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Abstract 13 

The potential of coupling soil moisture and a Universal Soil Loss Equation-based (USLE-14 

based) model for event soil loss estimation at plot scale is carefully investigated at the Masse 15 

area, in Central Italy. The derived model, named Soil Moisture for Erosion (SM4E), is applied 16 

by considering the unavailability of in situ soil moisture measurements, by using the data 17 

predicted by a soil water balance model (SWBM) and derived from satellite sensors, i.e., the 18 

Advanced SCATterometer (ASCAT). The soil loss estimation accuracy is validated using in 19 

situ measurements in which event observations at plot scale are available for the period 2008-20 

2013. The results showed that including soil moisture observations in the event rainfall-runoff 21 

erosivity factor of the USLE, enhances the capability of the model to account for variations in 22 

event soil losses, being the soil moisture an effective alternative to the estimated runoff, in the 23 

prediction of the event soil loss at Masse. The agreement between observed and estimated soil 24 

losses (through SM4E) is fairly satisfactory with a determination coefficient (log-scale) equal 25 

to of ~0.35 and a Root Mean Square Error (RMSE) of ~2.8 Mg/ha. These results are 26 

particularly significant for the operational estimation of soil losses. Indeed, currently, soil 27 

moisture is a relatively simple measurement at the field scale and remote sensing data are also 28 



2 

 

widely available on a global scale. Through satellite data, there is the potential of applying the 1 

SM4E model for large-scale monitoring and quantification of the soil erosion process. 2 

 3 

1  Introduction 4 

Soil is the interface between earth, air and water and hosts most of the biosphere. As soil 5 

formation is an extremely slow process, soil can be considered essentially as a non-renewable 6 

resource. Soil is  recognized as a strategic non-renewable resource that, in addition to the 7 

specific relevant environmental role, assumes also that of a strategic policy framework for 8 

competitiveness. Therefore, specific policies and actions designed to limit the consumption of 9 

soil are required in order to create, where possible, a barrier to stop the worrying phenomenon 10 

of progressive depletion of the resource with a consequent acceleration of erosion and 11 

geological instability. The prerequisite for the effective protection of the territory is to 12 

monitor processes at different spatial and temporal scales and use the obtained database to 13 

formulate, calibrate and validate predictive models needed to define the "risk areas" and to 14 

quantify this risk. Usually, these models must be properly calibrated and validated over the 15 

territory in which they are used, making use of databases and studies carried out on a local 16 

scale (Bagarello et al., 2011, 2014; Butzen et al, 2014; Cerdà, 1998; Di Stefano et al., 2005; 17 

Kinnell, 2010; Leh et al., 2013; Morgan and Nearing, 2000; Porto et al., 2014; Vrieling et al., 18 

2014). 19 

As regards soil erosion, the Universal Soil Loss Equation, USLE (Wischmeier and Smith, 20 

1978) is the most used empirical model for the estimation of the long term average annual soil 21 

loss of a plot associated with sheet and rill erosion. The USLE estimates the soil loss using six 22 

factors that are associated with climate, soil, topography, vegetation and soil management. 23 

The USLE is considered the best compromise between applicability in terms of required input 24 

data and reliability of the soil loss estimates (Risse et al., 1993). It was originally formulated 25 

to estimate the soil loss in rural areas of the USA, and then extended in the Revised USLE, 26 

RUSLE (Renard et al., 1997) and further modifications (RUSLE1, RUSLE2, Foster et al., 27 

2003). The RUSLE conserves the same mathematical structure of the USLE, the revision 28 

being limited to the estimating procedure of some of the involved factors. Currently, the 29 

USLE/RUSLE is widely applied in Europe and in many other Mediterranean countries for 30 

practical purposes (e.g. Larson et al., 1997; Huang, 1998; Rejman et al., 1999; Bagarello and 31 

Ferro, 2004; Morgan, 2005; Parsons et al., 2006; Bagarello et al., 2008; Bagarello et al., 2010; 32 
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Bagarello et al., 2011; Bagarello et al., 2012; Ligonja and Shrestha, 2013). The process-based 1 

models characterized by low computation efforts, fail to produce better results than the 2 

USLE/RUSLE model (Tiwari et al., 2000). Consequently the USLE/RUSLE model is often 3 

used for purposes for which it was not designed (Kinnell, 2010). In particular, it is widely 4 

used in watershed models even at the event temporal scale. However, it was found in the 5 

scientific literature (Todisco et al, 2009; Bagarello et al., 2008; Risse et al., 1993) that the 6 

USLE/RUSLE model, and similarly (Tiwari et al., 2000) process-oriented models (e.g., Water 7 

Erosion Prediction Project, WEEP, Flanagan et al, 1995), tends to overestimate 8 

(underestimate) soil losses for low (high) erosive events. Foster et al. (1982) noted that the 9 

USLE model is somewhat unsatisfactory for estimating soil loss from individual storms, and 10 

observed that including rainfall amount, rainfall intensity and runoff amount in the erosivity 11 

factor provided better performance. Foster et al. (1982) also noted that erosivity factors with 12 

separate terms for rainfall and runoff erosivity were more appropriate. Successively, Kinnell 13 

(1997) suggested that the sediment concentration for individual rainfall event is dependent on 14 

the event rainfall erosivity index per unit rainfall depth and developed the so-called USLE-M 15 

model, including direct measures of the runoff in the event rainfall-runoff erosivity factor 16 

(Kinnell and Risse, 1998; Kinnell, 2007, 2010; Bagarello et al., 2011). Bagarello et al. (2010), 17 

by using soil loss and runoff data for a relatively high number of simultaneously operating 18 

plots of different length (11-44 m) established at the experimental station of Sparacia in 19 

southern Italy (clay soil), developed a modified version of the USLE-M, named USLE-MM, 20 

in which the event rainfall-runoff erosivity factor is raised to a power greater than one. The 21 

USLE-MM was found to perform better than both the USLE and the USLE-M at Sparacia site 22 

(Bagarello et al., 2008, 2010, 2014), and it was also successfully applied at the Masse station 23 

in central Italy, silty-clay-loam soil (Todisco et al. 2009, Bagarello et al., 2013). 24 

Even if by including runoff in the USLE/RUSLE model improves its accuracy, it should be 25 

highlighted that the measurement of the event runoff is not straightforward. At experimental 26 

stations, the surface runoff is generally collected into specific storage tanks allowing to 27 

estimate the event runoff by measuring the amount of water in the tanks after the end of each 28 

rainfall event (Todisco et al., 2012a) 29 

However, this procedure is time consuming and expensive, and it requires specific 30 

measurement campaigns. Otherwise, the water amount collected in the tanks could be 31 

measured by hydrometric gauges that, unfortunately, require strong maintenance and are not 32 
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easy to be realized. It should be also underlined that by using the measured runoff, the same 1 

quantity (runoff) is used both for estimating the event soil losses (given by the product of 2 

runoff and the bulk sediment concentration in the tanks) and in the rainfall-runoff erosivity 3 

factor thus introducing a conceptual issue in the model determination procedure. 4 

In the absence of direct measurements, runoff can be estimated through rainfall-runoff 5 

modelling. The latter usually needs a specific calibration of the parameters (and structure) to 6 

provide satisfactory results and are not easy to be applied at the plot scale. Therefore, 7 

notwithstanding the USLE-M and USLE-MM models have a noticeable practical interest, 8 

these models are difficult to be applied over large areas mainly for the need to also predict 9 

event runoff (Bagarello et al., 2014). The same issue can be found in other existing USLE-10 

derived models, as MUSLE (Williams, 1975; Williams and Berndt, 1977), EPIC (Williams et 11 

al., 1984a,b) and APEX (Williams et al., 2008), that explicitly consider the runoff 12 

characteristics, even with a certain detail, for the estimation of soil losses. Efforts have been 13 

recently made in order to incorporate reliable and parsimonious methods for the runoff 14 

estimation in the USLE-derived models. However, it is evident that a poor estimation of event 15 

runoff will produce a low accurate forecast of the soil loss. Gao et al. (2012) coupled a 16 

modified SCS-CN (Soil Conservation Service - Curve Number) and RUSLE model for runoff 17 

and soil loss simulation at plot scale in the Loess Plateau. In RUSLE2, runoff prediction for 18 

storm events is obtained using the SCS-CN method with empirical equations that vary the 19 

values of CN in association with both soil moisture and rainfall intensity (Kinnell, 2014). 20 

Todisco et al. (2012b) evaluated the efficiency of the MISDc model (Modello idrologico 21 

semidistribuito in continuo, Brocca et al., 2011a), coupled with an USLE-derived model, for 22 

the estimation of surface runoff and soil loss at the event time scale at Masse experimental 23 

station. The model performance is found to be promising, but it was underlined that the 24 

antecedent soil moisture proved to be a good alternative with respect to runoff for correcting 25 

the rainfall-runoff erosivity factor in the USLE-MM model. These preliminary results open 26 

interesting scenarios for improving the capability of USLE-derived models in predicting the 27 

unit soil loss at the event scale. Indeed, measuring in situ soil moisture is much more easier 28 

(e.g. by using Time Domain Reflectometry, Brocca et al., 2014a) and less expensive than 29 

estimating surface runoff. Moreover, the recent widespread availability of satellite-derived 30 

soil moisture data (e.g., Wagner et al., 2013) might allow to easily apply over large areas a 31 

modified USLE/RUSLE model incorporating this information. In summary, it could be highly 32 
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beneficial to find a procedure for incorporating soil moisture in the erosivity factor rather than 1 

runoff coefficient as in previous investigations (e.g., Kinnell, 2010; Bagarello et al., 2014). 2 

The main objective of this study is to investigate the use of satellite-derived and modelled soil 3 

moisture data for improving the prediction of unit soil loss through a modification of USLE-4 

based models. Specifically, it is expected that modelled soil moisture data will provide better 5 

performance, but they require continuous meteorological observations not always available. 6 

Satellite data, even though with an expected lower accuracy, have the enormous advantage to 7 

be available on a global scale, thus allowing the model application everywhere. The Masse 8 

experimental area (Umbria, central Italy) is used as case study in which rainfall, air 9 

temperature, soil losses and runoff is measured at the event time scale for different bare plots 10 

in the period 2008-2013. The satellite soil moisture product is obtained from the Advanced 11 

SCATterometer (ASCAT) through the TUWien algorithm (Wagner et al., 2013). Moreover, 12 

modelled soil moisture data obtained from the Soil Water Balance Model (SWBM) developed 13 

by Brocca et al. (2014b) are also considered. The specific objective of this study is to evaluate 14 

the opportunity of coupling soil moisture and rainfall data for correcting the erosivity index of 15 

USLE model. For comparison, the results are evaluated against those obtained by the standard 16 

USLE/RUSLE and USLE-M-based models in previous investigations (Todisco et al., 2012b). 17 

 18 

2  Materials 19 

2.1 The Masse experimental station and the soil loss database 20 

The Masse experimental station for soil erosion measurements (Fig. 1) of the Department of 21 

Agricultural, Food and Environmental Sciences, Perugia University, is located 20 km south of 22 

Perugia, in the Region of Umbria (Central Italy).  23 

The soil is Typic Haplustept (Soil Survey Staff, 2006) with a silty–clay–loam texture (clay = 24 

34%, silt = 59% and sand = 7%). The soil has a polyhedral angle structure and the gravel 25 

content is negligible. The Ap horizon has a depth of approximately 0.40 m. The 26 

meteorological data are monitored by a weather station located within the experimental site 27 

and are recorded at a time resolution of 5 min. The station includes plots of different length λ 28 

= 11 and 22 m and width w = 2, 4 and 8 m. All plots are oriented parallel to a 16% slope and 29 

are maintained in a cultivated fallow by obliterating the rills at the end of each erosive event. 30 

The total runoff amount and the soil loss per unit area are measured in each plot after an 31 
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erosive event, defined as an event yielding a measurable soil loss. The Masse database was 1 

therefore developed by considering, for each event, the simultaneous measurements of plot 2 

runoff, Qe,i, and soil loss, Ae,i, and of the rainfall data required to derive the erosivity factor, 3 

Re, according to Wischmeier and Smith (1978), with a mean interval time of 6 h (Bagarello et 4 

al., 2004; Mannocchi et al., 2008; Todisco, 2014). The study area and the experimental 5 

schemes, installations and procedures are already described more in depth in Bagarello et al. 6 

(2011) and Todisco et al. (2012a). 7 

For the purposes of this investigation, only the data collected on the λ = 22 m plots (two plots 8 

with w = 4 m and two plots with w = 8 m) were considered. A total of 63 erosive events were 9 

monitored in the years from 2008 to 2013. Over 70% of them (45 events) occurred during the 10 

wet period (from October to May). In the 22 m x 8 m experimental schemes, 62 events 11 

yielded a measurable runoff, corresponding to 113 plot measurements. In the 22 m x 4 m 12 

schemes, 58 events were erosive, corresponding to 98 plot measurements. The plot data used 13 

in this investigation are summarized in Table 1.  14 

2.2 Soil moisture from satellite data 15 

The satellite soil moisture product adopted in this study was obtained from the ASCAT radar 16 

scatterometer onboard the Metop satellites. ASCAT measures radar backscatter at the C-band 17 

(5.255 GHz) in VV polarization. Specifically, the product delivered through the "Satellite 18 

Application Facility on Support to Operational Hydrology and Water Management (H-SAF)” 19 

project is used. Global coverage over Europe is achieved in ∼1.5 days, while in Italy, 20 

measurements are available about once a day. The spatial resolution of the soil moisture 21 

product is 25 km with a sampling distance of 12.5 km. The surface soil moisture product is 22 

calculated from the backscatter measurements through a time series-based change detection 23 

approach (Wagner et al., 1999; 2013). The soil moisture product obtained is expressed in 24 

terms of degree of saturation, from 0% (dry) and 100% (wet). The product obtained provides 25 

knowledge of soil moisture for a very thin surface layer (about 2 cm) whereas, a root-zone 26 

soil moisture product would be required for the prediction of soil losses. Even though an exact 27 

quantification of the depth of the root zone is not possible, in this study we considered that a 28 

layer depth of 15 cm is required. Therefore, the Soil Water Index (SWI) method (Wagner et 29 

al., 1999) was employed to convert surface soil moisture observations into a root-zone soil 30 

moisture product, i.e., the SWI. This method relies on the estimation of a single parameter, 31 
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the characteristic time length, T, that was obtained by calibration. The reader is referred to 1 

Wagner et al. (1999) for more details on the SWI approach. Lastly, the data were converted in 2 

volumetric units (m³/m³) through a linear rescaling approach (Brocca et al., 2011b) for 3 

matching the range of variability of satellite and modelled soil moisture data provided by the 4 

SWBM. The ASCAT data for the pixel closest to the Masse study area were used. 5 

The ASCAT soil moisture product was already validated in central Italy through the 6 

comparison with in situ observations by Brocca et al. (2010; 2011). The obtained accuracy 7 

(RMSE) was found ranging between 0.03 and 0.07 m³/m³ 8 

 9 

3  Methods 10 

3.1 Soil Moisture for Erosion model  11 

A USLE-derived model to predict the unit event soil loss was formulated, parameterized and 12 

tested with the use of soil moisture in the rainfall-runoff erosivity factor. The model was 13 

derived from the USLE: 14 

PCSLKRA ⋅⋅⋅⋅⋅=   (1) 15 

where A is the mean annual soil loss (Mg·ha-1·yr -1) over the long term (e.g. 20 years), R 16 

(MJ·mm· ha-1·h-1·yr -1) is the rainfall-runoff erosivity factor, K (Mg·h·MJ-1·mm-1) is the soil 17 

erodibility factor. L and S are the topographic factors depending on the slope length and 18 

gradient, C is the crop management factor, P is the soil conservation practice factor. L, S, C, P 19 

are dimensionless factors. Equation (1) with the erosivity factor calculated for the single 20 

erosive event, Re (MJ·mm·ha-1·h-1), is also used to determine the plot soil loss at the event 21 

temporal scale, Ae (Mg·ha-1), and the corresponding unit value, Aue, as follows: 22 

KR
PCSL

A
A e

e
ue ⋅=

⋅⋅⋅
=  (2) 23 

Equation (2) estimates the average event soil losses fairly well, but it tends to overestimate the 24 

lowest and underestimate the highest values (Kinnell, 2010). The reason for this is to be found 25 

in the lack of explicit consideration of runoff. Indeed, although the rainfall erosivity and the 26 

soil erodibility are responsible for the detachment of soil particles. It is the runoff that 27 

transports the detached particles causing the soil loss. Therefore the USLE model has been 28 

further modified to account for the relationship between soil loss and runoff. Two well-known 29 
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examples are the USLE-M (Kinnell and Risse, 1998) and the USLE-MM (Bagarello et al., 1 

2008) models, in which the event rainfall-runoff erosivity factor is given by the product of Re 2 

and the runoff coefficient Qr = Qe/he, with Qe (mm) being the event runoff and he (mm) the 3 

rainfall depth, as follows: 4 

( )α
eruue RQKA ⋅⋅=  (3) 5 

with α = 1 in the USLE-M and α > 1 in the USLE-MM and where Ku varies in accordance 6 

with the selected model. 7 

In this study, the Eq. (3) was modified using soil moisture, θ, in place of the runoff 8 

coefficient, Qr, in the rainfall-runoff erosivity factor. The following model was finally 9 

formulated and named Soil Moisture for Erosion model (SM4E): 10 

( )α
θ θ euue RKA ⋅⋅= ,   (4) 11 

With α = 1, the SM4E model is linear; that is, Aue increases linearly with the erosivity factor 12 

corrected with the soil water content, θ ⋅ Re. With α > 1, the SM4E model is a power law; that 13 

is, the Aue, is proportional to the power of θ ⋅ Re . 14 

The Eq. (4) was parameterized and tested using soil moisture data estimated by the Soil Water 15 

Balance Model (SWBM), θ = θest, and derived from satellite observations θ = θsat. 16 

3.2 Soil Water Balance Model 17 

The Soil Water Balance Model (SWBM, Brocca et al., 2008; 2014b) was used to estimate the 18 

temporal evolution of soil moisture from standard meteorological data. SWBM considers the 19 

surface soil layer as a spatially lumped system, for which the continuous time variation of soil 20 

moisture is derived from the application of the soil water balance equation, taking into 21 

account the infiltration, evapotranspiration and drainage processes. The infiltration rate is 22 

estimated using the Green-Ampt equation. The empirical relation of Blaney and Criddle, as 23 

modified by Doorenbos and Pruitt (1977), is used to determine the potential 24 

evapotranspiration, from which the evapotranspiration rate is computed. The drainage rate is 25 

derived with the relation proposed by Famiglietti and Wood (1994). The model requires 26 

rainfall and air temperature data as input, and incorporates five parameters that are optimized 27 

as described later in the paper. Further details on SWBM, with the full list of equations, are 28 

given in Brocca et al. (2014b). 29 
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The soil water balance model was extensively validated with actual soil moisture 1 

measurements in different studies already published in the scientific literature (Brocca et al., 2 

2008; 2013; 2014b; Lacava et al., 2012). Specifically, in Brocca et al. (2013) the model was 3 

validated exactly in the same study area by obtaining reliable and satisfactory results. Based 4 

on previous studies, the accuracy (RMSE) of SWBM was found ranging between 0.02 and 5 

0.04 m³/m³ when compared with in situ measurements. On this basis, we believe the soil 6 

water balance model is an appropriate tool for obtaining reliable soil moisture estimates. 7 

3.3 Calibration and testing  8 

The SM4E model, Eq. (4), and the SWBM model require calibration. The measured soil loss 9 

data at the different plots of the Masse experimental station were used for this purpose. 10 

Specifically, only the 22-meter-long plots were considered. The average value of the unit soil 11 

loss, Aue, was then computed by using Eq. (2) in which, specifically, Ae is the mean of the plot 12 

measures; C and P values are assumed equal to 1 as bare plots were used; the topographic 13 

factors, L and S, were calculated (see Table 1) according to the relations proposed by 14 

Wischmeier and Smith (1978), Eq. (5) and by Nearing (1997), Eq. (6).  15 

� = � �
��.�	


�
                        (5) 16 

where λ (m) is the plot length and m is an exponent. In the USLE, m is equal to 0.5 if slope 17 

steepness, s, is greater than or equal to 5%.  18 

� = −1.5 + ��
�����	(�.	��.�����)                        (6) 19 

where β is the slope angle. 20 

For the analysis, the database of erosive events was split to define a calibration and a 21 

validation set of events: the 63 events were arranged in descending order with respect to the 22 

Aue values and alternatively assigned to the calibration (n = 32 events) or the validation set (m 23 

= 31 events). The calibration set was used to optimize the five parameters of the SWBM, the 24 

characteristic time length of the SWI method, and the two coefficients (Kuθ and α) of the 25 

SM4E models. The parameters were defined maximizing the coefficient of determination R2, 26 

of the regression between the measured Aue and the erosivity factor θ⋅Re, with θ = θest and θ = 27 

θsat. For the power model (α > 1), R2 is computed by a linear regression on a logarithmic 28 
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scale, while for the linear model (α = 1), as the regression line is forced to pass through the 1 

origin, R² is computed on a linear scale as 2 

( )

( )∑

∑

=

=

−
−=

n

j
jue

n

j
jestuejue
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R

1

2
,

1

2
,,,

2 1  (7) 3 

where Aue,est,j is the estimated value of Aue for the j-th erosive event (i.e. the soil loss that 4 

would result from the regression models), n is the number of erosive events in the calibration 5 

subset. The validation set was used to test the accuracy and robustness of the regression 6 

models SM4E, that was evaluated by the RMSE between the measured and the estimated Aue 7 

values.  8 

The effectiveness of the event soil loss models was also compared with that of the USLE 9 

derived models with a simulated runoff coefficient in the erosivity factor (Kinnell, 2015; 10 

Todisco et al., 2012b). In particular Todisco et al. (2012b) coupled the USLE models with a 11 

continuous rainfall-runoff model, MISDc (Brocca et al., 2011a) for the estimation of the 12 

runoff volumes. MISDc incorporates a limited number of parameters and it is characterized by 13 

low computational efforts. The input data required are only rainfall and air temperature. 14 

Besides runoff, the model simulates also the temporal evolution of soil moisture. 15 

In this paper, the analysis performed in Todisco et al. (2012b) was extended to the current 63 16 

erosive events. The MISDc model was parameterized, maximizing the Nesh Satcliff 17 

efficiency index between the estimates Qe,est and the corresponding observed Qe values of the 18 

set of calibration events. A regression analysis was also performed between the observed Aue 19 

and the erosivity indices Re, Qr,est⋅Re and (Qr,est⋅Re )
α. The accuracy of the regression models in 20 

soil loss estimation was evaluated by RMSE between the estimates (Aue,est) and the 21 

measurements (Aue) of the set of validation events. 22 

4  Results and discussion 23 

4.1 Soil moisture estimation through modelled and satellite data 24 

Based on the procedure mentioned above, the parameter values of the SWBM and of the 25 

SM4E models were obtained by maximizing the R² value between the observed and estimated 26 

Aue values in the calibration events. Figure 2 shows the temporal evolution of the modelled 27 
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and satellite soil moisture data at the beginning of the 63 erosive events occurred during the 1 

2008-2013study period. 2 

Even though the parameters of the SWBM and of the SWI method were calibrated for 3 

reproducing soil losses, and not for making the two soil moisture datasets match each other, a 4 

very good agreement among the soil moisture time series is evident. Indeed, a very low RMSE 5 

= 0.03 m3/m3 was obtained, even for the validation sets. These results confirm the capability 6 

of the ASCAT-derived soil moisture product to provide high-quality measurements in central 7 

Italy (Brocca et al., 2010; 2011b), even though the spatial mismatch between satellite and 8 

ground data is significant. As has already been shown in the scientific literature, these 9 

unexpected good results must be attributed to the statistical properties of soil moisture spatial 10 

patterns. Indeed, the temporal dynamics of soil moisture field is often very similar across a 11 

wide range of scales; a phenomenon usually referred to as “temporal stability” (e.g., Brocca et 12 

al., 2011b; 2014a). Therefore, local point measurements can be used for obtaining an estimate 13 

of soil moisture over large areas (Brocca et al., 2009) and, viceversa, coarse scale soil 14 

moisture measurements can be properly used for small scale applications (Brocca et al., 15 

2012). 16 

4.2 Estimation of SM4E model parameters  17 

The scatterplots in Fig. 3 show the regressions between the soil loss and the erosivity factor 18 

θ·Re with α ≥ 1 both with θ = θsat (Fig.s 3a and 3d) and θ = θest (Fig.s 3b and 3e) for the set of 19 

calibration events. The linear SM4E models (α = 1) are very similar in the scale factors Ku,θ = 20 

0.178 and 0.180. The coefficient of determination using satellite soil moisture data θ = θsat, R
2 21 

= 0.358, is higher than that obtained with the simulated soil moisture data θ = θest, R
2 = 0.325. 22 

Also the power SM4E models are similar both in the scale factors equal to 0.007 and 0.006, 23 

and in the exponent α equal to 1.69 and 1.77 for the modelled and satellite data, respectively. 24 

The coefficient of determination is slightly higher for the θ = θest (R
2 = 0.501), than for θ = θsat 25 

(R2 = 0.462), and in any case much higher than the linear models. The parameters for the 26 

SM4E models are given in Table 2 (all the events). The white dots in Fig. 3 represent the 27 

events that occurred during the dry period (from June to September), which will be 28 

commented on later in the paper. The erosivity index θ·Re performs better when is raised at an 29 

exponent α > 1, making it possible to obtain higher coefficients of determination R2. 30 
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4.3 Soil losses estimated by SM4E models 1 

The calibrated SM4E models were then tested with the validation set to estimate the soil loss, 2 

Aue,est, by using the corresponding satellite soil moisture retrievals, θ = θsat, or the modelled 3 

ones, θ = θest, and event rainfall data. The results are given in Fig. 4, by showing the 4 

dispersion of the (Aue, Aue,est) pairs around the 1:1 line for the linear model (Fig.s 4a and 4b) 5 

and the power model (Fig.s 4d and 4e). The results in terms of RMSE are derived and given in 6 

Table 2 (all the events). With satellite soil moisture, θ = θsat, the RMSE obtained with the 7 

linear SM4E model is equal to 3.07 Mg/ha (R2 = 0.329) and decreases slightly to RMSE = 8 

3.04 Mg/ha (R2 = 0.371) when the power model is used. The errors decrease, even if not 9 

substantially, using estimated soil moisture θ = θest, with RMSE = 2.85 Mg/ha (R2 = 0.401) 10 

and RMSE = 2.80 Mg/ha (R2 = 0.338) with linear and power models respectively. The better 11 

performance of SM4E when using modelled data is due to the expected better accuracy of 12 

SWBM (~0.03 m³/ m³) with respect to satellite data (~0.05 m³/ m³). 13 

Moreover, the linear and the power models are compared in terms of confidence intervals of 14 

the regression coefficients. The uncertainty is estimated as the percentage of the size of the 15 

90% confidence interval with regard to the corresponding coefficient value. The results show 16 

that the uncertainty in the estimation of coefficients is similar (100%). This result is expected, 17 

given that the dataset used is the same. The lowest uncertainty (60%) is estimated for the 18 

exponent of the power model when the erosivity factor (θ·Re)
α is used. Furthermore, for 19 

model comparison, two criteria, namely Akaike information criterion (AIC, Akaike, 1974) 20 

and Bayesian information criterion (BIC, Burnham and Anderson, 2002), are used. According 21 

to these criteria the best model provides the lowest AIC and BIC values. The results show that 22 

the power model performs better than linear model.  23 

The power model provides AIC values of 30.14 and 32.56 respectively for θ = θest and θ = 24 

θsat, which are lower than the corresponding values, 85.41 and 83.80, derived from the linear 25 

model, thus denoting a statistically significant better accuracy. Similarly, the BIC values for 26 

the power model, 26.47 and 28.89, are lower than the corresponding values, 83.63 and 82.02, 27 

derived from the linear model. Moreover, according to Nagin and Roeder (2001), the 28 

difference between the BIC values, 57.15 and 53.12, obtained respectively for θ = θest and θ = 29 

θsat, can be considered significant, being greater than 10. The models using (θ·Re)
α as 30 

erosivity factor (both satellite and simulated θ) appear to work quite well. We note that the 31 
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SM4E model incorporating satellite-derived soil moisture data might effectively and easily be 1 

applied over large areas for the estimation of event water soil loss. 2 

4.4 Comparison with the previous studies at Masse site 3 

The results provide a clear indication that the power models perform better than the linear 4 

models. They also show that the coefficients of determination of the USLE-derived models 5 

that include simulated or satellite retrieved soil moisture in the erosivity factor (SM4E 6 

models) never exceed the value of 0.5. This is lower than that obtained by the USLE-M and 7 

USLE-MM (R2 = 0.82) which include direct measurements of the runoff in the event rainfall-8 

runoff factor (Todisco et al., 2012b). However, the benchmark for a correct assessment of the 9 

accuracy of the SM4E models is the performance of the USLE-derived models that include 10 

predicted runoff coefficient, Qr,est, in the event rainfall-runoff factor such as that analysed by 11 

Todisco et al. (2012b). This analysis was extended to the current database. As stated earlier 12 

the runoff volumes were estimated from the calibrated rainfall-runoff model MISDc. A paired 13 

t-test shows that there are not significant (α=0.05) differences between the observed and the 14 

estimated runoff samples in both the calibration and in the validation sets. Furthermore 15 

MISDc provides fairly accurate event runoff estimates with a Nash and Sutcliffe efficiency 16 

index, NSE = 0.416 between the Qe,est and the observed Qe of the calibration events and an 17 

RMSE = 2.56 mm  and NSE=0.450 between the validation events.  18 

The regressions models between the soil loss and the erosivity factor Qr,est ·Re with α ≥ 1 19 

(Fig.s 3c and 3f) for the set of calibration events were derived and shown in the scatterplots of 20 

Fig. 3. The coefficient of determination using (Qr,est⋅Re )
α, R2 = 0.304, is higher than that 21 

obtained with the corresponding linear model, R2 = 0.255. The erosivity index Qr,est·Re 22 

performs better when is raised to an exponent α > 1, making it possible to obtain higher 23 

coefficients of determination R2. In all cases the coefficient of determination is slightly lower 24 

than that obtained for the corresponding SM4E models.  25 

Furthermore both the AIC and BIC criteria show that the power model provides lower values, 26 

40.80 and 37.13, than the linear model, 88.57 and 86.78, thus denoting a statistically 27 

significant better accuracy. As seen earlier, according to Nagin and Roeder (2001), the 28 

difference between the BIC values obtained, 49.65, can be considered significant. Moreover, 29 

the AIC and BIC values associated with the USLE-derived models with simulated runoff in 30 
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the erosivity factors are always higher than those provided by the SM4E models, which prove 1 

to be more efficient.  The accuracy of the calibrated models in estimating the event plot soil 2 

loss, Aue,est, were tested with the validation values of Re and Qe,est. The results are given in Fig. 3 

4, by showing the dispersion of the (Aue, Aue,est) pairs around the 1:1 line for the linear model 4 

(Fig. 4c) and the power model (Fig. 4f). The results in terms of RMSE obtained with the linear 5 

model is equal to 2.96 Mg/ha and remain almost constant when the power model is used. The 6 

errors are higher, even if only slightly, than those obtained with the linear SM4E and between 7 

those obtained with the two power SM4E models tested. Fig. 5 also shows the comparison 8 

between the results obtained in terms of RMSE and R2 in this study with Eq. (4), the results 9 

obtained by extending the analysis performed in Todisco et al. (2012b) to the current 63 10 

erosive events, and the results obtained with the USLE model. Only the results of the power 11 

models compared with the USLE are shown in Fig. 5 since the power models have proven to 12 

be better than the linear models both in this study and in Todisco et al. (2012b).  The accuracy 13 

in the estimation of the soil loss by the USLE-MM model that includes the predicted runoff 14 

coefficient in the event rainfall-runoff factor quantified in an RMSE = 2.96 Mg/ha is higher 15 

than that obtained with (θest⋅Re)
α and slightly lower than that derived obtained with (θsat⋅Re)

α 16 

(Fig. 5). The worst performance is that of the USLE model with an RMSE = 3.28 Mg/ha, 17 

while the lowest coefficient of determination is obtained for the USLE-MM with estimated 18 

runoff (R2 = 0.185). It is interesting to notice that the accuracy in estimating the event soil loss 19 

of the models with erosivity factor that includes the simulated runoff coefficient, i.e. (Qr,est⋅ 20 

Re)
α, is overcome surpassed by at least one model that uses the antecedent soil moisture θ in 21 

the erosivity index. In Fig. 6, the deviations between observed and predicted soil loss values 22 

are also given with the corresponding runoff coefficient and the mean soil moisture (average 23 

of θest and θsat) values. On the one hand, it is evident that the introduction of both the soil 24 

moisture and the predicted runoff coefficient data significantly reduces the overestimation 25 

issues of the USLE model. The correction is also effective also when USLE highly greatly 26 

overestimates soil losses, e.g. in May 2009 and August 2013. On the other hand, when USLE 27 

underestimates the measured values, the use of soil moisture and predicted runoff coefficient 28 

slightly increases the deviations (June and September 2010, July 2011 and August 2012). 29 

Also given iIn Fig. 6 is  the Mean Absolute Error (MAE) which confirms the ranking of the 30 

best performing models and clearly shows that the soil moisture is an effective alternative to 31 

estimated runoff in the prediction of the event soil loss. 32 
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4.5 Model performance in wet and dry periods 1 

As stated earlier, the white dots in Fig. 3 and 4 represent the events that occurred during the 2 

dry period (from June to September). It is evident that for these events the estimated soil 3 

losses are distant from the regression line and the 1:1 line, thus reducing the value of R2 and 4 

RMSE. In Fig. 6 the highest deviations between the observed and estimated values occur in 5 

the dry period events. This is likely due to the particular characteristics of summer rainfall 6 

events in central Europe (Todisco et al., 2012b; Todisco, 2014). Summer rainfall events are 7 

generally isolated and characterized by high intensity associated with low antecedent soil 8 

moisture but elevated soil losses. Therefore, even with a high Re, the erosivity factor θ·Re is 9 

reduced since both θsat and θest assume typically low values. As a representative example, the 10 

event characterized by the highest soil loss (Aue = 19.14 Mg/ha, July 2012) is associated with 11 

the lowest pre-event soil moisture, both satellite-derived (θsat = 0.09 m3/m3) and simulated 12 

(θest = 0.05 m3/m3). This issue affects the Qr·Re erosivity factor too, if Qr is derived from 13 

runoff simulated by standard rainfall-runoff models in which runoff increases with antecedent 14 

soil moisture conditions (Todisco et al., 2012b). In the dry period, high surface runoff is 15 

observed, despite low θ values, due to the development of superficial crusts creating a shield 16 

that is responsible for low infiltration and high runoff. This aspect is particularly significant 17 

for bare soil as in the plots considered in this study. 18 

Given the above consideration, another analysis was performed excluding the dry period’s 19 

events from the database. Among the 45 remaining events, 23 are used to calibrate the models 20 

and 22 to validate the results. In this case, as expected, the performances of all the equations 21 

analyzed generally increase (Table 2). In particular, for the calibration subset, R2 = 0.247 and 22 

R2 = 0.496 are obtained for the erosivity factor (θsat·Re)
α for α = 1 and α > 1, respectively. The 23 

(θest·Re)
α factor gives R2 = 0.605 and R2 = 0.715 for α = 1 and α > 1, respectively. Therefore, 24 

particularly the performance of the regression significantly increases in terms of R2 especially 25 

when modelled data are used.. 26 

In validation, RMSE = 1.10 Mg/ha (1.15 Mg/ha) is obtained with satellite soil moisture with 27 

the linear (power) model; by using modelled soil moisture, the linear model gives RMSE = 28 

1.63 Mg/ha, while the power model gives RMSE = 1.26 Mg/ha (see Table 2). In comparison, 29 

the USLE model provides a RMSE = 1.99 Mg/ha; thus the modified-USLE models 30 

incorporating soil moisture data - the SM4E models - improved the performance of the USLE 31 

when satellite (modelled) data were considered. 32 
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 1 

5  Conclusions 2 

The attempt made in the paper is to use the pre-event soil moisture to account for the spatial 3 

variation in runoff within the area for which the soil loss estimates are required. More 4 

specifically the analysis was focused on the evaluation of the effectiveness of the Soil 5 

Moisture for Erosion model (SM4E), which is derived by coupling modelled or satellite-6 

derived soil moisture with the USLE model, in predicting event unit soil loss at the plot scale 7 

in a silty-clay-loam soil in Central Italy. To this end, the Masse experimental station database  8 

for the measurement of event soil losses at plot scale was used.  9 

The formulations analyzed are the USLE-derived equations, called SM4E models, in which 10 

the event erosivity factor, Re, is corrected by the antecedent soil moisture, θ, and powered to 11 

an exponent α ≥ 1 (α = 1: linear model; α > 1: power model). Both satellite measurements 12 

from the ASCAT sensor (θ = θsat) and modelled values through the SWBM (θ = θest) were 13 

tested. The results showed that including direct consideration of antecedent soil moisture in 14 

the event rainfall-runoff erosivity factor of the USLE enhanced the capacity of the model to 15 

account for variations in event soil losses.  16 

The accuracy of the original USLE model was lower than that obtained by incorporating 17 

satellite and modelled soil moisture data. The most accurate model is that with the modelled 18 

soil moisture data when the entire the database is used and with the satellite-retrieved soil 19 

moisture data when only the wet period events are considered. It was in fact also verified that 20 

much of the inaccuracy of the tested models is due to summer rainfall events, probably 21 

because of the particular characteristics that the soil assumes in the dry period (superficial 22 

crusts causing higher runoff): in these cases, high soil losses are observed in association with 23 

low soil moisture values, and, hence, the model performance decreases. As expected, by 24 

excluding the summer events, the performance of all the analysed equations increases. This 25 

aspect is particularly important, as it highlights the conditions in which the developed models 26 

fail to reproduce soil losses and that deserves further investigation. More specifically, the 27 

incorporating of the mechanism for the formation of superficial crusts in the developed soil 28 

water balance model will be the subject of future investigations. 29 

We highlight that the obtained results open interesting scenarios in the overview of the studies 30 

aimed at defining USLE-derived models that could improve the unit soil loss estimation at the 31 
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event scale. In particular, the choice of using soil moisture data to correct the rainfall-runoff 1 

erosivity factor takes on great importance for the practice. Indeed, soil moisture is a relatively 2 

simple measurement, and different techniques are available for providing accurate 3 

measurements at the field scale. Moreover, remote sensing soil moisture data are also widely 4 

available on a global scale. Through satellite data, there is the potential of applying the 5 

developed USLE-derived model for large-scale monitoring and quantification of the soil 6 

erosion process. 7 
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Table 1. Summary statistics of the 22 m long plot data available at the Masse site. 1 

Plot 

size 
s L·S Ne 

he  Re  
Nm 

Qe,i Ae,i  

µ CV µ CV µ CV µ CV 

22 x 8 16 2.04 62 35.4 65.2 81.8 102.6 113 3.6 136.6 4.1 221.5 

22 x 4 16 2.04 53 33.2 66.6 75.1 110.0 98 2.4 145.7 2.8 260.7 

s, slope steepness (%); L⋅ S, USLE topographic factors; Ne, number of events per plot scheme; 2 

he, event rainfall depth (mm); Re, event rainfall erosivity factor (MJ·mm·ha-1·h-1); Nm, number 3 

of measurements per plot scheme; Qe,i, plot event runoff volume (mm); Ae,i, plot event soil 4 

loss (Mg·ha-1); µ, mean; CV, coefficient of variation (%). 5 

 6 

7 
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Table 2. Calibration parameters and validation Root Mean Square Error for the SM4E models 1 

(Eq. 4). 2 

Erosivity 

factor 

All the events Wet period events 

RMSE 

(Mg/ha) 
Ku,θ αααα    

RMSE 

(Mg/ha) 
Ku,θ αααα    

θsat ·  Re 3.07 0.178 - 1.10 0.174 - 

(θsat ·  Re )
α 3.04 0.007 1.70 1.15 0.042 1.14 

θest ·  Re 2.85 0.180 - 1.63 0.270 - 

(θest ·  Re)
α 2.80 0.006 1.78 1.26 0.043 1.29 

RMSE: Root Mean Square Error; Ku: scale factor; α: exponent for the erosivity factor. 3 
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 1 

Figure 1. View of the Masse experimental station for monitoring water soil loss at plot scale 2 

in the Umbria of region (Central Italy). 3 
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 1 

Figure 2. Time series of satellite-derived and estimated (through the SWBM) soil moisture at 2 

the beginning of 63 erosive events in the study period 2008-2013.  3 

 4 
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Figure 3. Regression models between measured soil loss A2 

and Q·Re of the calibration subset3 

moisture (a); SM4E model and 4 

runoff coefficient (c). Power models (d), (e), (f): 5 

SM4E model and estimated 6 

coefficient (f). 7 

 8 
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Figure 3. Regression models between measured soil loss Aue and the erosivity indices

of the calibration subset. Linear models (a), (b), (c): SM4E model and satellite soil 

moisture (a); SM4E model and estimated soil moisture (b); USLE-M m

. Power models (d), (e), (f): SM4E model and satellite soil mo

estimated soil moisture (e); USLE-MM model and 
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erosivity indices θ·Re 

SM4E model and satellite soil 

M model and estimated 

SM4E model and satellite soil moisture (d); 

odel and estimated runoff 



1 

Figure 4. Testing of the Aue vs 2 

Linear models (a), (b), (c): SM4E model and satellite soil moisture (a); SM4E model and 3 

estimated soil moisture (b); 4 

models (d), (e), (f): SM4E model and satellite soil moisture (5 

soil moisture (e); USLE-MM m6 
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vs θ·Re and the Aue vs Q·Re models with the validation subset.

SM4E model and satellite soil moisture (a); SM4E model and 

soil moisture (b); USLE-M model and estimated runoff coefficient 

SM4E model and satellite soil moisture (d); SM4E model and 

MM model and estimated runoff coefficient (f). 
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dels with the validation subset. 

SM4E model and satellite soil moisture (a); SM4E model and 

estimated runoff coefficient (c). Power 

); SM4E model and estimated 
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 1 

Figure 5. Comparison of the results obtained by the power SM4E model with both satellite 2 

and estimated soil moisture, the ULSE-MM including predicted runoff, and the original 3 

USLE, in terms of root mean square error (RMSE) and coefficient of determination (R2). 4 
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 1 

Figure 6.  Comparison of the results obtained by the power SM4E model with both satellite 2 

and estimated soil moisture, the ULSE-MM including predicted runoff, and the original 3 

USLE, in terms of  deviations between estimated, Aue,est, and observed, Aue, soil losses. The 4 

values of the estimated runoff and of the mean soil moisture computed as the mean between 5 

the estimated and the satellite retrieved values are also given.  6 
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 1 

Figure captions 2 

Figure 1. View of the Masse experimental station for monitoring water soil loss at plot scale 3 

in the Umbria of region (Central Italy). 4 

 5 

 6 

Figure 2. Time series of satellite-derived and estimated (through the SWBM) soil moisture at 7 

the beginning of 63 erosive events in the study period 2008-2013.  8 

 9 

 10 

Figure 3. Regression models between measured soil loss Aue and the erosivity indices θ·Re 11 

and Q·Re of the calibration subset. Linear models (a), (b), (c): SM4E model and satellite soil 12 

moisture (a); SM4E model and estimated soil moisture (b); USLE-M model and estimated 13 

runoff coefficient (c). Power models (d), (e), (f): SM4E model and satellite soil moisture (d); 14 

SM4E model and estimated soil moisture (e); USLE-MM model and estimated runoff 15 

coefficient (f). 16 

 17 

 18 

Figure 4. Testing of the Aue vs θ·Re and the Aue vs Q·Re models with the validation subset. 19 

Linear models (a), (b), (c): SM4E model and satellite soil moisture (a); SM4E model and 20 

estimated soil moisture (b); USLE-M model and estimated runoff coefficient (c). Power 21 

models (d), (e), (f): SM4E model and satellite soil moisture (d); SM4E model and estimated 22 

soil moisture (e); USLE-MM model and estimated runoff coefficient (f). 23 
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 25 

Figure 5. Comparison of the results obtained by the power SM4E model with both satellite 26 

and estimated soil moisture, the ULSE-MM including predicted runoff, and the original 27 

USLE, in terms of root mean square error (RMSE) and coefficient of determination (R2). 28 
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Figure 6.  Comparison of the results obtained by the power SM4E model with both satellite 2 

and estimated soil moisture, the ULSE-MM including predicted runoff, and the original 3 

USLE, in terms of  deviations between estimated, Aue,est, and observed, Aue, soil losses. The 4 

values of the estimated runoff and of the mean soil moisture computed as the mean between 5 

the estimated and the satellite retrieved values are also given.  6 
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