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ABSTRACT 11 

 12 

The Prediction in Ungauged Basins (PUB) scientific initiative (2003-2012 by IAHS) put considerable 13 

effort into improving the reliability of hydrological models to predict flow response in ungauged 14 

rivers. PUB’s collective experience advanced hydrologic science and defined guidelines to make 15 

predictions in catchments without observed runoff data. At present, there is a raised interest in 16 

applying catchment models for large domains and large data samples in a multi-basin manner, to 17 

explore emerging spatial patterns or learn from comparative hydrology. However, such modelling 18 

involves additional sources of uncertainties caused by the inconsistency between input datasets, i.e. 19 

particularly regional and global databases. This may lead to inaccurate model parameterisation and 20 

erroneous process understanding. In order to bridge the gap between the best practices for flow 21 

predictions in single catchments and multi-basins at the large scale, we present a further developed 22 

and slightly modified version of the recommended best practices for PUB by Takeuchi et al. (2013). 23 

By using examples from a recent HYPE hydrological model set-up across 6 000 subbasins for the 24 

Indian subcontinent, named India-HYPE v1.0, we explore the PUB recommendations, indicate 25 

challenges and recommend ways to overcome them. We describe the work process related to: (a) 26 

errors and inconsistencies in global databases, unknown human impacts, poor data quality; (b) robust 27 

approaches to identify model parameters using a stepwise calibration approach, remote sensing data, 28 

expert knowledge and catchment similarities; and (c) evaluation based on flow signatures and 29 

performance metrics, using both multiple criteria and multiple variables, and independent gauges for 30 

“blind tests”. The results show that despite the strong physiographical gradient over the subcontinent, 31 

a single model can describe the spatial variability in dominant hydrological processes at the catchment 32 

scale. In addition, spatial model deficiencies are used to identify potential improvements of the model 33 

concept. Eventually, through simultaneous calibration using numerous gauges, the median Kling-34 

Gupta Efficiency for river flow increased from 0.14 to 0.64. We finally demonstrate the potential of 35 

multi-basin modelling for comparative hydrology using PUB, by grouping the 6 000 subbasins based 36 

on similarities in flow signatures to gain insights in spatial patterns of flow generating processes at the 37 

large scale.  38 
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1. INTRODUCTION 45 

Numerical hydrological models have been used world-wide for operational needs and scientific 46 

research since the early 1970s (e.g. Hrachowitz et al., 2013; Pechlivanidis et al., 2011; Refsgaard et 47 

al., 2010; Singh, 1995). The Prediction in Ungauged Basins (PUB) initiative of the International 48 

Association of Hydrological Sciences (IAHS) was launched in 2003 to improve the reliability of 49 

models at ungauged regions, overcome the fragmentation in catchment hydrology, and advance the 50 

collective understanding (Sivapalan et al., 2003). PUB highlighted the need to: 1) characterise the data 51 

and model information content, 2) examine the extent to which a model can be reconciled with 52 

observations, and 3) point towards model structural improvements (Gupta et al., 2008). In this regard, 53 

several approaches (e.g. multi-objectives, signature measures, information-based metrics, sub-period 54 

evaluation) have been applied to reveal significant information about the hydrological systems and 55 

indicate perceived model structural errors (Hrachowitz et al., 2013). The use of parameter constraints 56 

has also been a significant advancement since such an approach can increase model consistency and 57 

reliability (Bulygina et al., 2009; Hrachowitz et al., 2014). Constraints are generated by independent 58 

information via either additional data, i.e. remote sensing, tracers, quality, multiple-variables, etc.   59 

(Arheimer et al., 2011; Finger et al., 2011; McDonnell et al., 2010; McMillan et al., 2012; Samaniego 60 

et al., 2011) and/or expert knowledge (Bulygina et al., 2012; Fenicia et al., 2008; Gao et al., 2014). 61 

 62 

It is apparent that the PUB community made significant progress towards these scientific objectives; 63 

however the investigations were normally conducted at only one or a limited number of catchments 64 

(Hrachowitz et al., 2013). Such an approach is indeed focused on detailed process investigation but is 65 

limited when it comes to generalisation of the underlying hydrological hypotheses; to advance science 66 

in hydrology, much can be gained by comparative hydrology to search for robustness in hypothesis 67 

(Blöschl et al., 2013; Falkenmark and Chapman, 1989). The need for a large sample of process 68 

understanding and model evaluation has also been highlighted in the new 2013-2022 IAHS scientific 69 

initiative named “Panta Rhei – Everything Flows” (Montanari et al., 2013).  70 

 71 

Multi-basin modelling at the large scale complement the “deep” knowledge from single catchment 72 

modelling, whilst the current release of open and global datasets has given new opportunities for 73 

catchment hydrologists to contribute (Andreassian et al., 2006; Arheimer and Brandt, 1998; Gupta et 74 

al., 2014; Johnston and Smakhtin, 2014). Hydrological modelling at the large scale has the potential to 75 
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encompass many river basins, cross regional and international boundaries and represent a number of 76 

different physiographic and climatic zones (Alcamo et al., 2003; Raje et al., 2013; Widén-Nilsson et 77 

al., 2007). Application of multi-basin modelling at the large scale can be used to predict the 78 

hydrological response at interior ungauged basins (Arheimer and Lindström, 2013; Donnelly et al., 79 

2015; Samaniego et al., 2011; Strömqvist et al., 2012). The use of large sample of gauges can also 80 

allow exploration of emerging patterns (e.g. climate change impacts) and facilitate comparative 81 

hydrology allowing to test hypothesis for many catchments with a wide range of environmental 82 

conditions (Blöschl et al., 2013; Donnelly et al., 2015; Falkenmark and Chapman, 1989). 83 

 84 

Modelling at the large scale, however, includes additional model uncertainties. Physical properties 85 

(e.g. topography, vegetation and soil type) in large systems generally show higher spatial variability 86 

and thus larger heterogeneity in system behaviour (Coron et al., 2012; Sawicz et al., 2011), which in 87 

turn affects model parameters (Kumar et al., 2013). In addition, large river basins are often strongly 88 

influenced by human activities, such as irrigation, hydropower production, and groundwater use, for 89 

which information is rarely available at high resolution in global databases. This introduces additional 90 

uncertainty regarding process understanding and description at the large scale. Moreover, the 91 

topographic and forcing data of global datasets (i.e. water divides, weather and climatic data) are more 92 

likely to be inconsistent, erroneous, and/or only available at a coarse resolution (Donnelly et al., 2012; 93 

Kauffeldt et al., 2013). 94 

 95 

Applying catchment models at the continental scale in a multi-basin manner is a way to introduce 96 

catchment modelling approaches to the existing global hydrological models, i.e. land-surface schemes 97 

and global water-allocation concepts. In this paper, we pose the following scientific questions: 1) to 98 

what extent are the PUB recommendations for catchment scale also relevant for hydrological 99 

modelling at the large scale? and 2) how have the scientific advancements during the PUB decade 100 

improved the potential for process-based hydrological modelling at the large scale? To address these 101 

questions, we: (a) identify specific challenges at the large scale (uncertain/erroneous basin delineation 102 

and routing, errors in global datasets, human impact (i.e. reservoir/dams)) and exemplify on how to 103 

overcome them, (b) further develop and modify the PUB best practices to be applicable at the large 104 

scale, (c) illustrate the improvement on parameter identification by using remote sensing data and 105 

expert knowledge, (d) cluster catchments based on physiographic similarity and their hydrological 106 

functioning, (e) ensure model reliability using flow signatures and temporal variability of multiple 107 

modelled variables, (f) detect links between model performance and physiographical characteristics to 108 

understand model inadequacies along the gradient, and finally (g) discuss how process understanding 109 

can benefit from multi-basin modelling and what hydrological insights can be gained by analysing 110 

spatial patterns from large-scale predictions in ungauged basins. We use examples from the recent 111 

HYPE model set-up of the Indian subcontinent, which experiences unique and strong hydro-climatic 112 
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and physiographic characteristics and poses extraordinary scientific challenges to understand, quantify 113 

and predict hydrological responses. 114 

 115 

2. BEST PRACTICES FOR PUB WHEN MODELLING MULTI-BASINS AT THE 116 

LARGE SCALE 117 

Takeuchi et al. (2013) recommend a six step procedure for predicting runoff at locations where no 118 

observed runoff data are available (Fig. 1A). This best practice recommendation is intended for single 119 

catchments, and requires modification when applied to multi-basins at the large scale (Fig. 1B). Big 120 

datasets are subject to uncertainty and identification of errors is usually time consuming. Analysis of 121 

each dataset or catchment may be impractical and risk focusing on details instead of the most crucial 122 

overall hydrological functioning across the model domain. We therefore recommend starting with a 123 

top-down approach, in which the model is setup directly before proceeding with the PUB 124 

recommendations (circle of steps in Fig. 1). The hydrological model needs to include the description 125 

of most water fluxes, storages and anthropogenic influences that can be relevant and satisfy the 126 

modelling objectives. In addition, we recommend using a model that is familiar to the modeller and 127 

open for changes, allowing coherent hydrological interpretations and code adjustments to cope with 128 

the region’s spatial heterogeneity and hydrological features. Setting-up the model system includes to: 129 

(i) acquire readily available datasets that cover the entire geographical domain or merge datasets to 130 

get a full coverage; (ii) define calculation points and river network, by taking into account the location 131 

of gauges, major landscape features, user requests, catchment borders and routing; (iii) make a first set 132 

of model input-data files and make the first model run for the model domain with a multi-basin 133 

resolution. The analysis of results from the first model run will indicate major obstacles, such as 134 

systematic errors in input data or model structural limitations. Moreover, by having the technical 135 

system in place immediately facilitates an incremental and agile approach to model set-up, with direct 136 

feedback on model performance at many gauges. We then recommend starting to improve the 137 

performance according to the six steps of best practices for predictions in ungauged basins, using a 138 

bottom-up approach to refine input data, model structure and parameter values. 139 

 140 

2.1. Read the landscape: “Go out to your catchment, look around…!” (cit: page 385 in Blöschl et 141 

al. (2013)) 142 

It is practically impossible to visit all the basins in a large-scale domain, so instead we recommend: (i) 143 

navigate on hard-copies, digitised maps and webpages (e.g. Google Earth) to check landscape 144 

characteristics; (ii) review the literature for dominant processes and well-known features or 145 

hydrological challenges in the region; (iii) proceed with quality checks and cross-validations towards 146 

other data sources (i.e. sources that contain limited in space but local information); (iv) validate the 147 

basin delineation and routing using archived metadata from other available datasets; (v) check quality 148 

of observed discharge data to assure coherence of time-series; and finally, (vi) check the 149 
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spatiotemporal information of meteorological datasets after transformation from the grid to the 150 

subbasin scale. It is important to get an understanding of the entire domain and ensure that the datasets 151 

correspond to this understanding, and hence tackling systematic errors in the data. 152 

 153 

2.2. Runoff signatures and processes: “Analyse all runoff signatures in nearby catchments to get 154 

an understanding…!” (cit: page 385 in Blöschl et al. (2013)) 155 

Detailed inspection of flow signatures for each gauging station from large datasets (often in the range 156 

of thousand stations, see http://hypeweb.smhi.se/) is best done by using clustering techniques to 157 

discover spatial similarities (Sawicz et al., 2011). It is then important to use many flow signatures for 158 

each site to fully capture the characteristics of the hydrographs. We also recommend searching for 159 

statistical relationships between the observed flow signatures and basin characteristics (both 160 

physiography and human alteration) across the model domain. This will increase our understanding of 161 

dominant processes and fitness of model structure (Donnelly et al., 2015).  162 

 163 

2.3. Process similarity and grouping: “…find similar gauged catchments to assist in predicting 164 

runoff in the ungauged basin!” (cit: page 385 in Blöschl et al. (2013)) 165 

In most process-based models, the modeller has some freedom to define the characteristics of the 166 

smallest calculation units, which are normally linked to physiography to account for spatial 167 

distribution of for instance soil properties or land use. When producing these calculation units both 168 

technical (e.g. computational efficiency) and conceptual (e.g. restrictions with the number of classes) 169 

concerns must be taken into account. However, lakes, wetlands, glacier, and urban areas should be 170 

respected since even small proportions can significantly alter the flow regime. When calculation units 171 

are defined, we recommend clustering the basins/gauges with similar upstream characteristics and/or 172 

system behaviour to isolate key processes for regionalisation of parameter values during calibration. 173 

We finally suggest checking the spatial distribution by plotting the catchment characteristics of 174 

subbasins on maps and compare to other or original data sources. 175 

 176 

2.1-3. Quality checks: This is an additional step in the procedure accounting for repetition of step 1-3 177 

in an iterative way to ensure quality in the required input data and files of the model prior to 178 

parameter tuning (Fig. 1); it is easy to fail and introduce errors when handling large datasets by 179 

automatic scripts (generalisation of scripts is not always straightforward and some manual adjustment 180 

is usually required) and/or human error (particularly when many modellers collaborate), which can 181 

lead to erroneous assumptions on hydrological processes during calibration. We recommend to 182 

analyse flow time-series as follows: (i) compare modelled to observed time-series and signatures; (ii) 183 

check water-volume errors and their distribution in space; (iii) inspect the spatial distribution of model 184 

dynamics to correct spatial patterns from systematic errors; and (iv) search for errors in the model set-185 

up (routing, meteorological input etc.).  186 
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 187 

2.4. Model - Right for the right reasons: “Build… model for the signature of interest… 188 

regionalise the parameters from similar catchments…more information than the 189 

hydrograph…!” (cit: page 385 in Blöschl et al. (2013)) 190 

In here, it is crucial that the model structure represents the modeller’s perception of how the 191 

hydrological system is organized and how the various processes are interconnected. For the model set-192 

up to be “right for the right reasons”, we recommend to: (i) constrain relevant parameters to 193 

alternative data than just time-series of river discharge (e.g. snowmelt parameters to snow depths, 194 

evapotranspiration parameters to data from flux towers and satellites) or select a subset of gauges 195 

representing different flow generating processes; (ii) apply expert knowledge when analysing internal 196 

variables to ensure that the model structure reflects the understanding of flow paths and their 197 

interconnections; (iii) change the model algorithms or structure if tuning of parameters is not enough 198 

to reflect the perception of the hydrological system; (iv) include specific rating curves of lakes and 199 

reservoirs wherever available, and tune parameters for irrigation and dam regulation to fit the flow 200 

dynamics at downstream gauges; and (v) assimilate observed data if possible, e.g. snow, upstream 201 

discharge, and regulation rules in reservoirs.  202 

 203 

2.5. Hydrological interpretation: “Interpret the parameters… and justify their values against 204 

what was learnt during field trips and other data…!” (cit: page 385 in Blöschl et al. (2013)) 205 

Although, hydrological interpretation has been present in every step of the model set-up procedure 206 

described here, this step includes the overall synthesis and analysis of results both at the large scale 207 

and for single catchments in the multi-basin approach. For spatial interpretation, we recommend 208 

plotting maps with multi-basin outputs for several variables, performance criteria and signatures 209 

across the model domain. This allows checking model’s coherency at various landscape features, e.g. 210 

spatial patterns of vegetation, geology, climate, population density, and human alterations. The 211 

objective is to understand the drivers that influence flow, find rational reasons behind the hydrological 212 

heterogeneity, and identify knowledge gaps or model limitations. For temporal interpretation, we 213 

recommend plotting time-series for some basins in each group of similar landscape units and 214 

catchment response. This is to make sure that the model reflects our perception and assists to better 215 

understand the dominant drivers of the flow generation processes and water dynamics in the region.   216 

 217 

2.6. Uncertainty – local and regional: “… by combining error propagation methods, regional 218 

cross-validation and hydrological interpretation…!” (cit: page 385 in Blöschl et al. (2013)) 219 

Multi-basin models are more computationally demanding than single basin models and it is therefore 220 

not always feasible to explicitly address all uncertainties from all sources. To explore the model 221 

performance in ungauged basins, we recommend dividing the set of gauging stations into those used 222 

in calibration and independent “blind-tests”, respectively. Cross-validation, e.g. using the jackknife 223 



 

7 
 

procedure (Good, 2006), is practically difficult in process-based modelling of multi-basins. To 224 

examine uncertainties we recommend to: (i) use several performance (diagnostic) criteria and many 225 

flow signatures; (ii) relate the spatial distribution of model performance to physiographical variables; 226 

and (iii) check model performance for independent gauging sites and new datasets.  227 

 228 

The major spatiotemporal deviations found between modelled and observed data should be the focus 229 

for the next round in the circle of steps for better predictions. We recommend reading the landscape 230 

and searching for local knowledge again to elaborate new hypotheses of hydrological functioning and 231 

data sources. We also recommend documenting and version-managing each model set-up before 232 

looping into step 1, to ensure knowledge accumulation for a broader audience and to make the set-up 233 

process transparent. This sets a baseline for the next round of improvements. 234 

 235 

3. DATA AND METHODS 236 

3.1. Study area and data description 237 

India is considered the seventh largest country by area and the second-most populous country with 238 

over 1.2 billion people. The country covers an area of about 3.3 million km2 and some of its river 239 

basins cover several countries in the area (i.e. China, Nepal, Pakistan, and Bangladesh; see Fig. 2). 240 

The spatiotemporal variation in climate is perhaps greater than any other area of similar size in the 241 

world. The climate is generally strongly influenced by the Himalayas and the Thar Desert in the 242 

northwest, both of which contribute to drive the summer and winter monsoons (Attri and Tyagi, 243 

2010). Four seasons can be distinguished: winter (January-February), pre-monsoon (March-May), 244 

monsoon (June-September), and post-monsoon (October-December). The temperature varies between 245 

seasons ranging from mean temperatures of about 10 °C in winter to about 32 °C in pre-monsoon 246 

season. In terms of spatial variability, the rainfall pattern roughly reflects the different climate regimes 247 

of the country, which vary from humid in the northeast (rainfall occurs about 180 days/year), to arid 248 

in Rajasthan (20 days/year). Accordingly, river flow show large spatial and seasonal variability across 249 

the sub-continent (Fig. 2b), e.g. the Ganga River has an intra-annual amplitude in monthly river 250 

discharge of 50 000 m3/s. 251 

 252 

For the hydrological model set-up, we use global datasets to extract the input data (see Table 1). 253 

APHRODITE (Yatagai et al., 2009, 2012) and AphroTEMP (Yasutomi et al., 2011) are the only long-254 

term continental-scale datasets that contain a dense network of daily data (in here, only daily 255 

precipitation and mean temperature are required) for Asia including the Himalayas. Data of land use 256 

and soil type were aggregated into fewer classes than in the original databases. Discharge data are 257 

available from the Global Runoff Data Centre (GRDC) at 42 sites limited to monthly values in the 258 

period 1971-1979. More discharge data are held in the Indian government agencies but are not open to 259 

the public. Consequently, in this application, flow information (Table 2) is available only for a small 260 
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fraction of the subcontinent, which makes the region a great example for PUB. Monthly potential 261 

evapotranspiration (pot. E) data were obtained for the period 2000-2008 from the Moderate 262 

Resolution Imaging Spectroradiometer (MODIS) global dataset (Mu et al., 2007, 2011). The dataset 263 

covers the domain in a spatial resolution of 1 km and is derived based on the Penman-Monteith 264 

(Penman, 1948) approach. 265 

 266 

Water divides and catchment characteristics were appointed for each subbasin by using the World 267 

Hydrological model Input Set-up Tool (WHIST; http://hype.sourceforge.net/WHIST/). This is a 268 

spatial information tool from SMHI to transform data and create input files for hydrological models, 269 

from different types of databases. From the information of topographic databases, for example, 270 

WHIST can delineate the subbasins and the linking (routing) between them. This is also the tool for 271 

allocating information of soil, vegetation, surface water, regulation and irrigation to each calculation 272 

unit. For the Indian subcontinent, we chose to work with some 6 000 points for calculations of runoff 273 

in the river network (i.e. 6 000 subbasins). 274 

 275 

3.2. A multi-basin hydrological model for large-scale applications - the HYPE model 276 

The Hydrological Predictions for the Environment (HYPE) model is a dynamic rainfall-runoff model, 277 

which describes the hydrological processes at the catchment scale (Lindström et al., 2010). The model 278 

represents processes for snow/ice, evapotranspiration, soil moisture and flow paths, groundwater 279 

fluctuations, aquifers, human alterations (reservoirs, regulation, irrigation, abstractions), and routing 280 

through rivers and lakes. The HYPE source code is continuously developed and released in new 281 

versions for open access at http://hype.sourceforge.net/, where also model descriptions, manuals and 282 

file descriptions can be downloaded.  283 

 284 

HYPE is most often run at a daily time-step and simulates the water flow paths in soil for 285 

Hydrological Response Units (HRU), which are defined by gridded soil and land-use classes and can 286 

be divided in up to three layers with a fluctuating groundwater table. The HRUs are further 287 

aggregated into subbasins based on topography. Elevation is also used to get temperature variations 288 

within a subbasin to influence the snow melt and storage as well as evapotranspiration. Glaciers have 289 

a variable surface and volume, while lakes are defined as classes with specified areas and variable 290 

volume. Lakes receive runoff from the local catchment and, if located in the subbasin outlet, also the 291 

river flow from upstream subbasins. On glaciers and lakes, precipitation falls directly on the surfaces 292 

and water evaporates at the potential rate. Each lake has a defined depth below an outflow threshold. 293 

The outflow from lakes is determined by a general rating curve unless a specific one is given or if the 294 

lake is regulated. Regulated lakes and man-made reservoirs are treated equally but a simple regulation 295 

rule can be used, in which the outflow is constant or follows a seasonal function (as it is often the case 296 

with hydropower) for water levels above the threshold. A rating curve for the spillways can be used 297 
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when the reservoir is full.  298 

 299 

Irrigation is simulated based on crop water demands calculated either with the FAO-56 crop 300 

coefficient method (Allen et al., 1998) or relative to a reference flooding level for submerged crops 301 

(e.g. rice). The demands are withdrawn from rivers, lakes, reservoirs, and/or groundwater within 302 

and/or external to the subbasin where the demands originated and are constrained by the water 303 

available at these sources. After subtraction of conveyance losses, the withdrawn water is applied as 304 

additional infiltration to the irrigated soils. The agriculture and irrigation datasets (see Table 1) are 305 

used to define irrigated area, crop types, growing seasons, crop coefficients, irrigation methods and 306 

efficiencies, and irrigation sources. The irrigation parameters regulating water demand and abstraction 307 

are usually manually calibrated using discharge stations in irrigation-dominated areas.  308 

 309 

River discharge is routed between the subbasins along the river network and may also pass subbasins, 310 

flow laterally in the soil between subbasins or interact with a deeper groundwater aquifer in the 311 

model. For the study in this paper, the HYPE model version 4.5.0 was set up for the entire Indian 312 

subcontinent (4.9 million km2) with a resolution of 6 010 subbasins, i.e. on average 810 km2, and is 313 

referred to as India-HYPE version 1.0.  314 

 315 

3.3. Model calibration and regionalisation 316 

The calibration objective was to derive a reliable model of adequately representing the temporal 317 

dynamics of flow (high flows, timing, variability and volume) across the Indian river systems. With 318 

such a model set-up, we can identify spatial patterns of hydrologic similarity across the subcontinent, 319 

and also analyse impacts of environmental change on water resources. The HYPE model has many 320 

rate coefficients, constants and parameters, which in theory could be adjusted, but in practice some 20 321 

are tuned during calibration. Many of the parameters are linked to physiographic characteristics in the 322 

landscape, such as soil type and depths (soil dependent parameters) or vegetation (land use dependent 323 

parameters), while others are assumed to be general to the entire domain (general parameters) or 324 

specific to a defined region or river (regional parameters). Parameters for each HRU are calibrated for 325 

representative gauged basins and then transferred to similar HRUs, which are gridded with higher 326 

resolution than the subbasins across the whole domain to account for spatial variability in soil and 327 

land use. Using the distributed HRU approach in the multi-basin concept is thus one part of the 328 

regionalisation method for parameter values. Some other parameters, however, are either estimated 329 

from literature values and from previous modelling experiences (a priori values) or identified in the 330 

(automatic or manual) calibration procedure. Slightly different methods for regionalisation of 331 

parameter values have been used when setting up the different HYPE model applications, depending 332 

on access to gauging stations, additional data sources and expert knowledge. The following procedure 333 

was used for India-HYPE v.1.0: 334 
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 335 

Stepwise, iterative calibration of parameter groups  336 

To tackle, to a certain extent, the equifinality problem in this processed-based model, the parameters 337 

(general, soil and land use dependent, specific or regional) are calibrated in a progressive way, i.e. 338 

stepwise calibration (Arheimer and Lindström, 2013) using different subsets of the gauging station in 339 

each step. In this way, errors induced by inappropriate parameter values in some model processes are 340 

not compensated for by introducing errors in other parts of the model. Hence, groups of parameters 341 

responsible for certain flow paths or processes (e.g. soil water holding capacity) are calibrated first 342 

and then kept constant when the second group of parameters (e.g. river routing) is calibrated. 343 

However, stepping downstream along the model code includes some reconsideration about chosen 344 

parameter values in an iterative procedure. For each step and group of parameters, a subset of 345 

representative gauging stations is used in simultaneous calibration, which means that no gauging 346 

station is calibrated individually. This is to get parameters that are robust also for ungauged basins. 347 

Model performance in specific sites is thus traded against average performance across the full model 348 

domain or regions. 349 

 350 

For the Indian subcontinent, the following groups of HYPE parameters were calibrated stepwise: (i) 351 

general parameters (e.g. precipitation and temperature correction factors with elevation etc.), which 352 

significantly affect the water balance in the system, snow pack and distribution, and regional 353 

discharge; (ii) Soil and land use dependent parameters (e.g. field capacity, rate of potential 354 

evapotranspiration etc.), which can influence the dynamics of the flow signal, groundwater levels and 355 

transit-time, (iii) Regional parameters, which are applied as multipliers to some of the general-soil-356 

land use parameters and may be seen as downscaling parameters as they compensate for the scaling 357 

effects and/or other types of uncertainty. The multipliers are either specific for a region or a river-358 

basin.  359 

 360 

Expert knowledge for parameter constraints 361 

During this progressive stepwise calibration approach, constraints based on expert knowledge and 362 

basin similarity are introduced. As an example, we apply a constraint imposed on the mactrsm soil 363 

dependent parameter (mactrsm is the threshold soil water for macropore flow and surface runoff). In 364 

the first run, during the calibration procedure the parameter is allowed to vary freely within the 365 

parameter range and all distributions for the soil types are acceptable (unconstrained sets). We then 366 

apply expert knowledge on the parameter distribution and agree that a model will only be retained as 367 

feasible if it can satisfy the constraint: 368 

 369 

mactrsmCoarse > mactrsmMedium > mactrsmFine 370 

 371 
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The mactrsm values for the remaining two soil types in the India-HYPE model domain, i.e. organic 372 

and shallow, are expected to be close to the corresponding values for the coarse soil; although the 373 

value for shallow soil is constrained to be less than mactrsm for organic soils.  374 

 375 

Spatial clustering based on catchment similarities 376 

We assume hydrologic similarity across the region on the basis of similarity in physiographic 377 

characteristics. We applied a k-means clustering approach within the 17-dimensional space, consisting 378 

of: 5 soil types, 7 land use types, mean annual precipitation, mean temperature, mean slope, mean 379 

elevation, and basin area. This separated the subbasins into homogeneous classes. A silhouette 380 

analysis was used to overcome the subjectivity on the determination of the number of clusters. The 381 

catchment similarity approach significantly reduces the number of parameters, while it allows 382 

regionalisation of parameters, which are assumed to be robust enough also for ungauged basins. 383 

 384 

Spatiotemporal calibration and evaluation 385 

India-HYPE was calibrated and evaluated in a multi-basin approach by considering the median 386 

performance in all selected stations. 30 stations were selected for model calibration and 12 “blind” 387 

stations for spatial validation. The years 1969-1970 are used as a model warm-up period, the next 5 388 

years for model calibration (1971-1975) and the final 4 years for temporal performance evaluation 389 

(1976-1979).  390 

 391 

The Differential Evolution Markov Chain (DE-MC; Ter Braak, 2006) optimisation algorithm is used 392 

to explore the feasible parameter space and to investigate parameter sensitivity. DE-MC was applied 393 

at each step of the iterative calibration procedure (to optimise the general, soil and land use dependent, 394 

and regional parameters) with 200 generations of 100 parallel chains each being explored 395 

respectively. The Kling-Gupta Efficiency, KGE (Gupta et al., 2009), was used to define the 396 

performance of the model towards the observed discharge. KGE allows a multi-objective perspective 397 

by focusing to separately minimise the correlation (timing) error, variability error, and bias (volume) 398 

error. We also investigated the relative influence of timing, variability and volume error on the KGE 399 

value. To do this, we transformed the three components to result into a consistent range of possible 400 

values (the metrics are named as cc, alpha and beta corresponding to timing, variability and volume 401 

errors respectively; see Appendix A). 402 

 403 

3.4. Evaluation beyond standard performance metrics 404 

Evaluation based on flow signatures  405 

The model was further evaluated on its ability to capture spatial and temporal variability in discharge 406 

by comparing modelled flow signatures and monthly simulations with observed data. Here, three flow 407 

signatures are calculated for each gauging station to illustrate different aspects of the flow variability 408 
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and the hydrograph characteristics (Appendix A): the mean annual specific runoff (Qm, mm yr-1), the 409 

normalised high flow statistic (q05, -) and the slope of the flow duration curve (mFDC, -).  410 

 411 

Multi-variable evaluation 412 

To judge model credibility, other observed variables than river discharge are used, for instance from 413 

satellite products. For India-HYPE, these included evaluations against estimated snow areal extent 414 

and snow water equivalent from the GlobSnow system and potential evapotranspiration (pot. E) from 415 

the MODIS system. The assumption is that MODIS pot. E can be used as reference to calibrate the 416 

HYPE parameters that control pot. E; this refers only to the cevp land-use dependent parameter, which 417 

is a coefficient of potential evapotranspiration (mm/d °C) (Lindström et al., 2010). The cevp 418 

parameter was optimised for each land use type so that HYPE modelled annual pot. E matches the 419 

MODIS annual pot. E at the entire model domain. A Monte Carlo uniform random search was used to 420 

explore the feasible cevp parameter space (constant for each land use type; 0.15-0.30) and to 421 

investigate parameter identifiability and interdependence (10 000 samples). The Root Mean Square 422 

Error (RMSE) and Absolute Bias (Bias) were used as objective functions in this analysis; 0 values 423 

indicate a perfect model with no errors for both criteria. Note that the analysis was conducted in the 424 

2000-2008 period during which MODIS data were available. We therefore assume that the cevp 425 

parameter is static in time and representative also for the 1971-1979 period. 426 

 427 

Linking performance to physiographical characteristics 428 

To better understand the model performance and identify potential for model improvements, we apply 429 

classification and regression trees (CART; Breiman et al., 1984). CART is a recursive-partitioning 430 

algorithm that classifies the space defined by the input variables (i.e. physiographic-climatic 431 

characteristics) based on the output variable (i.e. KGE model performance). The tree consists of a 432 

series of nodes, where each node is a logical expression based on a similarity metric in the input space 433 

(physiographic-climatic characteristics). In this case, we divided the KGE performance into three 434 

groups – bad (KGE < 0.4), medium (0.4 < KGE < 0.7), and good (KGE > 0.7), which were termed 435 

C0, C1 and C2 respectively. A terminal leaf exists at the end of each branch of the tree, where the 436 

probability of belonging to any of the three output groups can be inspected. Here we summarised the 437 

physiographic-climatic characteristics of the basin into 5 soil types (coarse, medium, fine, organic and 438 

shallow), 7 land use types (crops, forest, open land with vegetation, urban, bare/desert, glacier, water), 439 

mean annual precipitation and mean temperature. 440 

 441 

3.5. Catchment functioning across gradients 442 

We finally explored the spatial runoff patterns across the entire subcontinent by analysing the flow 443 

characteristics in all modelled 6 000 catchments. In here, we used the modelled discharge and 444 

calculated 12 flow signatures for each subbasin (see Appendix A): Mean annual specific discharge 445 
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(mm yr-1); Range of Pardé coefficient (-); Slope of FDC (-); Normalised low flow (-); Normalised 446 

high flow (-); Coefficient of variation (-); Flashiness defined as 1-autocorrelation (-); Normalised peak 447 

distribution (-); Rising limb density (-); Declining limb density (-); Long term mean discharge (m3/s); 448 

Normalised relatively low flow (-). We then applied a k-means clustering approach within the 12-449 

dimensional space (consisting of the 12 calculated flow signatures) to categorise the subbasins based 450 

on their combined similarity in flow signatures. Through the mapping of the spatial pattern we gained 451 

insight in similarities of catchment functioning and could identify the dominant flow generating 452 

processes for specific regions. To further highlight the hydrological insights gained during model 453 

identification, we conducted the clustering analysis on two different steps of the model calibration and 454 

explored the sensitivity of calibration on the spatial patterns of flow signatures. 455 

 456 

4. RESULTS AND DISCUSSION 457 

The very first model set-up to establish a technical model infrastructure of the Indian subcontinent 458 

showed very poor model performance, with an average and median KGE for all stations of -0.02 and 459 

0.0 respectively. This was expected and the baseline for improvements following the six steps of the 460 

modified PUB best practices.  461 

 462 

4.1. Read the landscape 463 

Background knowledge was firstly acquired via visual and/or numerical analysis of available maps 464 

that describe the spatial patterns of land use, soil and climate, and study of the scientific literature on 465 

regional hydrological investigations, which enabled identification of dominant physical processes and 466 

flow paths. Such soft information was useful for turning on/off processes and selecting relevant 467 

algorithms, i.e. management, snow melting. Communication with local scientists (i.e. governmental 468 

hydrological institutes), managers (i.e. regional water authorities) and end-users (i.e. agricultural 469 

sector) enabled knowledge exchange and justified the model approach. Three extensive field trips 470 

provided important soft information about system behaviour in the semi-arid northwest and humid 471 

subtropical northeast parts of the country (i.e. identification of sources to irrigate water for agricultural 472 

needs and estimation of water losses due to faults in the irrigation systems). 473 

 474 

Analysis of the topographic data was of major importance since they affected the subbasin delineation 475 

and routing. Although Hydrosheds are based on high-resolution elevation layers, which are 476 

hydrologically conditioned and corrected, there are still many errors. Merging Hydrosheds with 477 

GRDC (hence forcing the delineation at subbasins where GRDC stations are available) involved some 478 

mismatches in terms of the size of upstream areas between the subbasin delineations and the GRDC 479 

metadata. As an example, the location of the Dundeli station in the Kali Nadi river basin (asterisk 1 in 480 

Fig. 2) was adjusted to match the underlying topography and drainage accumulation data based on 481 

published and computed upstream areas respectively (see Fig. 3a). The consequent change in the 482 
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routing resulted in a considerable improvement in the model performance (KGE improved from -0.51 483 

to 0.30; see Fig. 3b). Many similar corrections had to me made. 484 

 485 

To make corrections also for ungauged basins and major rivers, the delineated basins were 486 

additionally evaluated using a shapefile of basin areas reported by Gosain et al. (2011). Some minor 487 

corrections had to be done in the routing to achieve similarly delineated basins, particularly in the 488 

northwest region, where mean elevation at the subbasin scale does not show much variability.  489 

 490 

4.2. Runoff signatures and processes 491 

As recommended, several flow signatures were extracted for the gauging stations across India to be 492 

compared to physiographical patterns. Flow signatures were also used for model evaluation to find 493 

potential for improvements. The analysis was done at different stages in the model set-up, and finally, 494 

there was a relatively good agreement of the observed and modelled flow signatures (Fig. 4). In 495 

general, poor agreement was found in mountains and in semi-arid regions, which are characterised by 496 

local, convective rainfall events during the monsoon season. No clear pattern is found between 497 

signature agreement and basin scale for calibrated river gauges.  498 

 499 

We also explored how flow signatures can be affected by human impacts by analysing modelled 500 

responses considering and omitting the human influence. Fig. 5 highlights the significant effect 501 

reservoirs have to dampen hydrographs and control discharge variability; hence various flow 502 

signatures. The model can fairly well represent the reservoir routing and KGE improved from 0.37 to 503 

0.48 after introducing a regulation scheme. The model improved on capturing the seasonality of 504 

regulation; however at this modelling state it was not able to represent the monthly peaks. Note that 505 

model results are subject to the general rating curve generalised to all reservoirs; there were no 506 

downstream data available to calibrate the parameters specifically for a given reservoir/dam.  507 

 508 

4.3. Process similarity and grouping 509 

After having identified relevant HRUs, reclassified them into suitable calculation units and inserted 510 

major features as lakes and dams, we identified basin similarities to drive the identification of the 511 

model’s regional parameters. The cluster analysis was applied to all 6 010 subbasins of the domain 512 

within the 17-dimensional space (see section 3.3). We identified 13 different classes of varying size 513 

(Fig. 6) out of 42 values, which is the number of gauged river-basins in the domain, yet with relatively 514 

high class strength (i.e. the variability of characteristics within each cluster is relatively low). It is 515 

important to note that the physiographic (soil and land use) characteristics had more influence on the 516 

clustering as opposed to the climatic properties; the clustering was repeated without climatic 517 

information but the spatial pattern of the clusters remained. In the last stage of the stepwise calibration 518 

procedure, the regional model parameters were estimated for each cluster region. When using the 519 
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clustering for regional calibration (Section 5.4), however, it could not significantly improve the 520 

overall model performance but nevertheless, the model consistency at all stations was improved. 521 

Overall, we found a high potential of catchment similarity concepts to drive parameter identification 522 

in the ungauged basins. 523 

 524 

4.1-3. Quality checks 525 

Steps 1-3 of our best practices were performed in an iterative procedure including checking against 526 

independent data sources that resulted in reconsiderations of assumptions and corrections of input 527 

data. For instance, the proportion of each land use type driven by GLC2000 was calculated and 528 

compared to soft information from official governmental reports. According to GLC2000 11% of the 529 

country is forest, which contradicts the estimated 22% based on reports from the Ministry of Water 530 

Resources (India-WRIS, 2012, River Basin Atlas of India, RRSC-West, NRSC, ISRO, Jodpur, India). 531 

To address this, forest information from the Global Irrigated Area Mapping (GIAM; Thenkabail et al., 532 

2009) was merged with GLC2000. Although the proportion of forest areas was corrected, this 533 

merging consequently changed the proportion of open land with vegetation and crops from 14 and 534 

68% to 12 and 59% respectively. 535 

 536 

In addition, several modelled and observed flow signatures were compared repetitively at every stage 537 

of model refinement. We found it valuable to adjust as much as possible before starting to work on 538 

parameter values and model algorithms. For instance, the analysis of flow time series and signatures 539 

during the first model runs showed consistent underestimation of runoff in the Himalayan-fed basins. 540 

A comparison of the mean annual precipitation between Aphrodite and national precipitation gridded 541 

data provided by the Indian Meteorological Department, showed an underestimation of the Aphrodite 542 

precipitation in the mountainous regions; the Aphrodite precipitation network is sparse over Himalaya 543 

(Yatagai et al., 2012). To overcome this underestimation, a correction factor was applied to 544 

precipitation (in HYPE, this was a multiplier of 4% per 100 m) at regions with elevation greater than 545 

400 m. Allowing such modification in the data, we expected that calibration of model parameters 546 

could further compensate precipitation uncertainty. 547 

 548 

4.4. Model – Right for the right reasons 549 

When setting up India-HYPE we considered realism in the process calculations by using parameter 550 

constraints. We did not have to adjust the model structure and we did not assimilate data or rating 551 

curves as we did not have access to such observations. 552 

 553 

Additional data sources 554 

The calibration of pot. E model routine against the MODIS pot. E data resulted in a well identified 555 

coefficient of potential evapotranspiration (cevp) values for most land use types. Analysis of the 556 
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Monte Carlo results presents an initial screening of parameter sensitivities (Fig. 7). Results show that 557 

the different objective functions extract different information from the pot. E spatial pattern. As 558 

expected, cevp values for crops, forest and open land with vegetation types are the most sensitive to 559 

both objective functions, since these land use types dominate the region (60, 23 and 11% of India 560 

respectively) and hence significantly affect pot. E. Overall India-HYPE was lower in pot. E at the arid 561 

regions and over the Himalayas (on average by 15%), whereas it was higher in pot. E along the 562 

western and eastern coast lines (on average by 12%). Although the two estimates do not fully match, 563 

the use of additional information to constrain parameters (hence constraining the model’s results for 564 

specific processes) is promising. However, the uncertainty of MODIS results was not examined and 565 

more data sources should be included.  566 

 567 

Expert knowledge 568 

Expert knowledge was applied to filter out unrealistic relationships of the mactrsm parameter for 569 

different soil types (see section 3.3). Both the constrained and unconstrained models resulted in a 570 

comparable calibration performance; median KGE was 0.48 and 0.49 for the constrained and 571 

unconstrained models respectively. The optimum set for the unconstrained model gave an unrealistic 572 

distribution of the parameter values for the coarse and medium soil types (Fig. 8). However, the 573 

optimum values are within the parameter range defined in the constrained calibration approach. The 574 

slight increase is due to the free calibration parameters whose values and/or distributions are allowed 575 

to compensate for errors/uncertainties at other processes. In such cases it is important to select the 576 

model which performs well and respects the theoretical understanding of the system. This illustrates 577 

the value of the recommendations to constrain parameters based on expert knowledge – the right 578 

model for the right reason.  579 

 580 

Stepwise calibration procedure 581 

The predictability of the model with prior parameter values was very poor (Fig. 9), highlighting the 582 

limitations when parameters are regionalised from a donor system of strongly different hydro-climatic 583 

characteristics (e.g. Sweden). A significant improvement in the performance is achieved in both 584 

calibration and evaluation period after the calibration of the general parameters due to a better 585 

representation of the water volume in the rivers (beta in KGE improved from 0.51 to 0.78). 586 

Calibration of the soil and land use parameters further improved the performance; however KGE was 587 

slightly decreased at the poorly performed basins of the previous calibration step. Using the clusters 588 

based on catchment similarities for regional calibration did not significantly improve the overall 589 

model performance, however, the model consistency at all stations was improved in both calibration 590 

and evaluation periods. 591 

 592 
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4.5. Hydrological interpretation 593 

The temporal interpretation was done by analysing interacting dynamics of internal model variables, 594 

i.e. precipitation (P, mm), snow depth (SD, mm), temperature (T, °C), evapotranspiration (E, mm), 595 

soil moisture deficit (SMDF, mm), and discharge (Q, m3/s). These are checked visually in a set of 596 

validation basins, to avoid unrealistic model behaviour due to parameter setting. Results from this 597 

point onwards correspond to the calibrated India-HYPE model (after step 3 in Fig. 9). Results in the 598 

Chenab River at the Akhnoor station (branch river of the Indus system; asterisk 3 in Fig. 2) show that 599 

the snow melt characterises the monthly hydrograph (Fig. 10). Snow accumulation/melting processes 600 

occur at the headwaters of the basin which experience T below 0 °C during the winter and pre-601 

monsoon period and above 0 °C during the rest of the months (“Up” black-dashed T series in Fig. 10). 602 

P also varies in space while it exhibits strong seasonal variability according to the location (“Up” 603 

black-line and “Down” blue envelope in the P series). Spatiotemporal analysis of P allows a better 604 

understanding of the snow depth temporal distribution; in the model, snow depth increases when 605 

precipitation occurs and temperature is below 0 °C. Given the model’s evapotranspiration module, 606 

potential E varies depending on mean temperature. However the distribution of actual E is dependent 607 

on the water availability in the soil, which further justifies the strong (negative) correlation between 608 

actual E and SMDF. 609 

 610 

For spatial interpretation of flow predictions, we investigated potential relationships between model 611 

performance and physiographic-climatic characteristics; hence identify the controls of poor model 612 

performance. Fig. 11 shows the classification tree obtained when relating the KGE performance with 613 

physical and climatic characteristics across the domain. Results show that the dominant variables 614 

resulting in poor/good model performance are soil (medium and shallow) and climate (mean 615 

precipitation and temperature). Despite the relatively small sample is this analysis, results are 616 

insightful and show that poor performance (KGE<0.4) is generally achieved at basins with shallow 617 

soil type greater than 13%. The probability of obtaining poor performance is also highest for basins 618 

with medium soil type greater than 34% and precipitation less than 1038 mm. Consequently, emphasis 619 

should be given to parameters for medium and shallow soils in a future effort to improve the model 620 

performance.  621 

 622 

4.6. Uncertainty – local and regional 623 

The India-HYPE model was calibrated and validated in space and time and the overall model 624 

performance (at the end of the stepwise approach) in terms of KGE (Gupta et al., 2009) and its 625 

decomposed terms is presented in Table 3. India-HYPE achieved an acceptable performance and is 626 

therefore considered adequate to describe the dominant hydrological processes in the subcontinent. 627 

However, the performance decreased (from KGE=0.64 to KGE=0.44) when the model is evaluated 628 
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for gauges, which are independent both in space and time. This shows that the model still needs 629 

improvements to be equally reliable for predictions in ungauged basins at independent time-periods. 630 

The decomposed KGE terms show that the model during the validation period and for the validation 631 

stations cannot fully capture the variability of the observed data (described by the alpha term). alpha 632 

decreases during the validation period at the validation stations from 0.78 to 0.58 which consequently 633 

affects the KGE values. However other flow characteristics, i.e. timing and volume, are well 634 

represented also during the validation period. 635 

 636 

To search for major uncertainties and potential for improvements, we finally analyse the model 637 

performance in both the calibration and validation stations across the domain. The ability of the model 638 

to reproduce the monthly variability of discharge varies regionally as shown by the KGE (Fig. 12). 639 

Performance is generally poor in the mountainous and semi-arid regions (western and eastern 640 

Himalayas and northwest India respectively). The Indian river-basins are also regulated limiting the 641 

model’s predictive power; regulation strategies are irregular and difficult to reproduce. The KGE’s 642 

decomposed terms (cc, alpha and beta) can reveal the causes for the model errors. For example, the 643 

poor performance at the Indus river system (north India) is due to the poor representation of the 644 

observed variability of discharge, which is probably related to parameterisation in the model’s snow 645 

accumulation/melting component. In addition, mass volume error seems to be the main cause of poor 646 

KGE performance in the south-western rivers. This seems to be due to the under-estimation of 647 

precipitation and/or over-estimation of actual evapotranspiration; comparison of APHRODITE data 648 

against precipitation data from the Indian Meteorological Department showed underestimation of 649 

precipitation in this region. Conclusions are similar for the stations used in calibration and validation 650 

analysis; hence justify the model’s spatial consistency in the region.  651 

 652 

4.7. Spatial flow pattern across the subcontinent and dominant processes 653 

Although the India-HYPE model has limitations, we identified potential for further improvements 654 

during the set-up procedure. The present version already demonstrated the usefulness of multi-basin 655 

modelling for comparative hydrology and how to gain insights in spatial patterns of flow generating 656 

processes at the large scale. The final clustering analysis of the 12 flow signatures from India-HYPE 657 

version 1 resulted in six different classes of varying size (Fig. 13) with different distribution in 658 

signatures (Fig. 14). Similarity in catchment behaviour for each class was interpreted and dominant 659 

flow generating processes could be distinguished as follows: 660 

 661 

Catchments in cluster 3 are located in the Himalayan region and in the western Indian coast (Western 662 

Ghats) and are characterised by high ranges of annual specific runoff (Qm) due to high precipitation 663 

occurring in these regions, and variable flow regime (high mFDC). Variability is dependent on 664 

snow/ice processes which are important in controlling the flow regime, at least in the Himalayan 665 
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region (c.f. annual cycle in the Indus River in Fig. 2). Flow is also characterised by high rising and 666 

declining limb densities (RLD and DLD). The climate in catchments of cluster 3 is humid subtropical 667 

and tropical with high evapotranspiration. Catchments in the north-western part of India (cluster 4; 668 

arid regions including the Thar Desert) are characterised by high intra-annual variability (DPar) and 669 

low values of flow (q95). Ephemeral rivers exist in this region due to high evaporation rate (e.g. Luni 670 

river), and generate runoff mainly during the monsoon period. The high variability in the flow regime 671 

is also shown by the high values of CV, Flash and RLD signatures. Similar flow characteristics are 672 

observed for the catchments located in the semi-arid regions (cluster 1), yet not at the same range of 673 

signature values as for cluster 4. The catchments in cluster 1 are also fast responsive and their flow 674 

shows strong dynamics, in terms of rising (RLD) and declining limb densities (DLD). Catchments in 675 

cluster 2 are located in the tropical climate and their runoff response is mainly driven by rainfall. 676 

Although these catchments receive less precipitation compared to other regions, their normalised high 677 

flow statistic (q05) is the highest of any cluster group. Moreover, catchments in cluster 5 are located 678 

at the downstream areas of the Indus River distinguished for their high values of low flows. Finally, 679 

catchments in cluster 6 are characterised for their high mean annual discharge values and are located 680 

at the downstream areas of the large river systems (Indus, Ganga and Brahmaputra). Note also that 681 

only few catchments belong to these cluster groups; 112 and 57 catchments in cluster 5 and 6 682 

respectively. 683 

 684 

Repeating the clustering analysis at two different steps of the calibration procedure can assess changes 685 

in the understanding of hydrological response in the region. Fig. 13 shows that parameterisation can 686 

affect the spatial pattern of clusters in terms of catchment functioning. In particular, clusters after 687 

calibration (Regional step) seem to have a consistent spatial structure; this also justifies the validity of 688 

parameter regionalisation approaches based a spatial proximity between catchments. Results from 689 

clustering based on physiography show spatial consistency in the arid region (Thar Desert) and the 690 

western coast (Western Ghats) respectively. This affected identification of the regional parameters 691 

(multipliers of precipitation and evapotranspiration) applied at the subbasin scale, which consequently 692 

led to a more consistent spatial structure in the mapping (c.f. Fig. 13a and 13b). Finally, calibration of 693 

the soil and land use parameters led to a better representation of snow processes and hence affected 694 

the flow signatures in the Himalayan region (cluster 3). 695 

 696 

4.8. Performance in India-HYPE v1.0 and future model refinements 697 

Many other catchment-scale and multi-basin hydrological models have been applied in (parts of) the 698 

Indian subcontinent. However, it is generally common that only results from success stories are 699 

reported which limits the potential for comparative analyses and hence improving process 700 

understanding. Here, we presented results from all 42 Indian GRDC stations including both failure 701 

and success. We closed the adjustments of the first model version and documented the India-HYPE 702 
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version 1.0 providing also guidelines on how to start working on the next version, looping back to 703 

step 1 again. Overall, India-HYPE performed well for most river systems with the performance being 704 

comparable to other studies, in which a model was applied at the large scale. Application of the VIC 705 

hydrological model resulted in a similar performance for the large systems of Ganges, Krishna and 706 

Narmada (Raje et al., 2013) with the Nash-Sutcliffe Efficiency, NSE (Nash and Sutcliffe, 1970) 707 

varying between 0.44 and 0.94 (at the same stations India-HYPE achieved NSE between 0.45 and 708 

0.94). In contrast to previous studies, our contribution lies in the fact that anthropogenic influences 709 

(i.e. reservoirs and irrigation) are simulated, as those have been shown to be very important 710 

controlling the amplitude, phase and shape of the hydrograph. Other models, i.e. SWAT, have also 711 

been applied in India to assess the impacts of climate change; however the parameters have been 712 

estimated empirically from the literature, whilst the performance was not reported (Gosain et al., 713 

2006, 2011). 714 

 715 

Catchment-scale hydrological models from India have generally been achieving high performance 716 

(Arora, 2010; Patil et al., 2008), mainly due to the local gauged data used; usually the data are 717 

governmental and confidential with high spatiotemporal resolution and less uncertainty/error. In 718 

addition, model parameters in single catchments are normally transferred along a smoother hydro-719 

climatic gradient and are calibrated for individual gauging stations. Nevertheless, catchment-scale 720 

studies set a benchmark of performance and provide deeper knowledge of process description which 721 

further leads to refinements in multi-basin modelling. Of particular interest are the investigations 722 

about the western Himalayas, in which India-HYPE performed poorly. Studies by Singh and 723 

Bengtsson (2004), Singh and Jain (2003) and Singh et al. (2006) highlight the importance of 724 

accumulation/melting processes in the snow-/glacier-fed parts of the region accounting for 17% each 725 

to total discharge; however for other regions of the Indus system higher contributions from snow and 726 

ice are reported (Immerzeel et al., 2009). The poor model performance in terms of alpha (variability) 727 

and beta (volume) highlights the need to refine the current snow/glacier algorithms, and/or improving 728 

the parameters by using this soft information in model evaluation. Similar model needs can be 729 

concluded when assessing the India-HYPE performances at the Ganges and Brahmaputra basins based 730 

on previous literature (Arora, 2010; Nepal et al., 2014). Finally results for the arid northwest and 731 

mountainous regions highlighted the need to refine the pot. E algorithm. Most regional hydrological 732 

studies considered relationships including extraterrestrial radiation and relative humidity, i.e. 733 

Hargreaves-Samani or Penman-Monteith, which are expected to improve the magnitude and 734 

variability of evapotranspiration losses (Samaniego et al., 2011). Therefore the pot. E model 735 

component will be further investigated and refined in the next version of India-HYPE. 736 

 737 

 738 
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5. CONCLUSIONS 739 

When investigating the modified recommendations for predictions in ungauged basins across the 740 

Indian subcontinent, we found that: 741 

• Each step in the best practice procedure was relevant and we could find methods that also 742 

work at the large scale using the knowledge derived for catchments during the PUB decade.  743 

We argue to adapt an incremental and agile approach to model set-up, which requires 744 

frequent testing to get feedback on introduced changes. The large-scale modelling is more 745 

prone to technical problems and data inconsistencies that become apparent when running 746 

the model and therefore it should be done early in the model set-up process. 747 

• Multi-basin modelling of ungauged rivers at the large scale reveals insight in spatial 748 

patterns and dominating flow processes. Indian catchments can be categorised into 6 749 

clusters based on their flow similarity. River flow varies spatially in terms of flow means, 750 

variability, extremes and seasonality. Catchments in the Himalayan region and the Western 751 

Ghats seem to respond similarly and are characterised by high mean annual specific runoff 752 

values and variable flow regime. Response of the catchments in the tropical zone is 753 

characterised by high peaks, while catchments in the dry regions show very strong flow 754 

variability and respond quickly to rainfall.    755 

• Overall the model showed high potential to represent the hydrological response across the 756 

region despite the strong hydro-climatic gradient. However, the India-HYPE v.1.0 still 757 

needs to be improved to be equally reliable for predictions in ungauged basins as for 758 

gauged rivers. The model set-up procedure according to the PUB recommendations brought 759 

insights on where the single model structure did not perform well. Based on this, future 760 

model improvements will mainly focus on the western Himalayas and arid regions by 761 

refining the hypothesis of snow/glacier processes and the evapotranspiration algorithm. 762 

 763 
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 781 

APPENDIX A: DEFINITION OF PEFORMANCE METRICS AND FLOW SIGNATURES 782 

The Kling-Gupta Efficiency (KGE) is defined as: 783 

𝐾𝐺𝐸 = 1 −    (𝑟 − 1)!  +  (𝛼 − 1)!  +(𝛽 − 1)! 

 784 

where r is the linear cross-correlation coefficient between observed and modelled records, α is a 785 

measure of variability in the data values (equal to the standard deviation of modelled over the standard 786 

deviation of observed), and β is equal to the mean of modelled over the mean of observed. For a 787 

perfect model with no data errors, the value of KGE is 1; hence r, α and β are also 1. In addition, we 788 

transform the three KGE components to results into a consistent range of possible values. 789 

Consequently we consider: 790 

𝑐𝑐 = 1 −    (𝑟 − 1)! 

𝑎𝑙𝑝ℎ𝑎 = 1 −    (𝛼 − 1)! 

𝑏𝑒𝑡𝑎 = 1 −    (𝛽 − 1)! 

where the range of values for each term varies between -∞ and 1 with 1 being the optimum.   791 

 792 

In this paper we quantify the signatures by single values. Given the time series of observed (or 793 

modelled) specific daily runoff 𝑄!(𝑡) (mm d-1), the calculated signatures are given in Table A1. 794 

 795 

 796 
Table A1. Flow signatures used for model evaluation and catchment functioning. 797 

Signature Abbreviation Reference 

Mean annual specific runoff Qm (Viglione et al., 2013) 

Normalised high flow q05 (Viglione et al., 2013) 

Normalised low flow q95 (Viglione et al., 2013) 

Normalised relatively low flow q70 (Viglione et al., 2013) 

Slope of flow duration curve mFDC (Viglione et al., 2013) 

Range of Pardé coefficient DPar (Viglione et al., 2013) 

Coefficient of variation CV (Donnelly et al., 2015) 

Flashiness Flash (Donnelly et al., 2015) 
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Normalised peak distribution PD (Euser et al., 2013) 

Rising limb density RLD (Euser et al., 2013) 

Declining limb density DLD (Euser et al., 2013) 

Long term mean discharge Qdm (Donnelly et al., 2015) 

 798 

 799 
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Table 1. Data sources and characteristics of the India-HYPE v.1.0 model set-up. 

Characteristic/Data type Info/Name Provider 

Total area (km2) 4.9 million - 

Number of subbasins 6 010 (mean size 810 km2) - 

Topography (routing and 

delineation) 

Hydrosheds (15 arcsec) Lehner et al. (2008) 

Soil characteristics Harmonised World Soil Database 

(HWSD) 

Nachtergaele et al. (2012) 

Land use characteristics Global Land Cover 2000 

(GLC2000) 

Bartholomé et al. (2002) 

Reservoir and dam Global Reservoir and Dam 

database (GRanD) 

Bernhard et al. (2011) 

Lake and wetland  Global Lake and Wetland Database 

(GLWD) 

Lehner and Döll (2004) 

Agriculture 

Irrigation 

MIRCA2000 

Global Map of Irrigation Areas 

(GMIA) 

Portmann et al. (2010) 

Siebert et al. (2005) 

Siebert et al. (2010) 

Discharge Global Runoff Data Centre 

(GRDC; 42 stations) 

http://www.bafg.de/GRDC 

Precipitation APHRODITE (0.25° × 0.25°) Yatagai et al. (2012) 

Temperature AphroTEMP (0.5° × 0.5°) Yasutomi et al. (2011) 

Potential evapotransp. MODIS pot. E (1 km) Mu et al. (2011) 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 2. Statistics for the 42 gauging stations of river discharge used in the model evaluation. 

  Percentiles  

  5% 25% Median 75% 95% Mean 

Basin surface (km2) 2 062 12 691 32 770 68 522 294 524 75 493 

Mean annual runoff (Qm, mm) 40 168 377 648 2 090 582 

*Inter-annual variability of runoff (%) 20 28 40 61 102 48 

*Values of inter-annual variability correspond to coefficients of variation calculated on 9 year periods 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3. Median model performance for calibration and validation stations and periods. 

Space Time KGE cc 

(timing) 

alpha 

(variability) 

beta 

(volume) 

Cal. (30 stations) Cal. (1971-1975) 0.64 0.93 0.78 0.75 

Val. (1976-1979) 0.62 0.92 0.81 0.80 

Val. (12 stations) Cal. (1971-1975) 0.64 0.91 0.78 0.79 

Val. (1976-1979) 0.44 0.84 0.58 0.75 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 1. Best practices for predictions in ungauged basins: A) according to Fig. 13.1 by Takeuchi et 

al. (2013) in Blöschl et al. (2013), and B) modified version for multi-basin applications at the large 

scale. 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Figure 2. (a) Map of the Indian subcontinent (model domain). Results will be shown from 

investigation areas with a star in the order of their numbering. (b) Annual cycles (1971-1979) at four 

river systems (A-D) of various climate (P – observed precipitation, Act. E – modelled actual 

evapotranspiration, Q – observed discharge). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

Figure 3. Example of the impact of basin delineation and routing on model behaviour: (a) correction in 

the location (red x and green circle is prior and after the correction respectively) of the Dundeli 

discharge station (Kali Nadi river basin), and (b) the corresponding modelled discharge before and 

after the correction. In (a) the subbasins and flow accumulation are also depicted. 

 
 
 
 
 



 
Figure 4. Signature analysis in the spatiotemporal model evaluation: (a) the mean annual specific 

runoff, (b) the normalised high flow statistic, and (c) the slope of the flow duration curve. Blue and red 

circles are used for the calibration and evaluation stations respectively. 

 
 
 
 
 
 
 
 
 



 
Figure 5. Impact of model parameterisation of reservoir regulation on discharge for (a) monthly 

streamflow, and (b) annual hydrograph, showing naturalised (without) and regulated (with) conditions 

at the basin outlet (located at asterisk 2 in Fig. 2). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure 6. Subbasin clusters using a k-means clustering approach based on physiographical 

characteristics. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Figure 7. Coefficient of potential evapotranspiration (cevp) parameter as identified (the range is 

derived from the 100 parameter sets that perform best, and the optimum set) for different objective 

functions (RMSE and Bias) and land use type. Lines with markers present the optimum parameter 

values for different objective functions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure 8. Constraints (grey dashed lines) and optimum (solid lines) values of the mactrsm soil 

dependent model parameter based on process understanding. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure 9. Improvements in model performance (average KGE for 30 stations) during the stepwise 

calibration approach (steps 1-3 correspond to general, soil-land use, and regional calibration as 

described in section 3.3). “1st run” corresponds to model performance of the very first model set-up to 

establish a technical model infrastructure. “Prior” corresponds to model performance before parameter 

calibration and after overcoming routing errors. The evaluation is conducted at the calibration (blue) 

and the validation (red shaded) period. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 

 
 

Figure 10. Analysis of model variables at the Akhnoor station (Chenab River; asterisk 3 in Fig. 2): P, 

SD, T, E, SMDF and Q. E corresponds to potential (Pot.) and actual (Act.) evapotranspiration, and Q 

corresponds to modelled (Mod.) and observed (Obs.) discharge). Note that P and T series are plotted at 

the outlet of the basin (Down) and the most upstream subbasin (Up). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 

 
Figure 11. Classification trees relating regions of different KGE performance with physical and 

climatic characteristics. The bars represent the probability of a performance resulting in any of the 

three performance classes (C0, C1 or C2). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure 12. Spatial variability of KGE (and its decomposed terms) model performance for the 

calibration (circle) and validation (triangle) stations. 

 
 
 
 
 
 
 
 
 
 
 



 
Figure 13. Subbasin clusters based on flow signatures at different stages of the model set-up: (a) Prior, 

and (b) Regional. 

 
 
 
 
 
 
 
 
 
 
 



 
Figure 14. Distribution of signature values for each cluster (at Regional step). The flow signatures are 

described in Appendix A. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 


