

1 **Accelerated gravity testing of aquitard core permeability and**
2 **implications at formation and regional scale**

Timms, W.A.^{1,2}, Crane, R.^{2,3}, Anderson, D.J.³, Bouzalakos, S.^{1,2}, Whelan, M.^{1,2},
McGeeney, D.^{2,3}, Rahman, P.F.³, Acworth, R.I.^{2,3}

¹ School of Mining Engineering, University of New South Wales, Sydney, Australia.

² UNSW Connected Waters Initiative affiliated with the National Centre for Groundwater Research and Training, Australia.

³ Water Research Laboratory, School of Civil and Environmental Engineering, University of New South Wales, Sydney, Australia.

3 **Abstract** Evaluating the possibility of leakage through low permeability geological strata is
4 critically important for sustainable water supplies, the extraction of fuels from coal and other
5 strata, and the confinement of waste within the earth. The current work demonstrates that
6 relatively rapid and reasonable vertical hydraulic conductivity (K_v) measurement of aquitard
7 cores using accelerated gravity can constrain and compliment larger scale assessments of
8 hydraulic connectivity. Steady state fluid velocity through a low K porous sample is linearly
9 related to accelerated gravity (g -level) in a centrifuge permeameter (CP) unless consolidation
10 or geochemical reactions occur. A CP module was custom designed to fit a standard 2 m
11 diameter geotechnical centrifuge (550g maximum) with a capacity for sample dimensions up
12 to 100 mm diameter and 200 mm length, and a total stress of ~2 MPa at the base of the core.
13 Formation fluids were used as influent to limit any shrink-swell phenomena which may alter
14 the permeability. K_v results from CP testing of minimally disturbed cores from three sites
15 within a clayey silt formation varied from 10^{-10} to 10^{-7} ms⁻¹ (n = 18). Additional tests were
16 focused on the CL site, where K_v within the 99% confidence interval (n = 9) was 1.1×10^{-9} to
17 2.0×10^{-9} ms⁻¹, results very similar to an independent in situ K_v method based on pore pressure
18 propagation though the sequence. However there was less certainty at two other core sites due
19 to limited and more variable K_v data. Blind standard 1g column tests underestimated K_v
20 compared to CP and in situ K_v data, possibly due to deionized water interactions with clay,
21 and were more time consuming than CP tests. K_v results were compared with vertical
22 connectivity within a regional flow model, and considered in the context of heterogeneity and
23 preferential flow paths at site and formation scale. Reasonable assessments of leakage and
24 solute transport though aquitards over multi-decadal timescales can be achieved by
25 accelerated core testing together with complimentary hydrogeological monitoring, analysis
26 and modelling.

1 **1. Introduction**

2 Clay or other low permeability sediment and rock often dominate sedimentary sequences and
3 can form important aquitards (Potter et al., 1980). These hydraulic barriers often overlie
4 aquifers that yield strategically important fresh water resources and form important cap-rocks
5 or seals between shallow aquifers and deeper strata targeted for depressurization during gas or
6 mineral extraction (Timms et al., 2012). The current work compares the results of steady state
7 centrifuge permeability testing of semi-consolidated drill core samples with column tests at
8 standard gravity (1g at earth's surface, 9.8065 m s^{-2}) and formation scale permeability, based
9 on analysis of in situ pore pressure propagation.

10 Thick, low hydraulic conductivity (K), un-oxidized, clay-rich aquitards represent important
11 sites for waste confinement and disposal (including high-level radioactive waste and the
12 sequestration of carbon dioxide and saline effluents) and act as protective covers for regional
13 aquifers (Cherry et al., 2004). Effective shale and claystone flow barriers are required to
14 disconnect shallow aquifer systems from underlying coal seams that are depressurized to
15 produce gas (Timms et al., 2012; APLNG, 2013). Fine-grained geologic media are also
16 commonly used as engineered barriers to limit horizontal seepage of mine water (Bouzalakos
17 et al., 2014), for containment of tailings (Znidarčić et al., 2011), municipal refuse and nuclear
18 waste (Rowe et al., 1995). Low permeability material is defined by K of $<10^{-8} \text{ ms}^{-1}$ (Neuzil,
19 1986). The US EPA requires low permeability waste barriers for hazardous waste landfills
20 with K of $<10^{-9} \text{ m/s}$ (US EPA, 1989). Neuzil (1986) noted that no geologic material properly
21 tested proved to be entirely impermeable.

22 Aquitards volumetrically constitute the bulk of sedimentary geologic deposits (Potter et al.,
23 1980), and are typically assumed saturated if located below a watertable (Cherry et al., 2004).
24 Water-saturated K and diffusion coefficients for aquitards are therefore not applicable to
25 variably saturated or non-water saturated low permeability strata. Research on aquitards
26 comprised of semi-consolidated clayey materials deposited by alluvial, colluvial and aeolian
27 processes is lacking, compared with aquitard research on glacial tills (Grisak and Cherry,
28 1975), claystones (Smith et al., 2013; Jougnot et al., 2010) and shale (Neuzil, 1994; Josh et
29 al., 2012). Clay-bearing sediments formed via alluvial, colluvial and aeolian processes
30 frequently occur in the geosphere. For example clayey silt aquitards account for 60% of the
31 ~100 m thick alluvial sediment sequences in the Mooki catchment of Australia's Murray-

1 Darling Basin (Farley, 2011). This represents a key gap in the current theoretical
2 understanding of clay mineralogy and geochemistry.

3 Aquitard research on alluvial sediments is important because recharge by slow seepage
4 provides essential groundwater supplies for municipal water supply and crop irrigation in
5 relatively dry inland settings (Acworth and Timms, 2009). Increased effective stress
6 associated with aquifer drawdown for irrigation, may release saline water stored within
7 shallow aquitards with implications for the continuation of high yields of fresh water.
8 Characterising the effects of variable chemical composition of formation water on the
9 hydraulic conductivity of such sediments is therefore essential to determine the long-term
10 hydro-geochemical fate of such field sites.

11 As an example, water level recovery of a bore pump test in glacial till ($K = 10^{-11} \text{ ms}^{-1}$) has
12 occurred over a period of ~30 years with revised calculation of hydraulic parameters to
13 improve the fit with the data emerging over that time (van der Kamp, 2011). Various field
14 and laboratory methods are available to directly measure or indirectly calculate hydraulic
15 conductivity in a horizontal (K_h) or vertical (K_v) orientation, and saturated and unsaturated or
16 multi-phase flow (eg. liquid and gas). Obtaining realistic measurements of groundwater flow
17 and solute transport within aquitards is by definition a slow process, requiring relatively time
18 consuming and expensive field and/or laboratory studies.

19 Methods for measuring the in situ permeability of clay formations include: slug tests
20 (piezometer tests, falling-head tests), aquifer pumping tests with piezometers in the aquitard,
21 aquifer pumping tests with observation wells in the aquifer only, measurement of seasonal
22 fluctuations of pore-pressure, measurement of pore-pressure changes and settlement due to
23 surface loading, and numerical analysis of local and regional groundwater flow (van der
24 Kamp, 2001). Neuman and Witherspoon (1968) developed generic analytical solutions for
25 drawdown within an aquiclude, in which vertical flow occurs, but is sufficiently small to have
26 no effect on water levels within an overlying or underlying aquifer. Type curves were
27 presented for analytical solutions applying to an infinitely thick and a finite thickness
28 aquiclude. In contrast, analysis of a leaky aquitard-aquifer system was presented by Neuman
29 and Witherspoon (1972). The ratio method compares drawdown within an aquitard with
30 drawdown in an underlying aquifer from which extraction was occurring. Drawdown data is
31 then used to calculate hydraulic diffusion of pressure transients, and K_v , assuming a uniform,
32 homogeneous aquitard.

1 Deconvolution of the pressure response to depth through an aquitard can be analysed with a
2 Fourier transform or harmonic analysis (Boldt-Leppin and Hendry, 2003). The hydraulic
3 diffusivity (hydraulic conductivity divided by specific storage) is expressed analytically,
4 either based on the amplitude or phase shift of harmonic signals, assuming that the thickness
5 of the aquitard is semi-infinite. For example, harmonic analysis enabled *in situ* K_v to be
6 estimated from phase and amplitude shifts of pore pressure response to soil moisture loading
7 propagating downwards through a 30 m thick aquitard on the basis of measured specific
8 storage and hourly or 6-hourly groundwater level monitoring over 5 years (Timms and
9 Acworth, 2005). Jiang et al. (2013) further developed the harmonic analysis method for finite
10 aquitards in a multi-layer system in the instance of water level monitoring that is limited to
11 aquifers bounding the aquitard, rather than from within the aquitard. Coherence analysis of
12 water level fluctuations in bounding aquifers from indeterminate stresses (eg. pumping,
13 recharge, rainfall or earthquake) was used to derive K_v for deep rock aquitards on the basis of
14 interpolated groundwater level data measured at irregular intervals of at least 10 days over a
15 duration of several decades.

16 A more direct method of determining *in situ* hydraulic parameters is possible using fully
17 grouted vibrating wire transducers and high frequency data recording within deep formations,
18 as recently demonstrated by Smith et al. (2013) for a bedrock claystone at up to 325 m below
19 ground (BG). Pore pressure and barometric pressure were recorded at 30 minute intervals and
20 analysed, assuming no leakage in the grouted system, for barometric response, earth tides,
21 and rainfall events. Core samples from the same drill holes were vacuum sealed on site for
22 consolidation testing and triaxial permeameter testing. The *in situ* compressibility and
23 specific storage calculated from barometric pressure responses were as much as an order of
24 magnitude smaller than laboratory results.

25 A variety of laboratory testing techniques for low K samples are also available, however the
26 reliability of results may depend on factors such as the preparation and size of core samples,
27 configuration of equipment and uncertainties of measurement, the influent water that is used
28 and the stresses that are applied relative to *in situ* values, and whether permeability is directly
29 measured from steady state flow, or subject to additional parameters and assumptions with
30 alternative flow regimes. Laboratory testing of clayey-silt cores by standard rigid and flexible
31 wall column techniques requires 1-2 weeks, compared with <1 week for centrifuge
32 permeameter (CP) methods in unsaturated samples (ASTM, 2010). Constant or falling-head

1 tests in rigid-walled column permeameters at natural gravity require a large water pressure
2 gradient and/or long testing times for low-permeability samples. They are subject to potential
3 leakage, and may not replicate in situ confining stresses. Column testing of core samples is
4 possible for some test conditions in triaxial cells, for example those used in geotechnical and
5 petroleum studies as in the study of Wright et al. (2002) on both K_h and K_v and anisotropy in
6 limestone aquifers. However standard practice for testing ultralow permeability cores (e.g. K_v
7 $<1\times10^{-10}$ ms $^{-1}$) typically consists of applying a confining pressure to a watertight system and
8 measuring relatively subtle changes in pressure with high resolution pressure transducers
9 (API, 1998).

10 Geotechnical centrifuges are used to subject porous samples to high artificial gravities in
11 order to characterise their hydraulic and/or consolidation properties (Conca and Wright, 1998;
12 Nakajima and Stadler, 2006; Znidarčić et al., 2011), and for physical modelling as part of
13 geotechnical design (Garnier et al. 2007; Parks et al. 2012). Accelerated gravity acts on both
14 the solid particles and fluids within the porous sample without use of a large fluid pressure
15 gradient to drive flow. The technique can be applied to investigate slow hydrogeological
16 processes over shorter timescales, i.e. hydraulic flow through low permeability layers that
17 would take several years under in situ conditions can be reproduced in a geotechnical
18 centrifuge within hours or days, depending on conditions.

19 A CP, or a column mounted on a centrifuge strong box, is commonly used for hydraulic
20 characterisation. Accelerated gravity achieves a steady state equilibrium for fluid flow
21 through the CP within hours or days of instrument operation (for an unsaturated sample),
22 while simultaneously applying stresses to the solid matrix. A permeameter column, mounted
23 on a geotechnical centrifuge is rotated sufficiently fast to accelerate flow and approximate in
24 situ total stresses, while the target g -level is designed to ensure that the matrix is not
25 consolidated and chemical equilibrium is maintained. Steady state flow can provide more
26 reasonable K results than transient flow techniques. Although transient tests are even more
27 rapid than steady state tests in the centrifuge, more complex instrumentation is required to
28 ensure reliable results (Zornberg and McCartney, 2010).

29 The geotechnical centrifuge system described in this paper is moderately sized and relatively
30 economical to operate, whilst able to perform both unsaturated and saturated testing of porous
31 media with real-time measurement of various parameters during flight (Table 1). These
32 attributes mean that CP testing of relatively large diameter cores (up to 100 mm diameter) in

1 this facility is comparable in cost to testing of small cores (38 mm diameter) using alternative
2 methods such as He-gas permeation. The system has been successfully used for testing low
3 permeability rock cores (Bouzalakos et al., 2013). To date, there were no other direct K_v
4 measurements on these deep shales available (APLNG, 2013) and alternative laboratory
5 methods were not successful in obtaining a K_v value from these very low K rocks (Bouzalakos
6 et al., 2013).

7 This paper demonstrates novel CP techniques and equipment that have been specifically
8 developed for characterizing semi-consolidated clayey silt cores. K_v results from CP methods
9 are compared with standard 1g column methods and in situ measurements of permeability,
10 based on harmonic analysis of the high frequency pore pressure propagation through a thick
11 clayey sequence. The variability, confidence limits and overall reliability of the K_v results to
12 constrain assessments of regional scale vertical connectivity are considered in the context of
13 sampling and experimental factors including flow and stress conditions within the CP. This
14 paper provides reasonable K_v for at least one local clayey-silt sequence and strategies for
15 future testing that are important contributions towards evaluating flow connectivity at a range
16 of scales. These K_v results can be complimented with hydrogeological data such as pore
17 pressure and tracer data to better constrain numerical flow models.

18 **2 Geology of study sites**

19 Semi-consolidated sediment cores were obtained from three sites in the Australia Murray-
20 Darling Basin, in the Upper Mooki subcatchment of the Namoi catchment (Fig. 1).
21 Groundwater is extracted in this area for irrigation and town water supplies, with drawdowns
22 of more than 10 m over 30 years. Due to the heterogeneity of mixed sediments, that were
23 previously assumed to be homogenous, high permeability sediments, it can take years or
24 decades for the impact of groundwater withdrawal to be transmitted through the sediments
25 (Kelly et al., 2013). The alluvial sedimentary geology of the valley features significant
26 heterogeneity but a general fining upwards which reflects climatic drivers of sedimentation
27 (Kelly et al., 2014). This study found that the architectural features and the net (sand and
28 gravel) to gross (total volume) line plot that identifies low permeability clays and silts of the
29 valley-filling sequence are best represented by a distributive fluvial system. In this type of
30 fluvial system, the avulsion frequency increases at a slower rate than the aggradation rate.

1 Core drilling was completed at three research sites (Fig. 1) including Cattle Lane (CL),
2 located south of the town of Caroona ($31^{\circ} 31'9"S$, $150^{\circ} 28'7"E$), the Breeza farm (BF)
3 operated by the NSW Department of Primary Industries, southeast of Gunnedah ($31^{\circ} 10'32"S$,
4 $150^{\circ} 25'15"E$), and Norman's Road (NR), east-southeast of Gunnedah ($31^{\circ} 2'48"S$, 150°
5 $26'7"E$).

6 Clayey silt sediments at the Cattle Lane site are approximately 30 m thick (Timms and
7 Acworth, 2005) and extend throughout the valley (Wiesner and Acworth, 1999), as shown by
8 numerous CCPT (conductivity cone penetrometer) profiles. The porewater salinity profile at
9 the site, increasing from 10-30 m depth through the clay is consistent with a diffusion
10 dominated transport over thousands of years (Timms and Acworth, 2006). The saturated zone
11 fluctuates in response to rainfall events from between ground surface to approximately 2 m
12 depth, while water levels in the confined gravel aquifer at >50 m depth display a delayed and
13 dampened response to the same rainfall events. There is no groundwater extraction for
14 irrigation from this aquifer in the vicinity of the site, and the valley has had artificial drainage
15 channels constructed to prevent ponding of surface water and soil salinization. Detailed
16 geological studies and particle dating have identified that the clayey silt in the top ~30 m at
17 this site accumulated gradually at 0.2 – 0.3 mm/year by weathering of alkali basalts (Acworth
18 et al. 2015). Flow testing of 100 mm diameter cores from the CL site, reported by Crane et
19 al. (2015) has revealed evidence for dual porosity flow when a hydraulic gradient is imposed
20 on the low permeability sediments, with further work in progress to identify the nature and
21 significance of these potential flow paths.

22 Sediments at the Breeza farm and Norman's Road site are relatively heterogeneous, with
23 mixed sandy, clayey sand, and clayey-silt alluvium overlying a semi-confined aquifer. The
24 saturated zone is approximately 18 to 20 m below surface and extraction for flood irrigation
25 of crops causes large fluctuations in groundwater levels in the confined aquifers at >50 m
26 depth. Hydrogeological and hydro-geochemical evidence indicate a leaky aquifer-aquitard
27 system, with the variability in groundwater level responses controlled by a fining upward
28 alluvial sequence (Acworth and Timms, 2009). At the Norman's Road site, highly saline
29 porewater (15 mS cm^{-1}) in the clayey silt in proximity to the surface (<20 m) appears to have
30 leached into the underlying aquifer, causing a significant increase in salinity of the aquifer
31 (Badenhop and Timms, 2012).

32 **3 Study site characterisation and sampling**

1 3.1 Drilling and core sampling

2 Equipment and procedures for coring were compliant with ASTM D1587-08, 2008 to obtain
3 samples which were as undisturbed as possible. A rotary drilling rig equipped with Triefus
4 triple core barrels, lined with seamless clear PET, was used in push coring mode. Local creek
5 water was used as a drilling fluid and casing was used to stabilise the hole behind the push
6 core barrel such that drilling fluid additives were not required. The holes were therefore fully
7 cased to the maximum depth of push core drilling at up to 40 m BG.

8 The non-rotating core barrel was forced into the formation whilst a rotating device on the
9 outside of the tube removes the cuttings as the barrel was advanced. The cutting edge of the
10 non-rotating sample tube projects several millimetres beyond the rotary cutters. The thin
11 walled core barrel complied with the standard for undisturbed sampling, with an area ratio of
12 less than 25% for an open drive sampler. The area ratio of 16% was based on a core barrel
13 design with an external diameter of 110 mm and internal diameter of 101 mm (C size). The
14 1.5 m length core barrel was a composite open sampling system with a core nose screwed on
15 the base with a bevelled end to cut the core as the barrel pushed into the formation. After the
16 core was extracted from the ground, an air supply was connected to the top of the core barrel
17 to slide the core out of the barrel whilst it remained in the clear PET liner without rotation,
18 distortion or compression.

19 The cores contained within PET liners in this minimally disturbed state were transferred
20 directly from the core barrels to a cool room on site, and thence to a laboratory cool room,
21 reducing the potential for moisture loss. Semi-consolidated clay cores were selected from
22 below the saturated zone for CP tests, at depths up to 40 m BG. Sediment core samples of
23 lengths between 50-100 mm were prepared for CP testing. The moisture content and bulk
24 density of cores was measured on the cores at the drill site using methods adapted from
25 ASTM D7263-09, 2009.

26 The preferred method for preservation of drill core was double plastic bagging of sections of
27 core within their PET liners using a food grade plastic sealing system (with brief application
28 of a vacuum to extract air from the plastic bag), and storage in a cool room at approximately 4
29 °C. Alternatively, core within PET core barrel liners were trimmed of air or fluid filled excess
30 liner immediately after drilling, sealed with plastic tape, and stored at 4 °C. Sections of cores,
31 particularly at the nose end, that appeared to be damaged or disturbed were excluded from

1 permeability or bulk density testing. Additional steps that were taken in the laboratory to
2 ensure core testing was representative of in situ conditions are described in Section 4.1.

3 After coring, the holes were completed as monitoring piezometers and the casing was jacked
4 out. The piezometers were constructed of screwed sections of 50 mm PVC casing with O-ring
5 seals, with a 1.5 m machine slotted screen packed with pea-sized washed gravel. The annulus
6 was then filled with a bentonite seal, backfilled to the surface and completed with a steel
7 casing monument and cement monument pad.

8 **3.2 Groundwater sampling for influent**

9 Fluid for K testing (influent) should be taken from the formation at the same depth as the
10 core, or if the limitations of sampling from aquitard strata preclude this, influent water
11 chemistry can be synthesized to approximate known ionic strength, Na/Ca ratio and pH. In
12 this study, groundwater from piezometers at a similar depth to the core was obtained using
13 standard groundwater quality sampling techniques (Sundaram et al., 2009). A 240V electric
14 submersible pump (GRUNDFOS MP1) and a surface flow cell were used to obtain
15 representative samples after purging stagnant water to achieve constant field measurements of
16 electrical conductivity and other parameters (Acworth et al., 2015 and unpublished data).

17 **4. Centrifuge permeameter methods and calculations**

18 **4.1 Preparation of cores**

19 To ensure that core was tested under saturated conditions, realistic of in situ conditions, drill
20 core was adequately preserved, stored, prepared and set on a vacuum plate prior to centrifuge
21 testing. In addition to the steps taken on the drill site (Section 3.1), additional procedures in
22 the laboratory were designed to ensure that core was tested under in situ conditions. Core
23 directly from PET drill core liners was trimmed and inserted into an acrylic liner for the CP
24 using a core extruder. The custom made core extruder had 5 precision cutting blades driven
25 by a motorised piston suitable for a 100 mm diameter core. Cores for CP testing in this study
26 were 100 mm diameter C size core, with a length of 50-100 mm. A close fit between the clay
27 core and the liner was achieved using this extruder.

28 A vacuum plate system for core samples was designed to ensure fully saturated cores, remove
29 air at the base of the core, and ensure an effective seal between the CP liner prior to testing at

1 accelerated gravity. The vacuum plate device was designed to fit the CP liners containing the
2 cores, drawing ponded influent from the top to the base of the cores using a standard
3 laboratory vacuum pump at 100 kPa of negative pressure. After 12 to 48 hours, or upon
4 effluent flow from the base, the acrylic liners containing the prepared cores were then
5 transferred directly to the CP module without disturbing the sample.

6 Furthermore, the moisture content and degree of saturation was monitored by measuring
7 weight change of the permeameters during testing, and direct moisture tests of samples before
8 and after CP testing. Due to the procedures described, there was negligible difference
9 observed between the moisture content of the core tests and in situ conditions, and the results
10 were not associated with the time between sampling and testing of the core or the use of
11 vacuum to expel air from sealing bags or from the top or base of the cores fitted into the CP
12 liners.

13 A self-seal was observed forming from material swelling at the interface with the liner within
14 minutes of introducing the influent solution. Prior to the self-seal development, leakage along
15 the liner interface was identified by a flow rate of several orders of magnitude higher than the
16 steady state flow K_v value. The swelling that occurred to self-seal the core was estimated at
17 less than 0.02% of the cross-sectional area of the core by comparing flow rates through the
18 CP drainage hole (described in Supplement S3). It was calculated that this area of swelling
19 was sufficient to seal an annulus aperture of ~0.01 mm between the clay core and the acrylic
20 liner.

21 Given the relatively shallow depth of these cores, and the semi-consolidated status, the
22 maximum g -level in the centrifuge was limited to prevent structural changes in the core
23 matrix. To minimise changes in porosity during testing to be similar to in situ, the g -level and
24 the weight of ponded fluid on the cores were therefore designed to ensure that total stress was
25 less than estimated in situ stress at the depth from which the core was drilled.

26 Blind permeability tests were carried out by an independent laboratory, who adapted a
27 constant/falling head method (AS 1289 6.7.3/5.1.1) with methods from Head (1988). For
28 these 1g column tests, a sample diameter of 45.1 mm and length 61.83 mm was used, and a
29 confining pressure of 150 kPa and back pressure of 50 kPa was applied, providing a vertical
30 uniaxial stress of 100 kPa. The test time was up to 100 hours. These standard 1g column tests
31 used deionised water as the influent.

1 4.2 Centrifuge permeameter testing

2 The Broadbent CP module and some unique systems developed as part of this study are
3 described in this section, with further details in Supplement S1 and S3. A conceptual plan of a
4 CP is shown in Fig. 2. The CP contains a cylindrical clay sample with length L and diameter
5 D , and is spinning in a centrifuge around a central axis at an angular velocity ω . The
6 permeameter has an inlet face at a radius r , and a drainage plate at a radius of r_0 . The co-
7 ordinate z is defined as positive from the base of the sample towards the central axis of
8 rotation, consistent with definitions in 1g column testing (McCartney and Zornberg, 2010).
9 This frame of reference is in an opposite direction to that defined by Nimmo and Mello
10 (1991), but is convenient for interpretation and comparison of column flow tests. In this
11 study, the outlet face is a free drainage boundary, and is discussed further in Supplements S2
12 and S3.

13 Influent was fed from burettes located next to the centrifuge via a pair of custom designed
14 low voltage peristaltic pumps mounted either on the centrifuge beam, or outside the
15 centrifuge and through the low flow rotary union.

16 The K value is based on flow rate, flow area, radius and revolutions per minute (RPM),
17 although the method was adapted from a UFA centrifuge to this CP system (Section 4.3).
18 Importantly, both testing systems are for steady state flow with free drainage due to zero
19 pressure at the base of the core.

20 The mass of two core samples were balanced to the nearest 100g and tested simultaneously at
21 either end of the centrifuge beam. The CP was operated at 10g for 30 minutes, and if no rapid
22 flows due to leakage were detected, this was gradually increased to 20g, 40g and so on, until
23 the maximum total stress on the core approached the estimated in situ stresses of the material
24 at the given depth in the formation. The upper permissible g -level was designed to be less
25 than the estimated in situ stress from the depth at which the core was obtained. It was also
26 important to ensure that effective stress (Section 4.4) was acceptable, as variable pore fluid
27 pressures during testing could cause consolidation of the core matrix. Influent volume was
28 measured using both a calibrated continuous time record of pump rotations, and manual
29 burette measurements, and effluent volumes were measured by weight. Steady state flow was
30 defined as $\pm 10\%$ change in discharge over subsequent measurements in time, provided that
31 influent flow rate was within $\pm 10\%$ of the effluent flow rate. Both of these conditions were

1 required for the testing to be considered as a steady state flow condition, providing additional
2 quantitative measures to the ASTM D7664 which states that steady state conditions have been
3 attained “if the outflow is approximately equal to the inflow”. Supplement S4 discusses the
4 uncertainty of the measured data in more detail.

5 4.3 K_v calculations and statistical analysis

6
7 Hydraulic conductivity calculations for the CP in this study were based on ASTM D6527
8 (ASTM, 2008) and ASTM D7664 (ASTM, 2010) with a form of Darcy’s Law that
9 incorporates the additional driving force within a centrifuge. The gradient in the centrifuge
10 elevation potential (Nimmo and Mello, 1991), or the gradient in centrifuge “elevation head”
11 (Zornberg and McCartney, 2010) due to the centrifuge inertial force driving was defined as
12 flow away from the centre of rotation (or in the opposite direction to z in Fig. 2). The g -level
13 was defined at the mid-point of the core. A ponded influent above the top of the core
14 prevented loss of saturation along the core (Nimmo and Mello, 1991).

15
16 Statistical analysis of the data followed basic small-sampling theory using the student t
17 distribution, following the approach of Gill et al. (2005) and extending the approach of
18 Timms and Anderson (2015) for estimating sample numbers required for CP testing. Upper
19 and lower confidence intervals (UCI, LCI) were calculated from the apparent mean $\pm t_{(n-1)} \cdot s_n$
20 $/n^{1/2}$, where s_n is the standard deviation and t is the value of the student t distribution at the
21 selected confidence limits (CL) of 90% and 99%. The confidence intervals were calculated
22 for increasing number (n) of K_v data from each core.

23 4.4 Fluid pressure and total stress calculations

24 Fluid pressures and hydraulic gradient through the centrifuge core were determined following
25 the approach of Nimmo and Mello (1991). A bulk density ρ_s of 1.9 g cm^{-3} and fluid density
26 ρ_w of 1.0 g cm^{-3} was assumed in Eq. (1):

$$27 P = \rho_w \int_{r_0}^{r'} r \omega^2 dr \quad (1)$$

28 where P is total fluid pressure (kPa), ρ_w is the fluid density (g cm^{-3}), r is the radius of rotation
29 (cm), and ω is the angular velocity (s^{-1}). The total stress was determined through the
30 centrifuge core following Eq. (2):

$$1 \quad S = \rho_s \int_{r_0}^{r'} r \omega^2 dr \quad (2)$$

2 where S is total stress (kPa), ρ_s is the saturated core density (g cm^{-3}), g is gravitational
 3 acceleration. The effective stress was calculated as the difference between total stress and
 4 fluid pressure. An increase in effective stress associated with decreased fluid pressures near
 5 the base of the free draining core may cause consolidation of the core matrix near the
 6 boundary.

7 The total stress applied to the core, relative to stress, may affect the porosity of the core
8 sample, depending on the stress history. In situ stress of the cores (S_i) at the sampling depth
9 below ground (D) was estimated on the assumption that the overlaying formations were fully
10 saturated and of a similar density (ρ_s) to the supplied core samples:

$$11 \quad S_i = \rho_s D g \quad (3)$$

12 The centrifuge inertial (elevation) head gradient and hydraulic head gradient (stationary
13 centrifuge at 1g) were calculated at 0.005 m increments through the core.

14 5. Results and discussion

15 5.1 Core properties and K_v results from CP testing

16 Index properties for five representative cores are provided in Table 2. The cores were
17 typically silty clay (<0.002 mm), except for one sandy clay core. The large proportion of silt
18 relative to clay is an important characteristic of this formation, with clay mineralogy
19 dominated by smectite (Timms and Acworth, 2005; Acworth and Timms, 2009).

20 Moisture content varied from 24.7 to 36.4% by weight, and was consistent with site measured
 21 data on the core while at the drill site (Supplement S5), although not all the cores were fully
 22 saturated as received by the external laboratory. Bulk wet density varied from 1.71 to 1.88 g
 23 cm^{-3} and particle density from 2.47 to 2.58 g cm^{-3} . The K_v of cores tested in the CP module
 24 (Table 3) varied from 1.1×10^{-10} to $3.5 \times 10^{-7} \text{ ms}^{-1}$ ($n = 18$). Accelerations up to 80g were
 25 applied during CP testing of semi-consolidated sediment cores and were more typically
 26 limited to 30-40g. Fig. 5 shows the measured influent and effluent rates and the calculated K_v
 27 values during a typical CP test as the g -level was gradually increased. Steady state flow (± 10

1 % change over time with influent rate equal to effluent rate) was achieved at ~20 hrs (Fig. 3).
2 However, a lower K_v value was observed over >12 hrs overnight than those values measured
3 over ~1 hr intervals during the day with frequent stops of several minutes duration to measure
4 the effluent volume, and the later time interval measurement was considered to be more
5 realistic. Further experimentation and numerical modelling is required to adequately explain
6 this anomalous data which may be associated with evaporative losses over longer time
7 periods of flow measurement or other transient processes within the system.

8 Anomalous flow via preferential pathways could be readily identified by a flow rate of
9 several orders of magnitude greater than otherwise observed. Anomalous flow was often
10 observed along the interface of the cores and the liner during the early minutes of a test where
11 sealing occurred before steady state conditions were established. On one occasion a failure
12 occurred in the core during testing with a preferential flow path occurring through the matrix
13 and which, at accelerated gravity, caused very fast flow that was easily detected.

14 A small uncertainty in K_v results for the CL site was calculated at a confidence limit of 99%
15 using the methods described in Section 4.3. By increasing the number of samples, the
16 confidence bounds for K_v were narrowed from a range of 4.8×10^{-10} to 2.4×10^{-9} m/s (n=5) to a
17 range of 1.1×10^{-9} to 2.1×10^{-9} m/s (n=9). This evaluation demonstrates the value of the
18 additional testing that has recently been completed. Increasing the number of samples from
19 five to nine also decreased the standard deviation, with a similar geometric mean (Table 4).
20 However there was less certainty at two other core sites (BF and NR) due to limited and more
21 variable K_v data. At the BF site the 99% confidence interval had relatively wide K_v bounds
22 for n = 6, while at NR site, a confidence interval of 90% results in similarly wide K_v bounds
23 for n = 3. This statistical evaluation of the results highlights the relative K_v variability and
24 small sample set for the BF and NR sites, and the need for further testing, particularly at the
25 NR site. This issue will be expanded in the discussion following.

26 5.2 Pore fluid pressure and stress conditions at accelerated gravity

27 While the errors that may occur during measurement of K can be defined, whether or not the
28 K value is realistic for in situ conditions depends in part on the magnitude of stress and any
29 structural changes that occur within the core matrix. Supplement S2 provides background on
30 the definition and significance of hydrostatic pore pressure, centrifuge inertial (elevation)
31 head, and gradients driving fluid flow. Supplement S2 discusses the possibility that K values

1 reported in this study could be biased on the high side, considering total stress at the base of
2 the core under steady state conditions.

3 During centrifuge testing effective stress is maximum at the base of the free draining core,
4 where fluid pressure is zero, and thus effective stress is equal to total stress under hydrostatic
5 conditions (no flow). In both testing methods in this study, the total stress was less than
6 estimated in situ stress, however the stress history of the core sample and effective stress
7 dynamics were uncertain. Considering that a stress is necessary on top of the core to prevent
8 swelling of the core, it appears that the stresses during these tests were likely within an
9 acceptable range to minimise structural changes including swelling and consolidation. There
10 was no evidence of significant changes in core length due to consolidation of the samples
11 during spot checks of core length with a digital calliper. However further attention on these
12 processes, including instrumentation to measure fluid pressures and core matrix changes
13 during testing is required in future studies. A separate geotechnical study of these semi-
14 consolidated sediments, including oedometer testing is in progress to better quantify the
15 relationship between stress and permeability in these semi-consolidated materials. In future
16 studies of semi-consolidated materials, measurement of consolidation state (over
17 consolidation ratio) and pre-consolidation stress is recommended prior to centrifuge testing to
18 ensure that an appropriate centrifuge stress is applied.

19 5.3 Comparison of in situ K_v and column testing methods at the CL site

20 K_v data from three methods are shown in Fig. 4 for the CL site. Results from the CP method
21 (1.1×10^{-10} to 3.5×10^{-9} ms $^{-1}$, n = 9) were similar to K_v values from the independent and in situ
22 method (1.6×10^{-9} to 4.0×10^{-9} ms $^{-1}$) confirming that the sequence is of low permeability at the
23 CL site with a reasonable level of confidence (Table 4). However, K_v from both in situ and
24 CP methods were higher than 1g column tests of core from 11.27–11.47 and 28.24–28.33 m
25 BG from this site (1.4×10^{-9} , 1.1×10^{-10} and 1.5×10^{-10} ms $^{-1}$, n = 3).

26 In situ K_v of the clayey-silt at the CL site were based on observed amplitude and phase
27 changes of pore pressures (at hourly or 6-hourly intervals) due to five major rainfall events
28 over four years (Timms and Acworth, 2005). The phase lag at the base of the clay varied
29 between 49 and 72 days. The phase lag pore pressure analysis resulted in a K_v value of
30 1.6×10^{-9} ms $^{-1}$, while the change in amplitude over a vertical clay sequence of 18 m (from a 17

1 m depth piezometer to the inferred base of the aquitard at 35 m depth) resulted in a K_v value
2 of $4.0 \times 10^{-9} \text{ ms}^{-1}$.

3 It is noted that the reliability of harmonic analysis related methods may be compromised by
4 specific storage measurements. Jiang et al. (2013) relied on indirect specific storage values
5 derived from downhole sonic and density log data from boreholes in the region, while Timms
6 and Acworth (2005) calculated specific storage from barometric and loading responses that
7 were recorded in the same groundwater level data set and boreholes used for harmonic
8 analysis.

9 The reduced test times of CP testing may be attributed to the reduced time required to achieve
10 steady state flow with centrifugal forces driving flow. Alternatively, the time required for 1g
11 column testing may be attributed to deionized water interaction with clay that reduced
12 infiltration rates into the cores (10 to 100 lower K_v result for 1g column tests compared with
13 CP tests). It is known that decreased ionic strength of influent (eg. deionized water) causes a
14 linear decrease in permeability, and that the relative concentrations of sodium and calcium
15 can affect permeability due to swelling and inter-layer interactions (eg. Shackelford et al.,
16 2010; Ahn and Jo, 2009). It is also possible that differences in K values from laboratory
17 testing methods can also be attributed to differences in test setup (eg. 45 vs. 100 mm diameter
18 core) and stress changes that occur as discussed in Section 5.2 and Supplement S2.

19 CP testing was relatively rapid, typically with a few hours, up to 24 hours required for steady
20 state flow CP, compared with an average of 90 hours (73, 96 and 100 hours for the tests
21 reported here) for 1g column testing. In addition, an extended test of 830 hours in the CP
22 (unpublished data) verified that no significant changes occurred over extended testing
23 periods. The CP technique can therefore reduce average testing time to ~20% of the time that
24 would be required in 1g laboratory testing systems, similar to the reduced time requirement of
25 centrifuge methods for unsaturated hydraulic conductivity functions compared with 1g
26 column tests ASTM (2010). The relative time advantage of testing cores at accelerated
27 gravity may be greater at lower K_v , due to the increased time required to establish steady state
28 flow conditions. This could be advantageous for longer experiments of contaminant transport
29 that requires several pore volumes of steady state flow.

30 With the advantage of robust estimates for specific storage in this study, the similarity of K_v
31 measurements with different scales at the CL site (Fig. 4) indicates that in this part of the

1 alluvial deposit K is independent of vertical scale from centimeters to several meters. These
2 K_v results from both in situ and laboratory methods provide an important constraint for
3 evaluations of hydraulic connectivity, particularly as there is a general lack of K_v data for
4 these sediments. Complimentary studies of hydraulic connectivity to quantify leakage rates
5 include pore pressure monitoring and piezometer slug testing at various depth intervals along
6 with hydrogeochemical and isotope tracer data. Recent geological studies of the alluvial
7 sequence (Acworth et al., 2015) outlined in Section 2, and identification of dual porosity
8 structures in the large diameter cores (Crane et al., 2015) indicate that it may be possible for
9 vertical leakage to occur through clayey silts if a vertical hydraulic gradient were to be
10 imposed. A diffusion dominated salt profile through the sequence suggest negligible vertical
11 flow (Timms and Acworth, 2006), however, a proper assessment of flow connectivity
12 requires vertical hydraulic gradients to be determined over a long term period, taking into
13 account any salinity variations with depth.

14

15 5.4 Geological and regional context for permeability of a clay-silt aquitard

16 The K_v measurements reported in this paper are important because there of a general lack of
17 such data for alluvial groundwater systems globally. Even where many groundwater
18 investigations have been completed, such as this study area in the Mooki subcatchment, there
19 continues to be a lack of information on the thick clayey-silt sediments at various spatial
20 scales.

21 The core samples for testing were randomly selected from the same lithostratigraphic
22 formation, the upper 30 m of the alluvial sequence as described in Section 2. Although the
23 alluvial sequence extends to over 100 m depth, we focused this study on sediments defined by
24 a low net-to-gross ratio (Larue and Hovadik, 2006) of <0.4 that reflects that clay rich part of
25 the sequence (Timms et al., 2011). We assumed a log-normal distribution of K_v within this
26 formation, which as noted by (Fogg et al., 1998) might be justified within individual facies,
27 but not over the full stratigraphic section. It was also assumed that the standard deviation of
28 the samples tested is similar to the standard deviation of the total population of K_v results
29 from the formation, which may only be known if a significantly large number of samples are
30 tested.

1 K_v values for cores from the NR and BF sites were significantly more than for the CL site,
2 although additional data from the NR site is required to increased confidence intervals (Table
3 3, Table 4). These findings could reflect the greater heterogeneity of alluvial sediments at the
4 northern sites (NR and BF), compared with the clayey-silt deposit at the southern CL site.
5 Based on the dataset currently available for each site there did not appear to be any significant
6 K_v trend with depth, except at the CL site, with a possible decrease of K_v by a factor of 3 with
7 depth increasing from 11 to 28 m BG. Further testing is in progress to better identify any
8 spatially significant trends in K_v .

9 K_v results obtained from the CP for these clayey silt aquitards were significantly higher than
10 K_v for consolidated rock cores tested in this system (Bouzalakos et al., 2013). The relatively
11 low g -levels in this study (up to 80g), compared to rock core testing (up to 520g, Bouzalakos
12 et al., 2013) were necessary for the shallow and semi-consolidated nature of the clayey-silt
13 cores. In fact, steady state flow was achieved at low g -levels for K_v values that were at least
14 100 times higher than the current detection limit and uncertainty of the CP system
15 (Supplement S4).

16 The vertical permeability of the clayey-silt aquitards in this region, and the relative
17 importance of matrix flow and preferential flow through fractures and heterogeneities are
18 critical to the sustainability of the groundwater resource. The K_v data reported in this study for
19 these silty and semi-consolidated sediments are higher than reported for regional flow
20 models, indicating that the aquitards allow significant recharge to underlying aquifers.

21 A regional groundwater flow model developed by McNeilage (2006) with a 2 layer
22 MODFLOW code, determined the dominant source of recharge to be diffuse leakage through
23 the soil (and aquitards) in the Breeza groundwater management area. As in typical modelling
24 practice (Barnett et al., 2012) the aquitard was not explicitly modelled, with water instead
25 transferred from a shallow to a deeper aquifer using a vertical leakance value (units in day^{-1}).

26 The calibrated groundwater model indicated that approximately 70% of the long term average
27 groundwater recharge (11 GL year^{-1}) was attributed to diffuse leakage in this area that
28 included the CL and NR sites. This volume is equivalent to 20 mm year^{-1} , or a K_v of $\sim 6 \times 10^{-10}$
29 ms^{-1} assuming a unit vertical hydraulic gradient over an area of approximately 500 km^2 . The
30 actual K_v or leakance values were not reported. The calibrated leakance values were found to
31 vary over three orders of magnitude across the Breeza area, with relatively high values in

1 isolated areas in the south, centre and north. In comparison, the K_v results on clayey-silt cores
2 appear to be higher than the apparent K_v of the regional groundwater model, but with a similar
3 degree of heterogeneity. The reasons for this discrepancy are not yet clear, but may be
4 attributed to non-unique calibration of the regional flow model (eg. underestimation of inter-
5 aquifer leakance) or the lack of representative K_v values for this aquitard at a scale that
6 accounts for heterogeneities and preferential flow paths.

7 The K_v results in this study are within the range of values reported elsewhere for semi-
8 consolidated clay silt sediments, and are higher than commonly reported K_v values for
9 consolidated glacial till and shale. For example, Neuzil (1994) reviewed aquitard K_v values
10 for intact muds and lacustrine clays (10^{-8} to 10^{-11} ms $^{-1}$) compared to consolidated materials
11 such as shale with values as low as 10^{-16} ms $^{-1}$ for argillite. A detailed study of a clayey marl
12 and limestone aquitard in France (Larroque et al., 2013) found a quasi-systematic bias of one
13 order of magnitude between petrophysical K_v estimates (10^{-8} to 10^{-10} ms $^{-1}$), compared with
14 values (10^{-9} to 10^{-11} ms $^{-1}$) from hydraulic diffusivity monitoring between 30 and 70 m BG.
15 However, the empirical petrophysical relationships between porosity, pore size and intrinsic
16 permeability do not adequately account for structural effects of clay materials. Field
17 piezometer rising head tests ($n = 225$) indicated that K_v of a lacustrine clay aquitard around
18 Mexico City was 10^{-8} to 10^{-9} ms $^{-1}$ in two areas, one hundred times greater than matrix scale
19 permeability (Vargas and Ortega-Guerrero, 2004). In a third area the field tests were 10^{-10} ms $^{-1}$
20 indicating the regional variability that can occur within clayey deposits.

21 Studies of glacial till aquitards in Canada, the US and Denmark find that regional
22 permeability is typically at least two orders magnitude greater than laboratory tests (Van der
23 Kamp, 2001; Fredericia 1990; Bradbury and Muldoon, 1990; Gerber and Howard, 2000),
24 although one study (Husain et al., 1998) showed that for a thick glacial till aquitard in
25 southern Ontario, Canada, the regional permeability is similar to the laboratory-obtained
26 measurements, indicating the absence of significant permeable structures.

27 There is evidence of fracturing near the surface of the clayey aquitards that are the focus of
28 this study. Fracture flow to a shallow pit and the freshening of porewater in the aquifers at 16
29 and 34 m depth during the irrigation season indicated rapid leakage had occurred at the BF
30 site (Acworth and Timms, 2009). The dynamics of fracturing within ~2 m of the ground
31 surface in these sediments was described by Greve et al. (2012). However, beyond the zone
32 of fracturing near the ground surface, there appears to be insignificant groundwater flow.

1 Solute profiles through the 30 m thick clayey deposit at the CL site indicate that downwards
2 migration of saline water is limited to diffusion and that flow is insignificant (Timms and
3 Acworth, 2006). On the basis of available evidence, the clayey sediments in this region may
4 lack preferential flow paths at some sites, and in other areas preferential flow may occur
5 through features such as fractures and heterogeneity at a range of scales (Crane et al. 2015).
6 Further work is required to determine permeability at a range of scales, and to better
7 understand preferential flow paths. The current conceptual model on which the numerical
8 models are based (simple layered aquitard overlying an aquifer) do not allow for spatial
9 variability in connectivity mechanisms that could be important across a large valley alluvial
10 fill sequence. It is not surprising that would be multiple mechanisms for vertical connectivity
11 (matrix flow, fracture flow, sedimentary heterogeneity) that would be important to varying
12 degrees depending on the spatial scale and local setting.

13 5.5 Groundwater flow at natural gradient and accelerated conditions

14 To determine if accelerated flow conditions are realistic for hydrogeological environments,
15 the linear flow velocity for various CP setups was compared with a theoretical unit gradient,
16 and a typical in situ vertical hydraulic gradient. In Table 5, an in situ hydraulic gradient of 0.5
17 is compared with CP setups for 100 mm and 65 mm diameter cores of various lengths for an
18 aquitard material with K_v of 10^{-8} ms^{-1} . The vertical flow rate varies from 0.3 mL hour^{-1} under
19 in situ conditions, to 8.5 mL hour^{-1} in the CP, such that linear flow velocities remain very low
20 at 10^{-8} to 10^{-6} ms^{-1} . The flow rate during centrifugation was N times greater than if a hydraulic
21 gradient of 1 was applied to the core samples at 1g. This increase in flow rate is consistent
22 with scaling laws for physical modelling (Tan and Scott, 1987).

23 The accelerated flow conditions, whilst realistic for hydrogeological environments can also
24 be an advantage for experimental studies of solute transport. K_v results in the order of 10^{-9} ms^{-1}
25 were obtained in ~20% of the time required for 1g column permeameter tests. Solute
26 breakthrough experiments require longer testing periods of steady state flow than for
27 permeability testing. For example, Timms and Hendry (2008) and Timms et al. (2009)
28 describe continuous CP experiments over 90 days to quantify reactive solute transport during
29 several pore volumes (PV) of flow. The comparisons of time required for one PV provided in
30 Table 5 illustrate the possible advantages of CP for contaminant flow that may affect the
31 structural integrity of the material.

1 5.6 Implications of core scale measurement of aquitard properties

2 Accurate and reasonable measurement of the vertical hydraulic conductivity (K_v) of aquitards
3 is a critical concern for many applications, providing that the applicability of K_v at various
4 spatial scales is considered. For example, following an empirical analysis of notable case
5 studies, Bredehoeft (2005) reported that collection of new field data may render the
6 prevailing conceptual hydrogeological models invalid in 20-30% of model analyses.
7 Bredehoeft (2005) coined the term 'conceptual model surprise' to explain this phenomenon.
8 He then went on to explain that 'often one does not have hydraulic conductivity values for
9 confining layers because of the difficulties associated with acquiring such data'.

10 The centrifuge technology described within this paper helps investigators overcome some of
11 the modelling limitations identified by Bredehoeft (2005). With centrifuge technology
12 accurate point-scale measures of hydraulic property data can be collected to develop more
13 realistic numerical flow models to quantify the significance of transient drawdown, the
14 associated release of water into adjacent aquifers over long time periods, and the possibility
15 of preferential flow. Without this technology and accurate data on aquitard hydraulic
16 properties more generally, the value of investment in the construction of complex hydro-
17 geochemical projects will continue to be questioned, as will confidence in the constituent
18 conceptual and numerical hydrogeological models.

19 The natural variability within apparently homogeneous geological media is large (Schulze-
20 Makuch et al., 1999). For example, Neuzil (1994) reported that for similar porosity, hydraulic
21 conductivity commonly varies over three orders of magnitude. For argillaceous strata,
22 permeability often does not increase with an increasing physical scale of testing, at least at
23 intermediate scale, indicating that permeability due to fracturing is absent (Neuzil, 1994).

24 In the absence of direct measurement of aquitard permeability there is a real risk that aquitard
25 parameters may be ignored or misrepresented in analyses resulting in a corresponding under-
26 prediction of vertical connectivity via preferential flow paths and/or over-prediction of
27 aquifer storage and transmissivity. This is an especially important consideration in the
28 analysis of aquifer tests that may not have been conducted for sufficient periods of time to
29 identify distant boundary conditions or the characteristic effects of aquitard leakage and/or
30 storage (Neuman and Witherspoon, 1968). In very low permeability strata however, there are
31 practical limitations to pump tests and packer testing below about 10^{-8} ms^{-1} , depending on the

1 equipment and the thickness of strata that is subject to testing. It is recognised that in many
2 heterogeneous systems time lags for the propagation of drawdown responses through an
3 aquitard can be significant (Kelly et al., 2013).

4 Core scale measures of aquitard hydraulic conductivity are an integral component of
5 hydrogeological studies concerning aquifer connectivity. The availability of core scale facies
6 measurements enables the up-scaling of bore log and geophysical data to determine upper and
7 lower hydraulic conductivity bounds for regionally up-scaled aquitard units. Any differences
8 between K values at various scales are important for indicating the possibility of preferential
9 flow through heterogeneous strata or aquitard defects (eg. faults and fractures). The
10 availability of these bounded estimates helps to constrain the uncertainty analyses conducted
11 on regional groundwater flow models to yield more confident predictions (Gerber and
12 Howard, 2000). Jiang et al. (in review), used sparse bore scale K_h measurements and CP core
13 tests of K_v for mapping a regional aquitard-aquifer system by combining stochastic fluvial
14 process modelling and a geostatistical simulation technique. The spatial heterogeneity of this
15 aquitard-aquifer system was a basis for subsequent groundwater modelling explicitly
16 including faults that could be either barriers or conduits for groundwater flow at Basin scale.

17 Nevertheless, regional groundwater flow models generally use hydraulic resistance (leakance)
18 values to transfer water vertically between aquifers (Barnett et al., 2012) rather than spatial
19 discretization of aquitards that control this transfer. While this simplification is justified in
20 many models, such an approach is not capable of identifying rapid flow pathways through
21 defects in the aquitards or the release of stored water from an aquitard to an aquifer and
22 cannot resolve the vertical hydraulic head distribution across the aquitard to verify drawdown
23 responses. An aquitard should be subdivided into at least three thinner layers to effectively
24 model transient pressure responses (Barnett et al., 2012). Rather than assigning constant
25 theoretical values for aquitard properties through these multiple layers a combination of
26 realistic and rapid laboratory measurement and direct in situ measurements may be
27 considered where high risk activities demand improved confidence in conceptual
28 understanding and model predictions.

29 **Acknowledgements**

30 Funding from the Australian Research Council and National Water Commission, through the
31 National Centre for Groundwater Research and Training Program 1B is gratefully

1 acknowledged. The contributions of N Baker and A Ainsworth of Broadbent and Sons,
2 Huddersfield UK, are acknowledged and J McCartney for helpful discussion on the theory of
3 fluid flow during centrifuge testing. We appreciated research support at the Breeza farm
4 provided by M McLeod and S Goodworth of the NSW Department of Primary Industries.
5 Clayey-silt cores were drilled by New South Wales Office of Water, with S McCulloch, H
6 Studhome and G Regmi. Experimental testing was assisted at UNSW by A Hartland, B
7 Bambrook, M Atkins, P King, S May and T Meyers. Three reviewers of an earlier draft of
8 the manuscript are thanked for their constructive comments.

9 **References**

10

11 Acworth, R.I., and Timms, W.: Evidence for connected water processes through smectite-
12 dominated clays at Breeza, New South Wales. *Aust. J. Earth Sci.*, 56(1), 81-96, 2009.

13 Acworth, R.I., Timms, W.A., Kelly, B.F.J., McGeeney, D., Rau, G.C., Ralph, T.J., Larkin,
14 Z.T.: Late Cenozoic Palaeovalley fill sequence from the Southern Liverpool Plains, New
15 South Wales – implications for groundwater resource evaluation. Submitted revised
16 manuscript to *Aust. J. Earth Sci.*, July 2015.

17 Ahn, H.S., and Young Jo, H.Y.: Influence of exchangeable cations on hydraulic conductivity
18 of compacted bentonite, *Applied Clay Science*, 44 (1–2), 144-150, 2009.

20 API: Recommended Practices for Core Analysis. Recommended Practice 40, 2nd
21 ed. Washington, D.C., American Petroleum Institute Publishing Services, 1998.

22 APLNG: Groundwater Assessment, Australia Pacific LNG Upstream Project Phase 1, Q-
23 LNG01-15-TR-1801, Australia Pacific LNG, 266 pp., 2013.

24 AS: Methods of testing soil for engineering purposes. Standard methods 1289 2.1.1; 5.1.1;
25 5.3.2 and 6.7.3 Australian Standards, Sydney, 1991.

26

27 ASTM: Standard practice for thin-walled tube sampling of soils for geotechnical purposes.
28 American Society for Testing and Materials International, ASTM D1587-08, 2008.

29 ASTM: Standard test method for determining unsaturated and saturated hydraulic
30 conductivity in porous media by steady state centrifugation, American Society for Testing
31 and Materials International, D 6527-08, 2008.

32 ASTM: Standard test methods for laboratory determination of density (unit weight) of soil
33 specimens. American Society for Testing and Materials International, ASTM D7263-09,
34 2009.

1 ASTM: Standard test method for measurement of hydraulic conductivity of unsaturated soils.
2 American Society for Testing and Materials International, D 7664-10, 2010.

3 Badenhop, A.M., and Timms, W.A.: Long-term Salinity Changes in an Inland Aquifer,
4 NSW, Australia, in Proceedings of the 34th Hydrology & Water Resources Symposium,
5 Engineers Australia, Sydney, NSW, 19-22 November, 2012.

6 Barnett, B., Townley, L.R., Post, V., Evans, R.E., Hunt, R.J., Peeters, L, Richardson, S.,
7 Werner, A.D., Knapton, A., and Boronkay, A.: Australian groundwater modelling guidelines,
8 Published by the National Water Commission, Australia, 2012.

9 Broadbent: Operating Manual for Modular Geotechnical Centrifuge with GT2/0.65
10 Permeameter And GT6/0.75 Beam Environments, Broadbent and Sons Ltd., Huddersfield,
11 UK, 2011.

12 Boldt-Leppin, B.E.J., and Hendry, J.M.: Application of harmonic analysis of water levels to
13 determine vertical hydraulic conductivities in clay-rich aquitards. *Ground Water* ,41 (4), 514–
14 522, 2003.

15 Bouzalakos, S., Timms, W., Rahman, P., McGeeney, D., and Whelan, M.: Geotechnical
16 centrifuge permeater for characterizing the hydraulic integrity of partially saturated confining
17 strata for CSG operations. In: Brown A, Figueira L, Wolkersdorfer Ch (eds) Reliable Mine
18 Water Technology (Vol I). – 1–778; Denver, Colorado, USA (Publication
19 Printers). Proceedings of the International Mine Water Congress, Colorado School of Mines,
20 August 5-9, 2013.

21 Bouzalakos S; Crane R; Liu H; Timms WA, 2014, 'Geotechnical and modelling studies of
22 low permeability barriers to limit subsurface mine water seepage', in , presented at 4th
23 International Conference on Water Management in Mining, Vina del Mar, Chile, 28 - 30
24 May, 2014.

25 Bradbury K.R., and Muldoon, M.A: Hydraulic conductivity determinations in unlithified
26 glacial and fluvial materials. In: Nielsen, D.M. and Johnson, A.I. (eds) Ground water and
27 vadose zone monitoring. ASTM STP 1053. American Society for Testing and Materials,
28 Philadelphia, 138-151, 1990.

29 Bredehoeft, J.: The conceptualization model problem—surprise. *Hydrogeology J.*,13:37–46,
30 2005.

31 Cherry J.A., Parker B.L., Bradbury, K.R, Eaton, T.T., Gotkowitz, M.G., Hart, D.J., and
32 Borchardt, M.A.: Role of Aquitards in the Protection of Aquifers from Contamination: A
33 "State of the Science" Report, AWWA Research Foundation, 2004.

34 Conca, J.L., and Wright, J.: The UFA method for rapid, direct measurements of unsaturated
35 transport properties in soil, sediment and rock, *Aust. J. Soil Res.* 36, 1-25, 1998.

Crane, R.A., M. O. Cuthbert, and Timms, W.: Technical Note: The use of an interrupted-flow
centrifugation method to characterise preferential flow in low permeability media, *Hydrol.*
Earth Syst. Sci. Discuss., 12, 67-92, 2015, doi:10.5194/hessd-12-67-2015, Available at:

1 Farley, C.: Aquitards and groundwater sustainability: Three-dimensional mapping of aquitard
2 architecture. Unpublished Honours thesis, School of Civil and Environmental Engineering,
3 University of New South Wales, 2011.

4 Fogg, G.E., Noyes, C.D., and Carle, S.F.: Geologically based model of heterogeneous
5 hydraulic conductivity in an alluvial setting, *Hydrogeology Journal*, 6:131–143, 1998.

6 Fredericia J.: Saturated hydraulic conductivity of clayey tills and the role of fractures. *Nordic
7 Hydrology*, 21:119-132, 1990.

8 Garnier, J., Gaudin, C., Springman, S.M., Culligan, P.J., Goodings, D., Konig, D., Kutter, B.,
9 Phillips, R., Randolph, M.F., and Thorel, L.: Catalogue of scaling laws and similitude
10 questions in geotechnical centrifuge modelling. *Int. J. Physical Modelling in Geotechnics*
11 3:01-23, 2007.

12 Gerber, R.E., and Howard, K.: Recharge through a regional till aquitard: three-dimensional
13 flow model water balance approach. *Ground Water*, 38(3), 410-422, 2000.

14 Gill, D.E., Corthesy, R., and Leite, M.H.: Determining the minimal number of specimens for
15 laboratory testing of rock properties, *Engineering Geology*, 78, 29–51, 2005.

16 Greve, A.K., Andersen, M.S., Acworth, R.I.: Monitoring the transition from preferential to
17 matrix flow in cracking clay soil through changes in electrical anisotropy. *Geoderma*, 179–
180, 46–52, 2012.

19 Grisak, G.E., and Cherry, J.A.: Hydrologic characteristics and response of fractured till and
20 clay confining a shallow aquifer. *Can. Geotech J.*, 12:23-43, 1975.

21 Head, K.H. :*Manual of Soil Laboratory Testing*. London, Pentech Press, 1988.

22 Husain M.M., Cherry, J.A., Fidler, S., and Frape, S.K.: On the long term hydraulic gradient in
23 the thick clayey aquitard in the Sarnia region, Ontario, *Can Geotech J.*, 35:986-1003, 1998.

24 Jiang, Z., Mariethoz, G., Taulis, M., and Cox, M.: Determination of vertical hydraulic
25 conductivity of aquitards in a multilayered leaky system using water-level signals in adjacent
26 aquifers. *J. Hydrol.*, 500, 170–182, 2013.

27 Jiang, Z., Mariethoz, G., Raiber, M., Cox, M., and Timms, W.: Application of 1D paleo-
28 fluvial process modelling at basin-scale to augment sparse borehole data: example of a
29 Permian formation in the Galilee Basin, Australia. Submitted July 2015 to *Hydrological
30 Processes*, in review. Josh, M., Esteban, L., Delle Piane, C., Sarout, J., Dewhurst, D.N., and
31 Clenell, M.B.: Laboratory characterisation of shale properties. *J. Petroleum Science and
32 Engineering*. doi:10.1016/j.petrol.2012.01.023, 2012.

33 Jougnot, D., Revil, A., Lu, N., and Wayllace, A.: Transport properties of the Callovian-
34 Oxfordian clay rock under partially saturated conditions. *Water Resour. Res.*
35 doi:10.1029/2009WR008552, 2010.

1 Kelly, B.F.J., Timms, W. A, Andersen S.M., Ludowici, K., Blakers, R., Badenhop, A.,
2 McCallum, A.M., Rau, G.C., and Acworth, R.I.: Aquifer heterogeneity and response time:
3 the challenge for groundwater management, *Crop & Pasture Science*, 64, 1141-1154, 2013.

4 Kelly, B.F.J., Timms, W., Ralph, T., Giambastini, B., Comunian, A., McCallum, A.M.,
5 Andersen, M.S., Acworth, R.I., and Baker A.: A reassessment of the Lower Namoi
6 Catchment aquifer architecture and hydraulic connectivity with reference to climate drivers.
7 Aust. J. Earth Sci., 61, 501-511, 2014.

8 Larue, D. K., and Hovadik, J.: Connectivity of channelized reservoirs: A modelling approach,
9 Petroleum Geoscience 12, 291–308, 2006.

10 Larroque F., Cabaret, O., Atteia, O., Dupuy, A., Franceschi, M.: Vertical heterogeneities of
11 hydraulic aquitard parameters: preliminary results from laboratory and in situ monitoring.
12 Hydrological Sciences J., 58, 5, 2013.

13 McCartney, J.S., and Zornberg, J.G.: Centrifuge permeameter for unsaturated soils II:
14 measurement of the hydraulic characteristics of an unsaturated clay. J. Geotechnical and
15 Geoenvironmental Engineering, 136 (8), 1064-1076, 2010.

16 McNeilage, C.: Upper Namoi Groundwater Flow Model. NSW Department of Natural
17 Resources, New South Wales, Parramatta, 2006.

18 Nakajima H., and Stadler, A.T.: Centrifuge modeling of one-step outflow tests for unsaturated
19 parameter estimations. *Hydrol. Earth Syst. Sci.*, 10, 715–729, 2006.

20 Neuman, S.P., and Witherspoon, P.A.: Theory of flow in aquiclude adjacent to slightly leaky
21 aquifers. *Water Resour. Res.*, 4, (1):103-112, 1968.

22 Neuman, S.P., and Witherspoon, P.A.: Field determination of the hydraulic properties of
23 leaky multiple aquifer systems. *Water Resour. Res.*, 8(5):1284-1298, 1972.

24 Neuzil, C.E.: Groundwater flow in low permeability environments. *Water Resour. Res.*, 22, 8,
25 1163-1195, 1986.

26 Neuzil C.E.: How permeable are clays and shales? *Water Resour. Res.*, 30, (2):145-150,
27 1994.

28 Nimmo, J.R., and K.A. Mello, K.A.: Centrifugal techniques for measuring saturated hydraulic
29 conductivity. *Water Resour. Res.* 27 (6), 1263–1269, 1991.

30 Parks, J., Stewart M., and McCartney J.S.: Validation of a Centrifuge Permeameter for
31 Investigation of Transient Infiltration and Drainage Flow Processes in Unsaturated Soils.
32 *Geotechnical Testing J.*, 35, 1, Paper ID GTJ103625, 2012.

33 Potter, P.E., Maynard, J.B., and Pryor, W.A.: Sedimentology of shale – study guide and
34 reference source. New York: Springer-Verlag, 1980.

35 Rowe, R.K., Quigley, R.M., and Booker, J.R.: 1995. Clayey Barrier Systems for Waste
36 Disposal Facilities. London: E & FN Spon, 1995.

1 Schulze-Makuch, D., Carlson, D.A., Cherkauer, D.S., and Malik, P.: Scale Dependency of
2 Hydraulic Conductivity in Heterogeneous Media. *Ground Water*, 37(6), 904-919, 1999.

3 Shackelford, C.D., Sevick, G.W., and Eykholt, G.R.: Hydraulic conductivity of geosynthetic
4 clay liners to tailings impoundment solutions *Geotextiles and Geomembranes*, 28(2), 149-
5 162, 2010.

6 Smith, L.A., van der Kamp, G., and Hendry, M.J.: A new technique for obtaining high-
7 resolution pore pressure records in thick claystone aquitards and its use to determine in situ
8 compressibility. *Water Resour. Res.*, 9, 732-743, 2013.

9 Sundaram, B., Feitz, A., Caritat, P. de., Plazinska, A., Brodie, R., Coram, J., and Ransley, T.:
10 Groundwater Sampling and Analysis – A Field Guide. Geoscience Australia, Record 2009/27
11 95 pp, 2009.

12 Tan, T. S., and Scott, R. F.: Centrifuge Scaling Considerations for Fluid-Particle Systems:
13 Discussion by R.N. Taylor and Response,” *Geotechnique*, 37(1), 131–133, 1987.

14 Timms, W., and Acworth, R.I.: Propagation of porewater pressure change through thick clay
15 sequences: an example from the Yarramanbah site, Liverpool Plains, New South Wales.
16 *Hydrogeology J.*, 13: 858-870, DOI: 10.1007/s10040-005-0436-7, 2005.

17 Timms, W., and Acworth, R.I.: Rethinking a conceptual model: advective versus diffusive
18 chloride flux in a low permeability clay sequence, International Association of
19 Hydrogeologists Congress on Aquifer Systems Management, Dijon, France, 30 May - 1 June,
20 2006.

21 Timms, W.A., and Hendry, M.J.: Long term reactive solute transport in an aquitard using a
22 centrifuge model. *Ground Water*, 46(4): 616-628, doi: 10.1111/j.1745-6584.2008.00441,
23 2008.

24 Timms, W., Hendry, J., Muise J., and Kerrich, R.: Coupling Centrifuge Modeling and Laser
25 Ablation ICP-MS to determine contaminant retardation in clays. *Environ. Sci. and Technol.*,
26 43, 1153–1159, 2009.

27 Timms, W., Kelly, B.F.J., Blakers, R., Farley, C., Regmi, G., Larsen, J., and Bowling, A.:
28 Implications of 3D geological architecture for surface-groundwater connectivity in the Mooki
29 catchment. In: McLean, W., and Milne-Holme B., NSW International Association of
30 Hydrogeologists Symposium 2011 - Uncertainty in Hydrogeology, Sydney, 4-5th September,
31 2011. Available at: www.3pillarsnetwork.com.au/kb/iah-nsw-symposium-timms-.pdf (last
32 access: 21 May 2015), 2011.

33 Timms, W., Acworth, I., Hartland, A., and Laurence D.: Leading practices for assessing the
34 integrity of confining strata: application to mining and coal seam gas extraction. In: Clint D.
35 McCullough, CD, Lund MA, Wyse L. International Water and Mining Association
36 Symposium Proceedings, 139-148, Bunbury, Western Australia, September 29 to October 4,
37 2012.

1 Timms, W., Whelan, M., Acworth, I., McGeeney, D., Bouzalakos, S., Crane, R., McCartney,
2 J. and Hartland, A.: A novel centrifuge permeameter to characterize flow through low
3 permeability strata. In proceedings of International Congress on Physical Modelling in
4 Geotechnics (ICPMG), Perth, Balkema, 14-17 January, 2014.

5

6 Timms, W., and Anderson, D.: Geotechnical centrifuge technology for characterising the
7 interaction of tailings and pore water over decadal time periods, Australian Institute of
8 Mining and Metallurgy, Conference Proceedings: Tailings and Mine Waste Management for
9 the 21st Century, pp. 247-262, 2015.

10 US EPA, Requirement for hazardous waste landfill design, construction and closure.
11 EPA/625/4-89/022, 1989.

12 Van der Kamp, G.: Methods for determining the in situ hydraulic conductivity of shallow
13 aquitards – an overview. *J. Hydrol.*, 9:5-6, 2001.

14 Van der Kamp., G.: Determining the hydraulic properties of aquitards. 2nd Canadian
15 Symposium on Aquitard Hydrogeology, University of Ottawa, Canada, 21-23 June, 2011.

16 Vargas C., and Ortega-Guerrero, A.: Fracture hydraulic conductivity in the Mexico City
17 clayey aquitard: field piezometer rising-head tests, *Hydrogeology J.*, 12, 336-344, 2004.

18 Wiesner, T., and Acworth, R.I.: Groundwater contamination investigation using CCPTs.
19 Water 99 Joint Congress, Brisbane, Australia, 6-8 July, 1999.

20 Wright, M., Dillon, P, Pavelic, P., Peter, P, and Nefiodovas, A.: Measurement of 3-D
21 hydraulic conductivity in aquifer cores at In situ Effective Stress. *Ground Water*, 40(5):509-
22 517, 2002.

23 Zornberg, J.G., and McCartney, J.S.: Centrifuge Permeameter for Unsaturated Soils. I:
24 Theoretical Basis and Experimental Developments. *J. Geotechnical and Geoenvironmental
25 Engineering*, 136, 8, 1051-1063, 2010.

26 Znidarčić, D., Miller, R., van Zyl, D., Fredlund, M., and Wells, S.: Consolidation Testing of
27 Oil Sand Fine Tailings, Proceedings Tailings and Mine Waste 2011, Vancouver, BC,
28 November 6 to 9, 2011.

29

1 **Tables**

2 **Table 1.** Specifications and performance details of the Broadbent GT-18 centrifuge permeameter
3 (CP) system as constructed by Broadbent (2011).

5	Dimensions/mass	
6		
7	Diameter (lower rotary stack)	200.0 cm
8	Radius to top sample chamber	45.0 cm*
9	Radius to base sample chamber	65.0 cm**
10	Total mass	4800 kg
11		
12	Performance	
13		
14	Rotational speed	10 – 875 RPM
15	Maximum sample length	20.0 cm
16	Maximum sample diameter	10.0 cm
17	Maximum sample mass	4.7 kg
18	Maximum sample density	SG 3.0
19	Maximum effluent reservoir capacity	1000 mL
20	Maximum payload	18.11 kg
21		

22 * 385 G at 875 RPM; ** 556 G at 875 RPM; *** 471 G at 875 RPM;

23

1 **Table 2.** Core descriptions and index properties

Core ID	BF	BF	CL	CL	NR
	C2.8	C2.16 & C2.15	C4.8a	C4.20a	
					C3.23
Depth (m BG)	11.00-11.35/ 11.35-11.68	22.50-22.90/ 21.93-22.18	11.27-11.47	28.50-28.70	33.00- 33.35/ 33.35- 33.68
Description	Sandy clay - brown	Clayey silt - brown	Silty clay - brown	Silty clay – pale brown	Clayey Silt - Brown
Moisture (% wt.)	24.7	28.2	45.7	36.4	-
D_{50} (mm)	0.025	0.0068	-	-	<0.0013
Bulk wet density (g cm ⁻³)	1.88	1.81	1.71	1.77	1.72
Particle density (g cm ⁻³)	2.52	2.47	2.58	2.50	2.58
Initial void ratio	0.67	0.75	1.20	0.93	0.89
Initial degree of saturation (%)	93	95	96	99	74

2

3

1 **Table 3.** K_v results from CP tests indicating g -level maximum and testing time. The influent source
 2 column identifies the site (NR, CL, BF) and depth (P20 is piezometer screen at 20 m depth) of
 3 groundwater sampling. Calculations were based on Eq. (3) for in situ stress.

4

Site	Depth (m BG)	K_v (ms ⁻¹)	g -level maximum	Estimated in situ stress (kPa)	Testing time (hrs)	Influent source
NR	33.8	4×10^{-9}	10	615	~144	NR P30
NR	33.90	2×10^{-9}	10	615	~144	NR P30
NR	34.68	2.4×10^{-7}	10	646	2.6	NR P30
CL	11.75	3.5×10^{-9}	80	219	24	CL P15
CL	14.00	2.2×10^{-9}	80	261	1	CL P15
CL	19.25	2.0×10^{-9}	80	359	24	CL P20
CL	21.70	5.1×10^{-9}	80	404	1	CL P20
CL	26.01	2.4×10^{-9}	80	485	21	CL P40
CL	26.10	1.1×10^{-10}	80	486	21	CL P40
CL	28.33	2.0×10^{-9}	10	526	24	CL P40
CL	28.52	2.7×10^{-9}	80	532	1	CL P25
CL	31.36	1.6×10^{-9}	40	585	24	CL P40
BF	24.07	5.9×10^{-9}	40	449	3	BF CP25
BF	24.14	3.4×10^{-8}	40	450	3	BF CP25
BF	31.40	1.3×10^{-9}	30	585	11	BF CP40
BF	36.46	3.5×10^{-7}	10	680	2.5	BF CP40
BF	40.00	1.5×10^{-9}	30	746	23	BF CP40
BF	40.10	4.3×10^{-8}	30	746	23	BF CP40

5
6

7

1 **Table 4** Geometric mean, standard deviation (s_n) and confidence limits (C.L. %) analysis for K data
 2 using the CP method to test core from the clayey-silt formation at the CL, BF and NR sites.
 3

Site	n	K geometric mean (m/s)	s_n log K	C.L. %	K confidence intervals (m/s)	
					Lower bound	Upper bound
CL	5	1.3×10^{-9}	0.21	99	4.8×10^{-10}	2.4×10^{-9}
CL	9	1.6×10^{-9}	0.14	99	1.1×10^{-9}	2.0×10^{-9}
BF	6	1.3×10^{-8}	0.19	99	6.5×10^{-9}	2.1×10^{-8}
NR	3	1.2×10^{-8}	0.34	99	1.5×10^{-10}	8.5×10^{-8}
				90	3.4×10^{-9}	4.6×10^{-8}

4
 5

1 **Table 5.** Linear flow velocity at natural gradient, unit gradient and for various centrifuge
 2 permeameter setups

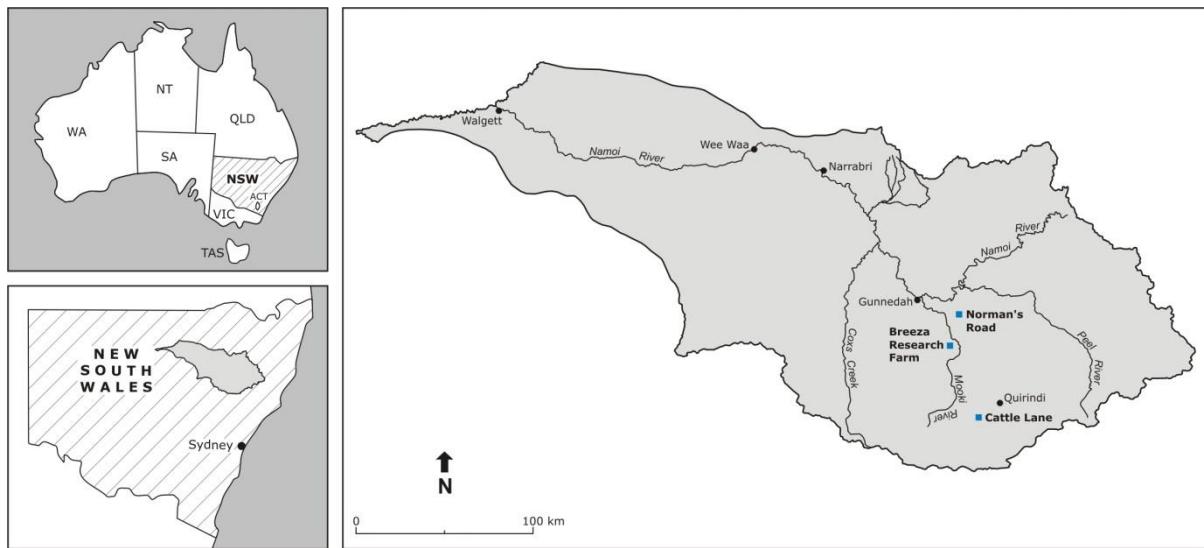
	Natural gradient	Unit gradient	Centrifuge permeameter	
Vertical hydraulic conductivity (ms^{-1})			1.0×10^{-8}	
Core type	C core - long		C core - short	HQ core - short
Core length ×diameter (mm)		200×100	30×100	30×65
RPM	n/a	n/a	202	202
g-level	1	1	30	30
Vertical fluid head gradient (m m^{-1})	0.5	1	$\sim 0.2^{\#}$	$\sim 0.5^{\#}$
Flow (mL hour^{-1})	0.3	0.6	8.5	8.5
Linear flow velocity (ms^{-1})	1.7×10^{-8}	3.3×10^{-8}	1.0×10^{-6}	1.0×10^{-6}
Time for 1 pore volume (hours)	3333	1667	55.4	8.3
Normalised				
Increased linear flow velocity		30	30	71
Reduced time for 1 PV		30	200	474

3 # Fluid head gradient depends on the depth of influent on the core, and the length of the core

4

1 **Figures**

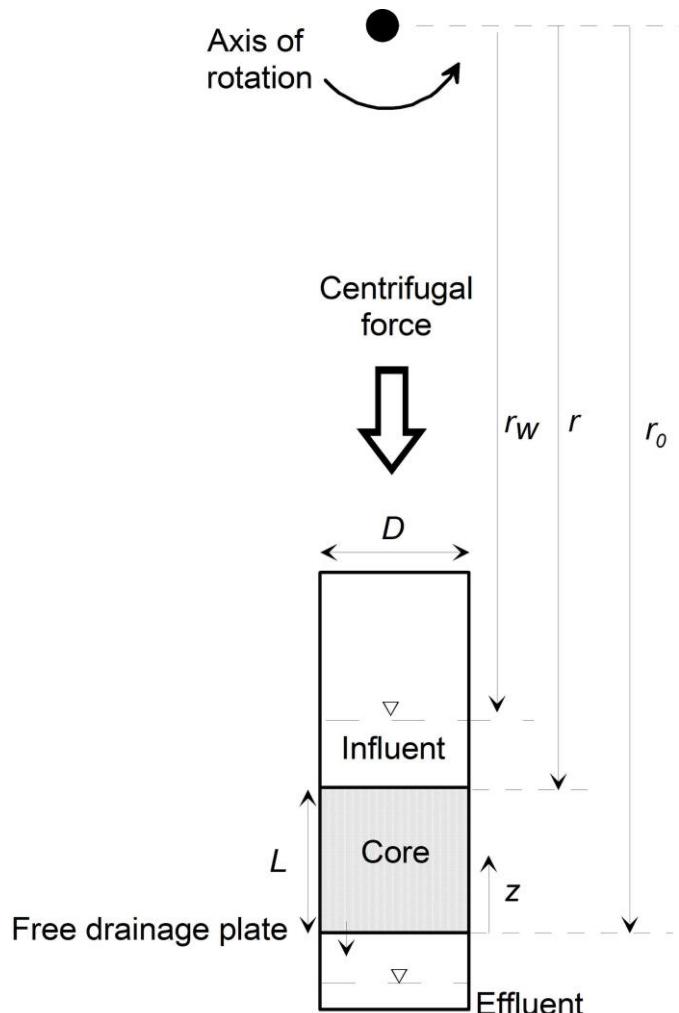
2 Fig. 1 Location of study sites in Eastern Australia, state of NSW. The Norman's Road (NR), Breeza
3 Farm (BF) and Cattle Lane (CL) sites are shown within the Namoi catchment.


4 Fig. 2 Cross-sectional diagram of a core sample subjected to centrifugal force, with a free drainage
5 boundary condition at the base of the core.

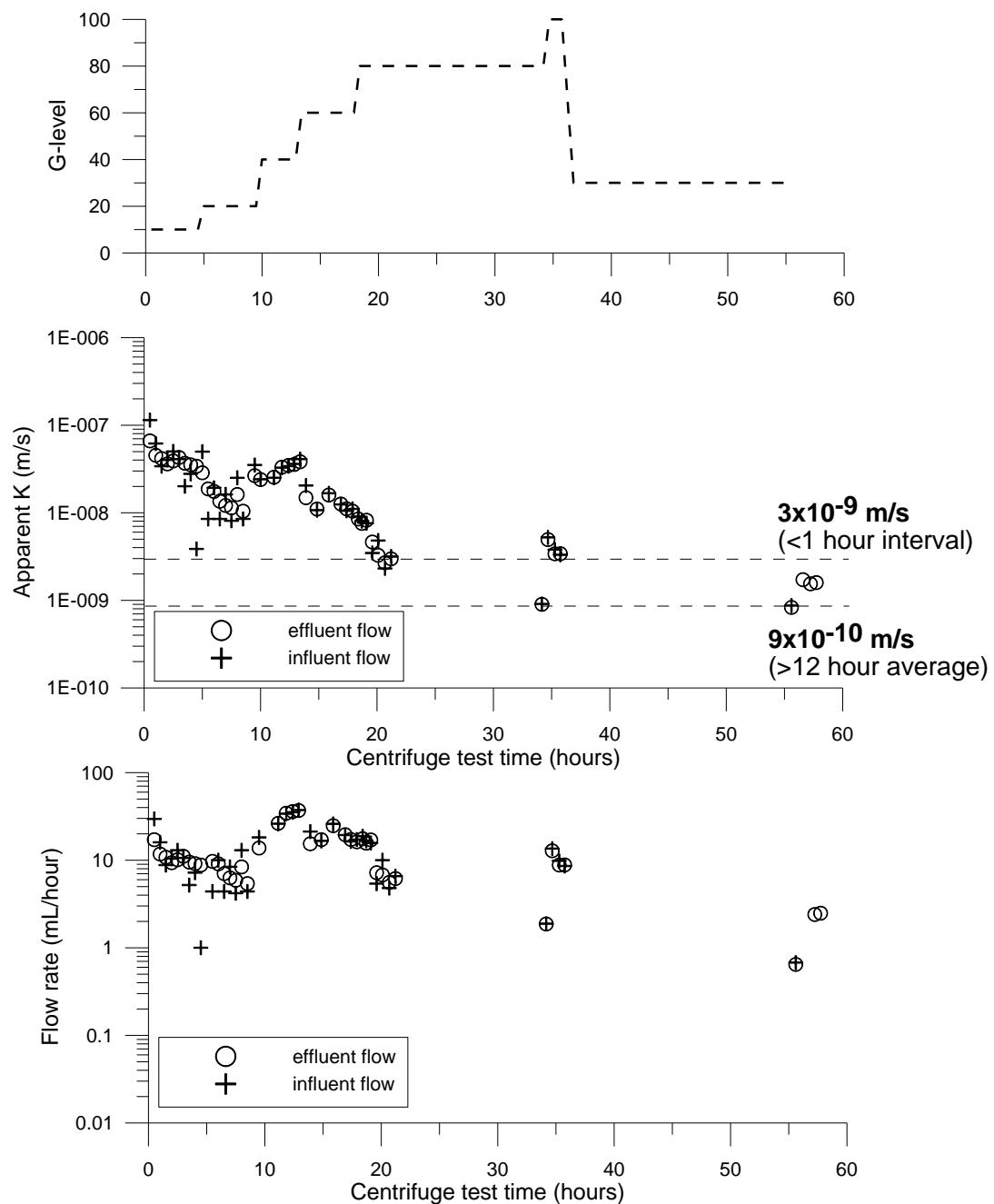
6 Fig. 3 Centrifuge permeameter testing at low stresses of a semi-consolidated clayey-silt core sample
7 (CL 26.1 m depth, Test 39-1) showing variation of *g*-level, K_v and influent and effluent flow rate
8 during the test (after Timms et al., 2014).

9 Fig. 4 Vertical hydraulic conductivity (K_v) measurements by centrifuge permeameter and column
10 permeameter compared with in situ K_v derived from pore pressure data at 6 hourly intervals over 5
11 years interpreted with harmonic analysis (after Timms and Acworth, 2005) for the Cattle Lane site
12 with massive clayey-silt from the surface to 35 m depth.

13


1 **Fig. 1.** Location of study sites in Eastern Australia, state of NSW. The Norman's Road (NR), Breeza
2 Farm (BF) and Cattle Lane (CL) sites are shown within the Namoi catchment.

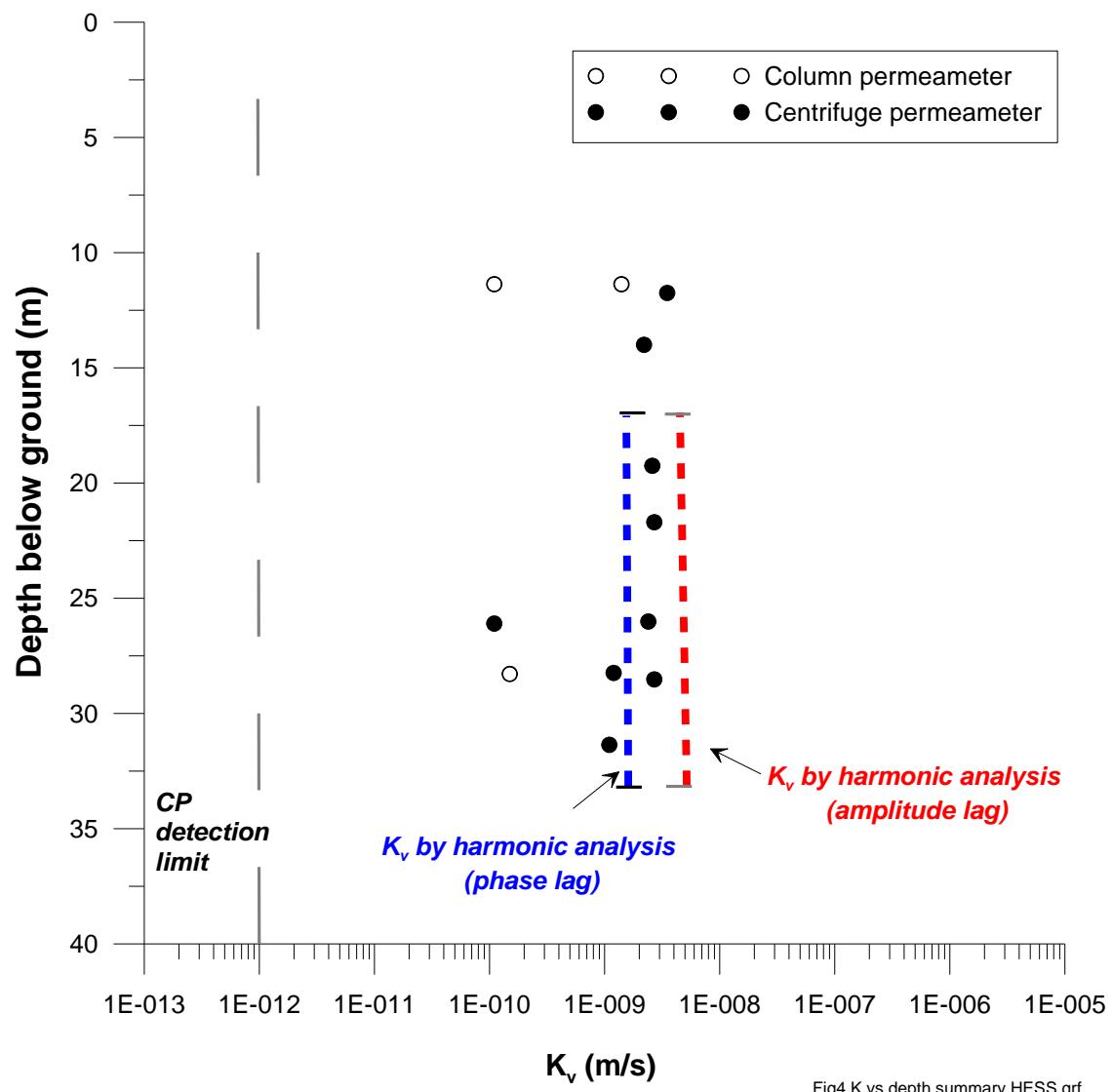
3


4

1 **Fig. 2.** Cross-sectional diagram of a core sample subjected to centrifugal force, with a free drainage
2 boundary condition at the base of the core.

3

1 **Fig. 3.** Centrifuge permeameter testing at low stresses of a semi-consolidated clayey-silt core sample
 2 (CL 26.1 m depth, Test 39-1) showing variation of *g*-level, K_v and influent and effluent flow rate
 3 during the test (after Timms et al., 2014).


4

5

6

1 **Fig. 4.** Vertical hydraulic conductivity (K_v) measurements by centrifuge permeameter and column
 2 permeameter compared with in situ K_v derived from pore pressure data at 6 hourly intervals over 5
 3 years interpreted with harmonic analysis (after Timms and Acworth, 2005) for the Cattle Lane site
 4 with massive clayey-silt from the surface to 35 m depth.

5

