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Abstract. To assess potential impacts of climate change for a specific location, one typically employs

climate model simulations at the grid box corresponding to the same geographical location. For most

of Europe, this choice is well justified. But based on regional climate simulations, we show that

simulated climate might be systematically displaced compared to observations. In particular in the

rain shadow of moutain ranges, a local grid box is therefore often not representative of observed5

climate: the simulated windward weather does not flow far enough across the mountains; local grid

boxes experience the wrong airmasses and atmospheric circulation. In some cases, also the local

climate change signal is deteriorated. Classical bias correction methods fail to correct these location

errors. Often, however, a distant simulated time series is representative of the considered observed

precipitation, such that a non-local bias correction is possible. These findings also clarify limitations10

of bias correcting global model errors, and of bias correction against station data.

1 Introduction

Many impacts of climate change are expected to manifest themselves at regional and local scales. To

guide adaptation to these impacts, high-resolution climate scenarios are often desired, that realisti-

cally simulate potential future regional climate. These scenarios are usually generated by dynamical15

or statistical downscaling of global climate model simulations (Rummukainen, 2010; Maraun et al.,

2010). In the following we will only consider dynamical downscaling by regional climate models

(RCMs), but later discuss our results in a general context. For a regional climate change simulation

to be useful, it should in general accurately represent the local marginal distribution (i.e. the uncon-

ditional probability densitiy function), present-day variability on daily to interannual scales, and the20
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local response to climate change (Maraun et al., 2010); in specific cases, of course, further aspects

might be desired (Maraun et al., 2015).

Impact assessments for a specific location are typically based on simulations at the grid box cor-

responding to the same geographical location (or a combination of neighbouring grid boxes). This at

first thought very reasonable choice is taken in several settings: when directly interpreting the local25

climate model output; also when driving an impact model representing a specific real world area;

and finally when bias correcting local model simulations against observed data.

In many cases, this choice will be justified and the best option. We argue, however, that it is not

a priori clear whether a geographical model location represents the same real world location. The

orography even of high-resolution RCMs is in general a coarse model of the true orography. As30

a consequence, in particular in mountain ranges the simulated mesoscale flow might considerably

deviate from the observed flow, resulting in systematically displaced local events. In the following we

will demonstrate that in such cases, choosing local model output might result in a wrong simulation

of climate variability and long-term trends, and thus in a wrong simulation of climate impacts. We

refer to the representation of a real world geographical location as location representativeness.35

Testing the location representativeness is straightforward in weather forecasting by means of fore-

cast verification: a high forecast skill indicates that the model indeed represents the correct geograph-

ical location. Furthermore, model output statistics (MOS) in weather forecasting implicitly optimizes

location representativeness by choosing extended and weighted predictor fields (Glahn and Lowry,

1972). This concept can in principle be transferred to assess the location representativeness of RCMs:40

in a perfect boundary setting, the sequence of large-scale weather events in reality and in the model

are in close synchrony. Except for the internal variability generated by the RCM, also the simu-

lated and observed regional weather should be synchronous. On sufficiently long time scales, one

should therefore be able to measure location representativeness by the correlation between regional

simulated and observed time series.45

Here we demonstrate the relevance of location representativeness for precipitation simulated by

an RCM across Europe, in particular in complex terrain. We propose to measure location represen-

tativeness by correlations between observations and simulations at the inter-annual scale. Often, in

our setting, a very simple non-local bias correction can substantially improve location representa-

tiveness. Finally, we discuss consequences for correcting global climate model errors.50

2 Concept and Data

Location representativeness of RCM-simulated climate can in principle be measured by the temporal

correlation between simulated and observed climate in a perfect boundary setting. However, internal

climate variability hampers the estimation. An RCM, even if driven with perfect boundary condi-

tions, is not designed to correctly simulate the observed day-to-day variability at the grid-box scale55
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(Weisse and Feser, 2003; Wong et al., 2014); away from the boundary conditions, complex weather

dynamics will always result in considerable random deviations of simulated from observed weather

system trajectories. Although such mesoscale internal atmospheric variability reduces the correla-

tion between simulation and observations, it does not reduce the location representativeness. Yet

mesoscale internal atmospheric variability generally occurs at short time scales and will be averaged60

out at longer time scales.

We therefore propose to measure location representativeness in a perfect boundary setting by the

correlation between seasonally averaged observed and simulated time series. This time scale is a

compromise between a high signal to noise ratio (boundary forced signal vs. random mesoscale

weather variability) and a sufficient number of time steps. Thus, given an observed time series at65

seasonal scale, yijk in a grid box (i, j) for k = 1..N time steps, and a corresponding simulated time

series xijk, we estimate the local location representativeness as

Rij = Ck(xijk,yijk) (1)

where Ck denotes the Pearson sample correlation in time. The choice of the Pearson correlation

is justified, as the central limit theorem ensures that our samples approximately follow a normal70

distribution.

If the simulated local flow is systematically shifted compared to observed flow, the observed

local climate might not be well represented by the simulated climate at the corresponding model

grid box, but rather by the simulation at a distant grid box. To identify such cases of non-local

representativeness, we adapt the concept developed by Widmann et al. (2003) to our context. We75

generalise equation 1 to assess location representativeness of any model grid box (m,n) for the

real-world grid box (i, j) as

Rmn
ij = Ck(xmnk,yijk). (2)

A non-local representativeness measure can then be defined as

R̃ij =max
mn

Rmn
ij , (3)80

i.e., instead of representing local climate by the model grid box (i, j), one can chose that grid box,

that maximizes the correlation between model and observation (m,n) = argmaxmnR
mn
ij . To reduce

computational cost and to limit spurious correlations from very distant grid-boxes, we consider non-

local correlations in a 11x11 field centered on the observational grid-box of interest.

To eliminate artificial non-local skill, all non-local measures are calculated on a cross-validated85

series. The idea is to remove cases where a neighboring grid-box is chosen that just by chance has
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Figure 1. Local representativeness. Correlation between local (at the same grid box) simulated and observed

seasonal mean time series. Left: DJF; right: JJA. Under the assumption of independence, correlations Ck > 0.3

are pointwise statistically significant at the 95% level.

a higher correlation with local observations over the calibration period, but would be less represen-

tative under prediction. To this end, the data have been divided into three blocks of 10 and one of

11 year length. Each block is left out once and, for a chosen grid box in the observations, an indi-

vidual non-local representative grid-box (i.e. the location potentially varies from block to block) is90

determined by maximising the correlation across the 11x11 field in the remaining calibration blocks.

The simulated data of that grid-box for the left-out validation block are then written into the cross-

validated series. Based on this series the final cross-validated non-local correlation is calculated. As

marginal distributions might differ from grid box to grid box (and correlations are invariant to scale),

all time series are transformed to zero mean and unit standard deviation prior to the cross-validation.95

As this cross validation makes sense only for non-local representativeness, but not for the local mea-

sure, it can in some cases result in non-local representativeness values that are slightly lower than

the corresponding - not cross validated - local representativeness values.

To illustrate the concept, we consider precipitation simulated by the RCM RACMO2 from the

KNMI (van Meijgaard et al., 2008). The RCM is forced by ERA40 reanalysis data at the lateral100

boundaries and operates at a 0.22◦ × 0.22◦ horizontal resolution. The simulation spans the time

period 1 Jan. 1961-31 Dec. 2000 and is available from the ENSEMBLES project (van der Linden

and Mitchell, 2009). As observational reference we employ the E-OBS data set (Haylock et al.,

2008). Limitations of this data set have been highlighted, in particular at the daily scale (Hofstra

et al., 2010; Kysely and Plavcova, 2010; Maraun et al., 2012), but the quality at the seasonal scale is105

generally high.

3 Results

Figure 1 shows local correlations between observed and simulated seasonal mean precipitation time

series. For DJF (left panel) correlations over most of Europe are significant and high, in particular

over western Europe and its elevated costal regions. The overall decrease in correlations from west to110
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east reflects the growing influence of internal climate variability on the predominantly westerly flow

away from the western boundaries. Thus, the gradient does not imply a decreasing representative-

ness towards Eastern Europe, but simply a decreasing signal-to-noise ratio. Along coastal regions

with pronounced orography, precipitation is very well represented by RCMs (Eden et al., 2014): the

track of a weather system is hardly diverted over the open ocean, orographic uplift then triggers115

precipitation across a large area. The overall high correlations indicate that systematic errors in the

large-scale circulation play a minor role for RCMs driven with perfect boundary conditions.

For discussing location representativeness, the white areas in mountaineous regions are of interest,

in particular the Alps, the Bohemian Massif and the eastern slopes of the Sierra Nevada in Spain.

Here, the local model-observation correlation is insignificant, suggesting the presence of systematic120

orography-caused errors at the regional scale.

For summer (right panel), the correlations are lower across Europe, in large regions insignifi-

cant; patterns are patchy, and the orographic structure that is visible in winter mostly disappears.

Insignificant correlations occur predominantly over Eastern Europe and are readily explained by

the continental climate: a large fraction of precipitation stems from local convective precipitation,125

which is controlled by local radiative heating rather than by large-scale atmospheric flow, making

the resulting process almost independent of the boundary forcing even at the seasonal scale. During

summer, also the westerly flow is much less pronounced (Greatbatch and Rong, 2006; Folland et al.,

2009), furthermore decreasing the signal-to-noise ratio for identifying orography-caused errors. To

summarize: during summer, internal climate variability limits the assessment of RCM location rep-130

resentativeness. Results for spring and autumn are in between those for winter and summer, with

much less pronounced local effects, but a systematic west-east gradient with less visible effects in

more continental climates (see supplementary information).

To investigate whether the vanishing correlations in mountaineous areas are really caused by sys-

tematic local orographic effects, we estimate non-local correlations, Eq. (2). Figure 2, left panel,135

illustrates the approach for a grid-box in the leeward foothills of the Alps (close to Domodossola

in Northern Italy). Each grid box shows the correlation between simulated precipitation in that grid

box and observed precipitation in the central grid box against the real world topography. Correla-

tions are high along the main ridge of the Alps and towards the North West, but low in the Po-Valley.

In fact, observed precipitation in the central grid box is not represented by the corresponding RCM140

simulation, but rather by simulated precipitation on the windward side of the Alps. Other studies

have found precipitation biases in the rain shadows of mountain ranges, often towards too little rain

(e.g. Caldwell et al., 2009; Heikkilä et al., 2011); here we additionally show that not only the in-

tensity is reduced because too much precipitation occurs on the windward side of the mountains,

but that the whole weather (in terms of precipitation variability) does not cross the mountains. In145

other words: in reality, the Alpine foothills in the rain shadow of the main ridge are substantially

influenced by the windward weather northwest of the Alps; in the RCM, the rain shadow is basically
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Figure 2. Location representativeness illustrated with a grid box in the Alps (around 46◦07’N, 8◦15’E) for

winter (DJF). Left: correlation of observed grid box series with surrounding simulated series; red square: po-

sition of observational grid box; blue squares: cross section considered in panel (b); grey shading: real world

topography (Amante and Eakins, 2009). Right: seasonal mean time series along cross section from panel (a).

Blue: observed, red: model at same grid box; grey: model at grid box showing highest correlation at interannual

scale. The saturation of the red series indicates the correlation between model and observed series at same grid

box. Series are transformed to common mean and unit standard deviation.

cut off the north-western influence and resembles more the weather of the Po-Valley. A closer look

at the temporal variability in a cross section through the two mountain ranges confirms the above

line of argument. The right panel of figure 2 shows observed and simulated precipitation time series150

for nine grid boxes from north-west to south-east, centered on the central grid box shown in the left

panel. In the observations (blue lines), the transition from the windward side to the rain shadow of

the Alps is rather smooth, whereas an abrupt change occurs in the RCM simulation (red lines) from

the fourth to the fifth grid box (which is the location of the Bernese Alps with peaks ranging up to

4274 m; Finsteraarhorn) 1. For all nine grid boxes, at least one RCM simulated time series from a155

(potentially) distant grid box (grey lines) correlates well with the local observed precipitation time

series.

The fact that in some regions non-local correlations are substantially higher than local correlations

suggests to represent local observed precipitation by precipitation simulated for a distant grid box

according to Eq. (3). The corresponding non-local correlation maps are shown in Fig. 3 for winter160

(top) and summer (bottom). For almost the entire Europe, at least one non-local grid box has been

identified that well represents local observed precipitation variability during winter. In particular in

winter, the areas affected by orography errors with insignificant correlations have almost completely

1In principle, the change in correlation could be caused by problems in the E-OBS data set rather than in the RCM. It

is conceivable that at the given location, no observed station were present and all information in E-OBS is taken from the

windward side of the Alps. Given that the phenomenon occurs systematically along the whole main ridge of the Alps (and

other ridges as well) such an artefact is very unlikely. For the region considered in Fig. 2, several stations south of the main

Alpine ridge entered the E-OBS data set.
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Figure 3. Non-local representativeness. Top: DJF; bottom: JJA. Left: correlation between observed seasonal

mean time series and modelled time series at non-local grid box that maximizes correlation with observations;

center: improvement in correlation by using non-local series; right: direction of model grid box that maximizes

correlation relative to local grid box. Areas where correlation does not improve by at least 0.2 are shown in

white.

disappeared. For summer, the result is again dominated by internal weather variability. The middle

panels show the improvement in correlations by the non-local approach: in particular over those165

mountaineous areas, where the local RCM simulation did not well represent observed precipitation,

correlations have greatly improved during winter. The right panels indicate the direction of the non-

local RCM grid box relative to the considered grid box, that maximises the correlation between

model and observations (only where the correlation improves by at least 0.2). During winter, the

representative grid boxes lie in general towards the west or northwest of the considered grid box,170

demonstrating that the two examples really represent a general behaviour. During summer, no clear

directional pattern emerges, illustrating again the influence of internal climate variability. Again,

spring and summer show a large west-east gradient and resemble winter in Western Europe, but

show much less systematic effects further to the East (supplementary information).

The previous analysis has shown that, in particular in mountain areas, RCM simulated precipi-175

tation at a specific location does not necessarily represent the observed precipitation variability on

inter-annual scales. Therefore the question arises whether the climate change signal at such loca-

tions might be wrongly represented by the RCM. We thus compare the linear trends (in percent per

decade) in observed seasonal precipitation with the local simulated trend as well as the simulated

trend for the grid box with highest location representativeness. Note that we are not interested in180

separating externally forced trends, but just in overall linear trends as they manifest in both observed
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Figure 4. Reduction in absolute trend bias by non-local approach. Trends measured in percent per decade. Left:

DJF, right: JJA. Green: improvement (bias reduced); brown: deterioration (bias increased). Areas where corre-

lation does not improve by at least 0.2 are shown in grey. As the cross validation would cause inhomogeneities,

trends are calculated without cross validation.

and simulated time series. As both are synchronised on interannual time scales, also their trends are

comparable.

Figure 4 depicts the improvement of simulated trends compared to observed trends (reduction

in absolute trend bias) when considering non-local representativeness. We show only results for185

grid boxes where the non-local approach improves correlations by at least 0.2. Green indicates an

improvement, brown a deterioration. During winter (left), almost no grid boxes show a deterioration

in the representation of trends by the non-local approach, many grid boxes indicate no change; a

large fraction, however, shows an improvement in the simulated trends when considering non-local

representativeness. For summer (right), the picture is again erratic with about as many improvements190

as deteriorations. For spring and autumn, trend improvements are less clear than during winter, but

more systematic than during summer (supplementary information).

4 Discussion and Conclusions

To illustrate the concept of location representativeness and to investigate its practical relevance,

we have assessed the skill of the KNMI RACMO RCM, driven with perfect boundary conditions, to195

correctly represent local simulated precipitation. As measure for location representativeness we con-

sider the correlation between simulated and observed seasonally aggregated precipitation, separately

for winter and summer.

For most of Europe, location representativeness is high; the chosen RCM well represents the

corresponding local climate. But in particular in the rain shadow of major moutain ranges such as200

the Alps, RCM precipitation might not be representative of the actually observed precipitation at a

chosen grid box. Earlier studies (e.g. Caldwell et al., 2009; Heikkilä et al., 2011) have shown that

precipitation is often biased towards too low values in the rain shadows of mountain ranges. Here

we demonstrate that not only the marginal distributions are biased, but that the simulated climate
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is not representative of the observed climate. In fact, the simulated windward weather does not205

cross the mountain range to the extent it does in reality. Thus, the local grid box experiences the

wrong airmasses and the wrong atmospheric circulation, which both make up interannual variability.

In some cases, also the local climate change signal is deteriorated. These results could be clearly

demonstrated for winter. In summer, the assessment of location representativeness is complicated

because mesoscale internal climate variability dominates boundary forcings even on interannual210

scales.

Our findings have some immediate implications for bias correction. Classical local bias correction

methods - in the sense of mapping a local simulated surface variable onto the observed one at the

corresponding geographical location (Déqué et al., 2007; Maraun et al., 2010; Teutschbein and Seib-

ert, 2012) - will fail to correct these location errors. Such bias correction methods adjust marginal215

distributions: they are an ad-hoc post processing of, e.g., the magnitude of temperature values or

precipitation intensities, but they do not shift airmasses or change the atmospheric circulation. We

therfore argue that for mountain regions it is essential to test for location representativeness prior to

any bias correction.

If a distant simulated time series is found to be representative of the considered observed pre-220

cipitation, a non-local bias correction is in general possible. As a first simple approach, one could

adapt the idea of Widmann et al. (2003) and map the best representative distant simulated time series

onto local observations. Such a correction would not only adjust marginal distributions, but addition-

ally “shift the weather across the mountains”: the corrected simulation would experience the right

airmasses and atmosperic circulation. As demonstrated, such a non-local bias correction can also im-225

prove the representation of climate change trends. These improvements are still minor for observed

trends but might prove crucial as soon as strong trends start to emerge.

As the identified location biases are caused by the interaction between the mesoscale flow and the

RCM topography, they should in general depend on the flow direction. That is, the most represen-

tative grid-box might depend on the actual synoptic weather type. A possible improvement of our230

simple non-local approach could therefore be to condition the location correction on weather types.

In many situations, biases are not corrected against gridded observations but rather against station

data. In this setting, situations are conceivable where no grid box correctly represents the point

location. If the local weather is mainly determined by local orographic phenomena (e.g., a mountain

breeze, valley fog), the simulated grid box average (in fact, even gridded observational data) might235

only contain little relevant information about the local climate (Maraun, 2014). In such a situation

a meaningful bias correction would be impossible. Thus also here it is crucial to test for location

representativeness, in particular in complex terrain.

Often, it is desired to correct the combined RCM and global climate model errors, or even to

directly bias correct global climate models against observations. In such a setting it is difficult to240

test location representativeness as simulations and observations are not temporally aligned. Here, a
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location correction conditional on weather types (which have to be jointly defined in observations

and the global model) might provide a way forward. In fact, as such a correction would directly

include information about the relevant physical causes of the biases - the displacement should mainly

depend on the mesoscale flow - it should in principle be very robust in terms of stationarity of245

location biases under climate change.

Additionally to mesoscale errors induced by orography, global climate models typically suffer

from large-scale circulation errors such as a displacement of the storm tracks (e.g. Randall et al.,

2007). In other words: in general, simulated climate at a particular geographical location is not rep-

resentative of the corresponding local observed climate. Thus, in line with the argument of Eden250

et al. (2012) and Eden and Widmann (2014), at a given location it is not a priori clear whether a

bias correction of global climate models is justified. Prior to any bias correction one should there-

fore assess whether the relevant dynamical processes governing a local climate of interest are well

simulated and well located.

The preceeding discussion broadens the concept of representativeness. In addition to the location255

aspect discussed here, representativeness has a well known scale aspect: climate models simulate

area average values and thus do not represent point data of station observations (Klein Tank et al.,

2009). Also here, the root of the problem is not the difference in marginal distributions but the fact

that area averages do not contain all information about local-scale variations (Maraun, 2013). Again,

a classical deterministic bias correction would fail; a stochastic bias correction, however, could in260

principle add the required small-scale variability (Maraun, 2013; Wong et al., 2014).
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