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ABSTRACT 11 

 12 

The Prediction in Ungauged Basins (PUB) scientific initiative (2003-2012 by IAHS) put considerable 13 

effort into improving the reliability of hydrological models to predict flow response in ungauged 14 

rivers. PUB’s collective experience advanced hydrologic science and defined guidelines to make 15 

predictions in catchments without observed runoff data. At present, there is a raised interest in 16 

applying catchment models for large domains and large data samples in a multi-basin manner, to 17 

explore emerging spatial patterns or learn from comparative hydrology. However, such modelling 18 

involves additional sources of uncertainties caused by the inconsistency between input datasets, i.e. 19 

particularly regional and global databases. This may lead to inaccurate model parameterisation and 20 

erroneous process understanding. In order to bridge the gap between the best practices for flow 21 

predictions in single catchments and multi-basins at the large scale, we present a further developed 22 

and slightly modified version of the recommended best practices for PUB by Takeuchi et al. (2013). 23 

By using examples from a recent HYPE hydrological model set-up across 6 000 subbasins for the 24 

Indian subcontinent, named India-HYPE v1.0, we explore the PUB recommendations, indicate 25 

challenges and recommend ways to overcome them. We describe the work process related to: (a) 26 

errors and inconsistencies in global databases, unknown human impacts, poor data quality; (b) robust 27 

approaches to identify model parameters using a stepwise calibration approach, remote sensing data, 28 

expert knowledge and catchment similarities; and (c) evaluation based on flow signatures and 29 

performance metrics, using both multiple criteria and multiple variables, and independent gauges for 30 

“blind tests”. The results show that despite the strong physiographical gradient over the subcontinent, 31 

a single model can describe the spatial variability in dominant hydrological processes at the catchment 32 

scale. In addition, spatial model deficiencies are used to identify potential improvements of the model 33 

concept. Eventually, through simultaneous calibration using numerous gauges, the median Kling-34 

Gupta Efficiency for river flow increased from 0.14 to 0.64. We finally demonstrate the potential of 35 

multi-basin modelling for comparative hydrology using PUB, by grouping the 6 000 subbasins based 36 

on similarities in flow signatures to gain insights in spatial patterns of flow generating processes at the 37 

large scale.  38 
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1. INTRODUCTION 46 

Numerical hydrological models have been used world-wide for operational needs and scientific 47 

research since the early 1970s (e.g. Hrachowitz et al., 2013; Pechlivanidis et al., 2011; Refsgaard et 48 

al., 2010; Singh, 1995). In an effort to improve the reliability when modelling catchments without 49 

observed runoff data, the Prediction in Ungauged Basins (PUB) initiative of the International 50 

Association of Hydrological Sciences (IAHS) was launched in 2003. In general, PUB aimed towards 51 

overcoming the fragmentation in catchment hydrology and advancing the collective understanding 52 

(Sivapalan et al., 2003). PUB highlighted the need to move beyond a model calibration philosophy 53 

towards a diagnostic evaluation approach that aims to: (i) characterise the information contained in the 54 

data and in the model, (ii) examine the extent to which a model can be reconciled with observations, 55 

and (iii) point towards the aspects of the model that need improvement (Gupta et al., 2008). In this 56 

regard, several approaches (e.g. multi-objectives, signature measures, information-based metrics, sub-57 

period evaluation) have been applied to reveal significant information about the hydrological systems 58 

and indicate perceived model structural errors (Hrachowitz et al., 2013). The use of parameter 59 

constraints has also been a significant advancement since such an approach can increase model 60 

consistency and reliability (Bulygina et al., 2009; Hrachowitz et al., 2014). Constraints are generated 61 

by independent information via either additional data, i.e. remote sensing, tracers, quality, multiple-62 

variables, etc. (Arheimer et al., 2011; Finger et al., 2011; McDonnell et al., 2010; McMillan et al., 63 

2012; Samaniego et al., 2011) and/or expert knowledge (Bulygina et al., 2012; Fenicia et al., 2008; 64 

Gao et al., 2014). 65 

 66 

It is apparent that the PUB community made significant progress towards these scientific objectives; 67 

however the investigations were normally conducted at only one or a limited number of catchments 68 

(Hrachowitz et al., 2013). Such an approach is indeed focused on detailed process investigation but is 69 

limited when it comes to generalisation of the underlying hydrological hypotheses; to advance science 70 

in hydrology, much can be gained by comparative hydrology to search for robustness in hypothesis 71 

(Blöschl et al., 2013; Falkenmark and Chapman, 1989). The need for a large sample of process 72 

understanding and model evaluation has also been highlighted in the new 2013-2022 IAHS scientific 73 

initiative named “Panta Rhei – Everything Flows” (Montanari et al., 2013).  74 

 75 
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Multi-basin modelling complement the “deep” knowledge from single catchment modelling when 76 

applied to a large geographical domain covering a large sample of observations (Andreassian et al., 77 

2006; Arheimer and Brandt, 1998; Gupta et al., 2014; Johnston and Smakhtin, 2014). However, the 78 

majority of basins world-wide are effectively ungauged, as are also the subbasins (defined here as 79 

prediction points in the model set-up) in a high resolution multi-basin model at the large scale. 80 

Hydrological modelling at the large scale has the potential to encompass many river basins, cross 81 

regional and international boundaries and represent a number of different physiographic and climatic 82 

zones (Alcamo et al., 2003; Raje et al., 2013; Widén-Nilsson et al., 2007). Traditionally, the 83 

performance and the spatiotemporal resolution in such models was poor, but the current release of 84 

open and global datasets has given new opportunities for catchment hydrologists to contribute. 85 

Application of multi-basin modelling at the large scale can be used to predict the hydrological 86 

response at interior ungauged basins (Arheimer and Lindström, 2013; Donnelly et al., 2015; 87 

Samaniego et al., 2011; Strömqvist et al., 2012). The use of large sample of gauges can also facilitate 88 

comparative hydrology allowing to test hypothesis for many catchments with a wide range of 89 

environmental conditions (Blöschl et al., 2013; Donnelly et al., 2015; Falkenmark and Chapman, 90 

1989). In addition, the multi-basin approach can be used to map spatial variability and explore 91 

emerging patterns of for instance climate change (see http://hypeweb.smhi.se/).  92 

 93 

Modelling at the large scale, however, includes additional model uncertainties. Physical properties 94 

(e.g. topography, vegetation and soil type) in large systems generally show higher spatial variability 95 

and thus larger heterogeneity in system behaviour (Coron et al., 2012; Sawicz et al., 2011), which in 96 

turn affects model parameters (Kumar et al., 2013). In addition, large river basins are often strongly 97 

influenced by human activities, such as irrigation, hydropower production, and groundwater use, for 98 

which information is rarely available at high resolution in global databases. This introduces additional 99 

uncertainty regarding process understanding and description at the large scale. Moreover, the 100 

topographic and forcing data of global datasets (i.e. water divides, weather and climatic data) are more 101 

likely to be inconsistent, erroneous, and/or only available at a coarse resolution (Donnelly et al., 2012; 102 

Kauffeldt et al., 2013). 103 

 104 

Applying catchment models at the continental scale in a multi-basin manner is a way to introduce 105 

catchment modelling approaches to the existing global hydrological models, i.e. land-surface schemes 106 

and global water-allocation concepts. In this paper, we therefore present a set of examples on how the 107 

scientific advancements during the PUB decade have improved the potential for process-based 108 

hydrological modelling at the large scale. We identify specific challenges at the large scale and 109 

exemplify on how to overcome them. In here, we further develop and slightly modify the PUB best 110 

practices to be applicable at the large scale. We use examples from the recent HYPE model set-up of 111 

the Indian subcontinent, which experiences unique and strong hydro-climatic and physiographic 112 
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characteristics and poses extraordinary scientific challenges to understand, quantify and predict 113 

hydrological responses. We particularly address failures in capturing runoff response due to 114 

uncertain/erroneous basin delineation and routing, errors in global datasets and human impact (i.e. 115 

reservoir/dams). We also illustrate the improvement on parameter identification by using remote 116 

sensing data and expert knowledge. We further show how regions can be grouped based on 117 

physiographic similarity, and how flow signatures and temporal variability of other modelled 118 

variables, apart from discharge, can be used to ensure “right for the right reasons” in this data sparse 119 

region. In addition, we investigate potential links between model performance and physiographical 120 

characteristics to understand model inadequacies along the gradient. Finally, we cluster the 121 

catchments based on their hydrological functioning and discuss how process understanding can 122 

benefit from multi-basin modelling and what hydrological insight can be gained by analysing spatial 123 

patterns from large-scale predictions in ungauged basins. 124 

 125 

 126 

 127 

2. BEST PRACTICES FOR PUB WHEN MODELLING MULTI-BASINS AT THE 128 

LARGE SCALE 129 

Takeuchi et al. (2013) recommend a six step procedure for predicting runoff at locations where no 130 

observed runoff data are available (Fig. 1A). This best practice recommendation is intended for single 131 

catchments, and requires modification when applied to multi-basins at the large scale (Fig. 1B). In this 132 

section, we present our best-practice recommendations for large-scale applications of process-based 133 

models. They are based on our interpretation of the best practices and previous experience from PUB 134 

in multi-basin applications (e.g. Andersson et al., 2015; Arheimer et al., 2012; Donnelly et al., 2015; 135 

Strömqvist et al., 2012), which are visualised at http://hypeweb.smhi.se/. 136 

 137 

Many sources of uncertainties/errors appear when handling big datasets and may be time consuming 138 

to be discovered. Analysis of each dataset or catchment may be impractical and risk focusing on 139 

details instead of the most crucial overall hydrological functioning across the model domain. We 140 

therefore recommend starting with a top-down approach, in which the model is setup directly before 141 

proceeding with the PUB recommendations (circle of steps in Fig. 1). The hydrological model needs 142 

to include the description of most water fluxes, storages and anthropogenic influences that can be 143 

relevant and satisfy the modelling objectives. In addition, we recommend to use a model that is 144 

familiar to the modeller and open for changes, to allow coherent hydrological interpretations and code 145 

adjustments to cope with the region’s spatial heterogeneity and hydrological features. Setting-up the 146 

model system includes to: (i) acquire readily available datasets that cover the entire geographical 147 

domain or merge datasets to get a full coverage; (ii) define calculation points and river network, by 148 

taking into account the location of gauges, major landscape features, user requests, catchment borders 149 
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and routing; (iii) make a first set of model input-data files and make the first model run for the model 150 

domain with a multi-basin resolution. The analysis of preliminary results from setting up the full 151 

system at once will indicate major obstacles, such as systematic errors in input data or model 152 

structural limitations. Moreover, by having the technical system in place immediately facilitates an 153 

incremental and agile approach to model set-up, with direct feed-back on model performance at many 154 

gauges. Once the model runs for the full domain, we recommend starting to improve the performance 155 

according to the six steps of best practices for predictions in ungauged basins, using a bottom-up 156 

approach to refine input data, model structure and parameter values. 157 

 158 

2.1. Read the landscape: “Go out to your catchment, look around…!” (cit: page 385 in Blöschl et 159 

al. (2013)) 160 

It is practically impossible to visit the full variety of basins in a large-scale model domain, so instead 161 

we recommend: (i) navigate on hard-copies, digitised maps and webpages (e.g. Google Earth) to 162 

check landscape characteristics; (ii) review the literature for dominant processes and well-known 163 

features or hydrological challenges in the region; (iii) proceed with quality checks and cross-164 

validations towards other data sources (i.e. sources that contain limited in space but local 165 

information); (iv) validate the basin delineation and routing using archived metadata from other 166 

available datasets; (v) check quality of observed discharge data to assure coherence of time-series; and 167 

finally, (vi) check the spatiotemporal information of meteorological datasets after transformation from 168 

the grid to the subbasin scale. It is important to get an understanding of the full domain but also to 169 

ensure that the datasets correspond to this understanding, as errors often appear when handling and 170 

interpreting large datasets. 171 

 172 

2.2. Runoff signatures and processes: “Analyse all runoff signatures in nearby catchments to get 173 

an understanding…!” (cit: page 385 in Blöschl et al. (2013)) 174 

Detailed inspection of flow signatures for each gauging station from large datasets (often in the range 175 

of thousand stations, see http://hypeweb.smhi.se/) is best done by using clustering techniques to 176 

discover spatial similarities (Sawicz et al., 2011). It is then important to use many flow signatures for 177 

each site to fully capture the characteristics of the hydrographs. We also recommend searching for 178 

statistical relationships between the observed flow signatures and basin characteristics (both 179 

physiography and human alteration) across the model domain. This will increase our understanding of 180 

dominant processes and fitness of model structure (Donnelly et al., 2015).  181 

 182 

2.3. Process similarity and grouping: “…find similar gauged catchments to assist in predicting 183 

runoff in the ungauged basin!” (cit: page 385 in Blöschl et al. (2013)) 184 

In most process-based models, the modeller has some freedom to define the characteristics of the 185 

smallest calculation units, which is normally linked to physiography to account for spatial distribution 186 
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of for instance soil properties or land use. When producing these calculation units for large domains, 187 

we need to be restrictive with the number of classes and we normally redistribute small calculation 188 

units to speed up the model run times; both technical and conceptual concerns must be taken into 189 

account. However, lakes, wetlands, glacier, and urban areas should remain as even small proportions 190 

can significantly alter the flow regime. When calculation units are defined, we recommend clustering 191 

the basins/gauges with similar upstream characteristics and/or system behaviour to isolate key 192 

processes for regionalisation of parameter values during calibration. We finally suggest checking the 193 

spatial distribution by plotting the catchment characteristics of subbasins on maps and compare to 194 

other or original data sources. 195 

 196 

2.1-3. Quality checks: This is an additional step in the procedure accounting for repetition of step 1-3 197 

in an iterative way to ensure quality in the required input data and files of the model (Fig. 1); it is easy 198 

to fail and introduce errors when handling large datasets by automatic scripts (generalisation of scripts 199 

is not always straightforward and some manual adjustment is usually required) and/or human error 200 

(particularly when many modellers collaborate). It is important to remove as many errors as possible 201 

in the input data before starting to tune parameters; otherwise the calibration may lead to erroneous 202 

assumptions on hydrological processes to compensate for input data errors. We recommend to analyse 203 

flow time-series as follows: (i) compare modelled to observed time-series and signatures; (ii) check 204 

water-volume errors and their distribution in space; (iii) inspect the spatial distribution of model 205 

dynamics to correct spatial patterns from systematic errors; and (iv) search for errors in the model set-206 

up (routing, meteorological input etc.).  207 

 208 

2.4. Model - Right for the right reasons: “Build… model for the signature of interest… 209 

regionalise the parameters from similar catchments…more information than the 210 

hydrograph…!” (cit: page 385 in Blöschl et al. (2013)) 211 

When the technical model system is in place and input data seem to be relevant, the modeller can start 212 

tuning the parameters, so that the model structure represents the modeller’s perception of how the 213 

hydrological system is organized and how the various processes are interconnected. For the model set-214 

up to be right for the right reason we recommend to: (i) constrain relevant parameters to alternative 215 

data than just time-series of river discharge (e.g. snowmelt parameters to snow depths, 216 

evapotranspiration parameters to data from flux towers and satellites) or select a subset of gauges 217 

representing different flow generating processes; (ii) apply expert knowledge when analysing internal 218 

variables to ensure that the model structure reflects the understanding of flow paths and their 219 

interconnections; (iii) change the model algorithms or structure if tuning of parameters is not enough 220 

to reflect the perception of the hydrological system; (iv) include specific rating curves of lakes and 221 

reservoirs wherever available, and tune parameters for irrigation and dam regulation to fit the flow 222 

dynamics at downstream gauges; and (v) assimilate observed data if possible, e.g. snow, upstream 223 
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discharge, or regulation rules in reservoirs.  224 

 225 

2.5. Hydrological interpretation: “Interpret the parameters… and justify their values against 226 

what was learnt during field trips and other data…!” (cit: page 385 in Blöschl et al. (2013)) 227 

Although, hydrological interpretation has been present in every step of the model set-up procedure 228 

described here, this step includes the overall synthesis and analysis of realistic results both at the large 229 

scale and for single catchments in the multi-basin approach. For spatial interpretation, we recommend 230 

plotting maps with multi-basin outputs for several variables, performance criteria and signatures 231 

across the model domain. This allows checking model’s coherency at various landscape features, e.g. 232 

spatial patterns of vegetation, geology, climate, precipitation, population density, and human 233 

alterations. The objective is to understand the drivers that influence flow and find logical reasons 234 

behind the hydrological heterogeneity, but also to identify knowledge gaps or model limitations. For 235 

temporal interpretation, we recommend to plot time-series for some basins in each group of similar 236 

landscape units and catchment response. This is to make sure that the model reflects our perception 237 

and assists to better understand the dominant drivers of the flow generation processes and water 238 

dynamics in the region.   239 

 240 

2.6. Uncertainty – local and regional: “… by combining error propagation methods, regional 241 

cross-validation and hydrological interpretation…!” (cit: page 385 in Blöschl et al. (2013)) 242 

Multi-basin models are more computationally demanding than single basin models and it is therefore 243 

not always feasible to explicitly address all uncertainties from all sources. To explore the model 244 

performance in ungauged basins, we recommend dividing the set of gauging stations into those used 245 

in calibration and validation, respectively. Cross-validation, e.g. using the jackknife procedure (Good, 246 

2005), is practically difficult in process-based modelling of multi-basins. Instead we recommend 247 

using a subset of the validation gauges for “blind tests”, to be independent from any calibration or 248 

model tuning. To examine uncertainties we recommend to: (i) use several performance (diagnostic) 249 

criteria and many flow signatures; (ii) relate the spatial distribution of model performance to 250 

physiographical variables; and (iii) check model performance for independent gauging sites and new 251 

datasets.  252 

 253 

The major deviations found between modelled and observed data in time and space should be the 254 

focus for the next round in the circle of steps for better predictions. It is then important to start reading 255 

the landscape and search for local knowledge again to elaborate new hypotheses of hydrological 256 

functioning and data sources. We recommend to document and version-manage each model set-up 257 

before looping into step 1, to ensure knowledge accumulation for a broader audience and to make the 258 

set-up process transparent. This sets a baseline for the next round of improvements. 259 

 260 
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3. DATA AND METHODS 261 

3.1. Study area and data description 262 

India is considered the seventh largest country by area and the second-most populous country with 263 

over 1.2 billion people. The country covers an area of about 3.3 million km2 and some of its river 264 

basins cover several countries in the area (i.e. China, Nepal, Pakistan, and Bangladesh; see Fig. 2). 265 

The spatiotemporal variation in climate is perhaps greater than any other area of similar size in the 266 

world. The climate is generally strongly influenced by the Himalayas and the Thar Desert in the 267 

northwest, both of which contribute to drive the summer and winter monsoons (Attri and Tyagi, 268 

2010). Four seasons can be distinguished: winter (January-February), pre-monsoon (March-May), 269 

monsoon (June-September), and post-monsoon (October-December). The temperature varies between 270 

seasons ranging from mean temperatures of about 10 °C in winter to about 32 °C in pre-monsoon 271 

season. In terms of spatial variability, the rainfall pattern roughly reflects the different climate regimes 272 

of the country, which vary from humid in the northeast (rainfall occurs about 180 days/year), to arid 273 

in Rajasthan (20 days/year). Accordingly, river flow show large spatial and seasonal variability across 274 

the sub-continent (Fig. 2b), e.g. the Ganga River has an intra-annual amplitude in monthly river 275 

discharge of 50 000 m3/s. 276 

 277 

For the hydrological model set-up, we use global datasets to extract the input data (see Table 1). 278 

APHRODITE (Yatagai et al., 2009, 2012) and AphroTEMP (Yasutomi et al., 2011) are the only long-279 

term continental-scale datasets that contain a dense network of daily data for Asia including the 280 

Himalayas. Discharge data are available from the Global Runoff Data Centre (GRDC) at 42 sites 281 

limited to monthly values in the period 1971-1979. More discharge data are held in the Indian 282 

government agencies but are not open to the public. Consequently, in this application, flow 283 

information (Table 2) is available only for a small fraction of the subcontinent, which makes the 284 

region a great example for PUB. Monthly potential evapotranspiration (pot. E) data were obtained for 285 

the period 2000-2008 from the Moderate Resolution Imaging Spectroradiometer (MODIS) global 286 

dataset (Mu et al., 2007, 2011). The dataset covers the domain in a spatial resolution of 1 km and is 287 

derived based on the Penman-Monteith (Penman, 1948) approach. 288 

 289 

Water divides and catchment characteristics were appointed for each subbasin by using the World 290 

Hydrological model Input Set-up Tool (WHIST; http://hype.sourceforge.net/WHIST/). This is a 291 

spatial information tool from SMHI to transform data and create input files for hydrological models, 292 

from different types of databases. From the information of topographic databases, for example, 293 

WHIST can delineate the subbasins and the linking (routing) between them. This is also the tool for 294 

allocating information of soil, vegetation, surface water, regulation and irrigation to each calculation 295 

unit. For the Indian subcontinent, we chose to work with some 6 000 points for calculations of runoff 296 

in the river network (i.e. 6 000 subbasins). 297 
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 298 

3.2. A multi-basin hydrological model for large-scale applications - the HYPE model 299 

The Hydrological Predictions for the Environment (HYPE) model is a dynamic rainfall-runoff model, 300 

which describes the hydrological processes at the catchment scale (Lindström et al., 2010). The model 301 

represents processes for snow/ice, evapotranspiration, soil moisture and flow paths, groundwater 302 

fluctuations, aquifers, human alterations (reservoirs, regulation, irrigation, abstractions), and routing 303 

through rivers and lakes. The HYPE source code is continuously developed and released in new 304 

versions for open access at http://hype.sourceforge.net/, where also model descriptions, manuals and 305 

file descriptions can be downloaded.  306 

 307 

HYPE is most often run at a daily time-step and simulates the water flow paths in soil for 308 

Hydrological Response Units (HRU), which are defined by gridded soil and land-use classes and can 309 

be divided in up to three layers with a fluctuating groundwater table. The HRUs are further 310 

aggregated into subbasins based on topography. Elevation is also used to get temperature variations 311 

within a subbasin to influence the snow melt and storage as well as evapotranspiration. Glaciers have 312 

a variable surface and volume, while lakes are defined as classes with specified areas and variable 313 

volume. Lakes receive runoff from the local catchment and, if located in the subbasin outlet, also the 314 

river flow from upstream subbasins. On glaciers and lakes, precipitation falls directly on the surfaces 315 

and water evaporates at the potential rate. Each lake has a defined depth below an outflow threshold. 316 

The outflow from lakes is determined by a general rating curve unless a specific one is given or if the 317 

lake is regulated. Lakes and man-made reservoirs are treated equally but a simple regulation rule can 318 

be used, in which the outflow is constant or follows a seasonal function for water levels above the 319 

threshold. A rating curve for the spillways can be used when the reservoir is full. Irrigation is 320 

simulated based on crop water demands (Allen et al., 1998) or relative to a reference flooding level 321 

for submerged crops (e.g. rice). The demands are withdrawn from rivers, lakes, reservoirs, and/or 322 

groundwater within and/or external to the subbasin where the demands originated. After subtraction of 323 

conveyance losses, the withdrawn water is applied as additional infiltration to the irrigated soils. River 324 

discharge is routed between the subbasins along the river network and may also pass subbasins, flow 325 

laterally in the soil between subbasins or interact with a deeper groundwater aquifer in the model. For 326 

the study in this paper, the HYPE model version 4.5.0 was set up for the entire Indian subcontinent 327 

(4.9 million km2) with a resolution of 6 010 subbasins, i.e. on average 810 km2, and is referred to as 328 

India-HYPE version 1.0.  329 

 330 

3.3. Model calibration and regionalisation 331 

The calibration objective was to derive a reliable model of adequately representing the temporal 332 

dynamics of flow (high flows, timing, variability and volume) across the Indian river systems. With 333 

such a model set-up, we can identify spatial patterns of hydrologic similarity across the subcontinent, 334 
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and also analyse impacts of environmental change on water resources. The HYPE model has many 335 

rate coefficients, constants and parameters, which in theory could be adjusted, but in practice some 20 336 

are tuned during calibration. Many of the parameters are linked to physiographic characteristics in the 337 

landscape, such as soil type and depths (soil dependent parameters) or vegetation (land use dependent 338 

parameters), while others are assumed to be general to the entire domain (general parameters) or 339 

specific to a defined region or river (regional parameters). Parameters for each HRU are calibrated for 340 

representative gauged basins and then transferred to similar HRUs, which are gridded with higher 341 

resolution than the subbasins across the whole domain to account for spatial variability in soil and 342 

land use. Using the distributed HRU approach in the multi-basin concept is thus one part of the 343 

regionalisation method for parameter values. Some other parameters, however, are either estimated 344 

from literature values and from previous modelling experiences (a priori values) or identified in the 345 

(automatic or manual) calibration procedure. Slightly different methods for regionalisation of 346 

parameter values have been used when setting up the different HYPE model applications, depending 347 

on access to gauging stations, additional data sources and expert knowledge. The following procedure 348 

was used for India-HYPE v.1.0: 349 

 350 

Stepwise, iterative calibration of parameter groups  351 

To tackle, to a certain extent, the equifinality problem in this processed-based model, the parameters 352 

(general, soil and land use dependent, specific or regional) are calibrated in a progressive way, i.e. 353 

stepwise calibration (Arheimer and Lindström, 2013) using different subsets of the gauging station in 354 

each step. In this way, errors induced by inappropriate parameter values in some model processes are 355 

not compensated for by introducing errors in other parts of the model. Hence, groups of parameters 356 

responsible for certain flow paths or processes (e.g. soil water holding capacity) are calibrated first 357 

and then kept constant when the second group of parameters (e.g. river routing) is calibrated. 358 

However, stepping downstream along the model code includes some reconsideration about chosen 359 

parameter values in an iterative procedure. For each step and group of parameters, a subset of 360 

representative gauging stations is used in simultaneous calibration, which means that no gauging 361 

station is calibrated individually. This is to get parameters that are robust also for ungauged basins. 362 

Model performance in specific sites is thus traded against average performance across the full model 363 

domain or regions. 364 

 365 

For the Indian subcontinent, the following groups of HYPE parameters were calibrated stepwise: (i) 366 

general parameters (e.g. precipitation and temperature correction factors with elevation etc.), which 367 

significantly affect the water balance in the system, snow pack and distribution, and regional 368 

discharge; (ii) Soil and land use dependent parameters (e.g. field capacity, rate of potential 369 

evapotranspiration etc.), which can influence the dynamics of the flow signal, groundwater levels and 370 

transit-time, (iii) Regional parameters, which are applied as multipliers to some of the general-soil-371 
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land use parameters and may be seen as downscaling parameters as they compensate for the scaling 372 

effects and/or other types of uncertainty. The multipliers are either specific for a region or a river-373 

basin.  374 

 375 

Expert knowledge for parameter constraints 376 

During this progressive stepwise calibration approach, constraints based on expert knowledge and 377 

basin similarity are introduced. As an example, we apply a constraint imposed on the mactrsm soil 378 

dependent parameter (mactrsm is the threshold soil water for macropore flow and surface runoff). In 379 

the first run, during the calibration procedure the parameter is allowed to vary freely within the 380 

parameter range and all distributions for the soil types are acceptable (unconstrained sets). We then 381 

apply expert knowledge on the parameter distribution and agree that a model will only be retained as 382 

feasible if it can satisfy the constraint: 383 

 384 

mactrsmCoarse > mactrsmMedium > mactrsmFine 385 

 386 

The mactrsm values for the remaining two soil types in the India-HYPE model domain, i.e. organic 387 

and shallow, are expected to be close to the corresponding values for the coarse soil; although the 388 

value for shallow soil is constrained to be less than mactrsm for organic soils.  389 

 390 

Spatial clustering based on catchment similarities 391 

We assume hydrologic similarity across the region on the basis of similarity in physiographic 392 

characteristics. We applied a k-means clustering approach within the 17-dimensional space, consisting 393 

of: 5 soil types, 7 land use types, mean annual precipitation, mean temperature, mean slope, mean 394 

elevation, and basin area. This separated the subbasins into homogeneous classes. A silhouette 395 

analysis was used to overcome the subjectivity on the determination of the number of clusters. The 396 

catchment similarity approach significantly reduces the number of parameters, while it allows 397 

regionalisation of parameters, which are assumed to be robust enough also for ungauged basins. 398 

 399 

Spatiotemporal calibration and evaluation 400 

India-HYPE was calibrated and evaluated in a multi-basin approach by considering the median 401 

performance in all selected stations. 30 stations were selected for model calibration and 12 “blind” 402 

stations for spatial validation. The years 1969-1970 are used as a model warm-up period, the next 5 403 

years for model calibration (1971-1975) and the final 4 years for temporal performance evaluation 404 

(1976-1979).  405 

 406 

The Differential Evolution Markov Chain (DE-MC; Ter Braak, 2006) optimisation algorithm is used 407 

to explore the feasible parameter space and to investigate parameter sensitivity. DE-MC was applied 408 
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at each step of the iterative calibration procedure with 200 generations of 100 parallel chains each 409 

being explored respectively. The Kling-Gupta Efficiency, KGE (Gupta et al., 2009), was used to 410 

define the performance of the model towards the observed discharge. KGE allows a multi-objective 411 

perspective by focusing to separately minimise the correlation (timing) error, variability error, and 412 

bias (volume) error. We also investigated the relative influence of timing, variability and volume error 413 

on the KGE value. To do this, we transformed the three components to result into a consistent range 414 

of possible values (the metrics are named as cc, alpha and beta corresponding to timing, variability 415 

and volume errors respectively; see Appendix A). 416 

 417 

3.4. Evaluation beyond standard performance metrics 418 

Evaluation based on flow signatures  419 

The model was further evaluated on its ability to capture spatial and temporal variability in discharge 420 

by comparing modelled flow signatures and monthly simulations with observed data. Here, three flow 421 

signatures are calculated for each gauging station to illustrate different aspects of the flow variability 422 

and the hydrograph characteristics (Appendix A): the mean annual specific runoff (Qm, mm yr-1), the 423 

normalised high flow statistic (q05, -) and the slope of the flow duration curve (mFDC, -).  424 

 425 

Multi-variable evaluation 426 

To judge model credibility, other observed variables than river discharge are used, for instance from 427 

satellite products. For India-HYPE, these included evaluations against estimated snow areal extent 428 

and snow water equivalent from the GlobSnow system and potential evapotranspiration (pot. E) from 429 

the MODIS system. The assumption is that MODIS pot. E can be used as reference to calibrate the 430 

HYPE parameters that control pot. E; this refers only to the cevp land-use dependent parameter, which 431 

is a coefficient of potential evapotranspiration (mm/d °C) (Lindström et al., 2010). The cevp 432 

parameter was optimised for each land use type so that HYPE modelled annual pot. E matches the 433 

MODIS annual pot. E at the entire model domain. A Monte Carlo uniform random search was used to 434 

explore the feasible cevp parameter space (constant for each land use type; 0.15-0.30) and to 435 

investigate parameter identifiability and interdependence (10 000 samples). The Root Mean Square 436 

Error (RMSE) and Absolute Bias (Bias) were used as objective functions in this analysis; 0 values 437 

indicate a perfect model with no errors for both criteria. Note that the analysis was conducted in the 438 

2000-2008 period during which MODIS data were available. We therefore assume that the cevp 439 

parameter is static in time and representative also for the 1971-1979 period. 440 

 441 

Linking performance to physiographical characteristics 442 

To better understand the model performance and identify potential for model improvements, we apply 443 

classification and regression trees (CART; Breiman et al., 1984). CART is a recursive-partitioning 444 

algorithm that classifies the space defined by the input variables (i.e. physiographic-climatic 445 
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characteristics) based on the output variable (i.e. KGE model performance). The tree consists of a 446 

series of nodes, where each node is a logical expression based on a similarity metric in the input space 447 

(physiographic-climatic characteristics). In this case, we divided the KGE performance into three 448 

groups – bad (KGE < 0.4), medium (0.4 < KGE < 0.7), and good (KGE > 0.7), which were termed 449 

C0, C1 and C2 respectively. A terminal leaf exists at the end of each branch of the tree, where the 450 

probability of belonging to any of the three output groups can be inspected. Here we summarised the 451 

physiographic-climatic characteristics of the basin into 5 soil types (coarse, medium, fine, organic and 452 

shallow), 7 land use types (crops, forest, open land with vegetation, urban, bare/desert, glacier, water), 453 

mean annual precipitation and mean temperature. 454 

 455 

3.5. Catchment functioning across gradients 456 

We finally explored the spatial runoff patterns across the entire subcontinent by analysing the flow 457 

characteristics in all modelled 6 000 catchments. In here, we used the modelled discharge and 458 

calculated 12 flow signatures for each subbasin (see Appendix A): Mean annual specific discharge 459 

(mm yr-1); Range of Pardé coefficient (-); Slope of FDC (-); Normalised low flow (-); Normalised 460 

high flow (-); Coefficient of variation (-); Flashiness defined as 1-autocorrelation (-); Normalised peak 461 

distribution (-); Rising limb density (-); Declining limb density (-); Long term mean discharge (m3/s); 462 

Normalised relatively low flow (-). We then applied a k-means clustering approach within the 12-463 

dimensional space (consisting of the 12 calculated flow signatures) to categorise the subbasins based 464 

on their combined similarity in flow signatures. Through the mapping of the spatial pattern we gained 465 

insight in similarities of catchment functioning and could identify the dominant flow generating 466 

processes for specific regions. To further highlight the hydrological insights gained during model 467 

identification, we conducted the clustering analysis on two different steps of the model calibration and 468 

explored the sensitivity of calibration on the spatial patterns of flow signatures. 469 

 470 

 471 

4. RESULTS AND DISCUSSION 472 

The very first model set-up to establish a technical model infrastructure of the Indian subcontinent 473 

showed very poor model performance, with an average and median KGE for all stations of -0.02 and 474 

0.0 respectively. This was expected and the baseline for improvements following the six steps of the 475 

modified PUB best practices.  476 

 477 

4.1. Read the landscape 478 

Background knowledge was firstly acquired via visual and/or numerical analysis of available maps 479 

that describe the spatial patterns of land use, soil and climate, and study of the scientific literature on 480 

regional hydrological investigations, which enabled identification of dominant physical processes and 481 

flow paths. Such soft information was useful for turning on/off processes and selecting relevant 482 
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algorithms, i.e. management, snow melting. Communication with local scientists (i.e. governmental 483 

hydrological institutes), managers (i.e. regional water authorities) and end-users (i.e. agricultural 484 

sector) enabled knowledge exchange and justified the model approach. Three extensive field trips 485 

provided important soft information about system behaviour in the semi-arid northwest and humid 486 

subtropical northeast parts of the country (i.e. identification of sources to irrigate water for agricultural 487 

needs and estimation of water losses due to faults in the irrigation systems). 488 

 489 

Analysis of the topographic data was of major importance since they affected the subbasin delineation 490 

and routing. Although Hydrosheds are based on high-resolution elevation layers, which are 491 

hydrologically conditioned and corrected, there are still many errors. Merging Hydrosheds with 492 

GRDC (hence forcing the delineation at subbasins where GRDC stations are available) involved some 493 

mismatches in terms of the size of upstream areas between the subbasin delineations and the GRDC 494 

metadata. As an example, the location of the Dundeli station in the Kali Nadi river basin (asterisk 1 in 495 

Fig. 2) was adjusted to match the underlying topography and drainage accumulation data based on 496 

published and computed upstream areas respectively (see Fig. 3a). The consequent change in the 497 

routing resulted in a considerable improvement in the model performance (KGE improved from -0.51 498 

to 0.30; see Fig. 3b). Many similar corrections had to me made. 499 

 500 

To make corrections also for ungauged basins and major rivers, the delineated basins were 501 

additionally evaluated using a shapefile of basin areas reported by Gosain et al. (2011). Some minor 502 

corrections had to be done in the routing to achieve similarly delineated basins, particularly in the 503 

northwest region, where mean elevation at the subbasin scale does not show much variability.  504 

 505 

4.2. Runoff signatures and processes 506 

As recommended, several flow signatures were extracted for the gauging stations across India to be 507 

compared to physiographical patterns. Flow signatures were also used for model evaluation to find 508 

potential for improvements. The analysis was done at different stages in the model set-up, and finally, 509 

there was a relatively good agreement of the observed and modelled flow signatures (Fig. 4). In 510 

general, poor agreement was found in mountains and in semi-arid regions, which are characterised by 511 

local, convective rainfall events during the monsoon season. No clear pattern is found between 512 

signature agreement and basin scale for calibrated river gauges.  513 

 514 

We also explored how flow signatures can be affected by human impacts by analysing modelled 515 

responses considering and omitting the human influence. Fig. 5 highlights the significant effect 516 

reservoirs have to dampen hydrographs and control discharge variability; hence various flow 517 

signatures. The model can fairly well represent the reservoir routing and KGE improved from 0.37 to 518 

0.48 after introducing a regulation scheme. The model improved on capturing the seasonality of 519 
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regulation; however at this modelling state it was not able to represent the monthly peaks. Note that 520 

model results are subject to the general rating curve generalised to all reservoirs; there were no 521 

downstream data available to calibrate the parameters specifically for a given reservoir/dam.  522 

 523 

4.3. Process similarity and grouping 524 

After having identified relevant HRUs, reclassified them into suitable calculation units and inserted 525 

major features as lakes and dams, we identified basin similarities to drive the identification of the 526 

model’s regional parameters. The cluster analysis was applied to all 6 010 subbasins of the domain 527 

within the 17-dimensional space (see section 3.3). We identified 13 different classes of varying size 528 

(Fig. 6) out of 42 values, which is the number of gauged river-basins in the domain, yet with relatively 529 

high class strength (i.e. the variability of characteristics within each cluster is relatively low). It is 530 

important to note that the physiographic (soil and land use) characteristics had more influence on the 531 

clustering as opposed to the climatic properties; the clustering was repeated without climatic 532 

information but the spatial pattern of the clusters remained. In the last stage of the stepwise calibration 533 

procedure, the regional model parameters were estimated for each cluster region. When using the 534 

clustering for regional calibration (Section 5.4), however, it could not significantly improve the 535 

overall model performance but nevertheless, the model consistency at all stations was improved. 536 

Overall, we found a high potential of catchment similarity concepts to drive parameter identification 537 

in the ungauged basins. 538 

 539 

 540 

4.1-3. Quality checks 541 

Steps 1-3 of our best practices were performed in an iterative procedure including checking against 542 

independent data sources that resulted in reconsiderations of assumptions and corrections of input 543 

data. For instance, the proportion of each land use type driven by GLC2000 was calculated and 544 

compared to soft information from official governmental reports. According to GLC2000 11% of the 545 

country is forest, which contradicts the estimated 22% based on reports from the Ministry of Water 546 

Resources (India-WRIS, 2012, River Basin Atlas of India, RRSC-West, NRSC, ISRO, Jodpur, India). 547 

To address this, forest information from the Global Irrigated Area Mapping (GIAM; Thenkabail et al., 548 

2009) was merged with GLC2000. Although the proportion of forest areas was corrected, this 549 

merging consequently changed the proportion of open land with vegetation and crops from 14 and 550 

68% to 12 and 59% respectively. 551 

 552 

In addition, several modelled and observed flow signatures were compared repetitively at every stage 553 

of model refinement. We found it valuable to adjust as much as possible before starting to work on 554 

parameter values and model algorithms. For instance, the analysis of flow time series and signatures 555 

during the first model runs showed consistent underestimation of runoff in the Himalayan-fed basins. 556 
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A comparison of the mean annual precipitation between Aphrodite and national precipitation gridded 557 

data provided by the Indian Meteorological Department, showed an underestimation of the Aphrodite 558 

precipitation in the mountainous regions; the Aphrodite precipitation network is sparse over Himalaya 559 

(Yatagai et al., 2012). To overcome this underestimation, a correction factor was applied to 560 

precipitation (in HYPE, this was a multiplier of 4% per 100 m) at regions with elevation greater than 561 

400 m. Allowing such modification in the data, we expected that calibration of model parameters 562 

could further compensate precipitation uncertainty. 563 

 564 

4.4. Model – Right for the right reasons 565 

When setting up India-HYPE we considered realism in the process calculations by using parameter 566 

constraints. We did not have to adjust the model structure and we did not assimilate data or rating 567 

curves as we did not have access to such observations. 568 

 569 

Additional data sources 570 

The calibration of pot. E model routine against the MODIS pot. E data resulted in a well identified 571 

coefficient of potential evapotranspiration (cevp) values for most land use types. Analysis of the 572 

Monte Carlo results presents an initial screening of parameter sensitivities (Fig. 7). Results show that 573 

the different objective functions extract different information from the pot. E spatial pattern. As 574 

expected, cevp values for crops, forest and open land with vegetation types are the most sensitive to 575 

both objective functions, since these land use types dominate the region (60, 23 and 11% of India 576 

respectively) and hence significantly affect pot. E. Overall India-HYPE was lower in pot. E at the arid 577 

regions and over the Himalayas (on average by 15%), whereas it was higher in pot. E along the 578 

western and eastern coast lines (on average by 12%). Although the two estimates do not fully match, 579 

the use of additional information to constrain parameters (hence constraining the model’s results for 580 

specific processes) is promising. However, the uncertainty of MODIS results was not examined and 581 

more data sources should be included.  582 

 583 

Expert knowledge 584 

Expert knowledge was applied to filter out unrealistic relationships of the mactrsm parameter for 585 

different soil types (see section 3.3). Both the constrained and unconstrained models resulted in a 586 

comparable calibration performance; median KGE was 0.48 and 0.49 for the constrained and 587 

unconstrained models respectively. The optimum set for the unconstrained model gave an unrealistic 588 

distribution of the parameter values for the coarse and medium soil types (Fig. 8). However, the 589 

optimum values are within the parameter range defined in the constrained calibration approach. The 590 

slight increase is due to the free calibration parameters whose values and/or distributions are allowed 591 

to compensate for errors/uncertainties at other processes. In such cases it is important to select the 592 

model which performs well and respects the theoretical understanding of the system. This illustrates 593 



 

17 
 

the value of the recommendations to constrain parameters based on expert knowledge – the right 594 

model for the right reason.  595 

 596 

Stepwise calibration procedure 597 

The predictability of the model with prior parameter values was very poor (Fig. 9), highlighting the 598 

limitations when parameters are regionalised from a donor system of strongly different hydro-climatic 599 

characteristics (e.g. Sweden). A significant improvement in the performance is achieved in both 600 

calibration and evaluation period after the calibration of the general parameters due to a better 601 

representation of the water volume in the rivers (beta in KGE improved from 0.51 to 0.78). 602 

Calibration of the soil and land use parameters further improved the performance; however KGE was 603 

slightly decreased at the poorly performed basins of the previous calibration step. Using the clusters 604 

based on catchment similarities for regional calibration did not significantly improve the overall 605 

model performance, however, the model consistency at all stations was improved in both calibration 606 

and evaluation periods. 607 

 608 

 609 

4.5. Hydrological interpretation 610 

The temporal interpretation was done by analysing interacting dynamics of internal model variables, 611 

i.e. precipitation (P, mm), snow depth (SD, mm), temperature (T, °C), evapotranspiration (E, mm), 612 

soil moisture deficit (SMDF, mm), and discharge (Q, m3/s). These are checked visually in a set of 613 

validation basins, to avoid unrealistic model behaviour due to parameter setting. Results from this 614 

point onwards correspond to the calibrated India-HYPE model (after step 3 in Fig. 9). Results in the 615 

Chenab River at the Akhnoor station (branch river of the Indus system; asterisk 3 in Fig. 2) show that 616 

the snow melt characterises the monthly hydrograph (Fig. 10). Snow accumulation/melting processes 617 

occur at the headwaters of the basin which experience T below 0 °C during the winter and pre-618 

monsoon period and above 0 °C during the rest of the months (“Up” black-dashed T series in Fig. 10). 619 

P also varies in space while it exhibits strong seasonal variability according to the location (“Up” 620 

black-line and “Down” blue envelope in the P series). Spatiotemporal analysis of P allows a better 621 

understanding of the snow depth temporal distribution; in the model, snow depth increases when 622 

precipitation occurs and temperature is below 0 °C. Given the model’s evapotranspiration module, 623 

potential E varies depending on mean temperature. However the distribution of actual E is dependent 624 

on the water availability in the soil, which further justifies the strong (negative) correlation between 625 

actual E and SMDF. 626 

 627 

For spatial interpretation of flow predictions, we investigated potential relationships between model 628 

performance and physiographic-climatic characteristics; hence identify the controls of poor model 629 
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performance. Fig. 11 shows the classification tree obtained when relating the KGE performance with 630 

physical and climatic characteristics across the domain. Results show that the dominant variables 631 

resulting in poor/good model performance are soil (medium and shallow) and climate (mean 632 

precipitation and temperature). Despite the relatively small sample is this analysis, results are 633 

insightful and show that poor performance (KGE<0.4) is generally achieved at basins with shallow 634 

soil type greater than 13%. The probability of obtaining poor performance is also highest for basins 635 

with medium soil type greater than 34% and precipitation less than 1038 mm. Consequently, emphasis 636 

should be given to parameters for medium and shallow soils in a future effort to improve the model 637 

performance.  638 

 639 

 640 

4.6. Uncertainty – local and regional 641 

The India-HYPE model was calibrated and validated in space and time and the overall model 642 

performance (at the end of the stepwise approach) in terms of KGE (Gupta et al., 2009) and its 643 

decomposed terms is presented in Table 3. India-HYPE achieved an acceptable performance and is 644 

therefore considered adequate to describe the dominant hydrological processes in the subcontinent. 645 

However, the performance decreased (from KGE=0.64 to KGE=0.44) when the model is evaluated 646 

for gauges, which are independent both in space and time. This shows that the model still needs 647 

improvements to be equally reliable for predictions in ungauged basins at independent time-periods. 648 

The decomposed KGE terms show that the model during the validation period and for the validation 649 

stations cannot fully capture the variability of the observed data (described by the alpha term). alpha 650 

decreases during the validation period at the validation stations from 0.78 to 0.58 which consequently 651 

affects the KGE values. However other flow characteristics, i.e. timing and volume, are well 652 

represented also during the validation period. 653 

 654 

To search for major uncertainties and potential for improvements, we finally analyse the model 655 

performance in both the calibration and validation stations across the domain. The ability of the model 656 

to reproduce the monthly variability of discharge varies regionally as shown by the KGE (Fig. 12). 657 

Performance is generally poor in the mountainous and semi-arid regions (western and eastern 658 

Himalayas and northwest India respectively). The Indian river-basins are also regulated limiting the 659 

model’s predictive power; regulation strategies are irregular and difficult to reproduce. The KGE’s 660 

decomposed terms (cc, alpha and beta) can reveal the causes for the model errors. For example, the 661 

poor performance at the Indus river system (north India) is due to the poor representation of the 662 

observed variability of discharge, which is probably related to parameterisation in the model’s snow 663 

accumulation/melting component. In addition, mass volume error seems to be the main cause of poor 664 

KGE performance in the south-western rivers. This seems to be due to the under-estimation of 665 

precipitation and/or over-estimation of actual evapotranspiration; comparison of APHRODITE data 666 
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against precipitation data from the Indian Meteorological Department showed underestimation of 667 

precipitation in this region. Conclusions are similar for the stations used in calibration and validation 668 

analysis; hence justify the model’s spatial consistency in the region.  669 

 670 

 671 

4.7. Spatial flow pattern across the subcontinent and dominant processes 672 

Although the India-HYPE model has limitations, we identified potential for further improvements 673 

during the set-up procedure. The present version already demonstrated the usefulness of multi-basin 674 

modelling for comparative hydrology and how to gain insights in spatial patterns of flow generating 675 

processes at the large scale. The final clustering analysis of the 12 flow signatures from India-HYPE 676 

version 1 resulted in six different classes of varying size (Fig. 13) with different distribution in 677 

signatures (Fig. 14). Similarity in catchment behaviour for each class was interpreted and dominant 678 

flow generating processes could be distinguished as follows: 679 

 680 

Catchments in cluster 3 are located in the Himalayan region and in the western Indian coast (Western 681 

Ghats) and are characterised by high ranges of annual specific runoff (Qm) due to high precipitation 682 

occurring in these regions, and variable flow regime (high mFDC). Variability is dependent on 683 

snow/ice processes which are important in controlling the flow regime, at least in the Himalayan 684 

region (c.f. annual cycle in the Indus River in Fig. 2). Flow is also characterised by high rising and 685 

declining limb densities (RLD and DLD). The climate in catchments of cluster 3 is humid subtropical 686 

and tropical with high evapotranspiration. Catchments in the northwestern part of India (cluster 4; arid 687 

regions including the Thar Desert) are characterised by high intra-annual variability (DPar) and low 688 

values of flow (q95). Ephemeral rivers exist in this region due to high evaporation rate (e.g. Luni 689 

river), and generate runoff mainly during the monsoon period. The high variability in the flow regime 690 

is also shown by the high values of CV, Flash and RLD signatures. Similar flow characteristics are 691 

observed for the catchments located in the semi-arid regions (cluster 1), yet not at the same range of 692 

signature values as for cluster 4. The catchments in cluster 1 are also fast responsive and their flow 693 

shows strong dynamics, in terms of rising (RLD) and declining limb densities (DLD). Catchments in 694 

cluster 2 are located in the tropical climate and their runoff response is mainly driven by rainfall. 695 

Although these catchments receive less precipitation compared to other regions, their normalised high 696 

flow statistic (q05) is the highest of any cluster group. Moreover, catchments in cluster 5 are located 697 

at the downstream areas of the Indus River distinguished for their high values of low flows. Finally, 698 

catchments in cluster 6 are characterised for their high mean annual discharge values and are located 699 

at the downstream areas of the large river systems (Indus, Ganga and Brahmaputra). Note also that 700 

only few catchments belong to these cluster groups; 112 and 57 catchments in cluster 5 and 6 701 

respectively. 702 

 703 
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Repeating the clustering analysis at two different steps of the calibration procedure can assess changes 704 

in the understanding of hydrological response in the region. Fig. 13 shows that parameterisation can 705 

affect the spatial pattern of clusters in terms of catchment functioning. In particular, clusters after 706 

calibration (Regional step) seem to have a consistent spatial structure; this also justifies the validity of 707 

parameter regionalisation approaches based a spatial proximity between catchments. Results from 708 

clustering based on physiography show spatial consistency in the arid region (Thar Desert) and the 709 

western coast (Western Ghats) respectively. This affected identification of the regional parameters 710 

(multipliers of precipitation and evapotranspiration) applied at the subbasin scale, which consequently 711 

led to a more consistent spatial structure in the mapping (c.f. Fig. 13a and 13b). Finally, calibration of 712 

the soil and land use parameters led to a better representation of snow processes and hence affected 713 

the flow signatures in the Himalayan region (cluster 3). 714 

 715 

 716 

4.8. Performance in India-HYPE v1.0 and future model refinements 717 

Many other catchment-scale and multi-basin hydrological models have been applied in (parts of) the 718 

Indian subcontinent. However, it is generally common that only results from success stories are 719 

reported which limits the potential for comparative analyses and hence improving process 720 

understanding. Here, we presented results from all 42 Indian GRDC stations including both failure 721 

and success. We closed the adjustments of the first model version and documented the India-HYPE 722 

version 1.0 providing also guidelines on how to start working on the next version, looping back to 723 

step 1 again. Overall, India-HYPE performed well for most river systems with the performance being 724 

comparable to other studies, in which a model was applied at the large scale. Application of the VIC 725 

hydrological model resulted in a similar performance for the large systems of Ganges, Krishna and 726 

Narmada (Raje et al., 2013) with the Nash-Sutcliffe Efficiency, NSE (Nash and Sutcliffe, 1970) 727 

varying between 0.44 and 0.94 (at the same stations India-HYPE achieved NSE between 0.45 and 728 

0.94). In contrast to previous studies, our contribution lies in the fact that anthropogenic influences 729 

(i.e. reservoirs and irrigation) are simulated, as those have been shown to be very important 730 

controlling the amplitude, phase and shape of the hydrograph. Other models, i.e. SWAT, have also 731 

been applied in India to assess the impacts of climate change; however the parameters have been 732 

estimated empirically from the literature, whilst the performance was not reported (Gosain et al., 733 

2006, 2011). 734 

 735 

Catchment-scale hydrological models from India have generally been achieving high performance 736 

(Arora, 2010; Patil et al., 2008), mainly due to the local gauged data used; usually the data are 737 

governmental and confidential with high spatiotemporal resolution and less uncertainty/error. In 738 

addition, model parameters in single catchments are normally transferred along a smoother hydro-739 

climatic gradient and are calibrated for individual gauging stations. Nevertheless, catchment-scale 740 
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studies set a benchmark of performance and provide deeper knowledge of process description which 741 

further leads to refinements in multi-basin modelling. Of particular interest are the investigations 742 

about the western Himalayas, in which India-HYPE performed poorly. Studies by Singh and 743 

Bengtsson (2004), Singh and Jain (2003) and Singh et al. (2006) highlight the importance of 744 

accumulation/melting processes in the snow-/glacier-fed parts of the region accounting for 17% each 745 

to total discharge; however for other regions of the Indus system higher contributions from snow and 746 

ice are reported (Immerzeel et al., 2009). The poor model performance in terms of alpha (variability) 747 

and beta (volume) highlights the need to refine the current snow/glacier algorithms, and/or improving 748 

the parameters by using this soft information in model evaluation. Similar model needs can be 749 

concluded when assessing the India-HYPE performances at the Ganges and Brahmaputra basins based 750 

on previous literature (Arora, 2010; Nepal et al., 2014). Finally results for the arid northwest and 751 

mountainous regions highlighted the need to refine the pot. E algorithm. Most regional hydrological 752 

studies considered relationships including extraterrestrial radiation and relative humidity, i.e. 753 

Hargreaves-Samani or Penman-Monteith, which are expected to improve the magnitude and 754 

variability of evapotranspiration losses (Samaniego et al., 2011). Therefore the pot. E model 755 

component will be further investigated and refined in the next version of India-HYPE. 756 

 757 

 758 

5. CONCLUSIONS 759 

When investigating the modified recommendations for predictions in ungauged basins across the 760 

Indian subcontinent, we found that: 761 

• Each step in the best practice procedure was relevant and we could find methods that also 762 

work at the large scale using the knowledge derived for catchments during the PUB decade.  763 

We argue to adapt an incremental and agile approach to model set-up, which requires 764 

frequent testing to get feedback on introduced changes. The large-scale modelling is more  765 

prone to technical problems and data inconsistencies that become apparent when running 766 

the model and therefore it should be done early in the model set-up process. 767 

• Multi-basin modelling of ungauged rivers at the large scale reveals insight in spatial 768 

patterns and dominating flow processes. Indian catchments can be categorised into 6 769 

clusters based on their flow similarity. River flow varies spatially in terms of flow means, 770 

variability, extremes and seasonality. Catchments in the Himalayan region and the Western 771 

Ghats seem to respond similarly and are characterised by high mean annual specific runoff 772 

values and variable flow regime. Response of the catchments in the tropical zone is 773 

characterised by high peaks, while catchments in the dry regions show very strong flow 774 

variability and respond quickly to rainfall.    775 

• Overall the model showed high potential to represent the hydrological response across the 776 
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region despite the strong hydro-climatic gradient. However, the India-HYPE v.1.0 still 777 

needs to be improved to be equally reliable for predictions in ungauged basins as for 778 

gauged rivers. The model set-up procedure according to the PUB recommendations brought 779 

insights on where the single model structure did not perform well. Based on this, future 780 

model improvements will mainly focus on the western Himalayas and arid regions by 781 

refining the hypothesis of snow/glacier processes and the evapotranspiration algorithm. 782 

 783 
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 800 

 801 

APPENDIX A: DEFINITION OF PEFORMANCE METRICS AND FLOW SIGNATURES 802 

The Kling-Gupta Efficiency (KGE) is defined as: 803 

!"# = 1 − ! (! − 1)!!+!(! − 1)!!+(! − 1)! 

 804 

where r is the linear cross-correlation coefficient between observed and modelled records, α is a 805 

measure of variability in the data values (equal to the standard deviation of modelled over the standard 806 

deviation of observed), and β is equal to the mean of modelled over the mean of observed. For a 807 

perfect model with no data errors, the value of KGE is 1; hence r, α and β are also 1. In addition, we 808 

transform the three KGE components to results into a consistent range of possible values. 809 

Consequently we consider: 810 

!! = 1 − ! (! − 1)! 
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!"#ℎ! = 1 − ! (! − 1)! 

!"#! = 1 − ! (! − 1)! 

where the range of values for each term varies between -∞ and 1 with 1 being the optimum.   811 

 812 

In this paper we quantify the signatures by single values. Given the time series of observed (or 813 

modelled) specific daily runoff !!(!) (mm d-1), the calculated signatures are given in Table A1. 814 

 815 

 816 
Table A1. Flow signatures used for model evaluation and catchment functioning. 817 

Signature Abbreviation Reference 

Mean annual specific runoff Qm (Viglione et al., 2013) 

Normalised high flow q05 (Viglione et al., 2013) 

Normalised low flow q95 (Viglione et al., 2013) 

Normalised relatively low flow q70 (Viglione et al., 2013) 

Slope of flow duration curve mFDC (Viglione et al., 2013) 

Range of Pardé coefficient DPar (Viglione et al., 2013) 

Coefficient of variation CV (Donnelly et al., 2015) 

Flashiness Flash (Donnelly et al., 2015) 

Normalised peak distribution PD (Euser et al., 2013) 

Rising limb density RLD (Euser et al., 2013) 

Declining limb density DLD (Euser et al., 2013) 

Long term mean discharge Qdm (Donnelly et al., 2015) 

 818 
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Table 1. Data sources and characteristics of the India-HYPE v.1.0 model set-up. 

Characteristic/Data type Info/Name Provider 

Total area (km2) 4.9 million - 

Number of subbasins 6 010 (mean size 810 km2) - 

Topography (routing and 

delineation) 

Hydrosheds (15 arcsec) Lehner et al. (2008) 

Soil characteristics Harmonised World Soil Database 

(HWSD) 

Nachtergaele et al. (2012) 

Land use characteristics Global Land Cover 2000 

(GLC2000) 

Bartholomé et al. (2002) 

Reservoir and dam Global Reservoir and Dam 

database (GRanD) 

Bernhard et al. (2011) 

Lake and wetland  Global Lake and Wetland Database 

(GLWD) 

Lehner and Döll (2004) 

Irrigation Global Map of Irrigation Areas 

(GMIA) 

Siebert et al. (2005) 

Discharge Global Runoff Data Centre 

(GRDC; 42 stations) 

http://www.bafg.de/GRDC 

Precipitation APHRODITE (0.25° × 0.25°) Yatagai et al. (2012) 

Temperature AphroTEMP (0.5° × 0.5°) Yasutomi et al. (2011) 

Potential evapotransp. MODIS pot. E (1 km) Mu et al. (2011) 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 2. Statistics for the 42 gauging stations of river discharge used in the model evaluation. 

  Percentiles  

  5% 25% Median 75% 95% Mean 

Basin surface (km2) 2 062 12 691 32 770 68 522 294 524 75 493 

Mean annual runoff (Qm, mm) 40 168 377 648 2 090 582 

*Inter-annual variability of runoff (%) 20 28 40 61 102 48 

*Values of inter-annual variability correspond to coefficients of variation calculated on 9 year periods 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3. Median model performance for calibration and validation stations and periods. 

Space Time KGE cc 

(timing) 

alpha 

(variability) 

beta 

(volume) 

Cal. (30 stations) Cal. (1971-1975) 0.64 0.93 0.78 0.75 

Val. (1976-1979) 0.62 0.92 0.81 0.80 

Val. (12 stations) Cal. (1971-1975) 0.64 0.91 0.78 0.79 

Val. (1976-1979) 0.44 0.84 0.58 0.75 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 1. Best practices for predictions in ungauged basins: A) according to Fig. 13.1 by Takeuchi et 

al. (2013) in Blöschl et al. (2013), and B) modified version for multi-basin applications at the large 

scale. 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Figure 2. (a) Map of the Indian subcontinent (model domain). Results will be shown from 

investigation areas with a star in the order of their numbering. (b) Annual cycles (1971-1979) at four 

river systems (A-D) of various climate (P – observed precipitation, Act. E – modelled actual 

evapotranspiration, Q – observed discharge). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

Figure 3. Example of the impact of basin delineation and routing on model behaviour: (a) correction in 

the location (red x and green circle is prior and after the correction respectively) of the Dundeli 

discharge station (Kali Nadi river basin), and (b) the corresponding modelled discharge before and 

after the correction. In (a) the subbasins and flow accumulation are also depicted. 

 
 
 
 
 



 
Figure 4. Signature analysis in the spatiotemporal model evaluation: (a) the mean annual specific 

runoff, (b) the normalised high flow statistic, and (c) the slope of the flow duration curve. Blue and red 
circles are used for the calibration and evaluation stations respectively. 

 
 
 
 
 
 
 
 
 



 
Figure 5. Impact of model parameterisation of reservoir regulation on discharge for (a) monthly 

streamflow, and (b) annual hydrograph, showing naturalised (without) and regulated (with) conditions 

at the basin outlet (located at asterisk 2 in Fig. 2). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure 6. Subbasin clusters using a k-means clustering approach based on physiographical 

characteristics. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Figure 7. Coefficient of potential evapotranspiration (cevp) parameter as identified (the range is 

derived from the 100 parameter sets that perform best, and the optimum set) for different objective 

functions (RMSE and Bias) and land use type. Lines with markers present the optimum parameter 

values for different objective functions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure 8. Constraints (grey dashed lines) and optimum (solid lines) values of the mactrsm soil 

dependent model parameter based on process understanding. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure 9. Improvements in model performance (average KGE for 30 stations) during the stepwise 

calibration approach (steps 1-3 correspond to general, soil-land use, and regional calibration as 
described in section 3.3). “1st run” corresponds to model performance of the very first model set-up to 
establish a technical model infrastructure. “Prior” corresponds to model performance before parameter 
calibration and after overcoming routing errors. The evaluation is conducted at the calibration (blue) 

and the validation (red shaded) period. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

 
 

Figure 10. Analysis of model variables: P, SD, T, E, SMDF and Q. E corresponds to potential (Pot.) 

and actual (Act.) evapotranspiration, and Q corresponds to modelled (Mod.) and observed (Obs.) 

discharge). Note that P and T series are plotted at the outlet of the basin (Down) and the most 

upstream subbasin (Up). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

 
Figure 11. Classification trees relating regions of different KGE performance with physical and 

climatic characteristics. The bars represent the probability of a performance resulting in any of the 

three performance classes (C0, C1 or C2). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure 12. Spatial variability of KGE (and its decomposed terms) model performance for the 

calibration (circle) and validation (triangle) stations. 

 
 
 
 
 
 
 
 
 
 
 



 
Figure 13. Subbasin clusters based on flow signatures at different stages of the model set-up: (a) Prior, 

and (b) Regional. 

 
 
 
 
 
 
 
 
 
 
 



 
Figure 14. Distribution of signature values for each cluster (at Regional step). The flow signatures are 

described in Appendix A. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


