Author’s response to editor and reviewers – summary (July 2015)

We thank the editor and reviewers for their time in providing comments to improve our manuscript, and trust that this major revision addresses the points that were raised.

The thoroughly revised manuscript now includes additional test data (n=18, CP method), and with revisions to text as indicated in our response to reviewers. Confidence intervals for the K_v data have been tested with the student t distribution, showing reasonable results for the Cattle Lane (CL) site but that further testing is needed at other sites with more variable K_v results. In response to the editor’s comments, we have added 1g column test data for comparison with in situ K_v data and CP data from the CL site. It is important to note that independent in situ K_v data is consistent with results from CP testing, providing further confidence in reasonable outcomes.

Overall, we are confident that this additional work has strengthened the objectives of the paper to provide reasonable K_v estimates for a clayey sequence, though it is beyond the scope to provide a flow connectivity assessment. References to two recent papers Acworth et al. (2015) and Crane et al. (2015) have been added because of their relevance to the geology of the sediments tested, and the possibility of preferential flow paths.

To quote from the abstract “The current work demonstrates that relatively rapid and reasonable hydraulic conductivity (K) measurement of aquitard cores using accelerated gravity can constrain and compliment larger scale assessments of hydraulic connectivity.” This study of one factor controlling groundwater flow (vertical hydraulic conductivity) is not a substitute for an assessment of hydraulic connectivity at various spatial and temporal scales. The introduction final sentence has been revised as follows to clarify where this study fits: “This paper provides reliable K_v for at least one local clayey-silt sequence and strategies for future testing that are important contributions towards evaluating flow connectivity at a range of scales. These findings can be complimented with hydrogeological data such as pore pressure and tracer data to better constrain numerical flow models.”

Other major edits included deleting most of Section 4.2, deletion of Figure 6, revision of Table 3, a new Table 4, and moving material of secondary importance (eg Figure 4) to supplementary sections of the paper. Along with the deletion of Figure 6, the old Section 3.1 on resistivity imaging (and the co-author A Guinea) and subsequent references in the discussion have been removed. Data previously indicated as unpublished site data, has been added to a supplementary section S5.

A point by point response to reviewers comments is provided, where relevant, in the sections below (in red) in reference to our responses in blue that were published online (June 2015). This is followed by a marked up version of the manuscript indicating major revisions.

AR1 is Anonymous Referee #1 (11th April)

I am confused with the motivation of this research. If the aim of this research is to show the use of new CP based testing method for steady-state condition, the test results, which are somehow acceptable (I think they are questionable), verify that this method can be evaluated as an alternative to the existing ones when the further improvements as mentioned in the last paragraph of Section 5.2 are done.
Yet, if the aim of this study is to discuss the effects of local heterogeneity, mechanism of vertical leakage under centrifugal forces or uncertainty factors which eventually affects the estimations obtained from any test method, the focus of this work does not fit and the text does not contribute the new insights to the literature.

Response: The aim of the research was to demonstrate CP techniques for characterizing semi-consolidated clayey silt cores and compare the results with in situ measurements of permeability (refer to the last paragraph of the introduction). The advantage of reduced testing time compared with alternative laboratory techniques was emphasised in the abstract and introduction. The effects of heterogeneity and other aspects mentioned by referee #1 were not the aim of the study. There was some discussion of heterogeneity, mechanisms of leakage and uncertainties where relevant to the central objective to demonstrate the relatively rapid laboratory technique within a larger context.

AR1 The authors stated that there were no available aquifer tests which go in line with CP. If the aquifer test had been conducted on the site investigated, the result would have been more interesting and reliable when compared with the existing ones. In my opinion, based on the test cases studied, it is hard to generalize the results provided by the authors.

Response: It can be clarified for Referee #1 that the CP results in Section 5.1 are interesting and realistic because the core tests included results from exactly the same site (Cattle Lane site) as the in situ Kᵥ results (Section 5.3). While there were no aquifer pump tests (Page 21, Line 10), this does not mean that there are no hydraulic tests available from the alluvium, and in fact the in situ Kᵥ results from harmonic analysis of pore pressures are more reliable than aquifer pump tests. Aquifer pump tests typically focus on Kₕ of aquifers, and derive Kᵥ of aquitards indirectly, rather than from direct measurement of pore pressure response within the aquitard (Section 5.6, p2824).

AR1 offered the following comments to improve the quality of text: 1. The core samples were taken from the well-documented sites and studied by various researchers. Although the author stated as “This paper focuses on a 2-D tomograph model from the CL site for comparison with in situ and laboratory permeability methods” In Page 2808, line 7 to 9, I could not see any comparison of the K values between CP-based estimations and K values obtained from the other methods in the text.

Response: The statement in the methods section (Section 3.1) was intended to convey that the paper focused on one type of electrical resistivity output, a 2-D tomograph model (not depth soundings), rather than to indicate that this technique was a primary aim of the manuscript itself. The sentence quoted should be rephrased to avoid confusion by stating “This paper examined electrical resistivity results in the form of a 2-D tomograph to provide context for Kᵥ measurements at a larger scale for the CL site.” The discussion section (Page 2820, Line 7) then compared the Kᵥ results in the context of a laterally extensive deposit with the statement “Electrical resistivity tomography (Fig. 6) at the CL site confirmed the lateral extent of the relatively uniform formation in this area of the catchment.”

AR1 Readers see the phrase as “the unpublished data” in the text. Why do not the authors share the data with their colleagues? Are these confidential or is the use of those data restricted?

Response: The authors did not share the data because it was not directly relevant to the aim of this manuscript. The data are not confidential or restricted. In this first instance (Page 2810, Line 2) unpublished data related to sampling groundwater for core testing, with purging of water until constant field measurements. In this second instance (Page 2816, Line 13), unpublished data was moisture measurements on the core, with the statement “Moisture content varied from 24.7 to 36.4% by weight, and was consistent with site measured data on
the core”. The authors could add both of these datasets to a supplementary section of the paper if the review and editorial process indicated that this data would add confidence to our methods to obtain realistic κ_v values.

Data previously indicated as unpublished site data, has been added to a supplementary section S5.

AR1 2. In the preparation of cores section, there are several factors which may affect the test results such as time, moisture content, degree of saturation, vacuum pressure (stated as 100 kPa is standard in the lab environment.,) etc. I think those parameters deserve more attention since samples taken from the site in a real field application may involve more uncertainty factors. The performance of the CP test can be checked with these parameter to draw the limitations. At least a sensitivity analysis could have been conducted to evaluate the effects of selected parameters on CP test or to comprehend effects of the uncertainty if possible.

Response: The study design was to replicate in situ conditions so as to avoid uncertainties such as those listed by Reviewer #1. We believe the most significant uncertainty between the real site and the laboratory for these silty clay cores is the stress applied to the samples (addressed in Section 5.2 and Supplement S3 and S4). In our view, the time between sampling and testing of core is an issue if moisture content and degree of saturation changes, and thus the core moisture status was carefully controlled (this is also discussed further in the response to 1). The vacuum pressure was used as a step to ensure any entrained air was removed by drawing influent from the top to the base of the core prior to a head of water being applied for CP testing. This step of core preparation was in fact to eliminate any differences with the real field application of fully saturated conditions, in addition to the steps described in Section 4.1. We propose to revise this section of the manuscript to improve this explanation of our step to obtain reliable experimental results.

This revision has been completed.

AR1 3. Related to the above comment, the authors used N=14 test data which is considerably low in order to generalize or understand the effect low K on the aquitard.

Response: We certainly accept the feedback from both reviewer #1 and #2 on the need to examine variance using a statistical approach and the limited number of data points. In the meantime, we have taken the opportunity to test an additional 4 samples from the CL site, between longer running reactive transport experiments in the centrifuge (for example Crane et al., 2015). This brings the total data to n = 18 for this study, including 9 from the CL site (new κ_v data: 2.2×10^{-9}, 2.3×10^{-9}, 2.70×10^{-9}, 1.6×10^{-9} m/s). It is proposed that Table 3 of our final revised manuscript include the details of these additional tests.

We would be pleased to revise this HESSD manuscript, referring to, and extending the statistical evaluation of the number of core tests that would be required for specific degrees of variance in permeability results. Statistical analysis was in progress because it was realised during early CP tests that this was indeed an important matter to follow up. A conference paper submitted in March 2015 was subsequently reviewed and accepted for publication (Timms and Anderson, in press).

In brief, our statistical analysis of the data followed basic small-sampling theory using the student t distribution, of which examples are provided by Gill et al. (2005). Upper and lower confidence intervals (UCI, LCI) were calculated from the apparent mean ± $t_{(n-1)} \cdot s_n / n^{1/2}$, where s_n is the standard deviation and t is the value of the student t distribution at the selected
confidence limits (CL) of 90% and 99%. The confidence intervals were calculated for increasing number (n) of Kv data from each core.

Importantly, core samples for testing were randomly selected from the same lithostratigraphic formation. The clayey-silt cores were obtained from the upper 30 m of the alluvial sequence as described in Section 2. Although the alluvial sequence extends to over 100 m depth, we focused this study on sediments defined by a low net-to-gross ratio (Larue and Hovadik, 2006) of <0.4 that reflects that clay rich part of the sequence (Timms et al., 2011). We assumed a log-normal distribution of Kv within this formation, which as noted by (Fogg et al., 1998) might be justified within individual facies, but not over the full stratigraphic section. It was also assumed that the standard deviation of the samples tested is similar to the standard deviation of the total population of Kv results from the formation, which may only be known if a large number of samples are tested.

Applying this method to the Kv results for the CL site, a small uncertainty was calculated at a confidence limit of 99%. By increasing the number of samples, the confidence bounds for Kv were reduced from a range of 4.8×10^{-10} to 2.4×10^{-9} m/s (n=5) to a range of 1.1×10^{-9} to 2.1×10^{-9} m/s (n=9). Increasing the number of samples also decreased the standard deviation, although the geometric mean increased slightly (Table 1).

Table 1 Geometric mean, standard deviation (s_n) and confidence limits (C.L. %) analysis for core test data from clayey-silt formation at the CL, BF and NR sites.

<table>
<thead>
<tr>
<th>Site</th>
<th>n</th>
<th>K geometric mean (m/s)</th>
<th>s_n</th>
<th>log K</th>
<th>C.L. %</th>
<th>Lower bound</th>
<th>Upper bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL</td>
<td>5</td>
<td>1.3×10^{-9}</td>
<td>0.21</td>
<td>99</td>
<td>4.8×10^{-10}</td>
<td>2.4×10^{-9}</td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>9</td>
<td>1.6×10^{-9}</td>
<td>0.15</td>
<td>99</td>
<td>1.1×10^{-9}</td>
<td>2.1×10^{-9}</td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td>6</td>
<td>1.3×10^{-8}</td>
<td>0.19</td>
<td>99</td>
<td>6.5×10^{-9}</td>
<td>2.1×10^{-8}</td>
<td></td>
</tr>
<tr>
<td>NR</td>
<td>3</td>
<td>1.2×10^{-8}</td>
<td>0.34</td>
<td>99</td>
<td>1.5×10^{-10}</td>
<td>8.5×10^{-8}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.4×10^{-9}</td>
<td>4.6×10^{-8}</td>
</tr>
</tbody>
</table>

By comparison, the confidence interval calculated for Kv at the NR site with only 3 samples was more than an order of magnitude for Kv (at a confidence limit of 99%). However, by reducing the confidence interval to 90%, the range between the upper and lower confidence bounds for the NR site was similar to that for the BF site (Table 1).

In summary, this analysis demonstrates that Kv results for the CL and BF sites have been achieved with reasonable confidence, particularly for the CL site with N=9. However, additional sample testing for the NR site would be recommended to reduce the variability and improve the confidence in Kv.

This revision has been completed.

AR1 4. Is there any correlation among the sample depth, g-level used in the test and Kv? Why were the different g-level used during the tests as shown in Table 3. To satisfy the steady flow? Or is it related with pore water pressure? In any case, this needs an explanation.
Response: Yes, maximum g-levels in Table 3 are the g-levels at which steady state flow was achieved during testing. The upper permissible g-level was designed to be less than the estimated in situ stress from the depth at which the core was obtained. The relationship between total stress, pore water pressure and depth of the sample was discussed somewhat in Section 5.2. At the g-levels in this testing, the total stress at the base of the core is significantly less than the maximum in situ stress for the core samples listed in Table 3, calculated using Eq. (10). Table 3 of our manuscript can be revised to include an additional column of applied stress on the core, for direct comparison with the total in situ stress.

It was noted in the manuscript that separate geotechnical studies were in progress. Preliminary results from these geotechnical studies (using an oedometer to test compressibility and swelling) indicate that Kv values in these clayey silt cores are not significantly affected by applied stress if it is less than the total in situ stress, and greater than a swelling stress of approximately 10 kPa. The permeability of cores can decrease by three orders of magnitude due to consolidation that occurs when where applied stresses are significantly (i.e. 4 times) greater than total in situ stresses. For example, testing of BF core at 300g, resulted in Kv of $<10^{-11}$ m/s, compared to Kv of approximately 10^{-9} m/s at total stresses that are similar (i.e. 0.5 to 1 times) to the total in situ stress.

This separate geotechnical study is currently being finalised, so we have not included further details beyond this explanation at this point.

AR1. In Page 2812, “Steady state flow was defined as ±10 % change in discharge over subsequent measurements in time, provided that influent flow rate was within ±10 % of the effluent flow rate”. Why? Why not 5% or 20 %? Does this change depend on the order of magnitude of discharge? The key point of CP test is to satisfy the steady-state condition. I think it is better to show here a brief discussion on the measurement uncertainty rather than explaining only in the supplement S4.

Response: The definition of steady state flow was chosen as a reasonable indicator that was not overly sensitive, but provided a convincing quantitative measure (±10 %) of steady state flow both over time, and between the top and bottom of the core sample. We consider that our definition is a more objective measure than the ASTM D7664 which states that steady state conditions have been attained “if the outflow is approximately equal to the inflow”.

This revision has been completed.

AR1 6. How can we be sure to obtain unique Nmid?

Response: This review comment may be referring to the possibility that the core length may change during testing, and hence that Nmid may not remain constant during testing. Otherwise, Nmid is unique for each core setup in the CP, with a digital calliper used to determine the core length. In fact, it would be worth noting that the g-level of the Broadbent CP is controlled relative to the base of the core in terms of control settings, and is subsequently converted to Nmid during post-processing of the experimental data. So if significant changes to the length of the sample occur, there is always a unique and constant g-level for reference at any point during experimental work. A digital calliper was used during this study to determine core length, including spot checks after experimental runs, with no evidence of significant changes in core length due to consolidation of the samples. The lack of consolidation is entirely consistent with applied stress less than total in situ stresses.

This revision referring to a digital calliper has been completed.
AR1 7. The presentations of Eqs. 9 and 10 are problematic. Use different dummy variable different than r.

This revision has been completed.

AR1 8. I think Figure 6 is unnecessary. It can be removed from the text without resulting in any loss of the clarity. As similarly, I think that Figure 4 does not make any contribution to the discussions in the text.

Response: The authors accept the opinion of reviewer #1 and #2 that Figure 6 is not essential to the text, and remove this from the revised manuscript. Our purpose in including Figure 6 was to provide some site context for the characterisation of core samples, showing the relative simplicity of the layered clay silt deposit that exhibits little lateral variation in resistivity (Page 2820, Lines 7-12).

In regards to Figure 4, we maintain that this example of distribution of stresses and pore fluid pressure through the core sample is important to reliable tests of core materials. The concepts discussed in Section 5.2 refer to this figure, for example, “During centrifuge testing effective stress is maximum at the base of the free draining core, where fluid pressure is zero, and thus effective stress is equal to total stress under hydrostatic conditions (no flow).” We believe it would be more challenging to consider the implications of these non-linear relationships depending on radial position of the core, without the benefit of Figure 4.

These revisions have been completed.

AR2 is X. Sanchez-Vila (9th April) and Referee #2 (11th April)

Response: The comment posted on 9th April was prior to both formal referee comments, although the text is the same. The authors therefore respond to these comments in the following section. We are fortunate that Professor Sanchez-Vila has provided his thoughtful feedback to detect weaknesses in our approach and to improve our manuscript. The opening review comments about “aquifer testing” are presumed to be typographical errors, given the clear focus of the paper on aquitard testing. We are pleased to see that there is agreement about the need to properly characterize the hydraulic conductivity of aquitards, particularly at regional scale, and maintain that our manuscript is one step towards this objective. The following responses are presented systematically for each paragraph of referee #2 comments.

AR2 …There is little to say regarding the part corresponding to the testing part….

Response: Whilst our manuscript does not aim to or claim to achieve characterisation of aquitards at a regional scale, the ability for rapid testing of large diameter drill cores of low permeability goes beyond previous ASTM approaches.

AR2 …The geological setup and the sampling process are also relevant and should be included in any paper.

Response: We agree thank you.

AR2 …Connectivity is therefore the issue…..

Response: Yes, ultimately, the significance of vertical connectivity is a critical issue for scale of relevance to water resources. However, this is a grand challenge that is beyond the scope
of this manuscript, requiring a significant effort with additional field data collection and suitable numerical modelling approaches.

AR2 … There are 14 data points. Actually it is 3 + 5 + 6. Notice the great variability (except in CL). The variance is quite large in the NR and BF sites. So, if the variance is so large, it is difficult to assess how representative the values are.

Response: We certainly accept the feedback from both reviewer #1 and #2 on the need to examine variance using a statistical approach and the limited number of data points. In the meantime, we have taken the opportunity to test an additional 4 samples from the CL site, between longer running reactive transport experiments in the centrifuge (for example Crane et al., 2015). This brings the total data to $n = 18$ for this study, including 9 from the CL site (new K_v data: 2.2×10^{-9}, 2.3×10^{-9}, 2.70×10^{-9}, 1.6×10^{-9} m/s). It is proposed that Table 3 of our final revised manuscript include the details of these additional tests.

We would be pleased to revise this HESSD manuscript, referring to, and extending the statistical evaluation of the number of core tests that would be required for specific degrees of variance in permeability results. Statistical analysis was in progress because it was realised during early CP tests that this was indeed an important matter to follow up. A conference paper submitted in March 2015 was subsequently reviewed and accepted for publication (Timms and Anderson, in press).

In brief, our statistical analysis of the data followed basic small-sampling theory using the student t distribution, of which examples are provided by Gill et al. (2005). Upper and lower confidence intervals (UCI, LCI) were calculated from the apparent mean $\pm t_{(n-1)} \cdot \frac{s_n}{\sqrt{n}}$, where s_n is the standard deviation and t is the value of the student t distribution at the selected confidence limits (CL) of 90% and 99%. The confidence intervals were calculated for increasing number (n) of K_v data from each core.

Importantly, core samples for testing were randomly selected from the same lithostratigraphic formation. The clayey-silt cores were obtained from the upper 30 m of the alluvial sequence as described in Section 2. Although the alluvial sequence extends to over 100 m depth, we focused this study on sediments defined by a low net-to-gross ratio (Larue and Hovadik, 2006) of <0.4 that reflects that clay rich part of the sequence (Timms et al., 2011). We assumed a log-normal distribution of K_v within this formation, which as noted by (Fogg et al., 1998) might be justified within individual facies, but not over the full stratigraphic section. It was also assumed that the standard deviation of the samples tested is similar to the standard deviation of the total population of K_v results from the formation, which may only be known if a large number of samples are tested.

Applying this method to the K_v results for the CL site, a small uncertainty was calculated at a confidence limit of 99%. By increasing the number of samples, the confidence bounds for K_v were reduced from a range of 4.8×10^{-10} to 2.4×10^{-9} m/s ($n=5$) to a range of 1.1×10^{-9} to 2.1×10^{-9} m/s ($n=9$). Increasing the number of samples also decreased the standard deviation, although the geometric mean increased slightly (Table 1).

Table 1 Geometric mean, standard deviation (s_n) and confidence limits (C.L. %) analysis for core test data from the clayey-silt formation at the CL, BF and NR sites.
By comparison, the confidence interval calculated for K_v at the NR site with only 3 samples was more than an order of magnitude for K_v (at a confidence limit of 99%). However, by reducing the confidence interval to 90%, the range between the upper and lower confidence bounds for the NR site was similar to that for the BF site (Table 1).

In summary, this analysis demonstrates that K_v results for the CL and BF sites have been achieved with reasonable confidence, particularly for the CL site with $N=9$. However, additional sample testing for the NR site would be recommended to reduce the variability and improve the confidence in K_v.

The revised response has been added to the manuscript as Table 4, and within Sections 4.3 and 5.2.

AR2 …All the upscaling effort at the CL site is reduced to the paragraph in pg 2820, lines 1-6. The finding reported in pg 2821 regarding a very low K_v…..

Response: Yes Section 5.2 discussed the geological and regional context of the core permeability tests, although it was beyond the scope of the manuscript to focus on upscaling approaches. Implications of the core permeability tests at larger scale were discussed, noting the differences at regional model scale to the small scale data. We agree that it is not possible with the available information to know why there is a discrepancy, but consider that it is important to highlight the complexity of processes that could account for vertical connectivity.

The current conceptual model on which the numerical models are based (simple layered aquitard overlying an aquifer) do not allow for spatial variability in connectivity mechanisms that could be important across a large valley alluvial fill sequence. Our statement “the clayey sediments in this region may lack preferential flow paths at some sites, and in other areas preferential flow may occur through features such as fractures and heterogeneity at a range of scales” is an explanation that is consistent with available field data from different parts of the sedimentary sequence. It is not surprising that would be multiple mechanisms for vertical connectivity (matrix flow, fracture flow, sedimentary heterogeneity) that would be important to varying degrees depending on the spatial scale and local setting.

Section 5.2 has been revised to incorporate additional discussion of the above points within the current text.

AR2 The last discussion part is very interesting…..
Response: Yes, the final part of the discussion (Section 5.6) on implications of core scale measurements of aquitard properties speaks to an aim of this manuscript (and also reflects the title of our work). The paragraph from Section 5.6 that reviewer #2 reprints with the remark “this is precisely my point” indicates that we are taking a reasonable approach overall.

We agree that the permeability data reported in Table 3 is not spatially extensive, given that small scale samples from three drill sites cannot characterise regional aquitard connectivity. However, we would argue that we have taken a semi-quantitative approach by careful measurements of cores, and that an apparent inconsistency between these results and a regional numerical model is not a contradiction that should preclude publication. There are a number of possible explanations for the possible mismatch including data and model limitations (Section 5.4, p2821) and conceptual model surprises (Section 5.6, page 2823).

AR2 pg 2800 line 5 “….rapid and reliable”.

Response: We agree to replace the term “reliable” with “reasonable” throughout the final revised manuscript. This would indicate that the results are considered to be an acceptable indication of aquitard permeability at the scale of testing, without extending the claim of “reliable” that implies a certain accuracy and precision of the results.

This revision has been completed.

AR2 pg 2805 line 4 I find very strange to reference a figure in an introduction section.

Response: We agree to move the figure to Section 4.2 as suggested.

This revision has been complete along with introduction of relevant nomenclature, and Figure 1 has been renumbered Figure 2.

AR2 Equation 8 is mathematically incorrect.

This revision has been completed.

AR2 pg 2816 line 19.

Response: Yes, this is referring to Figure 3. The transient behaviour and implications for structure of this clayey silt material is further investigated in a separate paper (Crane et al., 2015) that is currently under review. Any cracks in the material result in extremely rapid leakage of water under accelerated gravity and are readily detected. For implications of dual porosity flow mechanisms, readers are referred to this paper for details.

Several cross references to this separate work have been added in Sections 2, 5.3 and 5.4.

AR2 pg 2816 lines 23-25. Somewhat confusing….

Response: We proposed to rephrase this part of the final revised manuscript to clarify that the anomalous data is related to evaporative losses that occur over longer time periods of
flow (ie. overnight versus 1 hour measurement intervals). The current expression in this section provides this explanation later in the paragraph.

This revision was completed.

AR2 pg 2818 I am sure the authors checked that the samples did not show at the end of test any impact from consolidation…..

Response: We agree that there is an omission to correct in a revised manuscript. It is proposed to add the following statement on pg 2818: “A digital calliper was used during this study to determine core length, including spot checks after experimental runs, with no evidence of significant changes in core length due to consolidation of the samples.”

This revision was completed.

AR2 Table 3. Different g-levels used. Why? How were they selected?

Response: Maximum g-levels in Table 3 are the g-levels at which steady state flow was achieved during testing. The upper permissible g-level was designed to be less than the estimated in situ stress from the depth at which the core was obtained. This will be more clearly stated by revising Sections 4.2 and 5.2 of the manuscript. Further discussion of g-levels is provided in a following response to reviewer #1.

This revision was completed.

AR2 I do not see the relevance of figure 4.

Response: In regards to Figure 4, we maintain that this example of distribution of stresses and pore fluid pressure through the core sample is important to reliable tests of core materials. The concepts discussed in Section 5.2 refer to this figure, for example, “During centrifuge testing effective stress is maximum at the base of the free draining core, where fluid pressure is zero, and thus effective stress is equal to total stress under hydrostatic conditions (no flow).” We believe it would be more challenging to consider the implications of these non-linear relationships depending on radial position of the core, without the benefit of Figure 4.

This figure was moved to Supplement Fig S2.

AR2 Figure 6, it is questionable whether it should be included in the paper…..

Response: The authors accept the opinion of reviewer #1 and #2 that Figure 6 is not essential to the text, and remove this from the revised manuscript. Our purpose in including Figure 6 was to provide some site context for the characterisation of core samples, showing the relative simplicity of the layered clay silt deposit that exhibits little lateral variation in resistivity (Page 2820, Lines 7-12).

This figure and relevant text was deleted.

References

Accelerated gravity testing of aquitard core permeability and implications at formation and regional scale

1 School of Mining Engineering, University of New South Wales, Sydney, Australia.
2 UNSW Connected Waters Initiative affiliated with the National Centre for Groundwater Research and Training, Australia.
3 Water Research Laboratory, School of Civil and Environmental Engineering, University of New South Wales, Sydney, Australia.

Abstract Evaluating the possibility of leakage through low permeability geological strata is critically important for sustainable water supplies, the extraction of fuels from coal and other strata, and the confinement of waste within the earth. The current work demonstrates that relatively rapid and reasonable vertical hydraulic conductivity (K_v) measurement of aquitard cores using accelerated gravity can constrain and complement larger scale assessments of hydraulic connectivity. Steady state fluid velocity through a low K porous sample is linearly related to accelerated gravity (g-level) in a centrifuge permeameter (CP) unless consolidation or geochemical reactions occur. A CP module was custom designed to fit a standard 2 m diameter geotechnical centrifuge (550g maximum) with a capacity for sample dimensions up to 100 mm diameter and 200 mm length, and a total stress of ~2 MPa at the base of the core.

Formation fluids were used as influent to limit any shrink-swell phenomena which may alter the permeability. K_v results from CP testing of minimally disturbed cores from three sites within a clayey silt formation varied from 10^{-10} to 10^{-7} ms$^{-1}$ ($n = 18$). Additional tests were focused on the CL site, where K_v within the 99% confidence interval ($n = 9$) was 1.1×10^{-9} to 2.0×10^{-9} ms$^{-1}$, results very similar to an independent in situ K_v method based pore pressure propagation though the sequence over several weeks. However there was less certainty at two other core sites due to limited and more variable K_v data. Blind standard 1g column tests underestimated K_v compared to CP and in situ K_v data, possibly due to deionized water interactions with clay, and were more time consuming than CP tests. K_v results were compared with vertical connectivity within a regional flow model, and considered in the context of heterogeneity and preferential flow paths at site and formation scale. Reasonable assessments of leakage and solute transport though aquitards over multi-decadal timescales can be achieved by accelerated core testing together with complimentary hydrogeological monitoring, analysis and modelling.
1. Introduction

Clay or other low permeability sediment and rock often dominate sedimentary sequences and can form important aquitards (Potter et al., 1980). These hydraulic barriers often overlie aquifers that yield strategically important fresh water resources and form important cap-rocks or seals between shallow aquifers and deeper strata targeted for depressurization during gas or mineral extraction (Timms et al., 2012). The current work compares the results of steady state centrifuge permeability testing of semi-consolidated drill core samples with column tests at standard gravity (1g at earth’s surface, 9.8065 m s\(^{-2}\)) and formation scale permeability, based on analysis of in situ pore pressure propagation.

Thick, low hydraulic conductivity (\(K\)), un-oxidized, clay-rich aquitards represent important sites for waste confinement and disposal (including high-level radioactive waste and the sequestration of carbon dioxide and saline effluents) and act as protective covers for regional aquifers (Cherry et al., 2004). Effective shale and claystone flow barriers are required to disconnect shallow aquifer systems from underlying coal seams that are depressurized to produce gas (Timms et al., 2012; APLNG, 2013). Fine-grained geologic media are also commonly used as engineered barriers to limit horizontal seepage of mine water (Bouzalakos et al., 2014), for containment of tailings (Znidarčić et al., 2011), municipal refuse and nuclear waste (Rowe et al., 1995). Low permeability material is defined by \(K\) of <10\(^{-8}\) m s\(^{-1}\) (Neuzil, 1986). The US EPA requires low permeability waste barriers for hazardous waste landfills with \(K\) of <10\(^{-9}\) m/s (US EPA, 1989). Neuzil (1986) noted that no geologic material properly tested proved to be entirely impermeable.

Aquitards volumetrically constitute the bulk of sedimentary geologic deposits (Potter et al., 1980), and are typically assumed saturated if located below a watertable (Cherry et al., 2004). Water-saturated \(K\) and diffusion coefficients for aquitards are therefore not applicable to variably saturated or non-water saturated low permeability strata. Research on aquitards comprised of semi-consolidated clayey materials deposited by alluvial, colluvial and aeolian processes is lacking, compared with aquitard research on glacial tills (Grisak and Cherry, 1975), claystones (Smith et al., 2013; Jougnot et al., 2010) and shale (Neuzil, 1994; Josh et al., 2012). Clay-bearing sediments formed via alluvial, colluvial and aeolian processes frequently occur in the geosphere. For example clayey silt aquitards account for 60% of the ~100 m thick alluvial sediment sequences in the Mooki catchment of Australia’s Murray-
Darling Basin (Farley, 2011). This represents a key gap in the current theoretical understanding of clay mineralogy and geochemistry.

Aquitard research on alluvial sediments is important because recharge by slow seepage provides essential groundwater supplies for municipal water supply and crop irrigation in relatively dry inland settings (Acworth and Timms, 2009). Increased effective stress associated with aquifer drawdown for irrigation, may release saline water stored within shallow aquitards with implications for the continuation of high yields of fresh water. Characterising the effects of variable chemical composition of formation water on the hydraulic conductivity of such sediments is therefore essential to determine the long-term hydro-geochemical fate of such field sites.

As an example, water level recovery of a bore pump test in glacial till ($K = 10^{-11}$ m s$^{-1}$) has occurred over a period of ~30 years with revised calculation of hydraulic parameters to improve the fit with the data emerging over that time (van der Kamp, 2011). Various field and laboratory methods are available to directly measure or indirectly calculate hydraulic conductivity in a horizontal (K_h) or vertical (K_v) orientation, and saturated and unsaturated or multi-phase flow (eg. liquid and gas). Obtaining realistic measurements of groundwater flow and solute transport within aquitards is by definition a slow process, requiring relatively time consuming and expensive field and/or laboratory studies.

Methods for measuring the in situ permeability of clay formations include: slug tests (piezometer tests, falling-head tests), aquifer pumping tests with piezometers in the aquitard, aquifer pumping tests with observation wells in the aquifer only, measurement of seasonal fluctuations of pore-pressure, measurement of pore-pressure changes and settlement due to surface loading, and numerical analysis of local and regional groundwater flow (van der Kamp, 2001). Neuman and Witherspoon (1968) developed generic analytical solutions for drawdown within an aquiclude, in which vertical flow occurs, but is sufficiently small to have no effect on water levels within an overlying or underlying aquifer. Type curves were presented for analytical solutions applying to an infinitely thick and a finite thickness aquiclude. In contrast, analysis of a leaky aquitard-aquifer system was presented by Neuman and Witherspoon (1972). The ratio method compares drawdown within an aquitard with drawdown in an underlying aquifer from which extraction was occurring. Drawdown data is then used to calculate hydraulic diffusion of pressure transients, and K_v, assuming a uniform, homogeneous aquitard.
Deconvolution of the pressure response to depth through an aquitard can be analysed with a Fourier transform or harmonic analysis (Boldt-Leppin and Hendry, 2003). The hydraulic diffusivity (hydraulic conductivity divided by specific storage) is expressed analytically, either based on the amplitude or phase shift of harmonic signals, assuming that the thickness of the aquitard is semi-infinite. For example, harmonic analysis enabled in situ K_v to be estimated from phase and amplitude shifts of pore pressure response to soil moisture loading propagating downwards through a 30 m thick aquitard on the basis of measured specific storage and hourly or 6-hourly groundwater level monitoring over 5 years (Timms and Acworth, 2005). Jiang et al. (2013) further developed the harmonic analysis method for finite aquitards in a multi-layer system in the instance of water level monitoring that is limited to aquifers bounding the aquitard, rather than from within the aquitard. Coherence analysis of water level fluctuations in bounding aquifers from indeterminate stresses (e.g., pumping, recharge, rainfall or earthquake) was used to derive K_v for deep rock aquitards on the basis of interpolated groundwater level data measured at irregular intervals of at least 10 days over a duration of several decades.

A more direct method of determining in situ hydraulic parameters is possible using fully grouted vibrating wire transducers and high frequency data recording within deep formations, as recently demonstrated by Smith et al. (2013) for a bedrock claystone at up to 325 m below ground (BG). Pore pressure and barometric pressure were recorded at 30 minute intervals and analysed for barometric response, earth tides, and rainfall events. Core samples from the same drill holes were vacuum sealed on site for consolidation testing and triaxial permeameter testing. The in situ compressibility and specific storage calculated from barometric pressure responses were as much as an order of magnitude smaller than laboratory results.

A variety of laboratory testing techniques for low K samples are also available, however the reliability of results may depend on factors such as the preparation and size of core samples, configuration of equipment and uncertainties of measurement, the influent water that is used and the stresses that are applied relative to in situ values, and whether permeability is directly measured from steady state flow, or subject to additional parameters and assumptions with alternative flow regimes. Laboratory testing of clayey-silt cores by standard rigid and flexible wall column techniques requires 1-2 weeks, compared with <1 week for centrifuge permeameter (CP) methods in unsaturated samples (ASTM, 2010). Constant or falling-head tests in rigid-walled column permeameters at natural gravity require a large water pressure
gradient and/or long testing times for low-permeability samples. They are subject to potential leakage, and may not replicate in situ confining stresses. Column testing of core samples is possible for some test conditions in triaxial cells, for example those used in geotechnical and petroleum studies as in the study of Wright et al. (2002) on both K_a and K_v and anisotropy in limestone aquifers. However standard practice for testing ultralow permeability cores (e.g. $K_v < 1 \times 10^{-10} \text{ m s}^{-1}$) typically consists of applying a confining pressure to a watertight system and measuring relatively subtle changes in pressure with high resolution pressure transducers (API, 1998).

Geotechnical centrifuges are used to subject porous samples to high artificial gravities in order to characterise their hydraulic and/or consolidation properties (Conca and Wright, 1998; Nakajima and Stadler, 2006; Znidarčič et al., 2011), and for physical modelling as part of geotechnical design (Garnier et al. 2007; Parks et al. 2012). Accelerated gravity acts on both the solid particles and fluids within the porous sample without use of a large fluid pressure gradient to drive flow. The technique can be applied to investigate slow hydrogeological processes over shorter timescales, i.e. hydraulic flow through low permeability layers that would take several years under in situ conditions can be reproduced in a geotechnical centrifuge within hours or days, depending on conditions.

A CP, or a column mounted on a centrifuge strong box, is commonly used for hydraulic characterisation. Accelerated gravity achieves a steady state equilibrium for fluid flow through the CP within hours or days of instrument operation (for an unsaturated sample), while simultaneously applying stresses to the solid matrix. A permeameter column, mounted on a geotechnical centrifuge is rotated sufficiently fast to accelerate flow and approximate in situ total stresses, while the target g-level is designed to ensure that the matrix is not consolidated and chemical equilibrium is maintained. Steady state flow can provide more **reasonable** K results than transient flow techniques. Although transient tests are even more rapid than steady state tests in the centrifuge, more complex instrumentation is required to ensure reliable results (Zornberg and McCartney, 2010).

The geotechnical centrifuge system described in this paper is moderately sized and relatively economical to operate, whilst able to perform both unsaturated and saturated testing of porous media with real-time measurement of various parameters during flight (Table 1). These attributes mean that CP testing of relatively large diameter cores (up to 100 mm diameter) in this facility is comparable in cost to testing of small cores (38 mm diameter) using alternative
methods such as He-gas permeation. The system has been successfully used for testing low permeability rock cores (Bouzalakos et al., 2013). To date, there were no other direct K_v measurements on these deep shales available (APLNG, 2013) and alternative laboratory methods were not successful in obtaining a K_v value from these very low K rocks (Bouzalakos et al., 2013).

This paper demonstrates novel CP techniques and equipment that have been specifically developed for characterizing semi-consolidated clayey silt cores. K_v results from CP methods are compared with standard 1g column methods and in situ measurements of permeability, based on harmonic analysis of the high frequency pore pressure propagation through a thick clayey sequence. The variability, confidence limits and overall reliability of the K_v results to constrain assessments of regional scale vertical connectivity are considered in the context of sampling and experimental factors including flow and stress conditions within the CP. This paper provides reliable reasonable K_v for at least one local clayey-silt sequence and strategies for future testing that are important contributions towards evaluating flow connectivity at a range of scales. These K_v results can be complimented with hydrogeological data such as pore pressure and tracer data to better constrain numerical flow models.

2 Geology of study sites

Semi-consolidated sediment cores were obtained from three sites in the Australia Murray-Darling Basin, in the Upper Mooki subcatchment of the Namoi catchment (Fig. 1). Groundwater is extracted in this area for irrigation and town water supplies, with drawdowns of more than 10 m over 30 years. Due to the heterogeneity of mixed sediments, that were previously assumed to be homogenous, high permeability sediments, it can take years or decades for the impact of groundwater withdrawal to be transmitted through the sediments (Kelly et al., 2013). The alluvial sedimentary geology of the valley features significant heterogeneity but a general fining upwards which reflects climatic drivers of sedimentation (Kelly et al., 2014). This study found that the architectural features and the net (sand and gravel) to gross (total volume) line plot that identifies low permeability clays and silts of the valley-filling sequence are best represented by a distributive fluvial system. In this type of fluvial system, the avulsion frequency increases at a slower rate than the aggradation rate.

Core drilling was completed at three research sites (Fig. 1) including Cattle Lane (CL), located south of the town of Caroona (31° 31'9"S, 150° 28'7"E), the Breeza farm (BF)
operated by the NSW Department of Primary Industries, southeast of Gunnedah (31° 10'32"S, 150° 25'15"E), and Norman’s Road (NR), east-southeast of Gunnedah (31° 2'48"S, 150° 26'7"E).

Clayey silt sediments at the Cattle Lane site are approximately 30 m thick (Timms and Acworth, 2005) and extend throughout the valley (Wiesner and Acworth, 1999), as shown by numerous CCPT (conductivity cone penetrometer) profiles. The porewater salinity profile at the site, increasing from 10-30 m depth through the clay is consistent with a diffusion dominated transport over thousands of years (Timms and Acworth, 2006). The saturated zone fluctuates in response to rainfall events from between ground surface to approximately 2 m depth, while water levels in the confined gravel aquifer at >50 m depth display a delayed and dampened response to the same rainfall events. There is no groundwater extraction for irrigation from this aquifer in the vicinity of the site, and the valley has had artificial drainage channels constructed to prevent ponding of surface water and soil salinization. Detailed geological studies and particle dating have identified that the clayey silt in the top ~30 m at this site accumulated gradually at 0.2 – 0.3 mm/year by weathering of alkali basalts (Acworth et al. 2015). Flow testing of 100 mm diameter cores from the site, reported by Crane et al. (2015) has revealed evidence for dual porosity flow when a hydraulic gradient is imposed on the low permeability sediments, with further work in progress to identify the nature and significance of these potential flow paths.

Sediments at the Breeza farm and Norman’s Road site are relatively heterogeneous, with mixed sandy, clayey sand, and clayey-silt alluvium overlying a semi-confined aquifer. The saturated zone is approximately 18 to 20 m below surface and extraction for flood irrigation of crops causes large fluctuations in groundwater levels in the confined aquifers at >50 m depth. Hydrogeological and hydro-geochemical evidence indicate a leaky aquifer-aquitard system, with the variability in groundwater level responses controlled by a fining upward alluvial sequence (Acworth and Timms, 2009). At the Norman’s Road site, highly saline porewater (15 mS cm⁻¹) in the clayey silt in proximity to the surface (<20 m) appears to have leached into the underlying aquifer, causing a significant increase in salinity of the aquifer (Badenhop and Timms, 2012).

3 Study site characterisation and sampling
3.1 Site characterisation by electrical resistivity tomography

Electrical resistivity tomography indicates subsurface heterogeneity based on spatial variability of bulk conductivity (Acworth, 1999). An ABEM terrameter LS was used with electrodes in the ground at 5 m spacing over 240 m length transects. The depth of penetration was approximately 30 m BG. The data was inverted using RES2DINV software (Loke, 2001) to provide a model of true resistivity. This paper focuses on a 2D tomograph model from the CL site for comparison with in situ and laboratory permeability methods.

3.12 Drilling and core sampling

Equipment and procedures for coring were compliant with ASTM D1587-08, 2008 to obtain samples which were as undisturbed as possible. A rotary drilling rig equipped with triefus triple core barrels, lined with seamless clear PET, was used in push coring mode. Local creek water was used as a drilling fluid and casing was used to stabilise the hole behind the push core barrel such that drilling fluid additives were not required. The holes were therefore fully cased to the maximum depth of push core drilling at up to 40 m BG.

The non-rotating core barrel was forced into the formation whilst a rotating device on the outside of the tube removes the cuttings as the barrel was advanced. The cutting edge of the non-rotating sample tube projects several millimetres beyond the rotary cutters. The thin walled core barrel complied with the standard for undisturbed sampling, with an area ratio of less than 25% for an open drive sampler. The area ratio of 16% was based on a core barrel design with an external diameter of 110 mm and internal diameter of 101 mm (C size). The 1.5 m length core barrel was a composite open sampling system with a core nose screwed on the base with a bevelled end to cut the core as the barrel pushed into the formation. After the core was extracted from the ground, an air supply was connected to the top of the core barrel to slide the core out of the barrel whilst it remained in the clear PET liner without rotation, distortion or compression.

The cores contained within PET liners in this minimally disturbed state were transferred directly from the core barrels to a cool room on site, and thence to a laboratory cool room, reducing the potential for moisture loss. Semi-consolidated clay cores were selected from below the saturated zone for CP tests, at depths up to 40 m BG. Sediment core samples of lengths between 50-100 mm were prepared for CP testing. The moisture content and bulk
The density of cores was measured on the cores at the drill site using methods adapted from ASTM D7263-09, 2009.

The preferred method for preservation of drill core was double plastic bagging of sections of core within their PET liners using a food grade plastic sealing system (with brief application of a vacuum to extract air from the plastic bag), and storage in a cool room at approximately 4 °C. Alternatively, core within PET core barrel liners were trimmed of air or fluid filled excess liner immediately after drilling, sealed with plastic tape, and stored at 4 °C. Sections of cores, particularly at the nose end, that appeared to be damaged or disturbed were excluded from permeability or bulk density testing. Additional steps that were taken in the laboratory to ensure core testing was representative of in situ conditions are described in Section 4.1.

After coring, the holes were completed as monitoring piezometers and the casing was jacked out. The piezometers were constructed of screwed sections of 50 mm PVC casing with O-ring seals, with a 1.5 m machine slotted screen packed with pea-sized washed gravel. The annulus was then filled with a bentonite seal, backfilled to the surface and completed with a steel casing monument and cement monument pad.

3.2.4 Groundwater sampling for influent

Fluid for K testing (influent) should be taken from the formation at the same depth as the core, or if the limitations of sampling from aquitard strata preclude this, influent water chemistry can be synthesized to approximate known ionic strength, Na/Ca ratio and pH. In this study, groundwater from piezometers at a similar depth to the core was obtained using standard groundwater quality sampling techniques (Sundaram et al., 2009). A 240V electric submersible pump (GRUNDFOS MP1) and a surface flow cell were used to obtain representative samples after purging stagnant water to achieve constant field measurements of electrical conductivity and other parameters (Acworth et al., 2015 and unpublished data).

4. Centrifuge permeameter methods and calculations

4.1 Preparation of cores

To ensure that core was tested under saturated conditions, realistic of in situ conditions, drill core was adequately preserved, stored, prepared and set on a vacuum plate prior to centrifuge testing. In addition to the steps taken on the drill site (Section 3.12), additional procedures in

Timms et al.
the laboratory were designed to ensure that core was tested under in situ conditions. Core
directly from PET drill core liners was trimmed and inserted into an acrylic liner for the CP
using a core extruder. The custom made core extruder had 5 precision cutting blades driven
by a motorised piston suitable for a 100 mm diameter core. Cores for CP testing in this study
were 100 mm diameter C size core, with a length of 50-100 mm. A close fit between the clay
core and the liner was achieved using this extruder.

A vacuum plate system for core samples was designed to ensure fully saturated cores, remove
air at the base of the core, and ensure an effective seal between the CP liner prior to testing at
accelerated gravity. The vacuum plate device was designed to fit the CP liners containing the
cores, drawing ponded influent from the top to the base of the cores using a standard
laboratory vacuum pump at 100 kPa of negative pressure. After 12 to 48 hours, or upon
effluent flow from the base, the acrylic liners containing the prepared cores were then
transferred directly to the CP module without disturbing the sample.

Furthermore, the moisture content and degree of saturation was monitored by measuring
weight change of the permeameters during testing, and direct moisture tests of samples before
and after CP testing. Due to the procedures described, there was negligible difference
observed between the moisture content of the core tests and in situ conditions, and the results
were not associated with the time between sampling and testing of the core or the use of
vacuum to expel air from sealing bags or from the top or base of the cores fitted into the CP
liners.

A self-seal was observed forming from material swelling at the interface with the liner within
minutes of introducing the influent solution. Prior to the self-seal development, leakage along
the liner interface was identified by a flow rate of several orders of magnitude higher than the
steady state flow K_v value. The swelling that occurred to self-seal the core was estimated at
less than 0.02% of the cross-sectional area of the core by comparing flow rates through the
CP drainage hole (described in Supplement S3). It was calculated that this area of swelling
was sufficient to seal an annulus aperture of ~0.01 mm between the clay core and the acrylic
liner.

Given the relatively shallow depth of these cores, and the semi-consolidated status, the
maximum g-level in the centrifuge was limited to prevent structural changes in the core
matrix. To minimise changes in porosity during testing to be similar to in situ, the g-level and
the weight of ponded fluid on the cores were therefore designed to ensure that total stress was less than estimated in situ stress at the depth from which the core was drilled.

Blind permeability tests were carried out by an independent laboratory, who adapted a constant/falling head method (AS 1289 6.7.3/5.1.1) with methods from Head (1988). For these 1g column tests, a sample diameter of 45.1 mm and length 61.83 mm was used, and a confining pressure of 150 kPa and back pressure of 50 kPa was applied, providing a vertical uniaxial stress of 100 kPa. The test time was 2500 to 6000 mins (40 to up to 100 hours). These standard 1g column tests used deionised water as the influent.

4.2 Centrifuge permeameter testing

The Broadbent CP module and some unique systems developed as part of this study are described in this section, with further details in Supplement S1 and S3. A conceptual plan of a CP is shown in Fig. 2. The CP contains a cylindrical clay sample with length \(L \) and diameter \(D \), and is spinning in a centrifuge around a central axis at an angular velocity \(\omega \). The permeameter has an inlet face at a radius \(r \), and a drainage plate at a radius of \(r_0 \). The coordinate \(z \) is defined as positive from the base of the sample towards the central axis of rotation, consistent with definitions in 1g column testing (McCartney and Zornberg, 2010). This frame of reference is in an opposite direction to that defined by Nimmo and Mello (1991), but is convenient for interpretation and comparison of column flow tests. In this study, the outlet face is a free drainage boundary, and is discussed further in Supplement S3. Influent was fed from burettes located next to the centrifuge via a pair of custom designed low voltage peristaltic pumps mounted either on the centrifuge beam, or outside the centrifuge and through the low flow rotary union.

The \(K \) value is based on flow rate, flow area, radius and revolutions per minute (RPM), although the method was adapted from a UFA centrifuge to this CP system (Section 4.3). Importantly, both testing systems are for steady state flow with free drainage due to zero pressure at the base of the core.

The mass of two core samples were balanced to the nearest 100g and tested simultaneously at either end of the centrifuge beam. The CP was operated at 10g for 30 minutes, and if no rapid flows due to leakage were detected, this was gradually increased to 20g, 40g and so on, until
the maximum total stress on the core approached the estimated in situ stresses of the material at the given depth in the formation. The upper permissible g-level was designed to be less than the estimated in situ stress from the depth at which the core was obtained. It was also important to ensure that effective stress (Section 4.4) was acceptable, as variable pore fluid pressures during testing could cause consolidation of the core matrix. Influent volume was measured using both a calibrated continuous time record of pump rotations, and manual burette measurements, and effluent volumes were measured by weight. Steady state flow was defined as ±10% change in discharge over subsequent measurements in time, provided that influent flow rate was within ±10% of the effluent flow rate. Both of these conditions were required for the testing to be considered as a steady state flow condition, providing additional quantitative measures to the ASTM D7664 which states that steady state conditions have been attained “if the outflow is approximately equal to the inflow”. Supplement S4 discusses the uncertainty of the measured data in more detail.

4.3 K_v calculations and statistical analysis

Hydraulic conductivity calculations for the CP in this study were based on ASTM D6527 (ASTM, 2008) and ASTM D7664 (ASTM, 2010) with a form of Darcy’s Law that incorporates the additional driving force within a centrifuge. The gradient in the centrifuge elevation potential (Nimmo and Mello, 1991), or the gradient in centrifuge “elevation head” (Zornberg and McCartney, 2010) due to the centrifuge inertial force driving was defined as flow away from the centre of rotation (or in the opposite direction to z in Fig. 2). The g-level was defined at the mid-point of the core. A ponded influent above the top of the core prevented loss of saturation along the core (Nimmo and Mello, 1991).

Statistical analysis of the data followed basic small-sampling theory using the student t distribution, following the approach of Gill et al. (2005) and extending the approach of Timms and Anderson (2015) for estimating sample numbers required for CP testing. Upper and lower confidence intervals (UCI, LCI) were calculated from the apparent mean ± $\frac{t(n-1)S_n}{n^{1/2}}$, where S_n is the standard deviation and t is the value of the student t distribution at the selected confidence limits (CL) of 90% and 99%. The confidence intervals were calculated for increasing number (n) of K_v data from each core.

4.4 Fluid pressure and total stress calculations
Fluid pressures and hydraulic gradient through the centrifuge core were determined following the approach of Nimmo and Mello (1991). A bulk density ρ_b of 1.9 g cm$^{-3}$ and fluid density ρ_w of 1.0 g cm$^{-3}$ was assumed in Eq. (1).

\[
P = \rho_r \int_0^r r \omega^2 \, dr
\]

where P is total fluid pressure (kPa), ρ_r is the fluid density (g cm$^{-3}$), r is the radius of rotation (cm), and ω is the angular velocity (s$^{-1}$). The total stress was determined through the centrifuge core following Eq. (2):

\[
S = \rho_s \int_0^r r \omega^2 \, dr
\]

where S is total stress (kPa), ρ_s is the saturated core density (g cm$^{-3}$), g is gravitational acceleration. The effective stress was calculated as the difference between total stress and fluid pressure. An increase in effective stress associated with decreased fluid pressures near the base of the free draining core may cause consolidation of the core matrix near the boundary.

The total stress applied to the core, relative to stress, may affect the porosity of the core sample, depending on the stress history. In situ stress of the cores (S_i) at the sampling depth below ground (D) was estimated on the assumption that the overlying formations were fully saturated and of a similar density (ρ_b) to the supplied core samples:

\[
S_i = \rho_s D g
\]

The centrifuge inertial (elevation) head gradient and hydraulic head gradient (stationary centrifuge at 1g) were calculated at 0.005 m increments through the core.

5. Results and discussion

5.1 Core properties and K_v results from CP testing
Index properties for five representative cores are provided in Table 2. The cores were typically silty clay (<0.002 mm), except for one sandy clay core. The large proportion of silt relative to clay is an important characteristic of this formation, with clay mineralogy dominated by smectite (Timms and Acworth, 2005; Acworth and Timms, 2009).

Moisture content varied from 24.7 to 36.4% by weight, and was consistent with site measured data on the core while at the drill site (Supplement S5), although not all the cores were fully saturated as received by the external laboratory. Bulk wet density varied from 1.71 to 1.88 g cm\(^{-3}\) and particle density from 2.47 to 2.58 g cm\(^{-3}\). The \(K_v\) of cores tested in the CP module (Table 3) varied from \(1.1 \times 10^{-10}\) to \(3.5 \times 10^{-7}\) m s\(^{-1}\) (n = 18). Accelerations up to 80g were applied during CP testing of semi-consolidated sediment cores and were more typically limited to 30-40g. Fig. 5 shows the measured influent and effluent rates and the calculated \(K_v\) values during a typical CP test as the g-level was gradually increased. Steady state flow (±10% change over time with influent rate equal to effluent rate) was achieved at ~20 hrs (Fig. 3). However, a lower \(K_v\) value was observed over >12 hrs overnight than those values measured over ~1 hr intervals during the day with frequent stops of several minutes duration to measure the effluent volume, and the later time interval measurement was considered to be more realistic. Further experimentation and numerical modelling is required to adequately explain this anomalous data which may be associated with evaporative losses over longer time periods of flow measurement or other transient processes within the system.

Anomalous flow via preferential pathways could be readily identified by a flow rate of several orders of magnitude greater than otherwise observed. Anomalous flow was often observed along the interface of the cores and the liner during the early minutes of a test where sealing occurred before steady state conditions were established. On one occasion a failure occurred in the core during testing with a preferential flow path occurring through the matrix and which, at accelerated gravity, caused very fast flow that was easily detected.

A small uncertainty in \(K_v\) results for the CL site was calculated at a confidence limit of 99% using the methods described in Section 4.3. By increasing the number of samples, the confidence bounds for \(K_v\) were narrowed from a range of \(4.8 \times 10^{-10}\) to \(2.4 \times 10^{-9}\) m/s (n=5) to a range of \(1.1 \times 10^{-9}\) to \(2.1 \times 10^{-9}\) m/s (n=9). This evaluation demonstrates the value of the additional testing that has recently been completed. Increasing the number of samples from five to nine also decreased the standard deviation, with a similar geometric mean (Table 4). However there was less certainty at two other core sites (BF and NR) due to limited and more
variable K_v data. At the BF site the 99% confidence interval had relatively wide K_v bounds for $n = 6$, while at NR site, a confidence interval of 90% results in similarly wide K_v bounds for $n = 3$. This statistical evaluation of the results highlights the relative K_v variability and small sample set for the BF and NR sites, and the need for further testing, particularly at the NR site. This issue will be expanded in the discussion following.

5.2 Pore fluid pressure and stress conditions at accelerated gravity

While the errors that may occur during measurement of K can be defined, whether or not the K value is realistic for in situ conditions depends in part on the magnitude of stress and any structural changes that occur within the core matrix. Supplement S2 provides background on the definition and significance of hydrostatic pore pressure, centrifuge inertial (elevation) head, and gradients driving fluid flow. Supplement S2 discusses the possibility that K values reported in this study could be biased on the high side, considering total stress at the base of the core under steady state conditions.

Calculated pore fluid pressure and total stress are shown in Fig. 4 for a 50 mm length core at 40g for the Broadbent CP module, based on Eq. (1) and Eq. (2), in 0.005 m increments of radius. The effective stress, the difference between the total stress and pore fluid pressures, is evidently highest towards the base of the core, before the effects of a free drainage base (zero pressure) occur within the core. At 40g, the total stress at the base of the core is 40 kPa, or 34 kPa plus 6 kPa of stress at the top of the core assuming a fluid head of 20 mm ponded on the top of a 50 mm length of core. At 80g, the total stress at the base of the core is 74 kPa. This is significantly less than the maximum in situ stress for core samples listed in Table 3, calculated using Eq. (3), as intended during test design (Section 4.2). Centrifuge K values reported in this study could therefore be biased on the high side if total stress at the base of the core under steady state conditions were the only consideration. Other factors that could contribute to a high bias, including the possibility of fracture flow, have already been discussed. However, it is worth considering the effects of variable stress over time, and from the top to the base of the core, in more detail.

During centrifuge testing effective stress is maximum at the base of the free draining core, where fluid pressure is zero, and thus effective stress is equal to total stress under hydrostatic conditions (no flow). In both testing methods in this study, the total stress was less than estimated in situ stress, however the stress history of the core sample and effective stress
dynamics were uncertain. Considering that a stress is necessary on top of the core to prevent swelling of the core, it appears that the stresses during these tests were likely within an acceptable range to minimise structural changes including swelling and consolidation. There was no evidence of significant changes in core length due to consolidation of the samples during spot checks of core length with a digital calliper. However further attention on these processes, including instrumentation to measure fluid pressures and core matrix changes during testing is required in future studies. A separate geotechnical study of these semi-consolidated sediments, including oedometer testing is in progress to better quantify the relationship between stress and permeability in these semi-consolidated materials. In future studies of semi-consolidated materials, measurement of consolidation state (over consolidation ratio) and pre-consolidation stress is recommended prior to centrifuge testing to ensure that an appropriate centrifuge stress is applied.

5.3 Comparison of in situ K_v and column testing methods at the CL site

K_v data from three methods are shown in Fig. 4 for the CL site. Results from the CP method (1.1×10^{-10} to 3.5×10^{-9} m s$^{-1}$, $n = 9$) were similar to in situ to K_v values from the independent and in situ method (1.6×10^{-9} to 4.0×10^{-9} m s$^{-1}$) confirming that the sequence is of low permeability at the CL site with a reasonable level of confidence (Table 4). However, K_v from both in situ and CP methods were higher than 1g column tests of core from 11.27-11.47 and 28.24–28.33 m BG from this site using deionized water (1.4×10^{-9}, 1.1×10^{-10} and 1.5×10^{-10} m s$^{-1}$, $n = 3$).

In situ K_v of the clayey-silt at the CL site were based on observed amplitude and phase changes of pore pressures (at hourly or 6-hourly intervals) due to five major rainfall events over four years (Timms and Acworth, 2005). The phase lag at the base of the clay varied between 49 and 72 days. The phase lag pore pressure analysis resulted in a K_v value of 1.6×10^{-9} m s$^{-1}$, while the change in amplitude over a vertical clay sequence of 18 m (from a 17 m depth piezometer to the inferred base of the aquitard at 35 m depth) resulted in a K_v value of 4.0×10^{-9} m s$^{-1}$.

It is noted that the reliability of harmonic analysis related methods may be compromised by specific storage measurements. Jiang et al. (2013) relied on indirect specific storage values derived from downhole sonic and density log data from boreholes in the region, while Timms and Acworth (2005) calculated specific storage from barometric and loading responses that
were recorded in the same groundwater level data set and boreholes used for harmonic analysis.

The reduced test times of CP testing may be attributed to the reduced time required to achieve steady state flow with centrifugal forces driving flow. Alternatively, the time required for 1g column testing may have increased due to deionized water interaction with clay that reduced infiltration rates into the cores (10 to 100 lower K_v result for 1g column tests compared with CP tests). It is known that decreased ionic strength of influent (eg. deionized water) causes a linear decrease in permeability, and that the relative concentrations of sodium and calcium can affect permeability due to swelling and inter-layer interactions (eg. Shackelford et al., 2010; Ahn and Jo, 2009). It is also possible that differences in K values from laboratory testing methods can also be attributed to differences in test setup (eg. 45 vs. 100 mm diameter core) and stress changes that occur as discussed in Section 5.2.

CP testing was relatively rapid, typically with a few hours, up to 24 hours required for steady state flow CP, compared with an average of 90 hours (73, 96 and 100 hours for the tests reported here) for 1g column testing. In addition, an extended test of 830 hours in the CP (unpublished data) verified that no significant changes occurred over extended testing periods. The CP technique can therefore reduce average testing time to ~20% of the time that would be required in 1g laboratory testing systems, similar to the reduced time requirement of centrifuge methods for unsaturated hydraulic conductivity functions compared with 1g column tests ASTM (2010). The relative time advantage of testing cores at accelerated gravity may be greater at lower K_v, due to the increased time required to establish steady state flow conditions. This could be advantageous for longer experiments of contaminant transport that requires several pore volumes of steady state flow.

With the advantage of robust estimates for specific storage in this study, the similarity of K_v measurements with different scales at the CL site (Fig. 4) indicates that in this part of the alluvial deposit K is independent of vertical scale from centimeters to several meters. These K_v results from both in situ and laboratory methods provide an important constraint for evaluations of hydraulic connectivity, particularly as there is a general lack of K_v data for these sediments. Complimentary studies of hydraulic connectivity to quantify leakage rates include pore pressure monitoring and piezometer slug testing at various depth intervals and...
along with hydrogeochemical and isotope tracer data. Recent geological studies of the alluvial sequence (Acworth et al., 2015) outlined in Section 2, and identification of dual porosity structures in the large diameter cores (Crane et al., 2015) indicate that it may be possible for vertical leakage to occur through clayey silts if a vertical gradient were to be imposed. A diffusion dominated salt profile through the sequence suggest negligible vertical flow (Timms and Acworth, 2006), however, a proper assessment of flow connectivity requires vertical hydraulic gradients to be determined over a long term period, taking into account any salinity variations with depth.

5.4 Geological and regional context for permeability of a clay-silt aquitard

The K_v measurements reported in this paper are important because there of a general lack of such data for alluvial groundwater systems globally. Even where many groundwater investigations have been completed, such as this study area in the Mooki subcatchment, There have been no reported aquifer pump tests providing K_v measurements in the alluvial aquifer in this area and there continues to be a lack of information on the thick clayey-silt sediments at various spatial scales.

Importantly, the core samples for testing were randomly selected from the same lithostratigraphic formation, the upper 30 m of the alluvial sequence as described in Section 2. Although the alluvial sequence extends to over 100 m depth, we focused this study on sediments defined by a low net-to-gross ratio (Larue and Hovadik, 2006) of <0.4 that reflects that clay rich part of the sequence (Timms et al., 2011). We assumed a log-normal distribution of K_v within this formation, which as noted by (Fogg et al., 1998) might be justified within individual facies, but not over the full stratigraphic section. It was also assumed that the standard deviation of the samples tested is similar to the standard deviation of the total population of K_v results from the formation, which may only be known if a significantly large number of samples are tested.

K_v values for cores from the NR and BF sites were significantly more variable (over 10^9 to 10^7 ms$^{-1}$) than for the CL site (within 10^8 ms$^{-1}$), although additional data from the NR site is
required to increased confidence intervals (Table 3, Table 4). These findings could reflect the
greater heterogeneity of alluvial sediments at the northern sites (NR and BF), compared with
the clayey-silt deposit at the southern CL site. Based on the dataset currently available for
each site there did not appear to be any significant K_v trend with depth, except at the CL site,
with a possible decrease of K_v by a factor of 3 with depth increasing from 11 to 28 m BG.
Further testing is in progress to better identify any spatially significant trends in K_v.

K_v results obtained from the CP for these clayey silt aquitards were significantly higher than
K_v for consolidated rock cores tested in this system (Bouzalakos et al., 2013). The relatively
low g-levels in this study (up to 80g), compared to rock core testing (up to 520g, Bouzalakos
et al., 2013) were necessary for the shallow and semi-consolidated nature of the clayey-silt
cores. In fact, steady state flow was achieved at low g-levels for K_v values that were at least
100 times higher than the current detection limit and uncertainty of the CP system
(Supplement S4).

The vertical permeability of the clayey-silt aquitards in this region, and the relative
importance of matrix flow and preferential flow through fractures and heterogeneities are
critical to the sustainability of the groundwater resource. The K_v data reported in this study for
these silty and semi-consolidated sediments are higher than reported for regional flow
models, indicating that the aquitards allow significant recharge to underlying aquifers.

A regional groundwater flow model developed by McNeillage (2006) with a 2 layer
MODFLOW code, determined the dominant source of recharge to be diffuse leakage through
the soil (and aquitards) in the Breeza groundwater management area. As in typical modelling
practice (Barnett et al., 2012) the aquitard was not explicitly modelled, with water instead
transferred from a shallow to a deeper aquifer using a vertical leakance value (units in day$^{-1}$).

The calibrated groundwater model indicated that approximately 70% of the long term average
groundwater recharge (11 GL year$^{-1}$) was attributed to diffuse leakage in this area that
included the CL and NR sites. This volume is equivalent to 20 mm year$^{-1}$, or a K_v of $\sim 6 \times 10^{-10}$
ms$^{-1}$ assuming a unit vertical hydraulic gradient over an area of approximately 500 km2. The
actual K_v or leakance values were not reported. The calibrated leakance values were found to
vary over three orders of magnitude across the Breeza area, with relatively high values in
isolated areas in the south, centre and north. In comparison, the K_v results on clayey-silt cores
appear to be higher than the apparent K_v of the regional groundwater model, but with a similar
degree of heterogeneity. The reasons for this discrepancy are not yet clear, but may be attributed to non-unique calibration of the regional flow model (e.g. underestimation of inter-aquifer leakance) or the lack of representative K_v values for this aquitard at a scale that accounts for heterogeneities and preferential flow paths.

The K_v results in this study are within the range of values reported elsewhere for semi-consolidated clay silt sediments, and are higher than commonly reported K_v values for consolidated glacial till and shale. For example, Neuzil (1994) reviewed aquitard K_v values for intact muds and lacustrine clays (10^{-8} to 10^{-11} ms$^{-1}$) compared to consolidated materials such as shale with values as low as 10^{-16} ms$^{-1}$ for argillite. A detailed study of a clayey marl and limestone aquitard in France (Larroque et al., 2013) found a quasi-systematic bias of one order of magnitude between petrophysical K_v estimates (10^{-8} to 10^{-10} ms$^{-1}$), compared with values (10^{-9} to 10^{-11} ms$^{-1}$) from hydraulic diffusivity monitoring between 30 and 70 m BG. However, the empirical petrophysical relationships between porosity, pore size and intrinsic permeability do not adequately account for structural effects of clay materials. Field piezometer rising head tests ($n = 225$) indicated that K_v of a lacustrine clay aquitard around Mexico City was 10^{-8} to 10^{-9} ms$^{-1}$ in two areas, one hundred times greater than matrix scale permeability (Vargas and Ortega-Guerrero, 2004). In a third area the field tests were 10^{-10} ms$^{-1}$ indicating the regional variability that can occur within clayey deposits.

Studies of glacial till aquitards in Canada, the US and Denmark find that regional permeability is typically at least two orders magnitude greater than laboratory tests (Van der Kamp, 2001; Fredericia 1990; Bradbury and Muldoon, 1990; Gerber and Howard, 2000), although one study (Husain et al., 1998) showed that for a thick glacial till aquitard in southern Ontario, Canada, the regional permeability is similar to the laboratory-obtained measurements, indicating the absence of significant permeable structures.

There is evidence of fracturing near the surface of the clayey aquitards that are the focus of this study. Fracture flow to a shallow pit and the freshening of porewater in the aquifers at 16 and 34 m depth during the irrigation season indicated rapid leakage had occurred at the BF site (Acworth and Timms, 2009). The dynamics of fracturing within ~2 m of the ground surface in these sediments was described by Greve et al. (2012). However, beyond the zone of fracturing near the ground surface, there appears to be insignificant groundwater flow. Solute profiles through the 30 m thick clayey deposit at the CL site indicate that downwards migration of saline water is limited to diffusion and that flow is insignificant (Timms and
On the basis of available evidence, the clayey sediments in this region may lack preferential flow paths at some sites, and in other areas preferential flow may occur through features such as fractures and heterogeneity at a range of scales (Crane et al. 2015). Further work is required to determine permeability at a range of scales, and to better understand preferential flow paths. The current conceptual model on which the numerical models are based (simple layered aquitard overlying an aquifer) do not allow for spatial variability in connectivity mechanisms that could be important across a large valley alluvial fill sequence. It is not surprising that would be multiple mechanisms for vertical connectivity (matrix flow, fracture flow, sedimentary heterogeneity) that would be important to varying degrees depending on the spatial scale and local setting.

5.5 Groundwater flow at natural gradient and accelerated conditions

To determine if accelerated flow conditions are realistic for hydrogeological environments, the linear flow velocity for various CP setups was compared with a theoretical unit gradient, and a typical in situ vertical hydraulic gradient. In Table 5, an in situ hydraulic gradient of 0.5 is compared with CP setups for 100 mm and 65 mm diameter cores of various lengths for an aquitard material with K_v of 10^{-8} ms$^{-1}$. The vertical flow rate varies from 0.3 mL hour$^{-1}$ under in situ conditions, to 8.5 mL hour$^{-1}$ in the CP, such that linear flow velocities remain very low at 10^{-8} to 10^{-6} ms$^{-1}$. The flow rate during centrifugation was N times greater than if a hydraulic gradient of 1 was applied to the core samples at 1g. This increase in flow rate is consistent with scaling laws for physical modelling (Tan and Scott, 1987).

The accelerated flow conditions, whilst realistic for hydrogeological environments can also be an advantage for experimental studies of solute transport. K_v results in the order of 10^{-9} ms$^{-1}$ were obtained in ~20% of the time required for 1g column permeameter tests. Solute breakthrough experiments require longer testing periods of steady state flow than for permeability testing. For example, Timms and Hendry (2008) and Timms et al. (2009) describe continuous CP experiments over 90 days to quantify reactive solute transport during several pore volumes (PV) of flow. The comparisons of time required for one PV provided in Table 5 illustrate the possible advantages of CP for contaminant flow that may affect the structural integrity of the material.
5.6 Implications of core scale measurement of aquitard properties

Accurate and reasonable measurement of the vertical hydraulic conductivity (K_v) of aquitards is a critical concern for many applications, providing that the applicability of K_v at various spatial scales is considered. For example, following an empirical analysis of notable case studies, Bredehoeft (2005) reported that collection of new field data may render the prevailing conceptual hydrogeological models invalid in 20-30% of model analyses. Bredehoeft (2005) coined the term ‘conceptual model surprise’ to explain this phenomenon. He then went on to explain that ‘often one does not have hydraulic conductivity values for confining layers because of the difficulties associated with acquiring such data’.

The centrifuge technology described within this paper helps investigators overcome some of the modelling limitations identified by Bredehoeft (2005). With centrifuge technology accurate point-scale measures of hydraulic property data can be collected to develop more realistic numerical flow models to quantify the significance of transient drawdown, the associated release of water into adjacent aquifers over long time periods, and the possibility of preferential flow. Without this technology and accurate data on aquitard hydraulic properties more generally, the value of investment in the construction of complex hydrogeochemical projects will continue to be questioned, as will confidence in the constituent conceptual and numerical hydrogeological models.

The natural variability within apparently homogeneous geological media is large (Schulze-Makuch et al., 1999). For example, Neuzil (1994) reported that for similar porosity, hydraulic conductivity commonly varies over three orders of magnitude. For argillaceous strata, permeability often does not increase with an increasing physical scale of testing, at least at intermediate scale, indicating that permeability due to fracturing is absent (Neuzil, 1994).

In the absence of direct measurement of aquitard permeability there is a real risk that aquitard parameters may be ignored or misrepresented in analyses resulting in a corresponding under-prediction of vertical connectivity via preferential flow paths and/or over-prediction of aquifer storage and transmissivity. This is an especially important consideration in the analysis of aquifer tests that may not have been conducted for sufficient periods of time to identify distant boundary conditions or the characteristic effects of aquitard leakage and/or storage (Neuman and Witherspoon, 1968). In very low permeability strata however, there are practical limitations to pump tests and packer testing below about 10^{-8} ms$^{-1}$, depending on the...
equipment and the thickness of strata that is subject to testing. It is recognised that in many heterogeneous systems time lags for the propagation of drawdown responses through an aquitard can be significant (Kelly et al., 2013).

Core scale measures of aquitard hydraulic conductivity are an integral component of hydrogeological studies concerning aquifer connectivity. The availability of core scale facies measurements enables the up-scaling of bore log and geophysical data to determine upper and lower hydraulic conductivity bounds for regionally up-scaled aquitard units. Any differences between \(K \) values at various scales are important for indicating the possibility of preferential flow through heterogeneous strata or aquitard defects (e.g., faults and fractures). The availability of these bounded estimates helps to constrain the uncertainty analyses conducted on regional groundwater flow models to yield more confident predictions (Gerber and Howard, 2000). Jiang et al. (in review), used sparse bore scale \(K_h \) measurements and CP core tests of \(K_v \) for mapping a regional aquitard-aquifer system by combining stochastic fluvial process modelling and a geostatistical simulation technique. The spatial heterogeneity of this aquitard-aquifer system was a basis for subsequent groundwater modelling that will also explicitly including e faults; that could be either barriers or conduits for groundwater flow at Basin scale.

Nevertheless, regional groundwater flow models generally use hydraulic resistance (leakance) values to transfer water vertically between aquifers (Barnett et al., 2012) rather than spatial discretization of aquitards that control this transfer. While this simplification is justified in many models, such an approach is not capable of identifying rapid flow pathways through defects in the aquitards or the release of stored water from an aquitard to an aquifer and cannot resolve the vertical hydraulic head distribution across the aquitard to verify drawdown responses. An aquitard should be subdivided into at least three thinner layers to effectively model transient pressure responses (Barnett et al., 2012). Rather than assigning constant theoretical values for aquitard properties through these multiple layers a combination of realistic and rapid laboratory measurement and direct in situ measurements may be considered where high risk activities demand improved confidence in conceptual understanding and model predictions.

Acknowledgements
Funding from the Australian Research Council and National Water Commission, through the National Centre for Groundwater Research and Training Program 1B is gratefully acknowledged. The contributions of N Baker and A Ainsworth of Broadbent and Sons, Huddersfield UK, are acknowledged and J McCartney for helpful discussion on the theory of fluid flow during centrifuge testing. We appreciated research support at the Breeza farm provided by M McLeod and S Goodworth of the NSW Department of Primary Industries. Clayey-silt cores were drilled by New South Wales Office of Water, with S McCulloch, H Studhome and G Regmi. Experimental testing was assisted at UNSW by A Hartland, B Bambrook, M Aitkins, P King, S May and T Meyers. Three reviewers of an earlier draft of the manuscript are thanked for their constructive comments.
References

APLNG: Groundwater Assessment, Australia Pacific LNG Upstream Project Phase 1, Q-LNG01-15-TR-1801, Australia Pacific LNG, 266 pp., 2013.

Broadbent: Operating Manual for Modular Geotechnical Centrifuge with GT2/0.65 Permeameter And GT6/0.75 Beam Environments, Broadbent and Sons Ltd., Huddersfield, UK, 2011.

Bouzalakos S; Crane R; Liu H; Timms WA, 2014, 'Geotechnical and modelling studies of low permeability barriers to limit subsurface mine water seepage', in , presented at 4th International Conference on Water Management in Mining, Vina del Mar, Chile, 28 - 30 May, 2014.

Timms, W., and Acworth, R.I.: Rethinking a conceptual model: advective versus diffusive chloride flux in a low permeability clay sequence, International Association of Hydrogeologists Congress on Aquifer Systems Management, Dijon, France, 30 May - 1 June, 2006.

Van der Kamp, G.: Determining the hydraulic properties of aquitards. 2nd Canadian Symposium on Aquitard Hydrogeology, University of Ottawa, Canada, 21-23 June, 2011.

Tables

Table 1. Specifications and performance details of the Broadbent GT-18 centrifuge permeameter (CP) system as constructed by Broadbent (2011).

<table>
<thead>
<tr>
<th>Dimensions/mass</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter (lower rotary stack)</td>
<td>200.0 cm</td>
</tr>
<tr>
<td>Radius to top sample chamber</td>
<td>45.0 cm*</td>
</tr>
<tr>
<td>Radius to base sample chamber</td>
<td>65.0 cm**</td>
</tr>
<tr>
<td>Total mass</td>
<td>4800 kg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Performance</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotational speed</td>
<td>10 – 875 RPM</td>
</tr>
<tr>
<td>Maximum sample length</td>
<td>20.0 cm</td>
</tr>
<tr>
<td>Maximum sample diameter</td>
<td>10.0 cm</td>
</tr>
<tr>
<td>Maximum sample mass</td>
<td>4.7 kg</td>
</tr>
<tr>
<td>Maximum sample density</td>
<td>SG 3.0</td>
</tr>
<tr>
<td>Maximum effluent reservoir capacity</td>
<td>1000 mL</td>
</tr>
<tr>
<td>Maximum payload</td>
<td>18.11 kg</td>
</tr>
</tbody>
</table>

* 385 G at 875 RPM; ** 556 G at 875 RPM; *** 471 G at 875 RPM;
Table 2. Core descriptions and index properties

<table>
<thead>
<tr>
<th>Core ID</th>
<th>BF</th>
<th>BF</th>
<th>CL</th>
<th>CL</th>
<th>NR</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2.8</td>
<td>C2.16 & C2.15</td>
<td>C4.8a</td>
<td>C4.20a</td>
<td>C3.23</td>
<td></td>
</tr>
<tr>
<td>Depth (m BG)</td>
<td>11.00-11.35/22.50-22.90/21.93-22.18</td>
<td>11.27-11.47</td>
<td>28.50-28.70</td>
<td>33.00-33.35/33.35-33.68</td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>Sandy clay - brown</td>
<td>Clayey silt - brown</td>
<td>Silty clay - brown</td>
<td>Silty clay – pale brown</td>
<td>Clayey Silt - Brown</td>
</tr>
<tr>
<td>Moisture (% wt.)</td>
<td>24.7</td>
<td>28.2</td>
<td>45.7</td>
<td>36.4</td>
<td>-</td>
</tr>
<tr>
<td>D50 (mm)</td>
<td>0.025</td>
<td>0.0068</td>
<td>-</td>
<td>-</td>
<td><0.0013</td>
</tr>
<tr>
<td>Bulk wet density (g cm(^{-3}))</td>
<td>1.88</td>
<td>1.81</td>
<td>1.71</td>
<td>1.77</td>
<td>1.72</td>
</tr>
<tr>
<td>Particle density (g cm(^{-3}))</td>
<td>2.52</td>
<td>2.47</td>
<td>2.58</td>
<td>2.50</td>
<td>2.58</td>
</tr>
<tr>
<td>Initial void ratio</td>
<td>0.67</td>
<td>0.75</td>
<td>1.20</td>
<td>0.93</td>
<td>0.89</td>
</tr>
<tr>
<td>Initial degree of saturation (%)</td>
<td>93</td>
<td>95</td>
<td>96</td>
<td>99</td>
<td>74</td>
</tr>
</tbody>
</table>
Table 3. K_v results from CP tests indicating g-level maximum and testing time. The influent source column identifies the site (NR, CL, BF) and depth (P20 is piezometer screen at 20 m depth) of groundwater sampling. Calculations were based on Eq. (3) for in situ stress.

<table>
<thead>
<tr>
<th>Site</th>
<th>Depth (m BG)</th>
<th>K_v (ms⁻¹)</th>
<th>g-level maximum</th>
<th>Estimated in situ stress (kPa)</th>
<th>Testing time (hrs)</th>
<th>Influent source</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>33.8</td>
<td>4×10^{-9}</td>
<td>10</td>
<td>615</td>
<td>~144</td>
<td>NR P30</td>
</tr>
<tr>
<td>NR</td>
<td>33.90</td>
<td>2×10^{-9}</td>
<td>10</td>
<td>615</td>
<td>~144</td>
<td>NR P30</td>
</tr>
<tr>
<td>NR</td>
<td>34.68</td>
<td>2.4×10^{-7}</td>
<td>10</td>
<td>646</td>
<td>2.6</td>
<td>NR P30</td>
</tr>
<tr>
<td>CL</td>
<td>11.75</td>
<td>3.5×10^{-6}</td>
<td>80</td>
<td>219</td>
<td>24</td>
<td>CL P15</td>
</tr>
<tr>
<td>CL</td>
<td>14.00</td>
<td>2.2×10^{-9}</td>
<td>80</td>
<td>261</td>
<td>1</td>
<td>CL P15</td>
</tr>
<tr>
<td>CL</td>
<td>19.25</td>
<td>2.0×10^{-9}</td>
<td>80</td>
<td>359</td>
<td>24</td>
<td>CL P20</td>
</tr>
<tr>
<td>CL</td>
<td>21.70</td>
<td>5.1×10^{-9}</td>
<td>80</td>
<td>404</td>
<td>1</td>
<td>CL P20</td>
</tr>
<tr>
<td>CL</td>
<td>26.01</td>
<td>2.4×10^{-9}</td>
<td>80</td>
<td>485</td>
<td>21</td>
<td>CL P40</td>
</tr>
<tr>
<td>CL</td>
<td>26.10</td>
<td>1.1×10^{-6}</td>
<td>80</td>
<td>486</td>
<td>21</td>
<td>CL P40</td>
</tr>
<tr>
<td>CL</td>
<td>28.33</td>
<td>2.0×10^{-9}</td>
<td>10</td>
<td>526</td>
<td>24</td>
<td>CL P40</td>
</tr>
<tr>
<td>CL</td>
<td>28.52</td>
<td>2.7×10^{-9}</td>
<td>80</td>
<td>532</td>
<td>1</td>
<td>CL P25</td>
</tr>
<tr>
<td>CL</td>
<td>31.36</td>
<td>1.6×10^{-8}</td>
<td>40</td>
<td>585</td>
<td>24</td>
<td>CL P40</td>
</tr>
<tr>
<td>BF</td>
<td>24.07</td>
<td>5.9×10^{-9}</td>
<td>40</td>
<td>449</td>
<td>3</td>
<td>BF CP25</td>
</tr>
<tr>
<td>BF</td>
<td>24.14</td>
<td>3.4×10^{-9}</td>
<td>40</td>
<td>450</td>
<td>3</td>
<td>BF CP25</td>
</tr>
<tr>
<td>BF</td>
<td>31.40</td>
<td>1.3×10^{-9}</td>
<td>30</td>
<td>585</td>
<td>11</td>
<td>BF CP40</td>
</tr>
<tr>
<td>BF</td>
<td>36.46</td>
<td>3.5×10^{-7}</td>
<td>10</td>
<td>680</td>
<td>2.5</td>
<td>BF CP40</td>
</tr>
<tr>
<td>BF</td>
<td>40.00</td>
<td>1.5×10^{-9}</td>
<td>30</td>
<td>746</td>
<td>23</td>
<td>BF CP40</td>
</tr>
<tr>
<td>BF</td>
<td>40.10</td>
<td>4.3×10^{-9}</td>
<td>30</td>
<td>746</td>
<td>23</td>
<td>BF CP40</td>
</tr>
</tbody>
</table>
Table 4 Geometric mean, standard deviation (s.) and confidence limits (C.L., %) analysis for K data using the CP method to test core from the clayey-silt formation at the CL, BF and NR sites.

<table>
<thead>
<tr>
<th>Site</th>
<th>n</th>
<th>K geometric mean (m/s)</th>
<th>log K</th>
<th>C.L. %</th>
<th>Lower bound</th>
<th>Upper bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL</td>
<td>5</td>
<td>1.3 × 10⁻⁹</td>
<td>0.21</td>
<td>99</td>
<td>4.8 × 10⁻¹⁰</td>
<td>2.4 × 10⁻⁸</td>
</tr>
<tr>
<td>CL</td>
<td>9</td>
<td>1.6 × 10⁻⁹</td>
<td>0.14</td>
<td>99</td>
<td>1.1 × 10⁻⁹</td>
<td>2.0 × 10⁻⁹</td>
</tr>
<tr>
<td>BF</td>
<td>6</td>
<td>1.3 × 10⁻⁸</td>
<td>0.19</td>
<td>99</td>
<td>6.5 × 10⁻⁹</td>
<td>2.1 × 10⁻⁸</td>
</tr>
<tr>
<td>NR</td>
<td>3</td>
<td>1.2 × 10⁻⁸</td>
<td>0.34</td>
<td>99</td>
<td>1.5 × 10⁻¹⁰</td>
<td>8.5 × 10⁻⁸</td>
</tr>
</tbody>
</table>
Table 5. Linear flow velocity at natural gradient, unit gradient and for various centrifuge permeameter setups

<table>
<thead>
<tr>
<th></th>
<th>Natural gradient</th>
<th>Unit gradient</th>
<th>Centrifuge permeameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical hydraulic conductivity (ms⁻¹)</td>
<td>1.0×10⁻⁸</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core type</td>
<td>C core - long</td>
<td>C core - short</td>
<td>HQ core - short</td>
</tr>
<tr>
<td>Core length × diameter (mm)</td>
<td>200 × 100</td>
<td>30 × 100</td>
<td>30 × 65</td>
</tr>
<tr>
<td>RPM</td>
<td>n/a</td>
<td>n/a</td>
<td>202</td>
</tr>
<tr>
<td>g-level</td>
<td>1</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>Vertical fluid head gradient (m m⁻¹)</td>
<td>0.5</td>
<td>1</td>
<td>-0.2σ</td>
</tr>
<tr>
<td>Flow (mL hour⁻¹)</td>
<td>0.3</td>
<td>0.6</td>
<td>8.5</td>
</tr>
<tr>
<td>Linear flow velocity (ms⁻¹)</td>
<td>1.7×10⁻⁸</td>
<td>3.3×10⁻⁸</td>
<td>1.0×10⁻⁶</td>
</tr>
<tr>
<td>Time for 1 pore volume (hours)</td>
<td>3333</td>
<td>1667</td>
<td>55.4</td>
</tr>
<tr>
<td>Normalised</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increased linear flow velocity</td>
<td>30</td>
<td>30</td>
<td>71</td>
</tr>
<tr>
<td>Reduced time for 1 PV</td>
<td>30</td>
<td>200</td>
<td>474</td>
</tr>
</tbody>
</table>

Fluid head gradient depends on the depth of influent on the core, and the length of the core
Figures

Fig. 1 Location of study sites in Eastern Australia, state of NSW. The Norman’s Road, Breeza Farm and Cattle Lane sites are shown within the Namoi catchment.

Fig. 2 Cross-sectional diagram of a core sample subjected to centrifugal force, with a free drainage boundary condition at the base of the core.

Fig. 3 Centrifuge permeameter testing at low stresses of a semi-consolidated clayey-silt core sample (CL 26.1 m depth, Test 39-1) showing variation of g-level, K_v and influent and effluent flow rate during the test (after Timms et al., 2014).

Fig. 4 Vertical hydraulic conductivity (K_v) measurements by centrifuge permeameter and column permeameter compared with in situ K_v derived from pore pressure data at 6 hourly intervals over 5 years interpreted with harmonic analysis (after Timms and Aeworth, 2005) for the Cattle Lane site with massive clayey-silt from the surface to 35 m depth.
Figure 1. Location of study sites in Eastern Australia, state of NSW. The Norman’s Road, Breeza Farm, and Cattle Lane sites are shown within the Namoi catchment.
Fig. 2. Cross-sectional diagram of a core sample subjected to centrifugal force, with a free drainage boundary condition at the base of the core.
Fig. 3. Centrifuge permeameter testing at low stresses of a semi-consolidated clayey-silt core sample (CL 26.1 m depth, Test 39-1) showing variation of g-level, K_v and influent and effluent flow rate during the test (after Timms et al., 2014).
Fig. 4. Vertical hydraulic conductivity (K_v) measurements by centrifuge permeameter and column permeameter compared with in situ K_v derived from pore pressure data at 6 hourly intervals over 5 years interpreted with harmonic analysis (after Timms and Acworth, 2005) for the Cattle Lane site with massive clayey-silt from the surface to 35 m depth.