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Abstract 24 

A century of hydrologic modification has altered the physical and biological drivers of landscape processes in the 25 

Everglades (Florida, USA). Restoring the ridge-slough patterned landscape, a dominant feature of the historical system, is 26 

a priority, but requires an understanding of pattern genesis and degradation mechanisms. Physical experiments to evaluate 27 

alternative pattern formation mechanisms are limited by the long time scales of peat accumulation and loss, necessitating 28 

model-based comparisons, where support for a particular mechanism is based on model replication of extant patterning 29 

and trajectories of degradation. However, multiple mechanisms yield a central feature of ridge-slough patterning (patch 30 

elongation in the direction of historical flow), limiting the utility of that characteristic for discriminating among 31 

alternatives. Using data from vegetation maps, we investigated the statistical features of ridge-slough spatial patterning 32 

(ridge density, patch perimeter, elongation, patch-size distributions, and spatial periodicity) to establish more rigorous 33 

criteria for evaluating model performance, and to inform controls on pattern variation across the contemporary system. 34 

Mean water depth explained significant variation in ridge density, total perimeter, and length:width ratios, illustrating 35 

important pattern response to existing hydrologic gradients. Two independent analyses (2-D periodograms and patch size 36 

distributions) provide strong evidence against regular patterning, with the landscape exhibiting neither a characteristic 37 

wavelength nor a characteristic patch size, both of which are expected under conditions that produce regular patterns. 38 

Rather, landscape properties suggest robust scale-free patterning, indicating genesis from the coupled effects of local 39 

facilitation and a global negative feedback operating uniformly at the landscape-scale. Critically, this challenges 40 

widespread invocation of scale-dependent negative feedbacks for explaining ridge-slough pattern origins. These results 41 

help discern among genesis mechanisms and provide an improved statistical description of the landscape that can be used 42 

to compare among model outputs, as well as to assess the success of future restoration projects.  43 

 44 

Keywords: regular patterning, scale-free patterning, robust criticality, scaling relationships, ridge slough landscape, 45 

periodogram analysis, Everglades, wetland restoration.   46 
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1  Introduction 47 

The coupling of ecosystem processes operating at different scales can cause vegetation communities to form a 48 

wide variety of spatial patterns (Borgogno et al., 2009), ranging from highly regular striping, stippling or maze-like 49 

patterns in woodland landscapes (Ludwig et al., 1999), tidal mud flats (Weerman et al., 2012), and boreal peatlands 50 

(Eppinga et al., 2010) to scale-free patterning in semi-arid landscapes (Kefi et al., 2007; Scanlon et al., 2007). The 51 

mechanisms that produce these patterns are integral to understanding landscape origins, and thus for predicting 52 

appropriate remedies where patterns and underlying processes have been degraded and require restoration. The spatial 53 

arrangement of vegetation on the landscape has long been viewed as a manifestation of the dominant interactions and 54 

drivers (Hutchinson, 1957; Levin, 1992), and the scales at which they operate. By quantifying this spatial arrangement we 55 

can make process-based inferences about the underlying mechanisms (Gardner et al., 1987; Turner, 2005). 56 

The ridge-slough landscape comprised ∼55 % of the pre-development Everglades in southern Florida (McVoy et 57 

al., 2011). However, processes that created, and in some places still maintain, the characteristic ridge-slough patterning 58 

are only partially understood (Science Coordination Team, 2003; Larsen et al., 2011; Cohen et al., 2011). The landscape 59 

pattern consists of flow-parallel bands of higher-elevation ridges dominated by emergent sedge sawgrass (Cladium 60 

jamaicense), interspersed within a matrix of lower-elevation sloughs (ca. 25 cm lower in the best conserved portions of 61 

the landscape; Watts et al., 2010), which contain a variety of submerged and emergent herbaceous macrophytes. The 62 

Everglades has undergone massive hydrologic modification through the construction of a system of levees and canals 63 

over the past century (Light and Dineen, 1994), and ensuing ecological degradation has prompted a complex, expensive, 64 

and ambitious restoration effort. Because the ridge-slough landscape was so prevalent in the pre-development system, 65 

pattern restoration is a central priority (SCT 2003; McVoy et al., 2011). The mechanisms that control the emergence of 66 

patterning and explain variation in pattern geometry are thus integral to specifying hydrologic restoration objectives. 67 

To understand the landscape processes that produce patterning, and by extension gain insight into how to restore 68 

them (Pickett and Cadenasso, 1995), requires a testable mechanistic framework for pattern genesis and maintenance. 69 

However, experiments to test alternative mechanisms are constrained by the spatial extent and time scales of peat 70 

accumulation responses. Paradoxically, compartmentalization by the extensive canal and levee system has created 71 

artificial gradients that are informative for assessing trajectories of landscape pattern degradation. Here we focus on 72 



4 

Water Conservation Area 3 (WCA-3), located in the central Everglades, an area historically dominated by the ridge-73 

slough landscape (Fig. 1), and where the best conserved patterning is found. The hydrologic gradient in WCA-3 spans 74 

from relatively dry (i.e., short hydroperiod) conditions in the north due to major canals that drain water to the southeast, to 75 

extended inundation (i.e., long hydroperiod) in the south and southeast due to impoundment caused by US41/Tamiami 76 

Trail (which runs orthogonal to flow) and the L-67 levee. The best conserved patterning (SCT, 2003; Watts et al. 2010) is 77 

found between these hydrologic extremes. 78 

Several alternative hypotheses have been proposed to explain ridge slough patterns, and all have been evaluated 79 

using process-based models. The mechanisms invoked vary and include evaporative nutrient redistribution (Ross et al., 80 

2006; Cheng et al., 2011), flow-driven sediment redistribution from sloughs to ridges (Larsen et al., 2007; Larsen and 81 

Harvey 2011; Lago et al., 2010), self-optimization of patterning for discharge and hydroperiod (Cohen et al., 2011; 82 

Kaplan et al., 2012; Heffernan et al., 2013), and a suite of mechanisms that couple pattern-hydroperiod effects with 83 

directional local facilitation processes (i.e., where patches expand more rapidly in one direction than another; Acharya et 84 

al., 2015). Clearly, these mechanisms are not mutually exclusive, so process models have sought to explore the 85 

sufficiency of each alternative, while acknowledging the potential that multiple processes may overlap. One central 86 

criterion used to evaluate the models has been whether simulations can produce morphologies qualitatively consistent 87 

with the extant landscape (principally replicating the elongation of patches in the flow direction). To date, however, 88 

almost all models either accomplish (Ross et al., 2006; Larsen and Harvey, 2010; Lago et al., 2010; Cheng et al., 2011; 89 

Acharya et al., 2015) or strongly imply (Heffernan et al., 2013) patch elongation (albeit sometimes under conditions 90 

markedly different than those observed in the Everglades), limiting discrimination among pattern genesis mechanisms 91 

and highlighting the need for a more rigorous and quantitative characterization of landscape pattern. 92 

To better characterize patterns in both the best conserved state and spanning a gradient of degradation requires 93 

spatial analyses that yield quantitative properties against which model outputs can be compared. Although numerous 94 

metrics have been developed to quantify different pattern attributes (Wu et al., 2007; Yuan et al., 2015), significant gaps 95 

in our understanding of how to interpret these metrics remain (Turner, 2001; Remmel and Csillag, 2003). Real landscapes 96 

clearly depart from regular Euclidean geometry, making characterization problematic in some cases (Mandelbrot, 1983). 97 

Likewise, changes in mapping procedures (e.g., grain size, extent, classification schemes) can yield significantly different 98 
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metric values for the same landscape (Li and Wu, 2004). To remedy some of these issues, we focused on a set of 99 

relatively direct and easily interpreted metrics of fundamental aspects of the pattern, and used multiple maps produced 100 

with varying methods to rule out mapping-related artifacts. We were interested in three aspects of landscape patterning: 101 

density and shape statistics, patch-size distributions, and spectral (i.e., pattern wavelength) characteristics. For each 102 

aspect, we explored the magnitude of site-to-site variation and the support for hydrologic control of that variation. 103 

Density and shape statistics focus on the most basic and intuitive geometric properties of the landscape: areal 104 

coverage of the patch types (density), landscape pattern complexity (perimeter), and the degree of elongation. While 105 

inundation has been shown to control species composition (Givnish et al., 2008; Zweig and Kitchens, 2008; Todd et al., 106 

2010), the relationship between hydrologic drivers and other aspects of landscape pattern remain relatively unknown, so 107 

this effort also serves as an inventory of hydrologic controls on pattern geometry. 108 

Patch size distributions (i.e., frequency of different patch sizes) have been used in many systems to identify 109 

underlying landscape processes (e.g., Manor and Shnerb, 2008a; Kefi et al., 2011; Bowker and Maestre, 2012; Weerman 110 

et al., 2012). For example, regular patterning is associated with a characteristic patch size (Rietkerk and van de Koppel, 111 

2008; von Hardenberg, 2010), arising in response to an inhibitory feedback operating at a particular spatial scale (van de 112 

Koppel and Crain, 2002) that limits patch expansion. Under these conditions, there should be a distinct mode in patch 113 

area distribution, or at least the absence of very large patches (Manor and Shnerb, 2008; von Hardenberg, 2010; Kefi et 114 

al., 2014). In contrast, patch size distributions that follow a power-law (i.e., y=xα, where α is a scaling parameter) lack a 115 

characteristic spatial scale (e.g., Scanlon et al., 2007) and may suggest genesis mechanisms that operate equally across 116 

scales. Correspondingly, power law distributions are often referred to as scale-free, in that the distribution form remains 117 

the same regardless of the measurement scale. 118 

Scale-free distributions can arise via a number of mechanisms (Newman et al., 2005). In a landscape where grid 119 

cells are randomly occupied, patch distributions show relatively few large patches, up to a critical density (∼0.59; known 120 

as the percolation threshold) at which patches span the domain, yielding power-law area scaling. At densities slightly 121 

above and below the percolation threshold, area distributions depart from power-laws. The narrow range of density space 122 

over which scale-free area distributions emerge would seem to suggest that this mechanism is rare. However, some 123 
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systems can endogenously maintain themselves near this critical point in a phenomenon referred to as self-organized 124 

criticality (Bak et al., 1989). This is accomplished through disturbance processes that propagate via patch contiguity (e.g., 125 

forest fires, see Drossel and Schwabl, 1992), maintaining patterns near the percolation threshold through a cycle of large-126 

scale disturbance and slow recovery (Pascual and Guichard, 2005). 127 

Alternatively, power-law scaling of patch areas can arise from the coupled action of local facilitation, which 128 

causes patches to expand, and competition for a global resource (Pascual et al., 2002; Scanlon et al., 2007) that ultimately 129 

limits the density of that patch type at the landscape scale. In contrast to regular patterning mechanisms, these feedback 130 

processes limit landscape-level patch density, but not the size of individual patches, leading to the creation, via local 131 

facilitation, of very large patches. This is known as robust criticality because power-law scaling in response can occur 132 

over a wide range of external conditions and patch densities, including densities well below the percolation threshold. 133 

Robust criticality has been noted in Everglades vegetation distributions (Foti et al., 2012), as well as in a variety of 134 

dryland vegetation patterns (Kefi et al., 2011). Widespread occurrence of both local facilitation and global resource 135 

competition in ecological systems suggests this process may operate in a multitude of landscapes. 136 

Finally, spectral characteristics provide insights on the presence and wavelength of regular landscape pattern. 137 

Useful information about the scale at which spatial feedbacks operate in self-organized systems has been obtained by 138 

evaluating 2-dimensional pattern periodicity (Couteron, 2002; Kefi et al., 2014). This is particularly important in the 139 

Everglades because the prevailing conceptual model for ridge-slough pattern genesis invokes interactions between spatial 140 

feedbacks operating on different characteristic scales, resulting in a pattern wavelength of approximately 150 m in the 141 

direction perpendicular to historical flow (SCT, 2003; Watts et al., 2010). Several models (e.g. Ross et al., 2006; Lago et 142 

al., 2010; Cheng et al., 2011) produce distinctly periodic landscapes, which arise from the action of local facilitation 143 

feedbacks and, crucially, negative feedbacks on patch expansion that operate at a characteristic scale. In contrast, the 144 

feedback between hydroperiod and landscape geometry suggested by Cohen et al. (2011), enumerated by Heffernan et al. 145 

(2013), and tested at the landscape scale in Kaplan et al. (2012), operates at the global-scale, implying no characteristic 146 

spatial scale. To that end, we tested the hypothesis that the ridge-slough landscape is regularly patterned (i.e., exhibits a 147 

characteristic wavelength), consistent with scale-specific negative feedbacks, or whether the landscape lacks periodicity, 148 

consistent with scale-free feedbacks. 149 
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Together, these spatial analyses encompass a novel and rigorous set of metrics for improved quantification of 150 

observed and modeled landscape pattern. While developed to improve descriptions of the ridge-slough pattern, these 151 

metrics may also be useful for identifying pattern and discriminating genesis mechanisms in other patterned landscapes. 152 

 153 

2  Methods 154 

2.1  Vegetation and hydrologic data 155 

We used multiple vegetation maps of the central Everglades, which vary in scale, extent, mapping schemes, and 156 

time frame. For all maps, we aggregated vegetation types into binary classes (reclassifcation scheme in Table S2) of 157 

ridges (value = 1) and sloughs (value = 0). Our primary map (M1) was produced by the South Florida Water Management 158 

District (SFWMD) using 1:24 000-scale color infrared photos from September 1994 (Rutchey, 2005). This map was 159 

chosen due to its large, continuous spatial extent and fine mapping detail. The presence of small (<25 m2) landscape 160 

features permitted us to select raster representation of dominant vegetation at high (i.e., 1 x 1 m cells) resolution. While 161 

the presence of small features does not imply map accuracy at that fine scale, it does imply loss of patch geometric detail 162 

with larger cells. Features at this scale can be subject to mapping error and artifacts, likely under-representing their 163 

prevalence. As such, patches below 100 m2 were omitted from patch-level analyses. 164 

We selected 33 6×6 km sites to span the range of current hydrological conditions (i.e., dry in northern areas to wet 165 

in southern areas; Fig. 1). We sought to maximize the number of sites with minimal overlap, while avoiding roads and 166 

canals. All sites except 20–22 and 32–33 were rotated to align with the prevailing direction of patch elongation (15° 167 

counterclockwise). Ridge cells were grouped into patches if they shared at least one edge with an adjacent ridge (i.e., 168 

a von Neumann neighborhood). 169 

Within each site, point-specific daily average water depths at a grid spacing of 200 m were obtained from the 170 

Everglades Depth Estimation Network (EDEN) xyLocator (http://sofia.usgs.gov/eden/edenapps/xylocator.php). We note 171 

these water depths are spatially interpolated from a network of water elevation monitoring stations and, as such, represent 172 

only an estimate of actual conditions. Site-specific mean water depth (MWD) values were obtained by averaging all point-173 

specific values in each site over the period of record from 1991–2010. 174 

http://sofia.usgs.gov/eden/edenapps/xylocator.php
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We used two additional maps (M2 and M3), which vary in spatial extent, resolution, and sampling date, to 175 

corroborate M1 analyses and test map resolution effects and temporal changes. M2 was generated from 1:24 000 scale 176 

aerial photographs taken in 2004 (RECOVER 2014) and rasterized at 50 m resolution. M3 was generated from 1 m 177 

resolution digital orthophotos and rasterized at 1 m (Nungesser, 2011). Methodological details for both M2 and M3 are 178 

given as supplementary information.  179 

2.2  Shape and density 180 

We compared ridge density, edge density, and elongation across sites. Ridge density is the proportion of ridge area 181 

to site area, while edge density is total patch perimeter divided by site area. In order to measure elongation, E, we first 182 

identify individual lengths and widths (l and w, respectively) as any group of contiguous ridge cells (i.e. unbroken by 183 

slough cells) along a row or column. Elongation is the ratio of the mean of these contiguous row and column sections:  184 

 E = 

1

𝑛𝑐
∑ 𝑙

1

𝑛𝑟
∑ 𝑤

 = 
𝑛𝑟

𝑛𝑐
    (1) 185 

where nr and nc represent the number of contiguous rows and columns. Elongation simplifies to their ratio since the 186 

summation terms both yield the total number of ridge cells. Elongation metrics are sensitive to orientation differences 187 

between the grid and landscape features. Sites with tortuous flow paths or a poorly aligned grid will underestimate E. We 188 

provide estimates of grid alignment with feature orientation as a mean patch angle, Āp, where Ap is the angle between the 189 

grid y axis and the major axis of an ellipse with the same second moment as the patch. 190 

Hydrologic trends were identified by regressing MWD against site-level metrics, and were considered statistically 191 

significant at p<0.05. For analyses that are highly dependent on mapping resolution (i.e., edge density), we omit M1 sites 192 

north of Interstate-75, as these were mapped using significantly lower resolution than those to the south (Rutchey, 2005). 193 

Because elongation values are dominated by the domain shape at very high ridge densities, we omitted sites where ridge 194 

density exceeded 0.8. 195 

2.3  Patch size distributions 196 

Patch size scaling properties were evaluated by comparing empirical distributions to several candidate models. 197 

Patch size distributions can be described in terms of their complementary cumulative distribution function (CCDF), which 198 
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gives the probability that the area of an observed patch is greater than or equal to a given area, x. Preliminary analyses 199 

showed that empirical CCDFs exhibited extremely heavy tails consistent with power laws, but only above a minimum 200 

cutoff, below which patches were less abundant and the CCDFs were rounded. This form is in relative agreement with 201 

both the Generalized Pareto (GP) and truncated lognormal distributions. The GP is given by its CCDF as  202 

 𝑃(𝑥) = {
(1 +

𝑘(𝑥−𝑥min)

𝛿
)

−
1

𝑘
          for 𝑘 ≠ 0

exp (−
𝑥−𝑥min

𝛿
)                  for 𝑘 = 0

    (2) 203 

for x ≥ xmin when k ≥ 0, and for xmin ≤ x ≤ (xmin – δ/k) when k < 0. The GP reduces to the exponential distribution when k = 204 

0 and xmin = 0, and reduces to a power-function when k > 0 and xmin = δ/k. For k > 0 and xmin < δ/k the GP shows 205 

exponential-like behavior for low values of x, while the tail asymptotically approaches a power law for x >> xmin. Within 206 

this range of parameters, δ indicates the curvature in the upper end of the distribution (higher values correspond to greater 207 

curvature and hence, relatively fewer small patches), while k indicates the scaling properties of the tail, such that for x >> 208 

xmin, the power-law scaling exponent α approaches 𝛼∗ = (1 + 1/𝑘)(Pisarenko and Sornette, 2003). Where the GP fits the 209 

data well, we can use the estimated parameters as general information about patch size scaling properties. The CCDF for 210 

a truncated lognormal distribution uses the mean (µlnx) and standard deviation (σlnx) of ln(x).   211 

                 𝑃(𝑥) =  

erf ( 
√2[μln𝑥 − ln(𝑥)]

2σln𝑥
) + 1

erf ( 
√2[μln𝑥 − ln(𝑥𝑚𝑖𝑛)]

2σln𝑥
) + 1

               𝑥 ≥ 𝑥𝑚𝑖𝑛           (3) 212 

 213 

 214 

We compared empirical distributions to synthetic data sets from Monte Carlo simulations (n = 20,000 per model) 215 

and compared candididate distributions based on log-likelihood ratios and significance values (Clauset et al., 2009). 216 

Distribution testing details are given in SI.  217 

2.4  Spectral characteristics 218 

Spectral characteristics of the ridge-slough landscape were evaluated from 2-D periodograms generated following 219 

the methods of Mugglestone and Renshaw (1998). In brief, we constructed a discrete 2-D Fourier transform (available in 220 

most computational software packages) for each binary vegetation map (Kefi et al., 2014), and then took the absolute 221 

value to obtain the real number component. The resulting 2-D periodogram (i.e. spectral density) is a grid representing the 222 
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magnitude of cosine and sine waves of possible wavenumbers (i.e. spatial frequencies), and orientations to the spectrum. 223 

Values were averaged across all orientations in equally spaced wavenumber bins to generate radial spectra (r spectra), 224 

which indicate the relative spectral density for each corresponding wavenumber bin. Local maxima indicate dominant 225 

wavelengths, and thus suggest the presence of spatial periodicity (Couteron, 2002; Kefi et al., 2014), or regular 226 

patterning. The absence of local maxima indicates an aperiodic landscape. Because the ridge-slough pattern has been 227 

described as regular in the direction orthogonal to flow, we generated both lateral and longitudinal r spectra derived from 228 

the spectral densities observed within ±10° perpendicular and parallel to the main axis of pattern elongation. For both 229 

directions, we noted the wavelength at which either clear spectral peaks (i.e., for periodic patterns) or locations of spectral 230 

shouldering (i.e. slope breaks), which may indicate a secondary scale-dependent feedback mechanism, were evident. 231 

Since smaller features are underrepresented in low resolution maps, we omitted wavelengths < 10m from our analyses. 232 

 233 

3  Results 234 

3.1  Visual comparisons 235 

Visual inspection of the vegetation maps reveals a remarkable range of pattern morphology (Fig. 1). Ridges in 236 

northwestern sites (1–5) show pronounced striping, which is less apparent in southern sites (18–22), where ridges appear 237 

more elliptical. Eastern sites located below I-75 (5, 9, 13, 14, 17, 28–33) show fine-scale speckling and disaggregation, 238 

with sites 14, 28 and 29 appearing random, with faint outlines of historic pattern. 239 

Individual ridges exhibit numerous connections between adjacent elongated portions, with larger patches forming 240 

complex webs composed of multiple individual elements. Although this behavior is apparent in all sites, it appears to be 241 

density dependent, with most of the landscape spanned by one large patch in denser sites (e.g., 2, 5, 8, 9, 11–13, 23–28, 242 

30–33). Within sites, large patches are always more web-like than smaller ones, which appear more distinctly separated. 243 

3.2  Density and shape 244 

Ridge density was negatively correlated to MWD (Fig. 2a; R2 = 0.38, p = 0.0002). Deviation from this association 245 

was similar across maps and related to geographic position. Specifically, ridge densities in the eastern half of the domain 246 

(sites 9, 13, 14, 17, 23–33) were consistently higher than in the west, suggesting a strong east–west control on density. 247 

The correlation between MWD and ridge density increased markedly when sites were partitioned into east and west 248 
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blocks (east: R2 = 0.81, p < 0.0001; west: R2 = 0.61, p = 0.0004). Based on recent aerial imagery, low ridge density in site 249 

1 is a misclassification of sparse sawgrass prairies as slough; that site was omitted from regression analyses. 250 

Site-level elongation was also strongly correlated to MWD (Fig. 2b; R2 = 0.65, p < 0.0001). Sites with ridge 251 

densities greater than 0.8 showed elongation values much lower than this trend. Average patch orientations (Āp) indicate 252 

consistency between the grid and feature elongation (i.e., Āp values close to zero; Table S1). Sites with values of |Āp| ≥ 5° 253 

(e.g., 1, 22), may be underestimated due to mismatch between patch orientation and map orientation. Finally, edge density 254 

was strongly correlated to MWD, indicating greater perimeter at deeper sites (Fig. 2c; R2 = 0.79, p < 0.0001).  255 

3.3  Patch size distributions 256 

Patch area distributions were consistent with the Generalized Pareto distribution (Fig. 3c), with 16 of 25 sites 257 

passing GP Monte Carlo tests for M1 and 4 of 9 passing for M3 (Table S1). The majority of sites that were not significant 258 

contained extremely large patches, but had little deviation in the rest of the distribution; in some cases (e.g., sites 2, 5, 8, 259 

9, 11, 12, 13, 28, 31) the largest patch was over an order of magnitude larger than predicted based on the GP distribution. 260 

All these sites with extremely large patches have ridge densities above or very close to the percolation threshold of a 261 

square lattice (∼0.59, Stauffer, 1995). Above this percolation threshold, the largest patch becomes “over-connected”, 262 

suggesting that failure of Monte Carlo tests within this group may be density driven, rather than a result of an underlying 263 

patterning mechanism. Note that these sites are largely located in the north and eastern sections of the study area, a region 264 

typified by high ridge densities. The presence of tree islands, a third landform modality distinct from ridges and sloughs, 265 

may also affect patch scaling relationships; however, we neglect these effects here because across all blocks tree islands 266 

represent less than 10% of the area, and often much less. The log-normal distribution was significant in only 4 of 25 sites 267 

for M1 and 2 of 9 sites for M3. Although these sites (15, 16, 19, 21) showed slight rounding in the extreme tail, log-268 

likelihood ratios were not different enough to distinguish between the two candidate distributions (Table S1). 269 

Within each map, GP parameters were remarkably consistent across sites, with almost constant estimates of k and 270 

δ for sites that passed Monte Carlo tests (Table S1). Area scaling in the tail of the distribution is illustrated by α∗ 271 

(analogous to the scaling exponent of a power-law distribution) = 1.77 ± 0.06 for M1 and 1.87 ± 0.13 for M3. The δ 272 

parameter indicates how sharply the distribution head deviates from a power-law, with larger values indicating that 273 
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smaller patch areas are exceedingly rare. For M1 and M3, δ = 474 ± 88 and 1490 ± 219; these differences are likely due to 274 

map resolution, with M3 under-representing smaller patches.  275 

3.4  Spectral characteristics 276 

We found no evidence of peridocity in either the lateral or longitudinal r spectra. The absence of peak values other 277 

than the smallest wavenumber indicates that no dominant pattern wavelength exists, a finding consistent across 278 

hydrologic conditions and pattern morphologies (Fig. 3a, Supplement Fig. S7). Spearman correlations, ρ, show the r 279 

spectra is nearly perfectly approximated by a monotonic function across all sites (Table S1), with ρ < -0.99 for both 280 

lateral and longitudinal r spectra. As with patch-scaling relationships, tree islands may introduce some noise in the 281 

observed r spectra, however this effect is likely to be small, given that they constitute less than 10% of the landscape. 282 

For both lateral and longitudinal directions, the form of the r spectra appeared to contain a mix of both power law 283 

and exponential scaling. Lateral r spectra largely appear linear in log-log space (i.e. power law form) at higher 284 

wavenumbers, while rounding towards an exponential (i.e. curved) at lower wavenumbers. This curvature appears over a 285 

wider range of wavenumbers for longitudinal spectra, but the morphology and mean transition location are same laterally 286 

and longitudinally. Sites with the best conserved patterning (e.g. sites 2, 5, 11, 20) show more localized curvature in 287 

lateral r spectra compared to degraded sites, potentially signifying the action of. a secondary, scale-dependent patterning 288 

mechanism. We note, however, taht this finding is inconsistent with proposed patterning mechanisms that invoke a 289 

characteristic wavelength in the lateral direction but include no mechanism to generate regular patterning in the 290 

longitudinal direction. Alternatively, this shouldering may result from undersampling large features at low wavenumbers 291 

due to a limited domain size.  292 

 293 

4  Discussion 294 

4.1 Water depth controls pattern attributes 295 

Our results provide strong observational support for water depth as a dominant control on several key shape and 296 

density properties of the ridge-slough landscape. Although these findings are correlative and not necessarily mechanistic, 297 

they align with current understanding about the mechanisms that create, maintain, and degrade the landscape. The 298 

observed decline in ridge abundance with MWD is consistent with conceptual models that predict that changes in water 299 
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levels precipitate transitions between ridge and slough by modifying production and respiration dynamics (Givnish et al., 300 

2008; Watts et al., 2010) and inducing state changes in vegetation composition (Zweig et al., 2008). The implication that 301 

these dynamics differ in eastern and western sections of the study area was unexpected, and points to unexplained 302 

controls on ridge expansion. The largest difference between the east and west trends occurs at low water depths, 303 

indicating that this control is most pronounced in drier sites. In short, the deviation seen in eastern sites represents a 304 

shifting of the relationship to favor sawgrass expansion in extremely dry sites, rather than a general reduction of the 305 

hydrologic limitation (since deep sites remain the least affected).  306 

Mean water depth also exerted strong control on ridge-slough pattern shape. The most salient features of the 307 

pattern, elongation and perimeter, both showed strong dependence on MWD, with maximum elongation observed at low 308 

to intermediate water depths and minimum edge density values at low water depths. This is consistent with ridge features 309 

fragmenting into smaller, less elongated patches under deeper water conditions, a finding previously observed anecdotally 310 

(McVoy et al., 2011) and in the spatial statistics of soil elevation (Watts et al., 2010). Likewise, sites with very low MWD 311 

show a significant loss of pattern, with ridge densities approaching unity and elongation values that are largely isotropic. 312 

The coherent response of these pattern features to hydrologic modification suggests promise for their use as restoration 313 

performance measures (Yuan et al., 2015).   314 

In this work we provide support for hydrological controls on ridge-slough pattern shape; however landscape 315 

patterning (specifically ridge density and elongation) has also been shown to exert reciprocal control on regional 316 

hydrology (Kaplan et al., 2012). Loss of sloughs in sites with very low MWD alters drainage characteristics. Coupled to 317 

observations of patch fragmentation in sites with higher water depths, these results strongly reinforce the commanding 318 

role of hydrology in maintaining landscape pattern, indicating that reversal of modern hydrologic modification is 319 

paramount for ongoing restoration.  320 

 321 

4.2 The ridge-slough landscape is aperiodic and scale-free 322 

Both spatial periodogram results and patch size distributions strongly suggest the ridge-slough landscape pattern is 323 

aperiodic, a marked departure from extensive literature qualitatively describing the pattern as periodic (SCT 2003; Wetzel 324 

et al., 2005; Ross et al., 2006; Larsen, 2007; Givnish et al., 2008; Larsen and Harvey, 2010; Lago et al., 2010; Watts et 325 
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al., 2010; Cheng et al., 2011; Nungesser, 2011; Sullivan et al., 2014). Because negative feedbacks operating at a 326 

characteristic spatial scale result in regular patterning (Rietkerk and Van de Koppel, 2008), aperiodic patterning in the 327 

ridge-slough landscape implies the absence, or least secondary importance, of such feedbacks, ruling out as the dominant 328 

control on patterning many of the mechanisms invoked to explain pattern formation (Borgogno et al., 2009). 329 

While our results clearly support the primacy of aperiodic patterning mechanisms, the r spectra in both lateral and 330 

longitudinal directions do exhibit persistent curvature, whose location and degree appears dependant on both orientation 331 

and pattern condition. This suggests ridge-slough patterning is secondarily influenced by scale-dependent (but 332 

omnidirectional) feedbacks, possibly suggesting links with vegetative propagation or fire behavior. Additional 333 

investigation and modeling, requiring higher resolution mapping, would be necessary to better understand the mode and 334 

scale of these secondary feedbacks.   335 

The observation that patch size distributions uniformly follow power-law scaling suggests a scale-free patterning 336 

process. While power-law scaling can be produced via several mechanisms (Newman et al., 2005), our results can be used 337 

to rule out some alternatives. For example, power-law scaling of patch areas can arise in systems near the percolation 338 

threshold (i.e., at criticality), which occurs within a relatively narrow region of patch density. Observed patch area scaling 339 

in our study occurs across a wide range of patch densities, suggesting robust criticality that comports with Foti et al. 340 

(2012), who observed similar power-law scaling behavior over a wide range of vegetation types and densities. 341 

Caution is warranted when using contemporary aerial imagery to infer pre-drainage landscape conditions; the first 342 

aerials were taken ~65 years after Everglades drainage began. Several pattern attributes (e.g., density, perimeter) may 343 

adjust readily with hydrologic modification, and while some areas remain largely unchanged since initial imagery was 344 

obtained, pattern in many other areas has degraded, sometimes entirely (Wu et al. 2006, Nungesser 2011). However, 345 

pattern properties that are relatively invariant with hydrologic modification (e.g. the general forms of the r-spectrum and 346 

patch area distributions) are more likely to reflect pre-drainage conditions. In contrast, while measures that vary with 347 

hydrologic modification are correlative, they remain useful for understanding landscape responses to hydrologic forcing, 348 

but may be less informative for inferring pre-drainage conditions and long-term processes such as landscape formation.  349 

Self-organized criticality can also produce power-law scaling at varying densities (i.e., far from the percolation 350 

threshold), but requires large temporal variation in ridge density as the system endogenously readjusts towards criticality 351 
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following disturbances (Pascual and Guichard, 2005). Recent paleoecological evidence (Bernhardt and Willard, 2010) 352 

suggests that ridge-slough configurations and densities have remained relatively stable since initial formation 2700 years 353 

before present, though temporal variation in density (e.g., during the Medieval Warm Period) may have been sufficient to 354 

modestly alter landscape pattern metrics. Moreover, no documented disturbance regime exhibits the characteristic 355 

separation of time scales between growth and disturbance associated with self-organized criticality. While peat fires could 356 

be invoked, there is little evidence for widespread incidence and large-scale impacts of these prior to modern hydrologic 357 

modification (McVoy et al., 2011).  358 

Rather, power-law scaling in patch areas over a range of densities along environmental gradients is consistent with 359 

robust criticality, wherein local facilitation induces clustering (i.e., patch growth) while a global limitation maintains 360 

landscape heterogeneity (Pascual and Guichard, 2005). Although robust criticality is typically suggested in isotropic 361 

landscapes, Acharya et al. (2015) recently showed that anisotropy in the local facilitation kernel of a robust criticality 362 

model can produce directional banding without periodicity, yielding simulated ridge-slough patterns with high statistical 363 

and visual fidelity to the observed landscape. Local facilitation may take the form of autogenic peat accretion (Larsen et 364 

al., 2007), clonal propagation of sawgrass (Brewer, 1996), nutrient accumulation dynamics (Cohen et al., 2009, Larsen et 365 

al. 2015), or local seed dispersal, although the relative importance and directionality of these mechanisms remains 366 

unknown (Acharya et al., 2015). Screening possible mechanisms for anisotropic local facilation emerges from our 367 

analysis as a priority for future investigations. 368 

Several candidate processes could limit patch expansion in the ridge slough landscape. Each implies a distinct 369 

spatial pattern geometry, and we can use the extant scale-free and aperiodic geometry to evaluate their respective 370 

plausibilities. A key distinction between limiting processes that produce periodic versus scale-free patterning is the spatial 371 

range over which the limiting factor acts (Manor and Shnerb, 2008a; von Hardenberg, 2010). When the limiting effect of 372 

patch expansion locally is spread uniformly across the landscape, the effect is considered global or uniform. Conversely, 373 

when the limiting effect act in a more localized manner, limitation gradients can develop and produce periodic patterning.  374 

Phosphorus limitation and sediment transport mechanisms are both potentially important feedbacks on patch 375 

expansion. While phosphorus is strongly limiting of primary production in the Everglades (Noe et al., 2001), and can be 376 

dramatically enriched in tree-islands (Wetzel et al. 2009) and ridges (Ross et al. 2006) via multiple mechanisms, this 377 
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process of local enrichment and depletion is inconsistent with robust criticality. Indeed, the presence of strong local 378 

phosphorus gradients indicates that limitation feedbacks are distinctly local, and not spread uniformly across the 379 

landscape. If phosphorus limitation were the dominant control, the result would be regular patterning. Similarly, sediment 380 

transport mechanisms (Larsen et al., 2007; Lago et al., 2010) yield a balance between entrainment and deposition 381 

governed by focused flow in sloughs, the velocity of which is controlled by cross-sectional occlusion of flow by ridges. 382 

Because patch geometry is controlled by local heterogeneity in flow velocity, this suggests an inhibitory feedback 383 

operating at a limited spatial scale, as the velocity field responds most strongly to local flow occlusion. 384 

Water level (and hydroperiod) is another potential feedback on patch expansion. Our observations of water depth 385 

control on ridge density comport with numerous studies (Givnish et al., 2008; Zwieg and Kitchens, 2008; Todd et al., 386 

2012) suggesting ridges are significantly impacted by water depths. Moreover, pattern geometry strongly influences 387 

landscape hydrology (Kaplan et al. 2012, Acharya et al. 2015). As ridges expand into adjacent sloughs, they displace 388 

water and alter landscape flow capacity, causing regional water levels to increase (Kaplan et al., 2012), and creating a 389 

negative feedback that likely limits further ridge expansion (Cohen et al. 2011). Indeed, the RASCAL model of ridge-390 

slough development (Larsen and Harvey 2011) represents this feedback, though in that model, velocity-field feedbacks 391 

alone could not impose elongation and regular patterning; disentangling sediment transport and water-level feedbacks in 392 

that model, and interrogating pattern output, may enable tests of the relative importance of overlapping feedbacks at 393 

different scales. We note here that because water depths equilibrate quickly, local patch expansion effects on water level 394 

are distributed rapidly and evenly across the landscape. This expansion is consistent with the global limitation necessary 395 

to create observed aperiodic and scale-free pattern. Therefore, water depth effects are strong candidates for the requisite 396 

global feedback to induce ridge-slough formation.   397 

Our results also indicate that elongated landscape features do not necessarily require pattern periodicity, 398 

suggesting that spatial structures in numerous ecosystems may have been misclassified as regularly patterned, and that 399 

aperiodic banding may be more prevalent than the literature suggests. Invoking robust criticality and directional 400 

facilitation, as in Acharya et al. (2015), may be of general value for explaining aperiodic banding in other settings.  401 

The ridge-slough landscape pattern has emerged as a key measure of restoration performance in one of the largest 402 

and most ambitious ecosystem management endeavors ever. Enumeration of spatial pattern statistical features is a 403 
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prerequisite for assessing landscape condition and for comparing models with alternative landscape genesis mechanisms. 404 

Our results inform the metrics for comparison between real and simulated landscape patterns, and provide insights into 405 

the controls on pattern variation across the contemporary system. Given the potentially significant differences in water 406 

management implied by comparative genesis explanations, these metrics of real and simulated landscapes are important 407 

for restoration planning and assessment.  408 

  409 
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 541 

Figure Legends 542 

Figure 1: Study area and site locations, including major roads, canals, and levees for the primary map (M1). Sites 543 

spanning the pattern gradient in WCA3 are shown in the bottom panel. Two additional maps (supplementary 544 

information) were used to corroborate the primary results. 545 

Figure 2: (a) Ridge density is negatively correlated with mean water depth. Eastern sites (blue) show consistently higher 546 

ridge densities than those in the west (black). Trends associated with east–west segregation (dashed lines) show 547 

much stronger relationships than the composite trend (solid line). Site 1 was omitted due to possible 548 

misclassification. (b) Site elongation shows a strong negative relationship with mean water depth. Sites with ridge 549 

densities greater than 0.8 (indicated in grey) were omitted from regressions and show elongation values lower than 550 

expected from this trend. (c) Edge density is positively correlated to mean water depth indicating higher 551 

perimeters in deeper sites. Sites indicated in grey were mapped at lower resolution, and were omitted from 552 

regressions. The relationships observed for site elongation and edge density are both consistent with patches 553 

becoming disaggregated with increased water depth.  554 

Figure 3: (a) Lateral r spectra (limited to ±10° perpendicular to the pattern) monotonically decreased with no evidence of 555 

peaks, indicating aperiodic behavior in the direction of presumed regularity. (b) Longitudinal r spectra (limited to 556 

±10° in the direction parallel to the pattern) shows similar monotonic behavior. The form for both lateral and 557 

longitudinal directions is similar, with both exhibiting a mixture of power-law and exponential behavior. The 558 

location of the exponential-like curvature appears to be influenced by both orientation and pattern condition, 559 

suggesting a weak-acting scale-dependent mechanism. (c) Patch size distributions across sites are well described 560 

by the generalized Pareto distribution (red lines). Sites with high ridge densities (e.g. sites 2, 5 and 25) have 561 

maximum patch sizes much greater than expected from the GP distribution. Conversely, sites in excessively 562 

inundated sections (e.g. site 20) show slightly steeper tails, consistent with a lognormal distribution (blue lines), 563 

though not enough to rule out the GP.  564 
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