of ANA, whatever the location, meaning that most of the information
provided by ANATEM comes from LM. Note however that for both the LM and ANA mod-
els, the contribution of the model presents a clear south-west to north-east gradient, which
decreases for LM (from 0.06 to 0.04) and increases for ANA (from 0.0 to 0.02). The contri-
bution of large-scale information (through the ANA model) is stronger when the LM model
(local information) is less effective, that is, when the location to be reconstructed is far from
the reference temperature station.

4.4.2 Precipitation reconstruction

The spatial patterns of model performance obtained for precipitation are slightly different
than those obtained for temperature (Fig. 13). For ANA, the location of the watershed does
not appear to really influence the performance, with a mean correlation ranging from 0.62 to
0.68 (Fig. 13a). On the other hand, for LM (Fig. 13b) and ANATEM (Fig. 13c), watersheds
close to the local reference station (Gap) show better performance than the others (the cor-
relation ranges from 0.62 to 0.88 for LM and from 0.69 to 0.89 for ANATEM). However, the
distance from the local reference station is probably not the only factor influencing perfor-
mance, as two watersheds at the same distance from the Gap station displayed somewhat
different performance (i.e. the reconstructions for the Buech watershed – #10 in Fig. 2 –
have a very good correlation of 0.88 and the reconstructions for the Durance at Briançon
watershed – #3 in Fig. 2 – a moderate correlation of 0.77). This could be due to large-scale
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climatic influences that give some watersheds a higher proximity to Gap in terms of the
precipitation pattern.

ANATEM slightly increases the overall reconstruction performance but at the same time
notably smoothes local contrasts. The contribution of LM to the performance of ANATEM
is generally higher than that of ANA, but decreases as the distance from Gap increases,
ranging from 0.22 to 0.02 (Fig. 14c). On the other hand, the contribution of ANA to the
performance of ANATEM is close to 0 for the stations closest to Gap and slightly increases
(up to 0.07) with the distance from Gap (Fig. 14d). As observed for air temperature recon-
struction and here in a more pronounced way, the contribution of large-scale information
(through the ANA model) is stronger when the LM model (local information) is less effec-
tive, as a result of the increasing distance from the reference station.

5 Climatic variability assessment

5.1 1883–2010 reconstructions of air temperature

Figure 15 presents the 1883–2010 annual time series of air temperature anomalies recon-
structed by the ANATEM model (mean model) for the 22 watersheds of the Durance river.
Anomalies have been computed as differences with respect the 1883–2010 mean. This
figure exhibits a pseudo-stationary period from 1880 to 1940, then a slight temperature
increase between 1940 and 1980 and a stronger increase from 1980 until the present. In
order to better characterise low-frequency variability, the mean of all 22 reconstructed series
was computed and smoothed using a LOESS low-pass filter (Cleveland, 1979, smoothing
parameter value used: 0.15).

The ANATEM reconstructions have been qualitatively compared to five series of air tem-
perature anomalies obtained from homogenised series of the HISTALP project (Genova
University, Milano-Brera, Montpellier, Nice airport and Nîmes airport).

The ANATEM model reproduces fairly well the annual and low-frequency variability of air
temperature anomalies from the HISTALP stations (the mean correlation between ANATEM
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and HISTALP annual series is close to 0.8). However, the warming trend in the HISTALP
series is stronger than in the ANATEM reconstructions, HISTALP temperatures being sig-
nificantly lower than ANATEM temperatures before 1900 and significantly higher after 1980.
ANATEM reconstructions and HISTALP time series are obviously sensitive to the reference
time series (i.e. Marseille for ANATEM) and the homogenisation process applied to the
observations (for both Marseille and HISTALP stations). Further research is required to ex-
plore the sensitivity of the ANATEM reconstructions to these key features (partly tested in
Kuentz, 2013).

5.2 1883–2010 reconstructions of precipitation

Figure 16 presents the 1883–2010 annual multiplicative time series of precipitation anoma-
lies reconstructed with ANATEM for the 22 watersheds along with five precipitation HISTALP
series (Aix-en-Provence, Nice (Cap-Ferrat), Orange, Saint-Paul-les-Durance and Toulon).
For both the reconstructions and the HISTALP series, the mean smoothed series are also
given.

The dispersion between the 22 ANATEM reconstructed time series is relatively low. It is
actually similar to the dispersion obtained between the time series of observations available
for the same 22 watersheds over the 1960-2010 period (not shown here). The dispersion
observed between the five HISTALP series is comparatively much higher. This may be
partly explained by the fact that the ANATEM series are reconstructed for all watersheds
based on a same reference series (Gap). The main reason is however probably that the
HISTALP series cover a much wider spatial domain with a high spatial variability of atmo-
spheric influences and thus precipitation regimes and times series.

The smoothed time series from ANATEM reconstructions is highly correlated with the
smoothed time series from HISTALP data. The ANATEM reconstruction is therefore able
to reproduce the low-frequency variability of precipitation resulting from climate variability.
Some differences can be observed, for example between 1920 and 1930 or between 1970
and 1980. They may be due again to the large spatial variability of precipitation which would
also correspond to different precipitation indexes, as long as they are estimated from differ-

24



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

ent stations. As already noted for air temperature reconstructions, these differences could
also be due to the reference series used in ANATEM and to the homogenisation process
for the HISTALP series. Additional work should be considered to explore the importance of
such issues.

6 Conclusions

Reconstructing local scale meteorological variables over long periods is a challenging but
necessary task in order to obtain a better understanding of the low-frequency variability of
regional climate and climate driven variables. Three models are compared in the present
work, using different types of data for the reconstruction: the regression-based local model
(LM) uses local observations of the variable from neighbouring stations as a predictor;
the analogue model (ANA), a so-called downscaling model, uses large-scale information
concerning atmospheric circulation and the ANATEM model uses a mix of both local and
large-scale atmospheric information by combining the local and analogue models.

The three models have been developed and applied to the reconstruction of mean air
temperature and precipitation time series for a sample of 22 watersheds situated in the
Durance basin, in the south-east of France. This sample of watersheds represents a wide
range of climatic conditions, from highly mountainous to Mediterranean. The local observa-
tions used for the reconstruction are respectively Marseille air temperature, Gap precipita-
tion historical time series and geopotential height fields from the 20CR reanalysis.

The multi-criteria and multi-scale performance assessment highlights that the best re-
constructions are obtained when local information is used. The ANA model is clearly less
efficient than the two other models, particularly concerning low-frequency (annual) air tem-
perature variability or high-frequency (daily) precipitation variability. On the other hand, the
regression-based model and the ANATEM model provide very satisfactory results for all cri-
teria. ANATEM offers a slight advantage and the spatial patterns of the reconstruction skills
show that it benefits from the qualities of both underlying models. Hence, the ANATEM
model can be used to reconstruct adequate air temperature and precipitation series at
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a high temporal resolution (daily) and different spatial scales (from 4 to 3500 km2), while
improving the spatial robustness of performance. Besides these results in terms of perfor-
mances, the ANATEM model provides an original representation of uncertainties, which are
conditioned by atmospheric circulation patterns through the use of an ensemble of ana-
logue days.

Time series of air temperatures reconstructed for the 1883–2010 period exhibit the well-
known warming experienced since the middle of last century, with a higher rate since the
1980’s. Reconstructed precipitation time series highlight the large inter-annual variability
of annual precipitation for the Durance region. Long-term climatic reanalyses exhibit some
particular periods with rather strong rainfall anomalies, such as the wet periods at the be-
ginning of the 1910’s and mid-1930’s (known for flood events), or relatively dry periods such
as the 1940’s and 1970’s (known for drought events).

The potential for improving the method is considerable. The ANA method used here was
first developed for precipitation forecasts (e.g. Obled et al., 2002). The poor reconstruction
skill obtained for temperature was therefore not a surprise and other large-scale predictors
could potentially provide a better reconstruction of air temperature variations. This also ap-
plies to the precipitation reconstruction. The predictors used here provide information only
on the atmosphere dynamics. The inclusion of thermodynamic predictors and humidity pre-
dictors for the identification of analogue days has been proved to improve the performance
of the method for the studied region (Marty et al., 2011; Chardon et al., 2014).

Another possibility for improvement concerns the combined formulation used for the
ANATEM model. The formulation presented in this paper has been applied in a straight-
forward fashion. However, the authors are convinced that further statistical developments
concerning the way the two models are combined (e.g. forecast combination methods as in
Winkler and Makridakis, 1983 or Hoeting et al., 1999) could improve temporal correlation,
reduce mean and variability bias and allow probabilistic calibration (not addressed in this
paper).

The choice of the reference series used for the local model also presents a challenging
issue. It has been shown that the good performance of the models largely depends on this
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local information. A thorough analysis of the sensitivity to the choice of the reference time
series should be carried out. Considering the importance of local information, an extension
of the method should also consider the possibility of making use of other historical stations,
if available, in the neighbourhood of the region of reconstruction. Cases with multiple histor-
ical stations available would open the door to other alternative reconstruction approaches
(as stated in the introduction). Of course, historical local scale data covering long histori-
cal periods are very scarce and sparse. The results also show that the reconstruction skill
decreases as the distance from the reference station increases. The region considered in
the present study is relatively small. The importance of the reference station would be ex-
pected to decrease for reconstructions concerning larger regions. At the same time, in such
cases, the contribution of the large-scale information would be expected to be higher. Addi-
tional work is definitively required to assess the relative interest of both components of the
ANATEM model in this context.

Because of the numerous scientific and operational stakes associated with the charac-
terisation of long-term variability, the authors are confident that all of these questions will
be tackled by the scientific community in the coming years. A major application of such
reconstructions will obviously be the reconstruction of long-term variations for a number of
climate-driven variables. For example, the long-term climatic time series produced in the
present work have been used to reconstruct long-term hydrological time series at multiple
hydrometric stations of the Durance basin (Kuentz, 2013; Mathevet et al., 2013). Thanks to
the availability of long observed discharge series, this latter study provided an independent
hydrological validation of the climatic reconstructions over the entire 20th century.
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Table 1. Main characteristics of the 22 selected watersheds. The number in the # column correspond
to those indicated in Fig. 2, PA is the annual mean precipitation (over the period 1948–2010) and T
the mean air temperature (over the period 1948–2010)

# Name Altitude Area P̄A T̄
m km2 mm yr−1 ◦C

1 The Durance river at Val-des-Près 1360 203 1322 2.5
2 The Guisane river at Monêtier-les-Bains 1510 78 1627 2.3
3 The Durance river at Briançon 1187 548 1381 2.9
4 The Guil river at Montdauphin 895 725 1087 3.3
5 The Durance river at La Clapière 787 2170 1352 3.5
6 The Riou de Crachet river at Saint-Paul 2020 4 1532 1.6
7 The Ubaye river at Roche-Rousse 790 946 1235 4.1
8 The Ubaye river at Barcelonnette 1132 549 1201 3.6
9 The Durance river at Serre-Ponçon 652 3582 1301 4.0
10 The Buech river at Les Chambons 662 723 1259 7.4
11 The Méouge river at Méouge 545 221 1094 8.9
12 The Jabron river at Piedguichard 593 89 1206 9.1
13 The Bes river at La Javie 805 165 1085 6.6
14 The Lauzon river at Villeneuve 341 124 1097 10.4
15 The Asse river at La Clue de Chabrières 605 375 1077 8.6
16 The Verdon river at Allos 1780 10 1592 2.7
17 The Verdon river at Colmars 1230 158 1453 4.3
18 The Issole river at Saint-André-les-Alpes 931 137 1229 6.8
19 The Verdon river at Castillon 790 657 1319 6.2
20 The Artuby river at La Bastide 1008 91 1272 8.4
21 The Jabron river at Comps-sur-Artuby 782 66 1116 9.0
22 The Verdon river at Sainte-Croix 400 1625 1176 8.2
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Figure 1. Schemes of the 3 reconstruction models : local model (LM – top scheme), analogue model
(ANA – middle scheme), combined local+analogue model (ANATEM – bottom scheme). Predictors
are either (1) local scale meteorological predictors (LM model), (2) mesoscale atmospheric predic-
tors (ANA model) or both (1)+(2) (ANATEM model). Local scale predictors are daily observations
of the variable at one (possibly several) neighbouring precipitation or temperature station (for the
present work, Gap rain gauge, Marseille temperature station for precipitation / temperature recon-
struction respectively). Mesoscale predictors are fields of atmospheric variables (700 and 1000hPa
geopotential heights over a mesoscale European domain). Local and mesoscale predictors cover
the whole period (observation + reconstruction). The three reconstruction models are first developed
and evaluated based on their reconstruction skill for the observation period where concomitant ob-
servations of the target variable are available (dots of series 3 in the scheme, period 1948-2010 in
the present work). Models are next applied for the reconstruction of each day of the reconstruction
period (period 1883-2010 in the present work). Note : The reconstruction period can also include
the observation period (this is the case in the present work).
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Figure 2. Map of the study area with the 22 selected watersheds.
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Figure 3. Representation of the ANATEM formulation for air temperature reconstruction of a given
day d. Left panel: observed temperature for any analog day as a function of the temperature esti-
mate with LM for this day. The green point corresponds to the target day d. The red-circled point
corresponds to a particular analog day dk. For this analog day, the corrected estimate for day d
is T̂ k

ANATEM(d) which is obtained as T̂LM(d) + ∆(dk) where ∆(dk) = T (dk)− T̂LM(dk). Right panel:
probabilistic prediction obtained for d from the 50 analogues. The corresponding boxplot (10, 25, 50,
75 and 90% quantiles) is given to the right of the figure (the blue point indicates the mean value).
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Figure 4. Representation of the additive and multiplicative formulation for precipitation reconstruc-
tion from a local model and 50 analogue days for a given day d. Left panel: additive formulation
for the correction. Right panel: multiplicative formulation for the correction. The triangles highlight
anomalous or potentially anomalous corrected predictions.
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Figure 5. Representation of the ANATEM formulation for precipitation reconstruction for a given day
d. Left panel: observed precipitation at the target site for each of the analogue days as a function
of the precipitation estimate from LM for the same days. For a given analogue day k, the corrected
estimate for day d is the ordinate of the point on the red curve (defined by Eq. (10)) crossed by
abscissa P̂LM(d). Right panel: probabilistic prediction obtained for d from the 50 analogues. The
corresponding boxplot (10, 25, 50, 75 and 90% quantiles) is given to the right of the figure (the blue
point indicates the mean value).
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Figure 6. Annual time series of air temperature reconstructions for the Ubaye River at Barcelonnette
watershed by the analogue (ANA), local (LM) and ANATEM models.
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Figure 7. Daily, monthly and annual performance criteria of air temperature reconstructions for the
Ubaye River at Barcelonnette watershed by the analogue (ANA), local (LM) and ANATEM models.
For the annual time step, ANA results are smaller than 0.75; they therefore do not appear in the
figure.
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Figure 8. Annual time series of precipitation reconstructions for the Ubaye River at Barcelonnette
watershed by the analogue (ANA), local (LM) and ANATEM models.
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Figure 9. Daily, monthly and annual performance criteria of precipitation reconstructions for the
Ubaye River at Barcelonnette watershed by the analogue (ANA), local (LM) and ANATEM models.
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Figure 10. Daily, monthly and annual performance criteria of air temperature mean reconstructions
for 22 watersheds by the analogue (ANA), local (LM) and ANATEM models. For the annual time
step, ANA results are smaller than 0.6; they therefore do not appear in the figure.
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Figure 11. Daily, monthly and annual performance criteria of precipitation mean reconstructions for
22 watersheds by the analogue (ANA), local (LM) and ANATEM models.
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Figure 12. Regional correlation patterns of air temperature mean reconstructions by the (a) ana-
logue model (ANA), (b) local model (LM) and (c) ANATEM model.
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Figure 13. Regional correlation patterns of precipitation mean reconstructions by the (a) analogue
model (ANA), (b) local model (LM) and (c) ANATEM model.
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Figure 14. Spatial patterns of (a,c) the contribution of the LM model to ANATEM performance (esti-
mated by the difference between the performance of the ANATEM and ANA models) for air temper-
ature (a) and precipitation (c) reconstructions.
Spatial patterns and of (b,d) the contribution of the ANA model to ANATEM performance (estimated
by the difference between the performance of the ANATEM and LM models) for air temperature (b)
and precipitation (d) reconstructions. Note the different color scales for precipitation and temperature
reconstructions.
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Figure 15. Mean annual air temperature additive anomaly for the 22 watersheds (ANATEM) and
5 stations (HISTALP). The additive anomaly for a given year has been computed as the difference
between the annual temperature for this year and the 1883–2010 mean.
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Figure 16. Mean annual precipitation multiplicative anomaly for the 22 watersheds (ANATEM) and
5 stations (HISTALP). The multiplicative anomaly for a given year has been computed as the ratio
between the annual precipitation for this year and the 1883-2010 mean.
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