
Author's response (HESS-2015-62) 
 
My responses to the reviews were submitted as part of the open review process; they are 
reproduced below for reference. 
 
Summary of changes in the revised manuscript: 
 
As requested, I...: 
 
1) analyzed the sensitivity of young water fractions to the assumed shape of the transit 
time distribution (section 4.2 and Fig. 12 in the revised manuscript),  
 
2) added more explicit step-by-step instructions for how to estimate young water 
fractions from amplitude and phase information (in section 4.4 of the revised 
manuscript),  
 
3) added subheadings to section 5, and 
 
4) outlined several ways that the young water fraction could be put to use in catchment 
hydrology (section 5.5 in the revised manuscript). 
 
 
 
 



Author's response to Anonymous Referee #1 
 
I appreciate Anonymous Referee #1's comments and suggestions.  Where possible, these 
will be used to improve the manuscript on revision.  Specific responses to individual 
comments are detailed below.   
 
 
GENERAL COMMENTS 
 
This is an interesting paper that explores which information can be gained, in terms of 
catchment transit times, from the analysis of seasonal tracer cycles. The paper is written in a 
clear form that makes it easy to read. The contents can be divided into two parts: 1) it is 
shown, through rigorous benchmark tests based on a virtual experiments, that the stationary 
travel time distributions estimated from seasonal tracer cycles are typically unreliable and 
biased towards younger mean transit times. 2) a new metric (the “young water fraction”) is 
introduced that can be more accurately derived from tracer cycle information. The results 
suggest that, for a range of plausible TTDs (apparently, every TTD that can be derived by 
combining gamma distributions with shape parameter alpha in [0.2, 2]), the amplitude ratio 
derived from sine wave fitting is representative of the fraction of water younger than about 
1.5 – 3 months.  
 
Thank you for your supportive comments and concise summary.  To be precise, 
seasonal tracer cycles have not (and cannot) be used to estimate "stationary travel time 
distributions" per se; instead, they have been used to estimate parameters for travel time 
distributions whose shape must be assumed a priori. 
 
Both the parts are of good scientific significance, but while part 1 is also straightforward and 
easy to understand, part 2 is at times unclear to me. Considering that part 2 is the basis for 
Paper 2, and that potentially the method will be widely used in the future by the scientific 
community, it would be advisable to revise part 2, so as to permit a better understanding of 
the contents. Below, I included some comments that may help making the manuscript clearer: 
 
i) There is some ambiguity between the general idea of “young water fraction” used in 
common speaking and the specific definition “young water fraction” developed by the author 
(the fraction of particles younger than 2-3 months). It may be desirable using a different name 
for the new variable defined by the author, to avoid this ambiguity.  
 
I'm not sure what "general idea... in common speaking" is being referred to, so it is 
difficult to comment in detail.  Clearly it is important to avoid, where possible, semantic 
confusions in science.  I adopted the term "young water" precisely because, when it has 
been previously used in hydrology, its meaning has been consistent with the sense in 
which I use the term here.  Obviously the threshold that separates "young" and "old" 
water will vary depending on the dating technique that is used (3H, 14C, CFC's, and so 
forth), but the general concept is the same.   
 
Regarding the specific term "young water fraction", a Web of Science search for this 
phrase gives no hits at all, suggesting that the risk of confusion is low. 
 
 



ii) The Fyw is an interesting and promising concept, but its definition in real catchments is 
not easy to digest because it is affected by the imprecision in determining the threshold age 
(on the other hand MTT has a very intuitive definition, but it is an uncertain metric). The 
paper would benefit from a deeper analysis of how the threshold age varies in the virtual 
experiment when the tributaries are aggregated (see Detailed Comments on Section 4.1). 
 
Thanks for this comment.  The MTT does seem more intuitive, and it is certainly more 
familiar because it has been used in catchment hydrology for a long time.  However, in 
principle it is no more precisely defined than the young water fraction is, given that 
both depend on the shape of the assumed travel time distribution (TTD).  Indeed the 
MTT is arguably much less precisely defined than Fyw is, because plausible variations 
in the shape of the TTD lead to order-of-magnitude uncertainties in MTT (but much 
smaller uncertainties in Fyw) for any given rainfall and runoff tracer time series. 
 
In its most basic sense, the young water concept marks a shift from trying to estimate 
the statistical moments of the TTD (which are sensitive to the shape of the distribution 
across its entire range), to determining individual fractions of the distribution.  (The 
precise statistical term is fractiles, but I don't mention this in the paper because it is too 
easily confused with fractals).   In principle, these fractions can be more reliably 
determined than MTT because they depend only on the total mass of the distribution 
that lies above or below the threshold age, and not on how far above or below that 
threshold it lies. 
 
Nonetheless there are key distinctions to be drawn between (a) the general concept of a 
young water fraction, namely, the fraction younger than a threshold age, (b) a 
particular young water fraction, namely, the fraction younger than some specific 
threshold age, and (c) the result of a particular procedure designed to estimate this 
fraction. 
 
iii) The author often mentions the catchment “spatial heterogeneity” and the related 
“aggregation error”. However it is not clear what the author’s definition of “heterogeneous” 
and “homogeneous” is. This has implications, because the essence of the problem with the 
traditional derivation of MTT from sine wave fitting methods is the use of a wrong 
assumption on the TTD shape. I would call this an error caused by the wrong assumption of 
using a simple TTD for a complex system, and I don’t see why the author calls this an 
“aggregation” error. 
 
"Aggregation error" is a technical term referring to the idea that a method of analysis 
that works correctly at one level of aggregation may fail at a higher level of aggregation 
(see O'neill and Rust , Aggregation error in ecological models, Ecological Modelling, 7, 
91-105, 1979; Gardner et al., Robust analysis of aggregation error, Ecology, 63, 1771-
1779, 1982; Rastetter et al., Aggregating fine-scale ecological knowledge to model 
coarser-scale attributes of ecosystems, Ecological Applications, 2, 55-70, 1992; 
Kaminski, et al., On aggregation errors in atmospheric transport inversions, Journal of 
Geophysical Research-Atmospheres, 106, 4703-4715, 2001). 
 
I use the term "aggregation error" in this case because traditional estimation methods 
that correctly determine the MTT for subcatchments with a specified TTD shape (say, 
for example, exponential) will fail when applied to larger catchments that aggregate 
those subcatchments (even if each subcatchment has exactly the same shape, but just a 



different MTT).  Such a catchment is "heterogeneous" in the specific sense that the 
subcatchments have different MTT's.  The traditional estimation methods would work 
correctly across a range of scales, but only if the catchment were homogeneous (in the 
specific sense that the subcatchments had the same shapes and MTT's). 
 
When subcatchments with the same TTD shape, but different MTT's, are aggregated 
together, one gets a different TTD shape at the higher level of aggregation, as I point out 
in the paper (see Figure 6).  Thus one could say that this is just a problem of not 
assuming the correct TTD.  But then how are we going to assume the correct shape, and 
how will we know when we have done so?  We almost never have good catchment-
specific constraints on the shape of the TTD, either from physically based theory or 
from data, and the results of any MTT calculation will be quite sensitive to whatever 
one assumes about the TTD shape (see, e.g., Kirchner et al., Comparing chloride and 
water isotopes as hydrological tracers in two Scottish catchments, Hydrological 
Processes, 24, 1631-1645, 2010). particularly about the long tail, which cannot be 
constrained by conservative tracer data). 
 
iv) The paper presents several interesting inferences on the relationship between the 
amplitude ratio and the Fyw. As these are not causal relationships, one would expect to see a 
paragraph with a summary of the fundamental working hypotheses (e.g., the shape 
parameters alpha in [0.2, 2]), that can guide the reader towards the limits of applicability of 
the outlined method.  
 
Defining limits of applicability in a rigorous mathematical sense is tricky, because there 
are all sorts of exotic TTD shapes that are theoretically possible, even if they are 
unrealized in practice.  Strictly speaking the paper only demonstrates the stated results 
for gamma distributions with shape factors of 0.2-2.  This is rather explicitly stated in 
section 2.1, and shown in Figure 2 (with shape factor ranges specified on page 3068, 
lines 18-20).  But the general principles should hold for many different TTD's that have 
similar overall shapes to those specified.  To avoid any confusion, I will remove the 
alpha=8 curves from Figure 2 and state in the caption that this figure shows the range 
of TTD's considered in this analysis. 
 
v) Sections 4.1 and 4.3 include details that are not always clear to me, and should be better 
explained (see Detailed Comments). In particular, I could not find in the manuscript a 
description of how to incorporate the phase shift information in the determination of Fyw. 
 
You are right, this is not as explicit as it should be.  In the revised paper, I will include a 
"cookbook" procedure for determining Fyw using phase shift information. 
 
DETAILED COMMENTS 
 
3063, l. 3: It would be important to better define the working framework at the beginning of 
the paper. The author may mention here that the flowpaths and the catchment connectivity 
change in time, potentially by large factors. The catchment has no stationary behavior and 
stationarity is a legitimate assumption, but it must be stated that it is an explicit assumption, 
which allows the use of one TTD instead of several TTDs. The author may also move up here 
lines 3-14 of page 3066. 
 



I would prefer to briefly mention it here, and keep the longer treatment on 3066.  One 
needs to be careful about breaking other logical connections when one moves things 
around. 
 
l. 7: (connected to comment on line 3) “have simply assumed that the TTD is stationary and 
has a given shape” 
 
Something like this can be done. 
 
l. 8: it is not so “obvious” to me that MTT is the ratio between storage and fluxes. While it 
surely is for a well-mixed system (which produces an exponential TTD), I am not so 
confident that the same holds for other storage mixing hypotheses. 
 
This is a general mathematical result.  It does not require that the system is well mixed; 
it just requires that the system is stationary and that no component of the system is 
completely immobile (and thus has infinite residence time). 
 
l. 16-19: it may be appropriate referring to the recent commentary on WRR by McDonnell 
and Beven (2014) on this topic. 
 
The point goes back at least five decades, to Hewlett and Hibbert (1967) and Horton and 
Hawkins (1965).  I can add some references. 
 
3070 l. 5: Eq. (7) is not enough to derive Eq. (8). Maybe start the sentence with “from Eq. (1) 
and Eq. (7), using the Fourier Transform properties, one can. . . ”  
 
Sure. 
 
3075 l. 6-14: This is a very important result, and should be better explained. As the author 
says, it is not intuitively obvious (and it is actually quite surprising) that the tracer cycle 
amplitude in the mixture is almost exactly equal to the average of the tracer amplitudes in the 
two tributaries. This looks like an interesting property of the gamma filtering for the shape 
parameters investigated by the author, where the damping of the tracer cycle prevails over the 
shifting. Other filters would not behave the same (e.g. gamma distributions with shape 
parameter alpha>2?), suggesting what the limits of applicability of the method are. Indeed, 
one may expect the same behavior from the advection-dispersion model TTDs derived by 
Kirchner et al., 2001, and not from the lognormal TTDs reported by Selle et al., 2015. 
 
I'm not sure why the reviewer says that this behavior would not be expected for the log-
normal TTD's reported by Selle et al.; one would need to do the analysis.  I have tried 
these mixing experiments and have found that the reported result is widely observed.  
The exceptions are cases where the distribution is narrow, with a large offset from zero 
(such as a gamma distribution with a shape factor alpha much larger than 2).  However, 
these do not seem to be plausible shapes for catchment transit time distributions.  
Indeed, the distributions reported by Selle et al. were obtained only with highly un-
natural experimental conditions, in which the tracer was applied only to a small part of 
the catchment, and no tracer was applied close to the channel or close to the catchment 
outlet.  Thus the data shown by Selle et al. resemble point-source breakthrough curves 
more than they resemble whole-catchment transit time distributions. 
 



Section 4.1: 3076 l. 15: at this point in the paper it seems like it is the opposite: you look for 
the threshold age for which the Fyw closely approximates As/Ap across a wide range of scale 
factors. I would suggest stressing that the existence itself of one single threshold age, which 
verifies almost exactly the equality Fyw=As/Ap for very different scale parameters, is already 
an interesting result. 
 
I don't understand the first statement (the opposite of what?).  I agree that it is 
interesting that, for a given shape factor, one can define a threshold age for which Fyw 
is approximately As/Ap.  But if this were all that could be shown, we would have the 
same problem that we have with MTT estimation: we could estimate Fyw for any TTD 
shape, but how do we know what that shape is? 
 
Therefore the really important result is that, across a wide range of TTD shapes (as 
shown in Figure 2), this threshold age varies so little.  The implication of this result is 
that we don't need to know the TTD shape, as long as it looks something like any of the 
curves in Figure 2 (except the one with alpha=8, which I will remove in the revision).  
No matter what the shape is, as long as it looks something like these, we can quantify 
Fyw and know that we are talking about the fraction of water younger than something 
like 2-3 months. 
 
And an even more important result, which unfortunately can't be introduced until 
section 4.2, is that this same principle holds for TTD's that are created by mixing 
together widely varying gamma distributions, with different shape factors and scale 
factors.  These aggregated distributions are not gamma distributions!  This implies that 
the same general principles hold for a very broad class of distributions, well beyond the 
gammas for which the results in 4.1 were derived. 
 
3076 l. 20 to 3077 l. 4: in this paragraph there is a fundamental perspective shift that needs to 
be explicitly clarified. Before this point, the young water fraction was defined to be equal to 
the amplitude ratio. After this point, due to the results shown in Figure 9, the perspective 
changes and the amplitude ratio will be always assumed to be a good predictor of the relative 
amount of water younger than 2-3 months. If this is not stated clearly, the sentence will sound 
circular (the amplitude ratio is a good predictor of a new variable that has been explicitly 
defined to be equal to the amplitude ratio!). 
 
Yes, I get the point and can revise the text accordingly.  The point is not that Fyw is 
defined as the amplitude ratio, but that the amplitude ratio is a good estimator for Fyw.  
Furthermore, for many different TTD shape factors, the "young water" threshold falls 
in the narrow range of about 2-3 months.  Thus the amplitude ratio is a good estimator 
of the fraction of water younger than 2-3 months. 
 
3077 l. 11: “leads to the important result”. Is it not a hypothesis that is going to be 
demonstrated, rather than a result? 
 
It is a theoretical result, which is then numerically tested.  Perhaps "implication" is a 
more precise word than "result". 
 
3077 l. 15-20: from the same procedure used to determine Fyw for the gamma distribution, it 
would be possible to determine the “real” young water fraction (as well as the “real” 
threshold age) in the mixed runoff. So why did the author not perform this test? It would 



make the statement “the amplitude ratio predicts the young water fraction also in the 
combined runoff from heterogeneous landscapes” much stronger.  
 
If I correctly understand what the reviewer is saying here, this is in fact what I did.  The 
key issue again seems to be the distinction between what Fyw is (namely, the fraction of 
water younger than some threshold age), and ways that the value of Fyw can be 
estimated (for example, from As/Ap for certain threshold ages). 
 
Moreover, it would be interesting to see the effect of the aggregation on the threshold ages 
(particularly from tributaries with different shape parameters). Does a single threshold age 
still verify the equality As/Ap=Fyw, for different parameters alpha? Do the threshold ages 
fall in the same 2-3 months range in the mixed runoff? Do they average linearly?  
 
Perhaps it's now my turn to be confused!  Threshold ages are not properties of the 
system, unless one specifies a criterion for setting the threshold.  If we specify the 
criterion as, "the threshold age is the one for which Fyw, the fraction younger than this 
age, is closely approximated by the amplitude ratio As/Ap", then this threshold age is 
about 2-3 months.  This also holds for the mixed runoff (otherwise the aggregation of 
Fyw wouldn't work correctly).   
 
I don't understand what is meant by "Does a single threshold age still verify the 
equality As/Ap=Fyw, for different parameters alpha?"  There is a range of threshold 
ages, not a single threshold age, for different alpha values. 
 
Section 4.2: same comment as 3077 l. 15-20: the “real” young water fractions and threshold 
ages could be determined from equation 16. So is the amplitude ratio a good predictor of the 
“real” young water fraction?  
 
Yes, that's exactly the point. 
 
This would really make the young water fractions independent from the gamma distributions 
they were initially defined from.  
 
Yes, that's exactly the point. 
 
Also, is there any hint on what causes the larger departures from the 1:1 line in Figure 11 and 
Figure 12? Could it suggest anything for the limits of applicability of the method? 
 
I have not analyzed this comprehensively, but in general, larger contributions from 
subcatchments with higher alphas produce more scatter, and if one extended the range 
of alpha values to (say) 4, there would be visibly much greater scatter.  Let's be clear: 
the "larger departures" in Fyw estimates in Figures 11 and 12 are on the order of 
single-digit percents, whereas the uncertainties in MTT are hundreds of percent. 
 
Section 4.3: it is really unclear how the phase shift can affect the determination of the young 
water fraction, as it does not appear anywhere in its definition. So I am not able to interpret 
Figure 13 a-c. 
 
As noted above, in the revised manuscript I will provide step-by-step instructions on 
how can include phase information in estimating Fyw. 



 
3083 l. 19: “the most useful metric” seems like an overstatement. 
 
Sorry, that came out sounding rather immodest, didn't it?  I only meant to say that Fyw 
was a more useful metric than MTT. 
 
Section 5: The uncertainty induced by sine-wave fitting is not mentioned (while it is, briefly, 
in Paper 2). In my opinion, the manuscript would benefit from a simple analysis on how the 
uncertainty in sine wave fitting translates into uncertainty in the estimation of the young 
water fractions.  
 
If there were "a simple analysis" I would have included it, but to treat this rigorously 
probably requires another ~6 pages, ~8 equations, and several figures to illustrate the 
results... and the paper is rather long already.  In any case, probably the most important 
sources of uncertainty are not in the data-fitting itself, but in the assumptions 
underlying the interpretation of the data (as outlined on p. 3084, l. 17-23). 
 
Besides showing that Fyw is a reliable metric while MTT is not, the paper does not suggest 
what the young water fractions can be used for. This is partially addressed in Paper 2 (section 
3.7), but some hints also in paper 1 would make the impact of the manuscript stronger. 
 
Thanks for this suggestion.  I will see if I can helpfully foreshadow the applications that 
are outlined in Paper 2.  Most obviously, Fyw directly quantifies the fraction of water 
flowing by relatively fast flowpaths (where "relatively fast" means faster than a few 
months). 
 
 
TECHNICAL CORRECTIONS 
 
3078 l. 3: minimal 
 
Figure 11 caption: horizontal axes 
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Author's response to Anonymous Referee #2: 
 
 
 
I appreciate Anonymous Referee #2's comments and suggestions.  Where possible, these 
will be used to improve the manuscript on revision.  Specific responses to individual 
comments are detailed below.   
 
This paper explores how mean transit times (MTT) derived from seasonal tracer cycles 
aggregate when scaling up by adding small catchments to represent a larger catchment. 
Kirchner finds that the MTT does not scale well at all by performing thorough benchmark 
tests and he proposes a new metric: the young water fraction that by its definition scales as 
good as possible with spatial heterogeneity. Thus 2 main messages in this paper:1) From 
heron, do never use MTT again, 2) use Fyw instead. This new metric is interesting, but at the 
same time challenging to use as its definition contains uncertainty (i.e. the type of transit time 
distribution, which is always unknown).  
 
Furthermore I fully agree with the call for thorough benchmarking of simple hydrological 
models in the face of spatial and temporal heterogeneity. The paper is well written and is an 
important contribution to hydrology.  
 
Many thanks for your kind remarks about the paper.  Regarding the point that the 
transit time distribution is always unknown: yes, but this is also true (and much more 
consequential) for mean transit time determinations, where it leads to order-of-
magnitude uncertainties in MTT. 
 
 
However, several questions remained after reading the paper:  
 
How can I use the Fyw (fraction young water) with my data? Is the approach something like: 
First guess a range of alphas that are likely to represent my system, Let’s say 0.3- 1.5. Then 
derive the Thresholds Times with Eq 14,–> 0.12-0.22 years. Next derive from data the 
As/Ap. For example 0.3. This then means that around 30% of my stream water is younger 
than 0.12 to 0.22 years? Next we can refine this approach by including the phase shift? 
Between catchments we can now compare this Fyw. I think this could be explained more 
clear in this paper, for example with the data of figure 1.  
 
The suggestion of a "worked example" is a good one.  I will see whether I can fit it in, 
without making the manuscript too much longer. 
 
What is the advantage of comparing Fyw over As/Ap between catchments?  
 
The advantage is that Fyw tells you something about transit times, and As/Ap doesn't 
(at least not directly).  In the second paper, for example, I show how these methods can 
be used to (for example) quantify how the young water fraction (and thus the fraction of 
water flowing by relatively fast flowpaths) varies between high flow and low flow.  
Furthermore the relative fractions of young and old water (and their variations with 
discharge regime) can be compared to stream chemistry, to define the chemical 
fingerprints of "young" and "old" end-members.  Following Referee #1's suggestion, I 



will try to give the reader a taste of these potential applications already in the first 
paper, although they will not be spelled out in detail until the second paper.   
 
What about evapotranspiration? Are the proposed methods valid when half of the water 
balance goes to evapotranspiration? You convincingly proofed that the MTT does not scale 
up well, but does FYW still scale well with evapotranspiration? Page 3069, line 9, seems to 
suggest it does not, but with amplitudes I can imagine it does work. Does this need further 
benchmarking?  
 
Do you mean line 20 on page 3066 instead?  In practice, convolution-based approaches 
(including those used to estimate MTT) ignore evapotranspiration (ET).  Estimating 
how ET would affect Fyw determinations is not straightforward, because this will 
depend on how ET alters the concentrations of the conservative tracer.  Thus this effect 
will differ, for example, between stable isotopes and chemical tracers.  I am currently 
working on a manuscript that looks at this question for stable isotopes, but this is a 
rather complex topic that is well beyond the scope of the current paper. 
 
Following your own reasoning on page 3070, line 20, a catchment consists of almost infinite 
number of flow routes, each with own travel times. All these flow routes are grouped to yield 
the catchment TTD. You showed that Fyw scales well for 8 subcatchments, but does it still 
scale well for 1.000.000 sub-flow routes?  
 
By extension it should, but numerically demonstrating this would be computationally 
tedious, and well beyond the scope of the current paper. 
 
Is there any chance that due to the central limit theorem an infinite number of weakly-related 
gamma distributions for each flow route (log-transforming them, adding them yielding a 
normal distribution, and back-transforming them to yield a log-normal distribution) yields a 
log-normal TTD distribution at the catchment outlet of which the MTT does scale well as 
long as we assume that the central limit theorem holds at all the subcatchments as well at the 
catchment? I dont think so, but Im also not entirely sure that the Fyw does much better.  
 
I don't understand the reasoning here.  The point is not whether MTT scales well (by 
definition, the mean will always aggregate linearly), but whether a procedure for 
estimating MTT will work correctly, when the only inputs are observable behaviors (like 
tracer concentrations) that come from heterogeneous aggregates of subcatchments. 
 
Minor comments: Title: As the authors refers in both papers to “paper 1” and “paper 2”, it 
would be good to include this number somewhere in the title of the paper as the papers are 
likely to end up in reverse order on a website (like now on HESSD).  
 
The original manuscripts had such numbers in the title, but these had to be removed 
because of problems that would be created for any future papers in this series, which 
may appear separately.  In the revision, I will try to clarify how each paper refers to the 
other one. 
 
Page 3066, line 16: one can relax... flow-equivalent time. I dont think it is possible to express 
time as flow-equivalent time when sine wave fitting. Thus this statement is confusing to me 
in the context of this paper.  
 



Obviously, a mathematical sine wave will no longer be a pure sine wave if the time base 
is locally stretched and shrunk in a non-uniform way.  But in practice sine waves are fit 
to rather noisy tracer data, so it's not clear how much this will affect the fitted sine 
wave.  In any case, the statement is a general one about convolution methods, and is not 
specific to sine-wave fitting (which is introduced three pages later). 
 
Page 3066, line 13: “However in practical applications”: this statement renders all the above 
references impractical, while the objective of using time variant TTD actually is to be a bit 
more practical. To me considering a catchment as a stationary flux field is totally theoretical 
and only suited for catchment intercomparison studies. These stationary studies hardly have 
any practical relevance in helping to understand how to lower or mitigate solute fluxes.  
 
What I meant was, "in applications using real-world data".  I did not intend to label 
time-variant TTD approaches as impractical, since that is not an issue one needs to get 
into here.  Your comment does, however, point to an important issue.  There is a rich 
theoretical literature on time-varying TTD's, but it is only now starting to come to grips 
with the important problem of how we can determine what these TTD's actually are, in 
the real world, based on real-world data.  This is not at all a simple problem.  Since the 
first requirement of any approach to practical problems is that we must be able to use it 
reliably with real-world data, this represents a substantial challenge for time-variant 
TTD methods.  Although the present paper deals with stationary (but heterogeneous) 
systems, the second paper shows that these methods can also be applied to data from 
nonstationary (and heterogeneous) systems.   
 
Page 3078 line 25. Following your reasoning on page 3071, line20, each subcatchment 
consists of an almost infinite number of independent flow paths that contribute to stream 
discharge. Do you think you still get the results of figure 12 for an infinite number of 
subcatchments? Is this what you are saying on page 3079, line 3?  
 
Yes, that is what I am saying. 
 
Page 3080, line 25 MTT values derived from seasonal tracer cycles  
 
Correct.  But note that (as explained on pp. 3081-3082), there is little reason for 
optimism that other methods of estimating MTT from tracer data will be any more 
reliable.  There are several reasons for this.  First of all, MTT depends strongly on how 
long the long-time tail is, but conservative tracers are insensitive to such long-term 
behavior (either because the tracers themselves don't exhibit much decadal-scale 
variation, or because we don't have measurements that run that long).  Secondly, to the 
extent that the seasonal cycle is the dominant feature of many tracer time series, that 
cycle will largely control the results obtained from those time series, no matter what 
methods are used to fit or interpret the data.  Sine-wave fitting just happens to be the 
simplest and most analytically tractable of those methods, which is why I have studied it 
here. 
 
Page 3082, line 10. Im not entirely sure what you mean with the time series convolution 
approach. If it refers to methods that solely use the waterbalance (water storage and water 
fluxes time series) to calculate the MTT, this aggregation bias is likely to be absent. At a 
larger or smaller scales this approach leads to a new water balance with new storage and 



water fluxes, which lead to a new MTT independent of the aggregation (close to [average 
Storage] / [average precip].  
 
I mean time-domain convolution of tracer time series.  Note that water balance methods 
lead to highly biased estimates of MTT, since at best they only measure dynamic storage 
and not passive storage. 
 
However, I fully agree that MTT is an awful and often meaningless metric to use. Median 
traveltimes or indeed Fyw are much more meaningful.  
 
Page 8030, line 19. You mean to say that Fyw is more useful than MTT?  
 
I think you mean page 3083, and yes, that's what I meant to say. 
 



Author's response to Referee #3 (Markus Weiler) 
 
 
 
I really enjoyed reading this paper, however, I have to admit that it took me a while to find 
enough time to read through over 100 pages of the two papers combined. The paper nicely 
and very elegantly addresses the question how TTD in heterogeneous catchments will change 
the MTT, a question I have also thought a lot in the past, but I was unable to come up with 
such a great way to address this question. The paper is very well written, however, too long 
and is certainly of high relevance to the readers of HESS. I have a couple of concerns and 
ideas and hope that JK can resolve these so the paper can be published in HESS.  
 
I thank my colleague Markus Weiler for his thoughtful comments and suggestions.  
These will help in formulating the revisions to the manuscript. 
 
There are two reasons that the papers appear somewhat long.  First, I am trying to 
introduce a substantial analysis based on a new concept, so I have to tell the whole 
story.  But secondly, the "over 100 pages" are an artifact of Copernicus Publications' 
policy of publishing discussion papers in what is effectively a half-page format, thus 
more than doubling the page count (and, perhaps not coincidentally, more than 
doubling the page charges that authors pay to Copernicus.)   
 
For example, Seeger and Weiler (2014) was 51 pages (or actually half-pages) in HESSD, 
but the final paper was only 21 pages in HESS.  This one example suggests that the page 
count in HESSD is inflated, relative to the page count in HESS, by a factor of 2.5.  The 
first of my two papers is 45 pages in HESSD, so one may expect that it would be about 
18 pages in HESS.  The second paper is 63 pages in HESSD, and should run about 26 
pages in HESS.   
 
 
General comments:  
 
1) James Kirchner (JK) uses a simple convolution version to compute concentrations in the 
stream (eq 1) without considering inflow (precipitation) variation and/or evapotranspiration 
(e.g. Steward and McDonnell, 1991; Weiler et al., 2003). Particularly in catchments with a 
strong seasonality, this will markedly change the resulting tracer signal – a very strong 
change can be observed in snow dominated catchments (e.g. Seeger and Weiler, 2014). 
Under those conditions, the simple sine wave approach JK selects for his analysis may be 
flawed, since the observed sine wave in precipitation is very different to the input 
concentration into the catchments. Most success with the sine wave approach was in humid 
catchment without a strong seasonality (Scotland, Wales, East Coast US). It would be helpful 
to frame the results of this paper either by additional analysis in the context of these kind of 
catchments or at least discuss this in more detail with the related assumptions and 
consequences.  
 
The points that Markus Weiler (MW) makes here are valid, but they are not specific to 
the simple sine wave approach; instead, they apply to convolution approaches in 
general.  The manuscript already says that these approaches assume steady state and 
ignore evapotranspiration (see p. 3066), which are the main points that MW mentions in 
his comment.  I had considered adding the point that when precipitation volumes vary 



over time, the concentrations in precipitation may not reflect the volume-weighted 
inputs to the catchment.  One approach to handle this is to volume-weight the sine wave 
fitting.   
 
These points could be added to the introductory text (at the cost of making the paper 
longer).  One could also go into much greater detail about all the assumptions behind 
convolution methods, but this has already been done elsewhere (e.g. by McGuire and 
McDonnell, 2006).  The point of this paper is not to catalogue all of the possible factors 
that can complicate tracer-based transit time estimates, but instead to look in detail at 
the particular problem of aggregation across heterogeneous catchments.   
 
2) It was very interesting to see, that age of the young water fraction of 0.2 years JK derived 
from his analysis is very close to the duration Seeger and Weiler (2014) derived for the time 
all catchments and models produce a very similar “discharge fractions after certain elapsed 
times”, which is equal to the young water fraction of this paper. In S&W we came up with a 
so called young water fraction of 2-3 months based on observations and applications of 
different convolutions models. WE also argued that this young water fraction should be used 
instead of the MTT. So I believe this supports greatly the results of JK and he may be able to 
strengthen his paper including these additional information.  
 
I appreciate the suggestion and will see what I can do here.   
 
The closest statement I can find to "we came up with a so called young water fraction of 
2-3 months based on observations and applications of different convolution models" in 
Seeger and Weiler (2014) is "We observed a high agreement between the cumulated 
TTD fractions of the first 3 months (hereafter CF3M) for GM and TPLR (see Fig. 9). 
On the other hand, the TTDs tailings and MTTs varied notably between different 
models and proved to be less identifiable." (p. 4762, where GM and TPLR stand for 
Gamma Model and Two Parallel Linear Reservoirs, respectively, two different TTD 
models that were fitted to isotope data) 
 
The closest statement I can find to "we also argued that this young water fraction should 
be used instead of the MTT" in Seeger and Weiler (2014) is "Therefore we decided to 
include CF3M as an apparently more consistent transit time metric than MTT into this 
analysis." (p. 4762)   
 
Seeger and Weiler actually concluded, on page 4767, that what should replace the MTT 
is not the young water fraction, but instead the so-called transit time proxy TTP, defined 
as the ratio of the standard deviations of the tracer concentrations in precipitation and 
discharge.  Interestingly, if the tracer concentration time series are seasonal cycles, TTP 
is numerically equal to the amplitude ratio, and in this paper I show that the amplitude 
ratio can be used to estimate the young water fraction.  However, there is nothing in 
Seeger and Weiler (2014) that indicates that these quantities are connected. 
 
 
Specific comments:  
 
Title: not sure if aggregation really captures the main idea to other people and reflects the 
main message of the papers – see also paper 2. In addition, I would remove the -but not mean 
transit time-  



 
Both papers are centrally concerned with how transit time estimates are affected by 
aggregation of tracer signals in heterogeneous catchments.  Hence the link to 
aggregation is important, although I understand the point that our community may not 
be used to thinking in these terms.   
 
Roughly half of the paper is devoted to demonstrating that seasonal tracer cycles yield 
strongly biased MTT estimates, so I think that this point about mean transit time really 
needs to be in the title. 
 
I will think about whether the title can be streamlined, although I've already given this 
quite a lot of thought.  The titles of the two papers also need to be linked by common 
phrases, which constrains the feasible possibilities. 
 
Equations 3a-3d are not necessary since they are not used again in the paper.  
 
Equation 3a is used in equation (10), and all four equations are important as support 
for the interpretations that are stated in the paragraph immediately below them. 
 
The implications are quite long and it may help to provide subheading to better structure 
them.  
 
This is a good point, which can be straightforwardly handled in the revision. 
 
The figure captions are very long and often too detailed – I agree that a figure should be 
understood only with the figure caption, but JK sometimes includes interpretation of the 
figure and could shorten the captions in general. 
 
The figure captions are written this way as part of a deliberate communication strategy.  
Minimalist figure captions often lead to unnecessary workload and confusion for the 
reader, who must jump back and forth between the figure and the text (perhaps several 
pages away) in order to understand what the figure says.  Furthermore, readers often 
scan papers by looking at the figures without reading the text, meaning that the figures 
should be able to stand on their own.   
 
Putting interpretations in figure captions can be a great help to readers, who can 
thereby get a sense of what the figures mean rather than just what they are.  Experience 
has shown that authors often think that their figures will be self-evident (which of 
course they are for the authors, who already know what they are trying to say), and fail 
to comprehend how divergent a reader's understanding may be.  Thus it is a smart 
communication strategy to lean in the direction of over-explaining rather than under-
explaining. 
 
Summary and Conclusion: Since the paper is already very long, I would highly recommend 
to shorten the S&C. I think it is not necessary to repeat the main ideas and steps and relate 
them to the figures – which is a very uncommon format anyway.  
 
I disagree with MW's assertion that the paper is "very long".  It is, for comparison, six 
pages shorter than the HESSD version of Seeger and Weiler, 2014 (in the Copernicus 
half-page format).  I also disagree that the summary and conclusions section is overly 



long.  Again, for comparison, the conclusions section in the HESSD version of Seeger 
and Weiler is 28 lines long and mine is 39.  Is 11 lines such an important difference? 
 
I do agree that it is unconventional to refer to individual figures in the conclusions, but 
again this is a deliberate strategy.  Often when they encounter a particular statement in 
the conclusions at the end of a complex paper, readers often wonder, "Wait, did the 
authors really show that?  Where did they show that?"  Providing this information gives 
readers a thumbnail index showing where the main points of the paper are covered.  
This can save them from searching through pages of dense text.  It is also a great help to 
many readers, who follow the "first-last-middle" strategy of reading the abstract first 
and the conclusions second, then scanning the figures, and then perhaps reading the 
text.   
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Abstract 11 

Environmental heterogeneity is ubiquitous, but environmental systems are often analyzed as if 12 

they were homogeneous instead, resulting in aggregation errors that are rarely explored and 13 

almost never quantified.  Here I use simple benchmark tests to explore this general problem in 14 

one specific context: the use of seasonal cycles in chemical or isotopic tracers (such as Cl-, 15 

δ18O, or δ2H) to estimate timescales of storage in catchments.  Timescales of catchment 16 

storage are typically quantified by the mean transit time, meaning the average time that 17 

elapses between parcels of water entering as precipitation and leaving again as streamflow.  18 

Longer mean transit times imply greater damping of seasonal tracer cycles.  Thus, the 19 

amplitudes of tracer cycles in precipitation and streamflow are commonly used to calculate 20 

catchment mean transit times.  Here I show that these calculations will typically be wrong by 21 

several hundred percent, when applied to catchments with realistic degrees of spatial 22 

heterogeneity.  This aggregation bias arises from the strong nonlinearity in the relationship 23 

between tracer cycle amplitude and mean travel time.  I propose an alternative storage metric, 24 

the young water fraction in streamflow, defined as the fraction of runoff with transit times of 25 

less than roughly 0.2 years.  I show that this young water fraction (not to be confused with 26 

event-based "new water" in hydrograph separations) is accurately predicted by seasonal tracer 27 

cycles within a precision of a few percent, across the entire range of mean transit times from 28 
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 2 

almost zero to almost infinity.  Importantly, this relationship is also virtually free from 1 

aggregation error.  That is, seasonal tracer cycles also accurately predict the young water 2 

fraction in runoff from highly heterogeneous mixtures of subcatchments with strongly 3 

contrasting transit time distributions.  Thus, although tracer cycle amplitudes yield biased and 4 

unreliable estimates of catchment mean travel times in heterogeneous catchments, they can be 5 

used reliably to estimate the fraction of young water in runoff. 6 

 7 

Keywords: transit time, travel time, residence time, isotope tracers, residence time, 8 

convolution, catchment hydrology, aggregation error, aggregation bias 9 

 10 

1 Introduction 11 

Environmental systems are characteristically complex and heterogeneous.  Their processes 12 

and properties are often difficult to quantify at small scales, and difficult to extrapolate to 13 

larger scales.  Thus translating process inferences across scales, and aggregating across 14 

heterogeneity, are fundamental challenges for environmental scientists.  These ubiquitous 15 

aggregation problems have been a focus of research in some environmental fields, such as 16 

ecological modelling (e.g., Rastetter et al., 1992), but have received surprisingly little 17 

attention elsewhere.  In the catchment hydrology literature, for example, spatial heterogeneity 18 

has been widely recognized as a fundamental problem, but has rarely been the subject of 19 

rigorous analysis.   20 

Instead, it is often tacitly assumed (although hoped might be a better word) that any problems 21 

introduced by spatial heterogeneity will be solved or masked by model parameter calibration.  22 

This is an intuitively appealing notion.  After all, we are often not particularly interested in 23 

understanding or predicting point-scale processes within the system, but rather in predicting 24 

the resulting ensemble behavior at the whole-catchment scale, such as stream flow, stream 25 

chemistry, evapotranspiration losses, ecosystem carbon uptake, and so forth.  Furthermore, we 26 

rarely have point-scale information from the system under study, and when we do, we have 27 

no clear way to translate it to larger scales.  Instead, often our most reliable and readily 28 

available measurements are at the whole-catchment scale: stream flow, stream chemistry, 29 

weather variables, etc.  Wouldn't it be nice if these whole-catchment measurements could be 30 

used to estimate spatially aggregated model parameters that somehow subsume the spatial 31 



 

 3 

heterogeneity of the system, at least well enough to generate reliable predictions of whole-1 

catchment behavior?   2 

This is a testable proposition, and the answer will depend partly on the nature of the 3 

underlying model.  All models obscure a system's spatial heterogeneity to some degree, and 4 

many conceptual models obscure it completely, by treating spatially heterogeneous 5 

catchments as if they were spatially homogeneous instead.  Doing so is not automatically 6 

disqualifying, but neither is it obviously valid.  Rather, this spatial aggregation is a modelling 7 

choice, whose consequences should be explicitly analyzed and quantified.  What do I mean by 8 

"explicitly analyzed and quantified?"  As an example, consider Kirchner et al.'s (1993) 9 

analysis of how spatial heterogeneity affected a particular geochemical model for estimating 10 

catchment buffering of acid deposition.  The authors began by noting that spatial 11 

heterogeneities will not "average out" in nonlinear model equations, and by showing that the 12 

resulting aggregation bias will be proportional to the nonlinearity in the model equations 13 

(which can be directly estimated), and proportional to the variance in the heterogeneous real-14 

world parameter values (which is typically unknown, but may at least be given a plausible 15 

upper bound).  They then showed that their geochemical model's governing equations were 16 

sufficiently linear that the effects of spatial heterogeneity were likely to be small.  They then 17 

confirmed this theoretical result by mixing measured runoff chemistry time series from 18 

random pairs of geochemically diverse catchments (which do not flow together in the real 19 

world).  They showed that the geochemical model correctly predicted the buffering behavior 20 

of these spatially heterogeneous pseudo-catchments, without knowing that those catchments 21 

were heterogeneous, and without knowing anything about the nature of their heterogeneities. 22 

Here I use similar thought experiments to explore the consequences of spatial heterogeneity 23 

for catchment mean transit time estimates derived from seasonal tracer cycles in precipitation 24 

and streamflow.  Catchment transit time, or, equivalently, travel time – the time that it takes 25 

for rainfall to travel through a catchment and emerge as streamflow – is a fundamental 26 

hydraulic parameter that controls the retention and release of contaminants and thus the 27 

downstream consequences of pollution episodes (Kirchner et al., 2000; McDonnell et al., 28 

2010).  In many geological settings, catchment transit times also control chemical weathering 29 

rates, geochemical solute production and the long-term carbon cycle (Burns et al., 2003; 30 

Godsey et al., 2009; Maher, 2010; Maher and Chamberlain, 2014).   31 
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 4 

A catchment is characterized by its travel time distribution (TTD), which reflects the diversity 1 

of flowpaths (and their velocities) connecting each point on the landscape with the stream.  2 

Because these flowpaths and velocities change with hydrologic forcing, the TTD is non-3 

stationary (Kirchner et al., 2001; Tetzlaff et al., 2007; Botter et al., 2010; Hrachowitz et 4 

al., 2010a; Van der Velde et al., 2010; Birkel et al., 2012; Heidbüchel et al., 2012; Peters 5 

et al., 2014), but time-varying TTD's are difficult to estimate in practice, so most 6 

catchment studies have focused on estimating time-averaged TTD's instead. Both the 7 

shape of the TTD and its corresponding mean travel time (MTT) reflect storage and mixing 8 

processes in the catchment (Kirchner et al., 2000, 2001; Godsey et al., 2010; Hrachowitz et 9 

al., 2010a).  However, due to the difficulty in reliably estimating the shape of the TTD, and 10 

the volumes of data required to do so, many catchment studies have simply assumed that the 11 

TTD has a given shape, and have estimated only its MTT.  As a result, and also because of its 12 

obvious physical interpretation as the ratio between the storage volume and the average water 13 

flux (in steady state), the MTT is by far the most universally reported parameter in catchment 14 

travel-time studies.  Estimates of MTT's have been correlated with a wide range of catchment 15 

characteristics, including drainage density, aspect, hillslope gradient, depth to groundwater, 16 

hydraulic conductivity, and the prevalence of hydrologically responsive soils (e.g., McGuire 17 

et al., 2005; Soulsby et al., 2006; Tetzlaff et al., 2009; Broxton et al., 2009; Hrachowitz et al., 18 

2009; Hrachowitz et al., 2010b; Asano and Uchida, 2012; Heidbüchel et al., 2013),  19 

Travel time distributions and mean travel times cannot be measured directly, and they differ – 20 

often by orders of magnitude – from the hydrologic response timescale, because the former is 21 

determined by the velocity of water flow, and the latter is determined by the celerity of 22 

hydraulic potentials (Horton and Hawkins, 1965; Hewlett and Hibbert, 1967; Beven, 23 

1982; Kirchner et al., 2000; McDonnell and Beven, 2014).  Nor can travel time 24 

characteristics be reliably determined a priori from theory.  Instead, they must be determined 25 

from chemical or isotopic tracers, such as Cl-, 18O, and 2H, in precipitation and streamflow.  26 

These passive tracers "follow the water"; thus their temporal fluctuations reflect the transport, 27 

storage, and mixing of rainfall as it is transformed into runoff.  (Groundwaters can also be 28 

dated using dissolved gases such as CFC's and 3H/3He, but these tracers are not conserved in 29 

surface waters or in the vadose zone, so they are not well suited to estimating whole-30 

catchment travel times.)   31 
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 5 

As reviewed by McGuire and McDonnell (2006), three methods are commonly used to infer 1 

catchment travel times from conservative tracer time series: 1) time-domain convolution of 2 

the input time series to simulate the output time series, with parameters of the convolution 3 

kernel (the travel-time distribution) fitted by iterative search techniques, 2) Fourier transform 4 

spectral analysis of the input and output time series, and 3) sine-wave fitting to the seasonal 5 

tracer variation in the input and output.  In all three methods, the greater the damping of the 6 

input signal in the output, the longer the inferred mean travel time.  Sine-wave fitting can be 7 

viewed as the simplest possible version of both spectral analysis (examining the Fourier 8 

transform at just the annual frequency) and time-domain convolution (approximating the 9 

input and output as sinusoids, for which the convolution relationship is particularly easy to 10 

calculate).  Whereas time-domain convolution methods require continuous, unbroken 11 

precipitation isotopic records spanning at least several times the MTT (McGuire and 12 

McDonnell, 2006; Hrachowitz et al., 2011), and spectral methods require time series spanning 13 

a wide range of time scales (Feng et al., 2004), sine-wave fitting can be performed on sparse, 14 

irregularly sampled data sets.  Because sine-wave fitting is mathematically straightforward, 15 

and because its data requirements are modest compared to the other two methods, it is 16 

arguably the best candidate for comparison studies based on large multi-site datasets of 17 

isotopic measurements in precipitation and river flow.  For that reason – and because it 18 

presents an interesting test case of the general aggregation issues alluded to above, in which 19 

some key results can be derived analytically – the sinusoidal fitting method will be the focus 20 

of my analysis.   21 

The isotopic composition of precipitation varies seasonally as shifts in meridional circulation 22 

alter atmospheric vapor transport pathways (Feng et al., 2009), and as shifts in temperature 23 

and storm intensity alter the degree of rainout-driven fractionation that air masses undergo 24 

(Bowen, 2008).  The resulting seasonal cycles in precipitation (e.g., Fig. 1a) are damped and 25 

phase-shifted as they are transmitted through catchments (e.g., Fig. 1b), by amounts that 26 

depend on – and thus can be used to infer properties of – the travel-time distribution.  Figure 27 

1 shows an example of sinusoidal fits to seasonal 18O cycles in precipitation and baseflow at 28 

one particular field site.  The visually obvious damping of the isotopic cycle in baseflow 29 

relative to precipitation implies, in this case, an estimated MTT of 1.4 years (DeWalle et al., 30 

1997) under the assumption that the TTD is exponential.   31 
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 6 

That particular estimate of mean transit time, like practically all such estimates in the 1 

literature, was made by methods that assume that the catchment is homogeneous, and 2 

therefore that the shape of its TTD can be straightforwardly characterized.  Typical 3 

catchments violate this assumption, but the consequences for estimating MTT's have not been 4 

systematically investigated, either for sine-wave fitting or for any other methods that infer 5 

travel times from tracer data.  Are any of these estimation methods reliable under realistic 6 

degrees of spatial heterogeneity?  Are they biased, and by how much?  We simply do not 7 

know, because they have not been tested.  Instead, we have been directly applying theoretical 8 

results, derived for idealized hypothetical cases, to complex real-world situations that do not 9 

share those idealized characteristics.  Methods for estimating catchment travel times urgently 10 

need benchmark testing.  The work presented below is intended as one small step toward 11 

filling that gap. 12 

 13 

2 Mathematical preliminaries: tracer cycles in homogeneous catchments 14 

Any method for inferring transit-time distributions (or their parameters, such as mean transit 15 

time) must make simplifying assumptions about the system under study.  Most such methods 16 

assume that conservative tracers in streamflow can be modeled as the convolution of the 17 

catchment's transit time distribution with the tracer time series in precipitation (Maloszewski 18 

et al., 1983; Maloszewski and Zuber, 1993; Barnes and Bonell, 1996; Kirchner et al., 2000), 19 





0

d)()()(  tchtc PS ,        (1) 20 

where cS(t) is the concentration in the stream at time t, cP(t-τ) is the concentration in 21 

precipitation at any previous time t-τ, and h(τ) is the distribution of transit times τ separating 22 

the arrival of tracer molecules in precipitation and their delivery in streamflow.  The 23 

concentrations cS(t)  and cP(t-τ) can also represent ratios of stable isotopes in the familiar δ 24 

notation (e.g., δ18O or δ2H); the mathematics are the same in either case. 25 

The transit-time distribution h(τ) expresses the fractional contribution of past inputs to present 26 

runoff.  Equation (1) implicitly assumes that the catchment is a linear time-invariant system, 27 

and thus that the convolution kernel h(τ) is stationary (i.e., constant through time).  This is 28 

never strictly true, most obviously because if no precipitation falls on a particular day, it 29 
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 7 

cannot contribute any tracer to the stream τ days later, and because higher precipitation rates 1 

will increase the rate that water and tracers are flushed through the catchment.  Thus real-2 

world TTD's vary through time, depending on the history of prior precipitation (Kirchner et 3 

al., 2001; Tetzlaff et al., 2007; Botter et al., 2010; Hrachowitz et al., 2010a; Van der Velde et 4 

al., 2010; Birkel et al., 2012; Heidbüchel et al., 2012; Peters et al., 2014).  However, in 5 

applications using real-world data, h(τ) is conventionally interpreted as a time-invariant 6 

ensemble average, taken over an ensemble of precipitation histories, which obviously will 7 

differ from one another in detail.  Mathematically, the ensemble averaging embodied in Eq. 8 

(1) is equivalent to the simplifying assumption that water fluxes in precipitation and 9 

streamflow are constant over time.  (One can relax this assumption somewhat by integrating 10 

over the cumulative water flux rather than time, as proposed by Niemi (1977).  If the rates of 11 

transport and mixing vary proportionally to the flow rate through the catchment, this yields a 12 

stationary distribution in flow-equivalent time.)  A further simplification inherent in Eq. (1) is 13 

that evapotranspiration and its effects on tracer signatures are ignored. 14 

2.1 A class of transit-time distributions 15 

In much of the analysis that follows, I will assume that the transit-time distribution h(τ) 16 

belongs to the family of gamma distributions, 17 















 /

1
/

1

)()/()(
)( 










 eeh ,     (2) 18 

where α and β are a shape factor and scale factor, respectively, τ is the transit time, and 19 

   is the mean transit time.  I make this assumption mostly so that some key results can 20 

be calculated exactly, but as I show below, the key results extend beyond this (already broad) 21 

class of distributions. 22 

Figure 2 shows gamma distributions spanning a range of shape factors α.  For the special case 23 

of α=1, the gamma distribution becomes the exponential distribution.  Exponential 24 

distributions describe the behavior of continuously mixed reservoirs of constant volume, and 25 

they have been widely used to model catchment storage and mixing.  The gamma distribution 26 

expresses the TTD of a Nash cascade (Nash, 1957) of α identical linear reservoirs connected 27 

in series, and the analogy to a Nash cascade holds even for non-integer α, through the use of 28 
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fractional integration.  For α>1, the gamma distribution rises to a peak and then falls off, 1 

similarly to a typical storm hydrograph, which is why Nash cascades have often been used to 2 

model rainfall-runoff relationships.  For α<1, however, the gamma distribution has a 3 

completely different shape, having maximum weight at lags near zero, and also having a 4 

relatively long tail.  These characteristics represent problematic contaminant behavior: an 5 

intense spike of contamination in short time and persistent contamination in long time.  Tracer 6 

time series from many catchments have been shown to exhibit fractal 1/f scaling, which is 7 

consistent with gamma TTD's with α ≈ 0.5(Kirchner et al., 2000, 2001; Godsey et al., 2010; 8 

Kirchner and Neal, 2013; Aubert et al., 2014).   9 

For present purposes, it is sufficient to note that the family of gamma distributions 10 

encompasses a wide range of shapes which approximate many plausible TTD's (Fig. 2).  The 11 

moments of the gamma distribution vary systematically with the shape factor α (Walck, 12 

2007): 13 

 )(mean ,         (3a) 14 

 /)( SD  ,        (3b) 15 

 /2)( skewness  ,        (3c) 16 

and  /6)( kurtosis  .        (3d) 17 

As α increases above 1, the standard deviation (SD) declines in relation to the mean, and the 18 

shape of the distribution becomes more normal.  But as α decreases below 1, the SD grows in 19 

relation to the mean, implying greater variability in transit times for the same average (in 20 

other words: more short transit times, more long transit times, and fewer close to the mean).  21 

Likewise the skewness and kurtosis grow with decreasing α, reflecting greater dominance by 22 

the tails of the distribution.   23 

Studies that have used tracers to constrain the shape of catchment TTD's have generally found 24 

shape factors α ranging from 0.3 to 0.7, corresponding to spectral slopes of the transfer 25 

function between roughly 0.6 and 1.4 (Kirchner et al., 2000, 2001; Godsey et al., 2010; 26 

Hrachowitz et al., 2010a; Kirchner and Neal, 2013; Aubert et al., 2014).  Other studies – 27 

including those that have used annual tracer cycles to estimate mean transit times – have 28 

assumed that the catchment is a well-mixed reservoir and thus that α=1.  Here I will assume 29 

that α falls in the range of 0.5 to 1 for typical catchment transit-time distributions, but I will 30 
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 9 

also show some key results for the somewhat wider range of α=0.2-2, for illustrative 1 

purposes.  The results reported here will not necessarily apply to TTD's that rise to a peak 2 

after a long delay, such as the gamma distribution with α>>2.  However, one would not 3 

expect such a distribution to characterize whole-catchment TTD's in the first place, because 4 

except in very unusual catchments a substantial amount of precipitation can fall close to the 5 

stream and enter it relatively quickly, thus producing a strong peak at a short lag (Kirchner et 6 

al., 2001). 7 

2.2 Estimating mean transit time from tracer cycles 8 

Because convolutions (Eq. 1) are linear operators, they transform any sinusoidal cycle in the 9 

precipitation time series cP(t) into a sinusoidal cycle of the same frequency, but a different 10 

amplitude and/or phase, in the streamflow time series cS(t).  Real-world transit-time 11 

distributions h(τ) are causal (i.e., h(τ)=0 for t<0) and mass-conserving (i.e.,  1)(h ), 12 

implying that cS(t) will be damped and phase-shifted relative to cP(t), and also implying that 13 

one can use the relative amplitudes and phases of cycles in cS(t) and cP(t) to infer 14 

characteristics of h(τ).  This mathematical property forms the basis for sine-wave fitting, and 15 

also for the spectral methods of Kirchner et al. (2000, 2001), which can be viewed as sine-16 

wave fitting across many different time scales. 17 

The amplitudes A and phases  of seasonal cycles in precipitation and streamflow can be 18 

estimated by nonlinear fitting,  19 
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or by determining the cosine and sine coefficients a and b via multiple linear regression,  21 
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and then calculating the amplitudes and phases using the conventional identities 23 

22
PPP baA  , 22

SSS baA  ,  PPP ab /arctan  and  SSS ab /arctan . (6) 24 

In Eqs. (4)-(6) above, t is time, f is the frequency of the cycle (f=1 yr-1 for a seasonal cycle), 25 

and the subscripts P and S refer to precipitation and streamflow.  In fitting sinusoidal cycles 26 
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 10 

to real-world data, robust estimation techniques such as iteratively reweighted least 1 

squares (IRLS) regression can help in limiting the influence of outliers.  Also, because 2 

precipitation and streamflow rates vary through time, it may be useful to weight each 3 

tracer sample by its associated volume, for example to reduce the influence of small 4 

rainfall events (for more on the implications of volume-weighting, see Kirchner, 2015).  5 

An R script for performing volume-weighted IRLS is available from the author. 6 

The key to calculating the amplitude damping and phase shift that will result from convolving 7 

a sinusoidal input with a gamma-distributed h(τ) is the gamma distribution's Fourier 8 

transform, also called, in this context, its "characteristic function" (Walck, 2007): 9 

        /2121)( fififH .     (7) 10 

From Eq. (7), one can derive how the shape factor α and the mean transit time   affect the 11 

amplitude ratio AS/AP between the streamflow and precipitation cycles, 12 

   2/221
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A

P

S ,        (8) 13 

and also the phase shift between them, 14 

)2arctan(  fPS   ,       (9) 15 

where  / .  Figures 3a and 3b show the expected amplitude ratios and phase shifts for a 16 

range of shape factors and mean transit times. 17 

If the shape factor α is known (or can be assumed), the mean transit time can be calculated 18 

directly from the amplitude ratio AS/AP by inverting Eq. (8):  19 
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Equation (10), with α=1, is the standard tool for estimating MTT's from seasonal tracer cycles 21 

in precipitation and streamflow.  Alternatively, as Fig. 3c shows, both the shape factor α and 22 

the mean transit time   can be jointly determined from the phase shift S-P and the 23 

amplitude ratio AS/AP, if these can both be quantified with sufficient accuracy.  24 

Mathematically, this joint solution can be achieved by substituting Eq. (10) in Eq. (9), 25 

yielding the following implicit expression for α, 26 
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which can be solved using nonlinear search techniques such as Newton's method.  Once α has 2 

been determined, the mean transit time   can be calculated straightforwardly using Eq. (10).  3 

However, when precipitation is episodic, the phase shift S-P may be difficult to estimate 4 

accurately, which can result in large errors in α and thus  , particularly if the phase shift is 5 

near zero.  Perhaps for this reason, or perhaps because (to the best of my knowledge) the 6 

relevant math has not previously been presented, tracer cycle phase information has not 7 

typically been used in estimating α and MTT.  8 

 9 

3 Transit times and tracer cycles in heterogeneous catchments: a thought 10 

experiment 11 

The methods outlined above can be applied straightforwardly in a homogeneous catchment 12 

characterized by a single transit time distribution.  Real-world catchments, however, are 13 

generally heterogeneous; they combine different landscapes with different characteristics, and 14 

thus different TTD's.  The implications of this heterogeneity can be demonstrated with a 15 

simple thought experiment.  What if, instead of a single homogeneous catchment, we have 16 

two subcatchments with different MTT's, and therefore different tracer cycles, which then 17 

flow together, as shown in Fig. 4?  If we observed only the tracer cycle in the combined 18 

runoff (the solid blue line in Fig. 4), and not the tracer cycles in the individual subcatchments 19 

(the red and orange lines in Fig. 4), would we correctly infer the whole-catchment MTT?  20 

Note that although I refer to the different runoff sources as "subcatchments", they could 21 

equally well represent alternate slopes draining to the same stream channel, or even 22 

independent flow paths down the same hillslope; nothing in this thought experiment specifies 23 

the scale of the analysis.  And, of course, real-world catchments are much more complex than 24 

the simple thought experiment diagrammed in Fig. 4, but this two-component model is 25 

sufficient to illustrate the key issues at hand.   26 

From assumed MTT's   and shape factors α for each of the subcatchments, one can calculate 27 

the amplitude ratios AS/AP and phase shifts S-P of their tracer cycles using Eqs. (8)-(9) 28 

above, and then average these cycles together using the conventional trigonometric identities.  29 
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(Equivalently, one can estimate the cosine and sine coefficients of the individual 1 

subcatchments' tracer cycles from the real and imaginary parts of Eq. (7) and algebraically 2 

average them together.)  The shares of the two subcatchments in the average will depend on 3 

their relative drainage areas and/or water yields.  For simplicity, I combine the runoff from 4 

the two subcatchments in a 1:1 ratio; this also guarantees that the combined runoff will be as 5 

different as possible from each of the two sources.  I then ask the question: from the tracer 6 

behavior in the combined runoff (the solid blue line in Fig. 4), would I correctly estimate the 7 

mean transit time for the whole catchment?  That is, would I infer a MTT that is close to the 8 

average of the MTT's of the two subcatchments? 9 

One can immediately see that this situation is highly prone to aggregation bias, following 10 

Kirchner et al.'s (1993) rule of thumb that the degree of aggregation bias is proportional to the 11 

nonlinearity in the governing equations and the variance in the heterogeneous parameters.  12 

The amplitude ratios AS/AP and phase shifts S-P of seasonal tracer cycles are strongly 13 

nonlinear functions of the MTT (see Eqs. 8 and 10), as illustrated in Figs. 3a-b.  And, 14 

importantly, the likely range of variation in subcatchment MTT's (from, say, fractions of a 15 

year to perhaps several years) straddles the nonlinearity in the governing equations.  Thus we 16 

should expect to see significant aggregation bias in estimates of MTT. 17 

Figure 5 illustrates the crux of the problem.  The plotted curve shows the relationship between 18 

AS/AP and MTT for exponential transit time distributions (α=1); other realistic transit time 19 

distributions will give somewhat different relationships, but they will all be curved.  Seasonal 20 

cycles from the two subcatchments (the red and orange squares) will mix along the dashed 21 

gray line (which is nearly straight but not exactly so, owing to phase differences between the 22 

two cycles).  A 50:50 mixture of tracer cycles from the two subcatchments will plot as the 23 

solid blue square, with an amplitude ratio AS/AP of 0.43 and a MTT of just over 2 years in this 24 

particular example.  But the crux of the problem is that if we use this amplitude ratio to infer 25 

the corresponding MTT, we will do so where the amplitude ratio intersects with the black 26 

curve (Eq. 10), yielding an inferred MTT of only 0.33 yr (the open square), which 27 

underestimates the true MTT of the mixed runoff by more than a factor of six.  Bethke and 28 

Johnson (2008) pointed out that nonlinear averaging can lead to bias in groundwater dating by 29 

radioactive tracers; Fig. 5 illustrates how a similar bias can also arise in age determinations 30 

based on fluctuation damping in passive tracers.   31 
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Combining flows from two subcatchments with different mean transit times will result in a 1 

combined TTD that differs in shape, not just in scale, from the TTD's of either of the 2 

subcatchments.  For example, combining two exponential distributions with different mean 3 

transit times does not result in another exponential distribution, but rather a hyperexponential 4 

distribution, as shown in Fig. 6.  The characteristic function of the hyperexponential 5 

distribution (Walck, 2007) yields the following expression for the amplitude ratio of tracer 6 

cycles in precipitation and streamflow,  7 
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where 1  and 2  are the mean transit times of the two exponential distributions, and p and 9 

q=1-p are their proportions in the mixed runoff.  Equation (12) describes the dashed grey line 10 

in Fig. 5, and one can see by inspection that in a 1:1 mixture (p=q), the amplitude ratio AS/AP 11 

will be determined primarily by the shorter of the two mean transit times.  As Fig. 5 shows, 12 

the amplitude ratio implied by Eq. (12) is greater – often much greater – than Eq. (8) would 13 

predict for an exponential distribution with an equivalent mean transit time 21  qp  .  In 14 

other words, when amplitude ratios are interpreted as if they were generated by individual 15 

uniform catchments (i.e., Eq. 8) rather than a heterogeneous collection of subcatchments (i.e., 16 

Eq. 12), the inferred mean transit time will be underestimated, potentially by large factors. 17 

To test the generality of this result, I repeated the thought experiment outlined above for 1000 18 

hypothetical pairs of subcatchments, each with individual MTT's randomly chosen from a 19 

uniform distribution of logarithms spanning the interval between 0.1 and 20 years (Fig. 7).  20 

Pairs with MTT's that differed by less than a factor of two were excluded, so that the entire 21 

sample consisted of truly heterogeneous catchments.  I then applied Eq. (10) to calculate the 22 

apparent MTT from the inferred runoff.  As Fig. 7 shows, apparent MTT's calculated from the 23 

combined runoff of the two subcatchments can underestimate true whole-catchment MTT's by 24 

an order of magnitude or more, and this strong underestimation bias persists across a wide 25 

range of shape factors α.  MTT's are reliably estimated (with values close to the 1:1 line in 26 

Fig. 7) only when both subcatchments have MTT's of much less than 1 year.   27 

In most real-world cases, unlike these hypothetical thought experiments, one will only have 28 

measurements or samples from the whole catchment's runoff.  The properties of the 29 
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individual subcatchments, and thus the degree of heterogeneity in the system, will generally 1 

be unknown.  And even if data were available for the subcatchments, those subcatchments 2 

would be composed of sub-sub-catchments, which would themselves be heterogeneous to 3 

some unknown degree, and so on.  Thus it will generally be difficult or impossible to 4 

characterize the system's heterogeneity, but that is no justification for pretending that this 5 

heterogeneity does not exist.  Nonetheless, in such situations it will be tempting to treat the 6 

whole system as if it were homogeneous, perhaps using terms like "apparent age" or "model 7 

age" to preserve a sense of rigor.  But whatever the semantics, as Fig. 7 shows, assuming 8 

homogeneity in heterogeneous catchments will result in strongly biased estimates of whole-9 

catchment mean transit times.   10 

 11 

4 Quantifying the young water component of streamflow 12 

The analysis above demonstrates what can be termed an "aggregation error": in heterogeneous 13 

systems, mean transit times estimated from seasonal tracer cycles yield inconsistent results at 14 

different levels of aggregation.  The aggregation bias demonstrated in Figs. 5 and 7 implies 15 

that seasonal cycles of conservative tracers are unreliable estimators of catchment mean 16 

transit times.  This observation raises the obvious question: is there anything else that can be 17 

estimated from seasonal tracer cycles, and that is relatively free from the aggregation bias that 18 

afflicts estimates of mean transit times?   19 

One hint is provided by the observation that when two tributaries are mixed, the tracer cycle 20 

amplitude in the mixture will almost exactly equal the average of the tracer cycle amplitudes 21 

in the two tributaries (Fig. 8).  This is not intuitively obvious, because the tributary cycles will 22 

generally be somewhat out of phase with each other, so their amplitudes will not average 23 

exactly linearly.  But when the tributary cycles are far out of phase (because the 24 

subcatchments have markedly different mean transit times or shape factors), the two 25 

amplitudes will also generally be very different, and thus the phase angle between the 26 

tributary cycles will have little effect on the amplitude of the mixed cycle. 27 

Because tracer cycle amplitudes will average almost linearly when two streams merge, and 28 

thus are virtually free from aggregation bias (Fig. 8), anything that is proportional to tracer 29 

cycle amplitude will also be virtually free from aggregation bias.  So, what is proportional to 30 

tracer cycle amplitude?  One hint is provided by the observation that in Fig. 5, for example, 31 
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the tracer cycle amplitude in the mixture is highly sensitive to transit times that are much 1 

shorter than the period of the tracer cycle (for a seasonal cycle, this period is T=1 yr), but 2 

highly insensitive to transit times that are much longer than the period of the tracer cycle.  As 3 

a thought experiment, one can imagine a catchment in which some fraction of precipitation 4 

bypasses storage entirely (and thus transmits the precipitation tracer cycle directly to the 5 

stream), while the remainder is stored and mixed over very long time scales (and thus its 6 

tracer cycles are completely obliterated by mixing).  In this idealized catchment, the 7 

amplitude ratio AS/AP between the tracer cycles in the stream and precipitation will be 8 

proportional to (indeed it will be exactly equal to) the fraction of precipitation that bypasses 9 

storage (and thus has a near-zero transit time).   10 

4.1 Young water 11 

These lines of reasoning lead to the conjecture that for many realistic transit-time 12 

distributions, the amplitude ratio AS/AP may be a good estimator of the fraction of 13 

streamflow that is younger than some threshold age.  This "young water" threshold should be 14 

expected to vary somewhat with the shape of the TTD.  It should also be proportional to the 15 

tracer cycle period T because, as dimensional scaling arguments require, and as Eq. (8) shows 16 

for the specific case of gamma distributions, convolving the tracer cycle with the TTD will 17 

yield amplitude ratios AS/AP that are functions of Tf /  .   18 

Numerical experiments verify these conjectures for gamma distributions spanning a wide 19 

range of shape factors (see Fig. 9).  I define the "young water" fraction Fyw as the proportion 20 

of the transit-time distribution younger than a threshold age τyw, and calculate this proportion 21 

via the regularized lower incomplete gamma function, 22 
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where, as before,  / .  I then numerically search for the threshold age for which (for a 24 

given shape factor ) the amplitude ratio AS/AP closely approximates Fyw across a wide range 25 

of scale factors β (or equivalently, a wide range of mean transit times  ).  As Fig. 9 shows, 26 

this young water fraction nearly equals the amplitude ratio AS/AP, with the threshold for 27 

"young" water varying from 1.7 to 2.7 months as the shape factor  ranges from 0.5 to 1.5.  28 
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The amplitude ratio AS/AP and the young water fraction Fyw are both dimensionless and they 1 

both range from 0 to 1, so they can be directly compared without further calibration, beyond 2 

the determination of the threshold age τyw.  As Fig. 10 shows, the best-fit threshold age varies 3 

modestly as a function of the shape factor , 4 

20126.01065.00949.0/  Tyw   .     (14) 5 

Across the entire range of =0.2 to =2 shown in Fig. 10, and across the entire range of 6 

amplitude ratios from 0 to 1 (and thus mean transit times from zero to near-infinity), the 7 

amplitude ratio AS/AP estimates the "young water" fraction with a root mean square error of 8 

less than 0.023, or 2.3 percent.   9 

The young water fraction Fyw, as defined here, has the inevitable drawback that, because the 10 

shape factors of individual tributaries will usually be unknown, the threshold age τyw will 11 

necessarily be somewhat imprecise.  However, Fyw has the considerable advantage that it is 12 

virtually immune to aggregation bias in heterogeneous catchments, because it is nearly equal 13 

to the amplitude ratio AS/AP (Fig. 9), which itself aggregates with very little bias, and also 14 

with very little random error (Fig. 8).  This observation leads to the important implication 15 

that AS/AP should reliably estimate Fyw, not only in individual subcatchments, but also in the 16 

combined runoff from heterogeneous landscapes.  To test this proposition, I calculated the 17 

young water fractions Fyw for 1000 heterogeneous pairs of synthetic subcatchments (with the 18 

same MTT's and shape factors shown in Fig. 7) using Eqs. (13) and (14), and compared each 19 

pair's average Fyw to the amplitude ratio AS/AP in the merged runoff.  Figure 11 shows that, as 20 

hypothesized, AS/AP estimates the young water fraction in the merged runoff with very little 21 

scatter or bias.  The root-mean-square error in Fig. 11 is roughly two percent or less, in 22 

marked contrast to errors of several hundred percent shown in Fig. 7 for estimates of mean 23 

transit time from the same synthetic catchments. 24 

4.2 Sensitivity to assumed TTD shape and threshold age 25 

The analysis presented in Sect. 4.1 shows that the amplitude ratio AS/AP accurately 26 

estimates the fraction of streamflow younger than a threshold age.  But this threshold 27 

age depends on the shape factor α of the subcatchment TTDs, which will generally be 28 

uncertain.  Consider, for example, a hypothetical case where we measure an amplitude 29 

ratio of AS/AP=0.2 in the seasonal tracer cycles in a particular catchment, but we don't 30 
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know whether its subcatchments are characterized by α=1, α=0.5, or a mixture of 1 

distributions between these shape factors.  How much does this uncertainty in α, and 2 

thus in the threshold age, affect the inferences we can draw from AS/AP?  We can 3 

approach this question from two different perspectives. 4 

We can interpret the uncertainty in α as creating ambiguity in either the threshold age 5 

τyw (which defines "young" in "young water fraction"), or in the proportion of water 6 

younger than any fixed threshold age (the "fraction" in "young water fraction").   7 

First, from Fig. 10 we can estimate how uncertainty in α affects the threshold age τyw 8 

that defines what counts as 'young' streamflow.  One can see that across the plausible 9 

range of shape factors, the young water threshold (that is, the threshold defining 10 

whatever young water fraction will aggregate correctly) varies from about τyw=1.75 11 

months for α=0.5 to τyw=2.27 months for α=1.  Thus the ambiguity in α translates into an 12 

ambiguity of 0.52 months (or about two weeks) in the threshold that defines "young" 13 

water.  If some subcatchments are characterized by α=0.5 and others by α=1, and still 14 

others by values in between, then the effective threshold age for the ensemble will lie 15 

somewhere between 1.75 and 2.27 months.  If the range of uncertainty in α is wider, then 16 

the range of uncertainty in τyw will be wider as well, spanning over a factor of two (1.37 17 

to 3.10 months) for values of α spanning the full order-of-magnitude range shown in Fig. 18 

2 (α=0.2 to 2). 19 

Alternatively, we can treat the uncertainty in α as creating, for any fixed threshold age, 20 

an ambiguity in the fraction of streamflow that is younger than that age.  Consider the 21 

hypothetical case outlined above, in which AS/AP=0.2.  If we assume that the 22 

subcatchments are characterized by α=1 (and thus τyw=2.27 months), then we would 23 

infer that roughly 20% of streamflow is younger than 2.27 months (the exact young 24 

water fraction, using Eqs. (10) and (13), is 0.215).  But if the subcatchments are 25 

characterized by α=0.5 instead, then according to Eqs. (10) and (13) the fraction younger 26 

than 2.27 months will be 0.242 instead of 0.215.  Thus the uncertainty in α corresponds 27 

to an uncertainty in the young water fraction of 3% (of the range of a priori uncertainty 28 

in Fyw, which is between 0 and 1), or 13% (of the original estimate for α=1).   29 

For comparison, we can contrast this uncertainty with the corresponding uncertainty in 30 

the mean transit time   calculated from Eq. (10).  A seasonal tracer cycle amplitude 31 
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ratio AS/AP=0.2 implies a mean transit time of 80.0  years if α=1, but 99.1  years if 1 

α=0.5.  Thus the uncertainty in the mean transit time is a factor of 2.5, compared to a 2 

few percent for the young water fraction. 3 

We can extend these sample calculations over a range of shape factors α and amplitude 4 

ratios AS/AP (see Fig. 12).  As Fig. 12 shows, when the shape factor is uncertain in the 5 

range of 0.5<α<1, the corresponding uncertainty in the young water fraction Fyw is 6 

typically several percent, but the corresponding uncertainty in the MTT is typically a 7 

factor of two or more.  For a factor-of-ten uncertainty in the shape factor (0.2<α<2), the 8 

uncertainty in the young water fraction is consistently less than a factor of two, whereas 9 

the uncertainty in the MTT can exceed a factor of 100.   10 

Similar sensitivity of mean transit time to model assumptions was also observed by 11 

Kirchner et al. (2010) in two Scottish streams, and by Seeger and Weiler (2014), in their 12 

study calibrating three different transit time models to monthly δ18O time series from 24 13 

mesoscale Swiss catchments.  Seeger and Weiler's three transit time models yielded 14 

MTT estimates that were often inconsistent by orders of magnitude, but yielded much 15 

more consistent estimates of the fraction of water younger than 3 months, 16 

foreshadowing the sensitivity analysis presented here. 17 

4.3 Young water estimation with non-gamma distributions 18 

Because both the young water fraction Fyw and the tracer cycle amplitude ratio AS/AP 19 

aggregate nearly linearly, the results shown in Fig. 11 will also approximately hold at higher 20 

levels of aggregation.  That is, we can merge each catchment in Fig. 11, which has two 21 

tributaries, with another two-tributary catchment to form a four-tributary catchment, which 22 

we can merge with another four-tributary catchment to form an eight-tributary catchment, and 23 

so on.  Figure 13 shows the outcome of this thought experiment.  One can see that just like in 24 

the two-tributary case, the tracer cycle amplitude ratio AS/AP in the merged runoff predicts the 25 

average young water fraction Fyw with relatively little scatter.  There is a slight 26 

underestimation bias, which is more visible in Fig. 13 than for the two-tributary case in Fig. 27 

11.  In contrast to the minimal estimation bias in Fyw, MTT is underestimated by large factors 28 

in both the two-tributary case and the 8-tributary case. 29 

Formatted: Bullets and Numbering

Deleted: 12

Deleted: 12

Deleted: (

Deleted: minimial

Deleted: )



 

 19 

It is important to recognize that the two-tributary catchments that were merged in Fig. 13 are 1 

not characterized by gamma transit time distributions (although their tributaries are), because 2 

mixing two gamma distributions does not create another gamma distribution.  Thus Fig. 13 3 

demonstrates the important result that although the analysis presented here was based on 4 

gamma distributions for mathematical convenience, the general principles developed here – 5 

namely, that the amplitude ratio AS/AP estimates the young water fraction Fyw, and that 6 

estimates of Fyw are relatively immune to aggregation bias in heterogeneous catchments – are 7 

not limited to distributions within the gamma family.   8 

For example, as Fig. 6 showed, mixing two exponential distributions will not create another 9 

exponential distribution, nor any other member of the gamma family, but rather a 10 

hyperexponential distribution.  Thus Fig. 13b implies that AS/AP also estimates Fyw accurately 11 

for mixtures of exponentials, that is, for any distribution of the form, 12 
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where the weights ki and mean transit times i  can take on any positive real values.  Likewise 14 

Fig. 13c implies that AS/AP estimates Fyw reasonably accurately for mixtures of gamma 15 

distributions, that is, for any distribution of the form, 16 
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where, as above, the weights ki and mean transit times i  can take on any positive real values, 18 

and the shape factors i can take on any values between 0.2 and 2.  In the continuum limit, n 19 

could potentially be infinite in Eq. (15) or (16), whereupon the summations become integrals.  20 

Equations (15) and (16) describe very broad classes of distributions, suggesting that the 21 

results reported here also apply to a very wide range of catchment transit time distributions, 22 

well beyond the (already broad) family of gamma distributions with shape factors α<2.   23 
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 20 

4.4 Incorporating phase information in estimating young water fractions and 1 

mean transit times 2 

One interpretation of the strong aggregation bias in mean transit time estimates, as 3 

documented in Figs. 7 and 13, is that when the transit time distributions of the individual 4 

tributaries are averaged together, the result has a different shape (i.e., averages of exponentials 5 

are not exponentials, and averages of gamma distributions are not gamma-distributed).  Thus 6 

it is unsurprising that a formula for estimating mean travel times based on exponential 7 

distributions (for example) will be inaccurate when applied to non-exponential distributions.  8 

The practical issue in the real world, of course, is that the shape of the transit time distribution 9 

will usually be unknown, so the problem of fitting the "wrong" distribution will be difficult to 10 

solve. 11 

In the specific case of fitting seasonal sinusoidal patterns, the only information one has for 12 

estimating the transit time distribution is the amplitude ratio and the phase shift of streamflow 13 

relative to precipitation.  The phase shift has heretofore been ignored as a source of additional 14 

information.  Could it be helpful? 15 

As described in Sect. 2.2 above, one can use the amplitude ratio and phase shift to jointly 16 

estimate the shape factor α by iteratively solving Eq. 11, and then estimate the scale factor 17 

β via Eq. 10.  The mean transit time can then be estimated as αβ (Eq. 3a).  From the 18 

fitted value of α, one can also use Eq. 14 to estimate the threshold age τyw for young 19 

water fractions that should aggregate nearly linearly, and then finally estimate the young 20 

water fraction as Fyw=Γ(τyw, α, β) (Eq. 13).  The lower incomplete gamma function Γ(τyw, 21 

α, β) is readily available in many software packages (for example, the Igamma function 22 

in R or the GAMMA.DIST function in Microsoft Excel).   23 

This approach assumes that the catchment's transit times are gamma-distributed.  To 24 

test whether it can nonetheless improve estimates of the mean transit time or the young 25 

water fraction, even in catchments whose transit times are not gamma-distributed, I 26 

applied this method to the 8-tributary synthetic catchments shown in Fig. 13.  As pointed out 27 

in Sect. 4.3 above, the TTD's of these catchments (and even their two-subcatchment 28 

tributaries) will be sums of gammas and thus not gamma-distributed themselves.  Figure 29 

14 shows the new estimates based on amplitude ratios and phase shifts (in dark blue), 30 

superimposed on the previous estimates from Fig. 13, based on amplitude ratios alone, as 31 
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 21 

reference (in light blue).  Mean transit time estimates based on both phase and amplitude 1 

information are somewhat more accurate than those based on amplitude ratios alone (Fig. 2 

14d-14f), but they still exhibit very large aggregation bias.  Incorporating phase information 3 

in estimates of Fyw (Fig. 14a-14c) eliminates much of the (already small) bias in Fyw estimates 4 

obtained from amplitude ratios alone.  (The logarithmic axes of Figs. 14a-14c make this bias 5 

more visible than it is on the linear axes of Figs. 13a-13c).  The top and bottom rows of Fig. 6 

14 are plotted on consistent axes (both are logarithmic scales spanning a factor of 50), so they 7 

provide a direct visual comparison of the reliability of estimates of Fyw and MTT. 8 

5 Implications 9 

Two main results emerge from the analysis presented above.  First, mean transit times 10 

(MTT's) estimated from seasonal tracer cycles exhibit severe aggregation bias in 11 

heterogeneous catchments, underestimating the true MTT by large factors.  Second, seasonal 12 

tracer cycle amplitudes accurately reflect the fraction of "young" water in streamflow and 13 

exhibit very little aggregation bias.  Both of these results have important implications for 14 

catchment hydrology. 15 

5.1 Biases in mean transit times 16 

Figures 7, 13, and 14 indicate that in spatially heterogeneous catchments (which is to say, all 17 

real-world catchments), MTT's estimated from seasonal tracer cycles are fundamentally 18 

unreliable.  The relationship between true and inferred MTT shown in these figures is not 19 

only strongly biased, but also wildly scattered – so much so, that it can only be visualized on 20 

logarithmic axes.  The huge scatter in the relationship means that there is little point in trying 21 

to correct the bias with a calibration curve, because most of the resulting estimates would still 22 

be wrong by large factors.  This scatter also implies that one should be careful about drawing 23 

inferences from site-to-site comparisons of MTT values derived from seasonal cycles, since 24 

a large part of their variability may be aggregation noise. 25 

The underestimation bias in MTT estimates arises because, as Figs. 3a and 5 show, travel 26 

times significantly shorter than one year have a much bigger effect on seasonal tracer cycles 27 

than travel times of roughly one year and longer.  DeWalle et al. (1997) calculated that an 28 

exponential TTD with a MTT of 5 years would result in such a small isotopic cycle in 29 

streamflow that it would approach the analytical detection limit of isotope measurements.  But 30 
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while this may be the hypothetical upper limit to MTT's determined from seasonal isotope 1 

cycles, my results show that even MTT's far below that limit cannot be reliably estimated in 2 

heterogeneous landscapes.  Indeed, Figure 7 shows that MTT's can only be reliably estimated 3 

(that is, they will fall close to the 1:1 line) in heterogeneous systems where the MTT is 4 

roughly 0.2 years or so – in other words, only when most of the streamflow is "young" water.   5 

It is becoming widely recognized that stable isotopes are effectively blind to the long tails of 6 

travel time distributions (Stewart et al., 2010; Stewart et al., 2012; Seeger and Weiler, 2014).  7 

The results presented here reinforce this point, showing how in heterogeneous catchments, 8 

any stable isotope cycles from long-MTT subcatchments (or flowpaths) will be overwhelmed 9 

by much larger cycles from short-MTT subcatchments (or flowpaths).  Furthermore, the 10 

nonlinearities in the governing equations (Figs. 3 and 5) imply that the shorter-MTT 11 

components will dominate MTT estimates, which will thus be biased low.  This 12 

underestimation bias may help to explain the discrepancy between MTT estimates derived 13 

from stable isotopes and those derived from other tracers, such as tritium (Stewart et al., 2010; 14 

Stewart et al., 2012).  However, one should note that, like any radioactive tracer, tritium ages 15 

should themselves be vulnerable to underestimation bias in heterogeneous systems (Bethke 16 

and Johnson, 2008).  Until tritium ages are subjected to benchmark tests like those I have 17 

presented here for stable isotopes, one cannot estimate how much they, too, are distorted by 18 

aggregation bias.   19 

5.2 Other methods for estimating MTT's from tracers 20 

Sine-wave fitting to seasonal tracer cycles is just one of several methods for estimating MTT's 21 

from tracer data.  I have focused on this method because the relevant calculations are easily 22 

posed, and several key results can be obtained analytically.  My results show that MTT 23 

estimates from sine-wave fitting are subject to severe aggregation bias, but they do not show 24 

whether other methods are better or worse in this regard.  This is unknown at present, and 25 

needs to be tested.  But until this is done, there is little basis for optimism that other methods 26 

will be immune to the biases identified here.  One would expect that the results presented here 27 

should translate straightforwardly to spectral methods for estimating MTT's, as these methods 28 

essentially perform sine-wave fitting across a range of time scales.  Thus one should expect 29 

aggregation bias at each time scale.  The upper limit of reliable MTT estimates should be 30 

expected to be a fraction of the longest observable cycles in the data (as it is for the annual 31 



 

 23 

cycles measured here).  Thus this upper limit will depend on the lengths of the tracer time 1 

series, and also on whether they contain significant input and output variability on long 2 

wavelengths (longer records will not help, unless the tracer concentrations are actually 3 

variable on those longer time scales).  The same principles are likely to apply to convolution 4 

modeling of tracer time series, due to the formal equivalence of the time and frequency 5 

domains under Fourier's theorem.  Furthermore, to the extent that seasonal cycles are the 6 

dominant features of many natural tracer time series, convolution modeling of tracer 7 

time series may effectively be an elaborate form of sine-wave fitting, with all the 8 

attendant biases outlined here.  Until these conjectures are tested, however, they will remain 9 

speculative.  Given the severe aggregation bias identified here, there is an urgent need for 10 

benchmark testing of the other common methods for MTT estimation. 11 

It should also be noted that methods for estimating MTT's assume not only homogeneity but 12 

also stationarity, and real-world catchments violate both of these assumptions.  The results 13 

presented here suggest that nonstationarity (which is, very loosely speaking, heterogeneity in 14 

time) is likely to create its own aggregation bias, in addition to the spatial aggregation bias 15 

identified here.  This aggregation bias can also be characterized using benchmark tests, as I 16 

show in a companion paper (Kirchner, 2015).   17 

5.3 Implications for mechanistic interpretations of MTT's 18 

The analysis presented here implies that many literature values of MTT are likely to be 19 

underestimated by large factors, or, in other words, that typical catchment travel times are 20 

probably several times longer than we previously thought they were.  This result sharpens the 21 

"rapid mobilization of old water" paradox: how do catchments store water for weeks or 22 

months, and then release it within minutes or hours in response to precipitation events 23 

(Kirchner, 2003)?  This result also sharpens an even more basic puzzle: where can catchments 24 

store so much water, that it can be so old, on average? 25 

Many studies have sought to link MTT's to catchment characteristics, often with inconsistent 26 

results.  For example, McGuire et al. (2005) reported that MTT was positively correlated with 27 

the ratio of flow path distance to average hillslope gradient at experimental catchments in 28 

Oregon, but Tetzlaff et al. (2009) reported that MTT was negatively correlated with the same 29 

ratio, and positively correlated with the extent of hydrologically responsive soils, at several 30 

Scottish catchments.  Hrachowitz et al. (2009) reported that MTT was related to precipitation 31 
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intensity, soil characteristics, drainage density, and topographic wetness index across a larger 1 

network of Scottish catchments, whereas Asano and Uchida (2012) reported that subsurface 2 

flow path depth was the main control on baseflow MTT at their Japanese field sites.  3 

Heidbüchel et al. (2013) reported that MTT was correlated with soil depth, hydraulic 4 

conductivity, or planform curvature, with different characteristics becoming more important 5 

under different rainfall regimes.  And most recently, Seeger and Weiler (2014) reported that 6 

most of the observed correlations between MTT and terrain characteristics across 24 Swiss 7 

catchments became non-significant when the variation in mean annual discharge was taken 8 

into account.  My analysis casts much of this literature in a different light.  Given that a large 9 

component of MTT estimates in the literature may be aggregation noise (Figs. 7, 13 and 14), 10 

one should not be surprised if MTT estimates exhibit weak and inconsistent correlations with 11 

catchment characteristics, even if those characteristics are important controls on real-world 12 

MTT's. 13 

5.4 The young water fraction Fyw as an alternative travel time metric 14 

More generally, though, my analysis implies that the young water fraction Fyw is a more 15 

useful metric of catchment travel time than MTT is, for the simple reason that Fyw can be 16 

reliably determined in heterogeneous catchments but MTT cannot.  Of course, if we know the 17 

young water fraction in runoff, we obviously also know the fraction of "old" water as well 18 

(meaning water older than the "young water" threshold).  But we do not know – and my 19 

analysis implies that we generally cannot know – how old this "old" water is, at least from 20 

analyses of seasonal tracer cycles. 21 

Of course, because Fyw is nearly equal to the amplitude ratio, and MTT can also be expressed 22 

as a function of the amplitude ratio for travel time distributions (TTD's) of any known shape, 23 

one might conclude that MTT and Fyw are just transforms of one another.  But that conclusion 24 

presumes that the shape of the TTD is known, and my analysis shows that in heterogeneous 25 

catchments, the shape of the TTD will be unpredictable.  Because the MTT is sensitive to the 26 

shape of the TTD – and in particular to the long-time tail, which is particularly poorly 27 

constrained – it cannot be reliably estimated.  By contrast, my analysis shows that despite the 28 

uncertainty in the shape of the TTD in heterogeneous catchments, the Fyw can be reliably 29 

estimated from the amplitude ratio of seasonal tracer cycles in precipitation and runoff.  The 30 

fact that this is possible is neither a miracle nor a fortuitous accident; instead Fyw has been 31 
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defined with exactly this result in mind.  The Fyw entails an unavoidable ambiguity in what, 1 

exactly, the threshold age of young water is (because this depends on the shape of the TTD, 2 

which is usually unknown), but this uncertainty is small (Fig. 10) compared to the very large 3 

uncertainty in the MTT. 4 

It should be kept in mind that in real-world data, unlike the thought experiments analyzed 5 

here, the tracer measurements themselves will be somewhat uncertain, and this uncertainty 6 

will also flow through to estimates of either MTT or Fyw.  In particular, although my analysis 7 

has focused on the effects of spatial heterogeneity in catchment properties (as reflected in the 8 

TTD's of the individual tributary subcatchments), it has ignored any spatial heterogeneity in 9 

the atmospheric inputs themselves.  Furthermore, estimates of MTT or Fyw typically assume 10 

that any patterns in stream tracer concentrations arise only from the convolution of varying 11 

input concentrations, and not, for example, from seasonal evapoconcentration effects (for 12 

chemical tracers) or evaporative fractionation (for isotopes).  If this assumption is violated, 13 

the resulting structural errors are potentially much more consequential than random errors in 14 

tracer measurements. 15 

5.5 Potential applications for young water fractions 16 

Since young water fractions are estimated from amplitude ratios and phase shifts of 17 

seasonal tracer cycles, one could ask whether they add any new information, or whether 18 

we could characterize catchments equally well by their amplitude ratios and phase shifts 19 

instead.  One obvious answer is that amplitude ratios and phase shifts, by themselves, 20 

are purely phenomenological descriptions of input-output behavior.  Young water 21 

fractions, by contrast, offer a mechanistic explanation for how that behavior arises, 22 

showing how it is linked to the fraction of precipitation that reaches the stream in much 23 

less than one year.  Not only is this potentially useful for understanding the transport of 24 

contaminants and nutrients, it also directly quantifies the importance of relatively fast 25 

flowpaths in the catchment.  These fast flowpaths are likely to be shallow [since 26 

permeability typically decreases rapidly with depth; \Brooks, 2004 #2208; Bishop, 2011 27 

#2207], and to originate relatively close to flowing channels.  One would expect Fyw to 28 

increase under wetter conditions, as the water table rises into more permeable near-29 

surface zones, and as the flowing channel network extends to more finely dissect the 30 

landscape (Godsey and Kirchner, 2014), thus shortening the path length of subsurface 31 
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flows, as well as multiplying the wetted catchment area in riparian zones.  In a 1 

companion paper (Kirchner, 2015), I show that young water fractions can be estimated 2 

separately for individual flow regimes, allowing one to infer how shifts in hydraulic 3 

forcing alter the fraction of streamflow that is generated via fast flowpaths.  I further 4 

demonstrate how one can estimate the chemistry of "young water" and "old water" end 5 

members, based on comparisons of Fyw and solute concentrations across different flow 6 

regimes. 7 

Because one can estimate Fyw from irregularly and sparsely sampled tracer time series, 8 

it can be used to facilitate intercomparisons among many catchments that lack more 9 

detailed tracer data.  For example, Jasechko et al. (in review) have recently used the 10 

approach outlined here to calculate young water fractions for hundreds of catchments 11 

around the globe, ranging from small research watersheds to continental-scale river 12 

basins, and to examine how they respond to variations in catchment characteristics. 13 

One final note: it has not escaped my notice that because the "young water" threshold is 14 

defined as a fraction of the period of the fitted sinusoid (here, an annual cycle), and because 15 

spectral analysis is equivalent to fitting sinusoids across a range of time scales, the input and 16 

output spectra of conservative tracers can be re-expressed as a series of young water fractions 17 

for a series of young water thresholds.  In principle, then, this cascade of young water 18 

fractions (and their associated threshold ages) should directly express the catchment's 19 

cumulative distribution of travel times, thus solving the longstanding problem of measuring 20 

the shape of the transit time distribution.  A proof-of-concept study of this direct approach to 21 

deconvolution is currently underway.   22 

 23 

6 Summary and conclusions 24 

I used benchmark tests with data from simple synthetic catchments (Fig. 4) to test how 25 

catchment heterogeneity affects estimates of mean transit times (MTT's) derived from 26 

seasonal tracer cycles in precipitation and streamflow (e.g., Fig. 1).  The relationship between 27 

tracer cycle amplitude and MTT is strongly nonlinear (Fig. 3), with the result that tracer 28 

cycles from heterogeneous catchments will underestimate their average MTT's (Fig. 5).  In 29 

heterogeneous catchments, furthermore, the shape of the transit time distribution (TTD) in the 30 

mixed runoff will differ from that of the tributaries; e.g., mixtures of exponential distributions 31 
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are not exponentials (Fig. 6), and mixtures of gamma distributions are not gamma-distributed.  1 

These two effects combine to make seasonal tracer cycles highly unreliable as estimators of 2 

MTT's, with large scatter and strong underestimation bias in heterogeneous catchments (Figs. 3 

7 and 13).  These results imply that many literature values of MTT are likely to be 4 

underestimated by large factors, and thus that typical catchment travel times are much longer 5 

than previously thought. 6 

However, seasonal tracer cycles can be used to reliably estimate the young water fraction 7 

(Fyw) in runoff, defined as the fraction younger than approximately 0.15-0.25 years (i.e., ~2-3 8 

months), depending on the shape of the underlying travel-time distribution (Figs. 9-10).  The 9 

amplitude ratio of seasonal tracer cycles in precipitation and runoff predicts Fyw with an 10 

accuracy of roughly 2 percent or better, across the entire range of plausible TTD shape factors 11 

from =0.2 to =2, and across the entire range of mean transit times from nearly zero to near-12 

infinity (Fig. 9).  Most importantly, this relationship is virtually immune to aggregation bias, 13 

so the amplitude ratio reliably predicts the young water fraction in the combined runoff from 14 

heterogeneous landscapes, with little bias or scatter (Figs. 11 and 13).  Incorporating phase as 15 

well as amplitude information virtually eliminates the (already small) bias in Fyw estimates 16 

obtained from amplitude information alone (Fig. 14).  Thus my analysis not only reveals large 17 

aggregation errors in MTT, which has been widely used to characterize catchment transit 18 

time; it also proposes an alternative metric, Fyw, which should be reliable in heterogeneous 19 

catchments.   20 

More generally, these results vividly illustrate how the pervasive heterogeneity of 21 

environmental systems can confound the simple conceptual models that are often used to 22 

analyze them.  But not all properties of environmental systems are equally susceptible to 23 

aggregation error.  Although environmental heterogeneity makes some measures (like MTT) 24 

highly unreliable, it has little effect on others (like Fyw). Benchmark tests are essential for 25 

determining which measures are highly susceptible to aggregation error, and which are 26 

relatively immune.  Thus these results highlight the broader need for benchmark testing to 27 

diagnose aggregation errors in environmental measurements and models, beyond the specific 28 

illustrative case analyzed here. 29 
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  1 

Figure 1.  Seasonal cycles in δ18O in precipitation and baseflow at catchment WS4, Fernow 2 

Experimental Forest, West Virginia, USA (DeWalle et al., 1997).  Both panels show the same 3 

data; the axes of panel (b) are expanded to more clearly show the seasonal cycle in baseflow.  4 

Sinusoidal cycles are fitted by iteratively reweighted least squares regression (IRLS), a robust 5 

fitting technique that limits the influence of outliers. 6 
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   1 

Figure 2.  Gamma distributions for the range of shape factors =0.2-2 considered in this 2 

analysis.  Horizontal axes are normalized by the mean transit time  , and thus are 3 

dimensionless. 4 
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    1 

Figure 3.  Amplitude ratio and phase shift between seasonal cycles in precipitation and 2 

streamflow, for gamma-distributed catchment transit time distributions with a range of shape 3 

factors α (colored lines).  Panel (a): ratio of seasonal cycle amplitudes in streamflow and 4 

precipitation (AS/AP) as a function of mean transit time ( ) normalized by the period (T=1/f) 5 

of the tracer cycle.  Panel (b): phase lag between streamflow and precipitation cycles, as a 6 

function of mean transit time normalized by the tracer cycle period ( /T).  Panel (c): 7 

relationship between phase lag and amplitude ratio, with contours of shape factor (α) ranging 8 

from 0.2 to 8 (colored lines), and contours of mean transit time normalized by tracer cycle 9 

period  /T (gray lines).  For seasonal tracer cycles, T=1/f=1 yr and normalized transit time 10 

equals time in years.   11 
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 1 

Figure 4.  Conceptual diagram illustrating mixture of seasonal tracer cycles in runoff from a 2 

heterogeneous catchment, comprising two subcatchments with strongly contrasting mean 3 

transit times (MTT's), and which thus damp the tracer cycle in precipitation (light blue dashed 4 

line) by different amounts.  The tracer cycle in the combined runoff from the two 5 

subcatchments (dark blue solid line) will average together the highly damped cycle from 6 

subcatchment 1, with long MTT (solid red line), and the less damped cycle from 7 

subcatchment 2, with short MTT (solid orange line). 8 

 9 
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   1 

Figure 5.  Illustration of the aggregation error that arises when mean transit time is inferred 2 

from seasonal tracer cycles in mixed runoff from two landscapes with contrasting transit time 3 

distributions (e.g., Fig. 4).  The relationship between mean transit time (MTT) and the 4 

amplitude ratio (AS/AP) of annual cycles in streamflow and precipitation is strongly nonlinear 5 

(black curve).  Seasonal cycles from subcatchments with MTT of 0.1 yr (AS/AP=0.85, orange 6 

square) and 4 yr (AS/AP=0.04, red square) will mix along the dashed gray line.  A 50:50 7 

mixture of the two sources will have a MTT of (4+0.1)/2=2.05 years and an amplitude ratio 8 

AS/AP of 0.43 (blue square).  But if this amplitude ratio is interpreted as coming from a single 9 

catchment (Eq. 10), it implies a MTT of only 0.33 yr (open square), 6 times shorter than the 10 

true MTT of the mixed runoff. 11 
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    1 

Figure 6.  Exponential transit-time distributions for subcatchments 1 and 2 in Fig. 4 (with 2 

mean transit times of 1 and 0.1 yr, shown by the orange and red dashed lines, respectively), 3 

and the hyperexponential distribution formed by merging them in equal proportions (solid 4 

blue line). Panels (a) and (b) show linear and logarithmic axes. 5 
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 1 

Figure 7.  Apparent mean transit time (MTT) inferred from seasonal tracer cycles, showing 2 

order-of-magnitude deviations from true MTT for 1000 synthetic catchments.  Each synthetic 3 

catchment comprises two subcatchments with individual MTT's randomly chosen from a 4 

uniform distribution of logarithms spanning the interval between 0.1 and 20 years, with each 5 

pair differing by at least a factor of 2.  In panels (a) and (b), both subcatchments have shape 6 

factors α of 0.5 and 1, respectively; in panel (c), the subcatchments' shape factors are 7 

independently chosen from the range of 0.2 to 2.  Apparent MTT's were inferred from the 8 

amplitude ratio AS/AP of the combined runoff using Eq. (10), with an assumed value of α=0.5 9 

for panel (a), α=1 for panel (b), and also α=1 for panel (c), both because α=1 is close to the 10 

average of the randomized α values, and because α=1 is typically assumed whenever Eq. (10) 11 

is applied to real catchment data.  12 
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 1 

Figure 8.  Amplitude ratio (AS/AP) of tracer cycles in precipitation and mixed runoff from the 2 

same 1000 synthetic catchments shown in Fig. 7 (vertical axes), compared to the average of 3 

the tracer cycle amplitude ratios in the two tributaries (horizontal axes).  As in Fig. 7, each 4 

synthetic catchment comprises two subcatchments with individual MTT's randomly chosen 5 

from a uniform distribution of logarithms spanning the interval between 0.1 and 20 years, and 6 

with each pair of MTT's differing by at least a factor of 2.  In panels (a) and (b), all 7 

subcatchments have the same shape factor .  In panel (c), shape factors for each 8 

subcatchment are randomly chosen from a uniform distribution between =0.2 and =2.  The 9 

close fits to the 1:1 lines, and the small root-mean-square error (RMSE) values, show that the 10 

tracer cycle amplitudes from the tributaries are averaged almost exactly in the mixed runoff. 11 
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 1 

Figure 9.  Panels (a)-(c) show the amplitude ratios AS/AP in precipitation and streamflow 2 

tracer cycles (light blue dashed line) as function of mean transit time  , compared to the 3 

fraction of water younger than several threshold ages (gray lines), and the best-fit age 4 

threshold (dark blue line).  Panels (d)-(f) show the relationship between amplitude ratio and 5 

the fraction of water younger than several age thresholds (gray lines) and the best-fit age 6 

threshold (dark blue line), with the 1:1 line (dashed gray) for comparison.  Panels show 7 

results for three different gamma distributions, with shape factors =0.5, =1, and =1.5.  8 

Root-mean-squared errors (RMSE's) for amplitude ratios AS/AP as predictors of the best-fit 9 

"young water" fractions are 0.012, 0.011, and 0.015 for panels (d), (e), and (f), respectively.   10 

In all panels, threshold age and mean transit time are normalized by T, the period of the tracer 11 

cycle.  For seasonal tracer cycles, T=1 yr and thus threshold age and mean transit time are in 12 

years.  13 
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  1 

Figure 10.  Best-fit "young water" thresholds for gamma transit time distributions, as a 2 

function of shape factors α ranging from 0.2 to 2.0.  The young water threshold yw  is 3 

defined such that the fraction of the distribution with ages less than yw  approximately equals 4 

the amplitude ratio (AS/AP) of annual cycles in streamflow and precipitation (see Fig. 9). 5 
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Figure 11.  True and apparent "young water" fractions for the same 1000 synthetic catchments 2 

shown in Fig. 7.  The tracer cycle amplitude ratio in the combined runoff of the two 3 

subcatchments (vertical axes) corresponds closely to the average young water fraction in the 4 

combined runoff (horizontal axes).  As in Fig. 7, each synthetic catchment comprises two 5 

subcatchments with individual MTT's randomly chosen from a uniform distribution of 6 

logarithms spanning the interval between 0.1 and 20 years, and with each pair of MTT's 7 

differing by at least a factor of 2.  In panels (a) and (b), all subcatchments have the same 8 

shape factor .  In panel (c), shape factors for each subcatchment are randomly chosen from a 9 

uniform distribution between =0.2 and =2. 10 
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 1 

Figure 12.  Sensitivity analysis showing how variations in shape factor α affect young 2 

water fractions Fyw (panel a) and mean transit times   (panel b) inferred from the 3 

amplitude ratio AS/AP of seasonal tracer cycles in precipitation and streamflow.  Curves 4 

are shown for the four shape factors shown in Figs. 2 and 3.  For a plausible range of 5 

uncertainty in the shape factor (0.5<α<1; see Sect. 2.1), estimated young water fractions 6 

vary by a few percent (panel a), whereas estimated mean transit times vary by large 7 

multiples (note the logarithmic axes in panel b).  Panel (a) shows the fractions of water 8 

younger than τyw=2.27 months, which are closely approximated by AS/AP if α=1 (the 9 

dark blue curve).  In panel (b), the axis scales are chosen to span transit times ranging 10 

from several months to several years, as is commonly observed in transit time studies 11 

(McGuire and McDonnell, 2006).   12 
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 2 

Figure 13.  True and apparent "young water" fractions Fyw for 1000 synthetic catchments, 3 

each consisting of 8 subcatchments with randomly chosen mean transit times between 0.1 and 4 

20 years (top panels), and true and apparent mean transit times for the same catchments 5 

(bottom panels).  The tracer cycle amplitude ratio in the combined runoff predicts the true 6 

young water fraction with a slight underestimation bias (top panels).  Mean transit times 7 

inferred from tracer cycle amplitude ratios show severe underestimation bias (bottom panels).  8 

In panels (a-b) and (d-e), all subcatchments have the same shape factor .  In panels (c) and 9 

(f), shape factors for each subcatchment are randomly chosen from a uniform distribution 10 

between =0.2 and =2. 11 
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 2 

Figure 14.  Effect of including phase information in estimates of young water fraction (Fyw) 3 

and mean transit time (MTT).  Light symbols show Fyw and MTT estimates derived from 4 

tracer cycle amplitude ratios (AS/AP) alone; dark symbols show the same estimates derived 5 

from amplitude ratios and phase shifts (S-P).  Data points come from the same 1000 6 

synthetic catchments shown in Fig. 13, each consisting of 8 subcatchments with randomly 7 

chosen mean transit times between 0.1 and 20 years.  Adding phase shift information 8 

eliminates much of the (already small) bias in Fyw estimates, particularly when Fyw is small.  9 

Adding phase information reduces the bias in MTT estimates as well, but a severe 10 

underestimation bias remains.  11 
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