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Abstract

The potential of coupling soil moisture and a Unsad Soil Loss Equation-based (USLE-
based) model for event soil loss estimation at gdaie is carefully investigated at the Masse
area, in Central Italy. The derived model, nameidl oisture for Erosion (SM4E), is applied
by considering the unavailability of in situ soilomture measurements, by using the data
predicted by a soil water balance model (SWBM) dadved from satellite sensors, i.e., the
Advanced SCATterometer (ASCAT). The soil loss eation accuracy is validated using in
situ measurements in which event observationsoatsphle are available for the period 2008-
2013. The results showed that including soil moestibservations in the event rainfall-runoff
erosivity factor of the USLE, enhances the capigbilf the model to account for variations in
event soil losses, being the soil moisture an gffe@lternative to the estimated runoff, in the
prediction of the event soil loss at Masse. Theaagent between observed and estimated soil
losses (through SMA4E) is fairly satisfactory witkdetermination coefficient (log-scale) equal
to of ~0.35 and a Root Mean Square ErfBMSEB of ~2.8 Mg/ha. These results are
particularly significant for the operational estimoa of soil losses. Indeed, currently, soil

moisture is a relatively simple measurement afithed scale and remote sensing data are also
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widely available on a global scale. Through sdtetliata, there is the potential of applying the

SM4E model for large-scale monitoring and quardii@n of the soil erosion process.

1 Introduction

Solil is the interface between earth, air and watet hosts most of the biosphere. As soil
formation is an extremely slow process, soil carcdresidered essentially as a non-renewable
resource. Soil is recognized as a strategic noawable resource that, in addition to the
specific relevant environmental role, assumes #iab of a strategic policy framework for
competitiveness. Therefore, specific policies arttbas designed to limit the consumption of
soil are required in order to create, where possibarrier to stop the worrying phenomenon
of progressive depletion of the resource with asegment acceleration of erosion and
geological instability. The prerequisite for thefeetive protection of the territory is to
monitor processes at different spatial and tempscales and use the obtained database to
formulate, calibrate and validate predictive modetgded to define the "risk areas" and to
quantify this risk. Usually, these models must bepprly calibrated and validated over the
territory in which they are used, making use ofatlases and studies carried out on a local
scale (Bagarello et al., 2011, 2014; Butzen e2@1,4; Cerda, 1998; Di Stefano et al., 2005;
Kinnell, 2010; Leh et al., 2013; Morgan and Neayi2@00; Porto et al., 2014; Vrieling et al.,
2014).

As regards soil erosion, the Universal Soil Lossidmpn, USLE (Wischmeier and Smith,
1978) is the most used empirical model for theneation of the long term average annual soill
loss of a plot associated with sheet and rill emosThe USLE estimates the soil loss using six
factors that are associated with climate, soilogvpphy, vegetation and soil management.
The USLE is considered the best compromise betwpplicability in terms of required input
data and reliability of the soil loss estimatess@ei et al., 1993). It was originally formulated
to estimate the soil loss in rural areas of the U&Ad then extended in the Revised USLE,
RUSLE (Renard et al., 1997) and further modificasidRUSLE1, RUSLE?2, Foster et al.,
2003). The RUSLE conserves the same mathematicaitste of the USLE, the revision
being limited to the estimating procedure of sonmiehe involved factors. Currently, the
USLE/RUSLE is widely applied in Europe and in masther Mediterranean countries for
practical purposes (e.g. Larson et al., 1997; Huaf@8; Rejman et al., 1999; Bagarello and
Ferro, 2004; Morgan, 2005; Parsons et al., 200§aBalo et al., 2008; Bagarello et al., 2010;
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Bagarello et al., 2011; Bagarello et al., 2012;0njg and Shrestha, 2013). The process-based
models characterized by low computation effortsl ta produce better results than the
USLE/RUSLE model (Tiwari et al., 2000). Consequeitle USLE/RUSLE model is often
used for purposes for which it was not designedifkil, 2010). In particular, it is widely
used in watershed models even at the event temposad¢. However, it was found in the
scientific literature (Todisco et al, 2009; Baghredt al., 2008; Risse et al., 1993) that the
USLE/RUSLE model, and similarly (Tiwari et al., ZQprocess-oriented models (e.g., Water
Erosion Prediction Project, WEEP, Flanagan et a95), tends to overestimate
(underestimate) soil losses for low (high) erosvents. Foster et al. (1982) noted that the
USLE model is somewhat unsatisfactory for estingasioil loss from individual storms, and
observed that including rainfall amount, rainfaitansity and runoff amount in the erosivity
factor provided better performance. Foster et188R) also noted that erosivity factors with
separate terms for rainfall and runoff erosivityrevenore appropriate. Successively, Kinnell
(1997) suggested that the sediment concentratiomdiovidual rainfall event is dependent on
the event rainfall erosivity index per unit rainfdepth and developed the so-called USLE-M
model, including direct measures of the runoff ne tvent rainfall-runoff erosivity factor
(Kinnell and Risse, 1998; Kinnell, 2007, 2010; Bajja et al., 2011). Bagarello et al. (2010),
by using soil loss and runoff data for a relativelgh number of simultaneously operating
plots of different length (11-44 m) establishedtla experimental station of Sparacia in
southern Italy (clay soil), developed a modifiedsien of the USLE-M, named USLE-MM,

in which the event rainfall-runoff erosivity factgs raised to a power greater than one. The
USLE-MM was found to perform better than both tHeLlB and the USLE-M at Sparacia site
(Bagarello et al., 2008, 2010, 2014), and it wa® aluccessfully applied at the Masse station
in central Italy, silty-clay-loam soil (Todisco &t 2009, Bagarello et al., 2013).

Even if by including runoff in the USLE/RUSLE modehproves its accuracy, it should be
highlighted that the measurement of the event fusafot straightforward. At experimental

stations, the surface runoff is generally collectetb specific storage tanks allowing to
estimate the event runoff by measuring the amotmtater in the tanks after the end of each

rainfall event (Todisco et al., 2012a)

However, this procedure is time consuming and esipen and it requires specific
measurement campaigns. Otherwise, the water amonltgcted in the tanks could be

measured by hydrometric gauges that, unfortunatetire strong maintenance and are not
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easy to be realized. It should be also underlihadl by using the measured runoff, the same
guantity (runoff) is used both for estimating theeet soil losses (given by the product of
runoff and the bulk sediment concentration in tweks) and in the rainfall-runoff erosivity

factor thus introducing a conceptual issue in tloeleh determination procedure.

In the absence of direct measurements, runoff aarestimated through rainfall-runoff
modelling. The latter usually needs a specifichration of the parameters (and structure) to
provide satisfactory results and are not easy tcajglied at the plot scale. Therefore,
notwithstanding the USLE-M and USLE-MM models havenoticeable practical interest,
these models are difficult to be applied over laageas mainly for the need to also predict
event runoff (Bagarello et al., 2014). The sameassan be found in other existing USLE-
derived models, as MUSLE (Williams, 1975; Williamsd Berndt, 1977), EPIC (Williams et
al., 1984a,b) and APEX (Williams et al., 2008), tthexplicitly consider the runoff
characteristics, even with a certain detail, fa&r #stimation of soil losses. Efforts have been
recently made in order to incorporate reliable guasimonious methods for the runoff
estimation in the USLE-derived models. Howevels gvident that a poor estimation of event
runoff will produce a low accurate forecast of thail loss. Gao et al. (2012) coupled a
modified SCS-CN (Soil Conservation Service - Cuxianber) and RUSLE model for runoff
and soil loss simulation at plot scale in the Loekgeau. In RUSLEZ2, runoff prediction for
storm events is obtained using the SCS-CN methdld @mpirical equations that vary the
values of CN in association with both soil moistared rainfall intensity (Kinnell, 2014).
Todisco et al. (2012b) evaluated the efficiencytited MISDc model (Modello idrologico
semidistribuito in continuo, Brocca et al., 2011&@upled with an USLE-derived model, for
the estimation of surface runoff and soil losshat évent time scale at Masse experimental
station. The model performance is found to be psorgi but it was underlined that the
antecedent soil moisture proved to be a good atee with respect to runoff for correcting
the rainfall-runoff erosivity factor in the USLE-MIvhodel. These preliminary results open
interesting scenarios for improving the capabibfyUSLE-derived models in predicting the
unit soil loss at the event scale. Indeed, meagunrsitu soil moisture is much more easier
(e.g. by using Time Domain Reflectometry, Broccaakt 2014a) and less expensive than
estimating surface runoff. Moreover, the recentesmiead availability of satellite-derived
soil moisture data (e.g., Wagner et al., 2013) maijlow to easily apply over large areas a

modified USLE/RUSLE model incorporating this infaation. In summary, it could be highly
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beneficial to find a procedure for incorporatingl saoisture in the erosivity factor rather than

runoff coefficient as in previous investigationgy(eKinnell, 2010; Bagarello et al., 2014).

The main objective of this study is to investigdite use of satellite-derived and modelled soil
moisture data for improving the prediction of usitl loss through a modification of USLE-
based models. Specifically, it is expected that @lled soil moisture data will provide better
performance, but they require continuous meteorcédgbservations not always available.
Satellite data, even though with an expected laeeuracy, have the enormous advantage to
be available on a global scale, thus allowing theleh application everywhere. The Masse
experimental area (Umbria, central ltaly) is used case study in which rainfall, air
temperature, soil losses and runoff is measuréidea¢vent time scale for different bare plots
in the period 2008-2013. The satellite soil moistproduct is obtained from the Advanced
SCATterometer (ASCAT) through the TUWien algoritifiagner et al., 2013). Moreover,
modelled soil moisture data obtained from the ®édter Balance Model (SWBM) developed
by Brocca et al. (2014b) are also considered. pleeic objective of this study is to evaluate
the opportunity of coupling soil moisture and ralhflata for correcting the erosivity index of
USLE model. For comparison, the results are evetbagainst those obtained by the standard
USLE/RUSLE and USLE-M-based models in previous stigations (Todisco et al., 2012b).

2 Materials

2.1 The Masse experimental station and the soil loss database

The Masse experimental station for soil erosionsueaments (Fig. 1) of the Department of
Agricultural, Food and Environmental Sciences, BerWniversity, is located 20 km south of

Perugia, in the Region of Umbria (Central Italy).

The soil is Typic Haplustept (Soil Survey Staff0B) with a silty—clay—loam texture (clay =
34%, silt = 59% and sand = 7%). The soil has ahmadyal angle structure and the gravel
content is negligible. The Ap horizon has a depth approximately 0.40 m. The
meteorological data are monitored by a weatherostabcated within the experimental site
and are recorded at a time resolution of 5 min. §thaon includes plots of different lengih
=11 and 22 m and width = 2, 4 and 8 m. All plots are oriented paralleht&6% slope and
are maintained in a cultivated fallow by oblitengtithe rills at the end of each erosive event.

The total runoff amount and the soil loss per @méa are measured in each plot after an
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erosive event, defined as an event yielding a mabkusoil loss. The Masse database was
therefore developed by considering, for each ewet,simultaneous measurements of plot
runoff, Qe,;, and soil lossAe;, and of the rainfall data required to derive theswity factor,

R, according to Wischmeier and Smith (1978), withean interval time of 6 h (Bagarello et
al., 2004; Mannocchi et al., 2008; Todisco, 20IM)e study area and the experimental
schemes, installations and procedures are alreastyrided more in depth in Bagarello et al.
(2011) and Todisco et al. (2012a).

For the purposes of this investigation, only theadallected on thd = 22 m plots (two plots
with w = 4 m and two plots witlv = 8 m) were considered. A total of 63 erosive ¢vevere
monitored in the years from 2008 to 2013. Over W% em (45 events) occurred during the
wet period (from October to May). In the 22 m x 8axperimental schemes, 62 events
yielded a measurable runoff, corresponding to 1b8 measurements. In the 22 m x 4 m
schemes, 58 events were erosive, corresponding pdod measurements. The plot data used

in this investigation are summarized in Table 1.

2.2 Soil moisture from satellite data

The satellite soil moisture product adopted in 8tigly was obtained from the ASCAT radar
scatterometer onboard the Metop satellites. ASCARsures radar backscatter at the C-band
(5.255 GHz) in VV polarization. Specifically, thegoluct delivered through the "Satellite
Application Facility on Support to Operational Hgthgy and Water Management (H-SAF)”
project is used. Global coverage over Europe iseseld in ~1.5 days, while in ltaly,
measurements are available about once a day. Tdtealspesolution of the soil moisture
product is 25 km with a sampling distance of 121 Khe surface soil moisture product is
calculated from the backscatter measurements thrauggme series-based change detection
approach (Wagner et al., 1999; 2013). The soil mmesproduct obtained is expressed in
terms of degree of saturation, from 0% (dry) an@%0Qwet). The product obtained provides
knowledge of soil moisture for a very thin surfdager (about 2 cm) whereas, a root-zone
soil moisture product would be required for thedicgon of soil losses. Even though an exact
quantification of the depth of the root zone is possible, in this study we considered that a
layer depth of 15 cm is required. Therefore, thé B@ter Index (SWI) method (Wagner et
al., 1999) was employed to convert surface soilstoiog observations into a root-zone soil

moisture product, i.e., the SWI. This method rebesthe estimation of a single parameter,
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the characteristic time lengtf, that was obtained by calibration. The readerfsrred to
Wagner et al. (1999) for more details on the SWiraach. Lastly, the data were converted in
volumetric units (m3/m3) through a linear rescaliagproach (Brocca et al.,, 2011b) for
matching the range of variability of satellite amddelled soil moisture data provided by the
SWBM. The ASCAT data for the pixel closest to thadde study area were used.

The ASCAT soil moisture product was already vakdatin central Italy through the
comparison with in situ observations by Broccale{2010; 2011). The obtained accuracy
(RMSBH was found ranging between 0.03 and 0.07 m3/m3

3 Methods

3.1 Soil Moisture for Erosion model

A USLE-derived model to predict the unit event $odls was formulated, parameterized and
tested with the use of soil moisture in the rainfahoff erosivity factor. The model was
derived from the USLE:

A=RIKIL[SICIP (1)

whereA is the mean annual soil loss (Mg'hgr %) over the long term (e.g. 20 yearR),
(MJ-mm- h&-h*-yr 1) is the rainfall-runoff erosivity factok (Mg-h-MJ*mm?) is the soil
erodibility factor.L and S are the topographic factors depending on the slepgth and
gradient,C is the crop management factBris the soil conservation practice factorS, C, P
are dimensionlesfactors. Equation (1) with the erosivity factor @dhted for the single
erosive eventR. (MJ-mm-h#-h?), is also used to determine the plot soil losthatevent

temporal scaled. (Mg-ha'), and the corresponding unit valége, as follows:

A

Ae = EicD

=RIK (2)

Equation (2) estimates the average event soil $ossdy well, but it tends to overestimate the
lowest and underestimate the highest values (Kin2@10). The reason for this is to be found
in the lack of explicit consideration of runoff.deed, although the rainfall erosivity and the
soil erodibility are responsible for the detachmentsoil particles. It is the runoff that

transports the detached particles causing thel@ssl Therefore the USLE model has been

further modified to account for the relationshigviseen soil loss and runoff. Two well-known
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examples are the USLE-M (Kinnell and Risse, 1998) the USLE-MM (Bagarello et al.,
2008) models, in which the event rainfall-runofbésirity factor is given by the product Bf
and the runoff coefficien®, = QJhe, wWith Q. (mm) being the event runoff ard (mm) the

rainfall depth, as follows:

A.=K,{Q R)’ @3)

with ¢ = 1 in the USLE-M andr > 1 in the USLE-MM and wherkK, varies in accordance

with the selected model.

In this study, the Eq. (3) was modified using swibisture, §, in place of the runoff
coefficient, Q;, in the rainfall-runoff erosivity factor. The follving model was finally

formulated and named Soil Moisture for Erosion m¢8&14E):
A\Je = KU,H [GHDRE)G (4)

With a = 1, the SM4E model is linear; that is,eAncreases linearly with the erosivity factor
corrected with the soil water contefit, Re.. With a > 1, the SM4E model is a power law; that

is, the A, Is proportional to the power 6f(Re .

The Eq. (4) was parameterized and tested usingremdture data estimated by the Soil Water
Balance Model (SWBM)J = fes; and derived frorsatellite observation3= s,

3.2 Soil Water Balance Model

The Soil Water Balance Model (SWBM, Brocca et 2008; 2014b) was used to estimate the
temporal evolution of soil moisture from standardt@orological data. SWBM considers the
surface soil layer as a spatially lumped systemwiuch the continuous time variation of soil
moisture is derived from the application of thel ssater balance equation, taking into
account the infiltration, evapotranspiration anaiuolage processes. The infiltration rate is
estimated using the Green-Ampt equation. The eogpirelation of Blaney and Criddle, as
modified by Doorenbos and Pruitt (1977), is used determine the potential
evapotranspiration, from which the evapotransmratate is computed. The drainage rate is
derived with the relation proposed by FamiglietidaWood (1994). The model requires
rainfall and air temperature data as input, andrparates five parameters that are optimized
as described later in the paper. Further detailS\WBM, with the full list of equations, are

given in Brocca et al. (2014b).
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The soil water balance model was extensively vedlawith actual soil moisture
measurements in different studies already publishebe scientific literature (Brocca et al.,
2008; 2013; 2014b; Lacava et al., 2012). Speclfical Brocca et al. (2013) the model was
validated exactly in the same study area by obtgineliable and satisfactory results. Based
on previous studies, the accura®MSB of SWBM was found ranging between 0.02 and
0.04 m3/m3 when compared with in situ measuremedits.this basis, we believe the soil
water balance model is an appropriate tool foriabtg reliable soil moisture estimates.

3.3 Calibration and testing

The SM4E model, Eq. (4), and the SWBM model reqoakbration. The measured soil loss
data at the different plots of the Masse experialestation were used for this purpose.
Specifically, only the 22-meter-long plots were siolered. The average value of the unit soil
loss,Aue, Was then computed by using Eq. (2) in which, Bpadly, A.is the mean of the plot
measuresC and P values are assumed equal to 1 as bare plots wetk tge topographic
factors,L and S were calculated (see Table 1) according to tHatioes proposed by
Wischmeier and Smith (1978), Eq. (5) and by Nea(ir897), Eq. (6).

L=(2)" (5)

22.13
wherel (m) is the plot length andhis an exponent. In the USLE is equal to 0.5 if slope
steepness, is greater than or equal to 5%

S=-15+ 17 (6)

1+exp (2.3-6.1sinf)

wheregis the slope angle.

For the analysis, the database of erosive events spét to define a calibration and a
validation set of events: the 63 events were agdng descending order with respect to the
A.e Values and alternatively assigned to the calibnafi = 32 events) or the validation set (

= 31 events). The calibration set was used to opéirthe five parameters of the SWBM, the
characteristic time length of the SWI method, ahe two coefficientsKy, and a@) of the
SM4E models. The parameters were defined maximittingcoefficient of determinatiof?,

of the regression between the measuxgdnd the erosivity factad? R, with 6 = festandf =

Osaw For the power modela(> 1), R? is computed by a linear regression on a logarithmi
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scale, while for the linear modefr € 1), as the regression line is forced to pass thrdabgh

origin, R2is computed on a linear scale as

i (Aje,j - Aueest,j )2

R =1-1= (7)

> (A}

=1

where AeestjiS the estimated value @ for thej-th erosive event (i.e. the soil loss that
would result from the regression models)s the number of erosive events in the calibration
subset. The validation set was used to test tharacg and robustness of the regression
models SM4E, that was evaluated by RMSEbetween the measured and the estimatgd

values.

The effectiveness of the event soil loss models alas compared with that of the USLE
derived models with a simulated runoff coefficientthe erosivity factor (Kinnell, 2015;
Todisco et al., 2012b). In particular Todisco et(2D12b) coupled the USLE models with a
continuous rainfall-runoff model, MISDc (Brocca at, 2011a) for the estimation of the
runoff volumes. MISDancorporates a limited number of parameters arglaharacterized by
low computational efforts. The input data requir@ only rainfall and air temperature.

Besides runoff, the model simulates also the teaiolution of soil moisture.

In this paper, the analysis performed in Todiscalef2012b) was extended to the current 63
erosive events. The MISDc model was parameterizadximizing the Nesh Satcliff
efficiency index between the estima®@sestand the corresponding observ@gvalues of the
set of calibration events. A regression analysis alao performed between the obserded
and the erosivity indiceRe, Q; estRe and(Q estRe ). The accuracy of the regression models in
soil loss estimation was evaluated IRMSE between the estimate?#,les and the

measurement#\(¢) of the set of validation events.

4 Results and discussion

4.1 Soil moisture estimation through modelled and satellite data

Based on the procedure mentioned above, the paamwaiues of the SWBM and of the
SMA4E models were obtained by maximizing Rferalue between the observed and estimated
Aie values in the calibration events. Figure 2 shawestemporal evolution of the modelled

10
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and satellite soil moisture data at the beginnihthe 63 erosive events occurred during the
2008-2013study period.

Even though the parameters of the SWBM and of tWd Sethod were calibrated for
reproducing soil losses, and not for making the $aib moisture datasets match each other, a
very good agreement among the soil moisture timeses evident. Indeed, a very IRMSE

= 0.03 ni/m® was obtained, even for the validation sets. Theselts confirm the capability
of the ASCAT-derived soil moisture product to piihigh-quality measurements in central
Italy (Brocca et al., 2010; 2011b), even though gpatial mismatch between satellite and
ground data is significant. As has already beenwsho the scientific literature, these
unexpected good results must be attributed totdtessical properties of soil moisture spatial
patterns. Indeed, the temporal dynamics of soilstooe field is often very similar across a
wide range of scales; a phenomenon usually refeored “temporal stability” (e.g., Brocca et
al., 2011b; 2014a). Therefore, local point measergscan be used for obtaining an estimate
of soil moisture over large areas (Brocca et a0} and, viceversa, coarse scale soil
moisture measurements can be properly used forl soale applications (Brocca et al.,
2012).

4.2 Estimation of SM4E model parameters

The scatterplots in Fig. 3 show the regressionwdmt the soil loss and the erosivity factor
0-Re with & > 1 both withf = 054 (Fig.s 3a and 3d) arl= 6. (Fig.s 3b and 3e) for the set of
calibration events. The linear SM4E models=(1) are very similar in the scale factéts, =
0.178 and 0.180. The coefficient of determinatising satellite soil moisture dafe= Osx, R

= 0.358, is higher than that obtained with the $atad soil moisture dad= s, RZ = 0.325.
Also the power SM4E models are similar both in ¢hale factors equal to 0.007 and 0.006,
and in the exponert equal to 1.69 and 1.77 for the modelled and s@elhta, respectively.
The coefficient of determination is slightly higtfer thed = fes; (R* = 0.501), than fof = Osa;

(R? = 0.462), and in any case much higher than theatimodels. The parameters for the
SMA4E models are given in Table 2 (all the everiie white dots in Fig. 3 represent the
events that occurred during the dry period (froomeJuo September), which will be
commented on later in the paper. The erosivityxn#l&. performs better when is raised at an

exponent: > 1, making it possible to obtain higher coeffitieof determinatiof®.

11
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4.3 Soil losses estimated by SM4E models

The calibrated SM4E models were then tested wighvdlidation set to estimate the soil loss,
Aeest Dyusing the corresponding satellite soil moistureigesls, & = 04, or the modelled
ones,f = fes and event rainfall data. The results are giverFig. 4, by showing the
dispersion of theAue, Auees) pairs around the 1:1 line for the linear modeg#4a and 4b)
and the power model (Fig.s 4d and 4e). The resuteyms ofRMSEare derived and given in
Table 2 (all the events). With satellite soil morst 0 = 0s5, the RMSE obtained with the
linear SM4E model is equal to 3.07 Mg/H&f € 0.329) and decreases slightly RMSE=
3.04 Mg/ha R = 0.371) when the power model is used. The erreedse, even if not
substantially, using estimated soil moistére fes; With RMSE= 2.85 Mg/ha I = 0.401)
and RMSE= 2.80 Mg/ha R = 0.338) with linear and power models respectiv@lye better
performance of SM4E when using modelled data is tduhe expected better accuracy of
SWBM (~0.03 m3/ m3) with respect to satellite dat@.05 m3/ m3).

Moreover, the linear and the power models are coatpm terms of confidence intervals of
the regression coefficients. The uncertainty ismested as the percentage of the size of the
90% confidence interval with regard to the corregfog coefficient value. The results show
that the uncertainty in the estimation of coefiitgeis similar (100%). This result is expected,
given that the dataset used is the same. The lowesrtainty (60%) is estimated for the
exponent of the power model when the erosivitydadf-R.)“ is used. Furthermore, for
model comparison, two criteria, namely Akaike imhation criterion (AIC, Akaike, 1974)
and Bayesian information criterion (BIC, Burnhana éknderson, 2002), are used. According
to these criteria the best model provides the |bWé&S and BIC values. The results show that
the power model performs better than linear model.

The power model provides AIC values of 30.14 andb@2espectively fof) = festandf =

Osa, Which are lower than the corresponding values#Band 83.80, derived from the linear
model, thus denoting a statistically significantteeaccuracy. Similarly, the BIC values for
the power model, 26.47 and 28.89, are lower tharctiiresponding values, 83.63 and 82.02,
derived from the linear model. Moreover, accorditeg Nagin and Roeder (2001), the
difference between the BIC values, 57.15 and 52bfined respectively @t = f.candéd =

Osas Can be considered significant, being greater th@n The models usingdRe)“ as

erosivity factor (both satellite and simulat@dappear to work quite well. We note that the
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SMA4E model incorporating satellite-derived soil store data might effectively and easily be

applied over large areas for the estimation of ewexter soil loss.

4.4 Comparison with the previous studies at Masse site

The results provide a clear indication that the @omodels perform better than the linear
models. They also show that the coefficients oexeination of the USLE-derived models
that include simulated or satellite retrieved swibisture in the erosivity factor (SM4E
models) never exceed the value of 0.5. This is tawan that obtained by the USLE-M and
USLE-MM (R? = 0.82) which include direct measurements of theff in the event rainfall-
runoff factor (Todisco et al., 2012b). However, tlechmark for a correct assessment of the
accuracy of the SM4E models is the performancenefUSLE-derived models that include
predicted runoff coefficient); es; in the event rainfall-runoff factor such as thatalysed by
Todisco et al. (2012b). This analysis was extertdetthe current database. As stated earlier
the runoff volumes were estimated from the caldmtaainfall-runoff model MISDc. A paired
t-test shows that there are not significant@.05) differences between the observed and the
estimated runoff samples in both the calibratiom &m the validation sets. Furthermore
MISDc provides fairly accurate event runoff estiesatvith a Nash and Sutcliffe efficiency
index, NSE= 0.416 between th@. estand the observe@. of the calibration events and an
RMSE= 2.56 mm an®SE=0.450 between the validation events.

The regressions models between the soil loss ameribsivity factorQ, e ‘R with o > 1
(Fig.s 3c and 3f) for the set of calibration evemé&se derived and shown in the scatterplots of
Fig. 3. The coefficient of determination usin@; /R )®, R* = 0.304, is higher than that
obtained with the corresponding linear modef, = 0.255. The erosivity Index)r est Re
performs better when is raised to an exponent 1, making it possible to obtain higher
coefficients of determinatioR?. In all cases the coefficient of determinatiorslightly lower

than that obtained for the corresponding SM4E n®del

Furthermore both the AIC and BIC criteria show ttinet power model provides lower values,
40.80 and 37.13, than the linear model, 88.57 a®d83 thus denoting a statistically
significant better accuracy. As seen earlier, atiogr to Nagin and Roeder (2001), the
difference between the BIC values obtained, 4cé8, be considered significant. Moreover,
the AIC and BIC values associated with the USLEw&el models with simulated runoff in

13
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the erosivity factors are always higher than thoseided by the SM4E models, which prove
to be more efficient. The accuracy of the calidamodels in estimating the event plot soil
loss,Aue est Were tested with the validation valuesRafandQe i The results are given in Fig.
4, by showing the dispersion of th&,{ Asees) pairs around the 1:1 line for the linear model
(Fig. 4c) and the power model (Fig. 4f). The resuitterms oRMSEobtained with the linear
model is equal to 2.96 Mg/ha and remain almosttemisvhen the power model is used. The
errors are higher, even if only slightly, than thabtained with the linear SM4E and between
those obtained with the two power SM4E models tedtéy. 5 also shows the comparison
between the results obtained in termRMSEandR? in this study with Eq. (4), the results
obtained by extending the analysis performed inijad et al. (2012b) to the current 63
erosive events, and the results obtained with t8eBEJmodel. Only the results of the power
models compared with the USLE are shown in Fignbesthe power models have proven to
be better than the linear models both in this samyin Todisco et al. (2012b). The accuracy
in the estimation of the soil loss by the USLE-MMbael! that includes the predicted runoff
coefficient in the event rainfall-runoff factor quidied in anRMSE= 2.96 Mg/ha is higher
than that obtained with9¢s{Re)” and slightly lower than that derived obtained wh{Re)"
(Fig. 5). The worst performance is that of the UShBdel with anRMSE= 3.28 Mg/ha,
while the lowest coefficient of determination istabed for the USLE-MM with estimated
runoff (R*= 0.185). It is interesting to notice that the aecy in estimating the event soil loss
of the models with erosivity factor that includée tsimulated runoff coefficient, i.eQ(es{]
Re)”, is overcome surpassed by at least one modelsiest the antecedent soil moistdria

the erosivity index. In Fig. 6, the deviations beén observed and predicted soil loss values
are also given with the corresponding runoff cagéfit and the mean soil moisture (average
of fest and Os5) values. On the one hand, it is evident that tiieoduction of both the soil
moisture and the predicted runoff coefficient dsignificantly reduces the overestimation
issues of the USLE model. The correction is aldecsize also when USLE highly greatly
overestimates soil losses, e.g. in May 2009 andudug013. On the other hand, when USLE
underestimates the measured values, the use ahsature and predicted runoff coefficient
slightly increases the deviations (June and Seperb10, July 2011 and August 2012).
Also given iln Fig. 6 is the Mean Absolute ErrdAE) which confirms the ranking of the
best performing models and clearly shows that tilensoisture is an effective alternative to

estimated runoff in the prediction of the event kiss.
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4.5 Model performance in wet and dry periods

As stated earlier, the white dots in Fig. 3 aneédresent the events that occurred during the
dry period (from June to September). It is eviddmt for these events the estimated soil
losses are distant from the regression line and thédine, thus reducing the value Rfand
RMSE In Fig. 6 the highest deviations between the nteskand estimated values occur in
the dry period events. This is likely due to thetipalar characteristics of summer rainfall
events in central Europe (Todisco et al., 2012ljigaw, 2014). Summer rainfall events are
generally isolated and characterized by high intgressociated with low antecedent soll
moisture but elevated soil losses. Therefore, evim a highR., the erosivity facto-Re is
reduced since both, andf.stassume typically low values. As a representatiarple, the
event characterized by the highest soil Iggg € 19.14 Mg/ha, July 2012) is associated with
the lowest pre-event soil moisture, both satetliéeived @soc = 0.09 m/m?) and simulated
(Bes = 0.05 M/m?). This issue affects th@,-R. erosivity factor too, ifQ; is derived from
runoff simulated by standard rainfall-runoff modeisvhich runoff increases with antecedent
soil moisture conditions (Todisco et al., 2012ly).the dry period, high surface runoff is
observed, despite low values, due to the development of superficial tsrageating a shield
that is responsible for low infiltration and highnoff. This aspect is particularly significant

for bare soil as in the plots considered in thislgt

Given the above consideration, another analysis pegormed excluding the dry period’s
events from the database. Among the 45 remainiegtey23 are used to calibrate the models
and 22 to validate the results. In this case, ae&rd, the performances of all the equations
analyzed generally increase (Table 2). In particdta the calibration subse® = 0.247 and

R? = 0.496 are obtained for the erosivity facty{R.)" for « = 1 andx > 1, respectively. The
(Best Re)” factor givesR? = 0.605 and?? = 0.715 fora = 1 anda > 1, respectively. Therefore,
particularly the performance of the regression ifitantly increases in terms & especially

when modelled data are used..

In validation,RMSE= 1.10 Mg/ha (1.15 Mg/ha) is obtained with satelBoil moisture with
the linear (power) model; by using modelled soilisture, the linear model giveBRMSE=
1.63 Mg/ha, while the power model give8ISE= 1.26 Mg/ha (see Table 2). In comparison,
the USLE model provides &MSE = 1.99 Mg/ha; thus the modified-USLE models
incorporating soil moisture data - the SM4E modefaproved the performance of the USLE

when satellite (modelled) data were considered.
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5 Conclusions

The attempt made in the paper is to use the pretesedl moisture to account for the spatial
variation in runoff within the area for which theilsloss estimates are required. More
specifically the analysis was focused on the evalnaof the effectiveness of the Soaill
Moisture for Erosion model (SM4E), which is deriveg coupling modelled or satellite-
derived soil moisture with the USLE model, in petioig event unit soil loss at the plot scale
in a silty-clay-loam soil in Central Italy. To thend, the Masse experimental station database

for the measurement of event soil losses at pllesgas used.

The formulations analyzed are the USLE-derived Bgns, called SM4E models, in which
the event erosivity factoR,, is corrected by the antecedent soil moistdreand powered to
an exponentr > 1 (a = 1: linear modelg > 1: power model). Both satellite measurements
from the ASCAT sensord(= 6sa) and modelled values through the SWBM= f.s) were
tested. The results showed that including direcismteration of antecedent soil moisture in
the event rainfall-runoff erosivity factor of theSUE enhanced the capacity of the model to

account for variations in event soil losses.

The accuracy of the original USLE model was lowsant that obtained by incorporating
satellite and modelled soil moisture data. The nagsurate model is that with the modelled
soil moisture data when the entire the databasesesl and with the satellite-retrieved soill
moisture data when only the wet period events ansidered. It was in fact also verified that
much of the inaccuracy of the tested models is usummer rainfall events, probably
because of the particular characteristics thatstiieassumes in the dry period (superficial
crusts causing higher runoff): in these cases, bajhlosses are observed in association with
low soil moisture values, and, hence, the modefopmiance decreases. As expected, by
excluding the summer events, the performance dahallanalysed equations increases. This
aspect is particularly important, as it highligttie conditions in which the developed models
fail to reproduce soil losses and that deservethdurinvestigation. More specifically, the
incorporating of the mechanism for the formationsaperficial crusts in the developed soil
water balance model will be the subject of futumeestigations.

We highlight that the obtained results open intémgsscenarios in the overview of the studies

aimed at defining USLE-derived models that coulgrave the unit soil loss estimation at the
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event scale. In particular, the choice of usindg smisture data to correct the rainfall-runoff
erosivity factor takes on great importance forphactice. Indeed, soil moisture is a relatively
simple measurement, and different techniques arailaéle for providing accurate
measurements at the field scale. Moreover, renaisiisg soil moisture data are also widely
available on a global scale. Through satellite d#tare is the potential of applying the
developed USLE-derived model for large-scale momgp and quantification of the soil

erosion process.
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Table 1. Summary statistics of the 22 m long phlitcavailable at the Masse site.

Plot he Re Qeii Aci
_ s LS N N
size u CV  u CVv u Cv u CV

22x8 16 204 62 354 652 818 1026 113.6 136.64.1 221.5

22x4 16 204 53 332 66.6 751 110.0 98 24 1438 260.7

s, slope steepness (W){5, USLE topographic factor§ye, number of events per plot scheme;
he, event rainfall depth (mmRe, event rainfall erosivity factor (MJ-mm-hdi'); Ny, number
of measurements per plot scherfig;, plot event runoff volume (mmM§e;, plot event soil

loss (Mg-hd); 4, meanCV, coefficient of variation (%).
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1 Table 2. Calibration parameters and validation Rean Square Error for the SM4E models

2 (Eq.4).
All theevents Wet period events

Erosivity

factor RM SE RM SE Kus a

(Mg/ha) (Mg/ha) '

Osat - Re 3.07 0.178 - 1.10 0.174 -
(Psat- Re)” 3.04 0.007 1.70 1.15 0.042 1.4

Oest* Re 2.85 0.180 - 1.63 0.270 -
(Best - Re)” 2.80 0.006 1.78 1.26 0.043 1.29

RMSE Root Mean Square Errdf,: scale factory: exponent for the erosivity factor.
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Figure 1. View of the Masse experimental statiamfionitoring water soil loss at plot scale

in the Umbria of region (Central Italy).
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RMSE=0.03 (validation)

6 (m?/m?)

Figure 2. Time series of satellite-derived andneated (through the SWBM) soil moisture at

the beginning of 63 erosive events in the studjope2008-2013.
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Figure 3. Regression models between measuredossil4,. and theerosivity indice 0-Re

and Q- R of the calibration subs. Linear models (a), (b), (cBM4E model and satellite st

moisture (a); SM4E model arestimated soil moisture (b); USLE-model and estimated

runoff coefficient (c) Power models (d), (e), (fSM4E model and satellite soil listure (d);

SM4E model andestimatedsoil moisture (e); USLE-MM mdel andestimated runoff
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Figure 4. Testing of the Avs 0-R. and the A vs Q-R models with the validation subs
Linear models (a), (b), (cSM4E model and satellite soil moisture (a); SM4Edeicand
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Figure 5. Comparison of the results obtained bypter SM4E model with both satellite
and estimated soil moisture, the ULSE-MM includipgedicted runoff, and the original
USLE, in terms of root mean square erf@MSH and coefficient of determination ¥R
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Figure 6. Comparison of the results obtained leygbwer SM4E model with both satellite
and estimated soil moisture, the ULSE-MM includipgedicted runoff, and the original
USLE, in terms of deviations between estimategd,.A and observed, & soil losses. The
values of the estimated runoff and of the meanmoilsture computed as the mean between

the estimated and the satellite retrieved valuesbso given.
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Figure captions

Figure 1. View of the Masse experimental statiamfionitoring water soil loss at plot scale

in the Umbria of region (Central Italy).

Figure 2. Time series of satellite-derived andneated (through the SWBM) soil moisture at

the beginning of 63 erosive events in the studope2008-2013.

Figure 3. Regression models between measuredassilA and the erosivity indice8: Re

and Q-R of the calibration subset. Linear models (a), (b), SM4E model and satellite soill
moisture (a); SM4E model and estimated soil mogsiilm); USLE-M model and estimated
runoff coefficient (c). Power models (d), (e), ®M4E model and satellite soil moisture (d);
SM4E model and estimated soil moisture (e); USLE-Mihbdel and estimated runoff

coefficient (f).

Figure 4. Testing of the Avs 0-R. and the A vs QR models with the validation subset.
Linear models (a), (b), (c): SM4E model and sdtelfioil moisture (a); SM4E model and
estimated soil moisture (b); USLE-M model and eated runoff coefficient (c). Power

models (d), (e), (f): SM4E model and satellite sodisture (d); SM4E model and estimated
soil moisture (e); USLE-MM model and estimated ffficoefficient (f).

Figure 5. Comparison of the results obtained bypbwer SM4E model with both satellite
and estimated soil moisture, the ULSE-MM includipgedicted runoff, and the original

USLE, in terms of root mean square er®MSH and coefficient of determination {R
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Figure 6. Comparison of the results obtained lgygbwer SM4E model with both satellite
and estimated soil moisture, the ULSE-MM includipgedicted runoff, and the original
USLE, in terms of deviations between estimategd,.4 and observed, A soil losses. The
values of the estimated runoff and of the meanmsoilsture computed as the mean between

the estimated and the satellite retrieved valueskso given.
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