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Abstract 8 

The analysis of the spatial and temporal patterns of low flows as well as their generation 9 

mechanisms over large geographic regions can provide valuable insights and understanding 10 

for climate change impacts, regional frequency analysis, risk assessment of extreme events, 11 

and decision-making regarding allowable withdrawals. The goal of this paper is to examine 12 

non-stationarity in low flow generation across the eastern U.S. and explore the potential 13 

anthropogenic influences or climate drivers. We use nonparametric tests to identify abrupt 14 

and gradual changes in time series of low flows and their timing for 508 USGS streamflow 15 

gauging sites in the eastern US with more than 50 years of daily data, to systematically 16 

distinguish the effects of human intervention from those of climate variability. A time series 17 

decomposition algorithm was applied to 1-day, 7-day, 30-day, and 90-day annual low flow 18 

time series that combines the Box-Ljung test for detection of autocorrelation, the Pettitt test 19 

for abrupt step changes and the Mann-Kendall test for monotonic trends. Examination of the 20 

USGS notes for each site showed that many of the sites with step changes and around half of 21 

the sites with an increasing trend have been documented as having some kind of regulation. 22 

Sites with decreasing or no trend are less likely to have documented influences on flows. 23 

Overall, a general pattern of increasing low flows in the northeast and decreasing low flows in 24 

the southeast is evident over a common time period (1951-2005), even when discarding sites 25 

with significant autocorrelation, documented regulation or other human impacts. The north-26 

south pattern of trends is consistent with changes in antecedent precipitation. The main 27 

exception is along the mid-Atlantic coastal aquifer system from eastern Virginia northwards, 28 

where low flows have decreased despite increasing precipitation, and suggests that declining 29 

groundwater levels due to pumping may have contributed to decreased low flows. For most 30 
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sites, the majority of low flows occur in one season in the late summer to autumn, as driven 1 

by the lower precipitation and higher evaporative demand in this season, but this is 2 

complicated in many regions because of the presence of a secondary low flow season in the 3 

winter for sites in the extreme northeast and in the spring for sites in Florida. Trends in low 4 

flow timing are generally undetectable, although abrupt step changes appear to be associated 5 

with regulation. 6 

 7 

1 Introduction 8 

Low flows - the minimum flow in a river during the dry periods of the year--- are an 9 

important part of the streamflow regime that have direct impacts on water supply, water 10 

quality, and ecosystem health (Bradford and Heinonen, 2008). Knowledge of low flow 11 

characteristics and generation mechanisms over large geographic regions is important for 12 

regional frequency analysis, risk assessment of extreme events, decision-making regarding 13 

allowable basin withdrawals and water quality, and understanding climate change impacts 14 

(Tallaksen and van Lanen, 2004). For example, in every state of the U.S., estimates of low 15 

flow statistics are needed for issuing and/or renewing of National Pollution Discharge 16 

Elimination System permits, as required by provisions in the Clean Water Act of 1977 (U.S. 17 

Senate, 2002). Furthermore, low flow periods are critical to aquatic habitats due to potentially 18 

low dissolved oxygen concentrations and/or high pollutant concentration (U.S. Senate, 2002). 19 

However, the study of low flow statistics and patterns have received little attention in 20 

comparison to droughts and floods (Kroll et al., 2004). Poff et al. (1997) emphasize the need 21 

of paying particular attention to low flows because they present critical stresses and 22 

opportunities for a wide array of riverine projects.  23 

Low flows are generally controlled by subsurface flows sourced from groundwater that 24 

maintain flows during the dry periods of the year, such that low flow volumes are related to 25 

the physiological and geological make up of the area. In some regions, where precipitation is 26 

significant in the warm season, surface flows also play a role in maintaining low flows. 27 

However, our understanding of these low flow generating mechanisms is limited (Smakhtin, 28 

2001), and is further compounded by the sensitivity of low flows to changes in climate, land 29 

use and human impacts on stream flow (Rolls et al., 2012). For example, large-scale 30 

teleconnections may play an important role in driving inter-annual to multi-decadal changes 31 

in streamflow (e.g. Mauget, 2003) and low flows (e.g. Giuntoli et al., 2013). Regulation 32 
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generally introduces non-stationarity into low flow time series that impedes the development 1 

of regional or at-site frequency analysis models. In most instances, such models show a high 2 

standard error between modeled and observed quantiles (Kroll et al., 2004). 3 

In the eastern United States, (defined as the area covering the 20 ecoregions of the eastern US 4 

(USGS, 2012)), both direct anthropogenic and climate influences may have impacted low 5 

flows, including land use change impacts via changes in sub-surface flow and groundwater 6 

recharge, direct impacts on flows via reservoirs and other streamflow management, and 7 

changes in precipitation and evaporation that have altered recharge. In particular:  8 

1. In the U.S., more than 85% of the surface runoff is artificially controlled and nearly 1 9 

million km of rivers are affected by dams (Poff et al., 1997). Surface water covers 4.5% of the 10 

eastern U.S., and the majority of streams have been flagged by the U.S. Geological Survey 11 

(USGS) as regulated. The USGS estimates that the spatial extent of surface water increased 12 

by 1.3% during 1973-2000, with most of this increase in the southern coastal plain and 13 

southern Florida coastal plain (USGS, 2012) and associated with reservoir developments 14 

required to meet the needs of the expanding population. Figure 1a shows the location of major 15 

dams in the eastern U.S. (defined as those 50 feet or more in height, or with a normal storage 16 

capacity of 5,000 acre feet (~6,200,000 m3) or more, or with a maximum storage capacity of 17 

25,000 acre feet (~30,800,000 m3) or more (USACE, 2012)). Generally dams and reservoirs 18 

are considered the largest man-made regulations on streamflow, but other sources include 19 

farm ponds, surface water extraction, inter-basin transfers, and wastewater treatment plant 20 

discharge (e.g. Walker and Thoms, 1993; Acreman et al., 2000; Brandes et al., 2005; Thomas, 21 

2006; Deitch et al., 2009; Kustu et al. 2010).  22 

2. The eastern U.S. has gone through significant land use change over the past several 23 

decades. For example, between 1973 and 2000, 8.2% of the 23,620,000 km2 of the northeast 24 

ecoregion and 8.9% of the 30,000,000 km2 of the southeast ecoregion experienced changes 25 

associated with active timber harvesting and replanting, which may have impacted low flows 26 

and related environmental and ecosystem well-being (USGS, 2012). Furthermore, in the 27 

expanding urbanized areas of the region with high levels of impervious ground, infiltration 28 

has decreased, which may have led to a decrease groundwater recharge and low flow volumes 29 

(USGS, 2013). On the other hand, urbanization can lead to increase in low flows because of 30 

leakages from water supply and wasterwater pipes, direct wastewater discharge, reduced 31 
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evapotranspiration, and water imports that can offset groundwater pumping (e.g. Brandes et 1 

al., 2005). 2 

3. The region is one of the wettest parts of the U.S. receiving 700-1600 mm of precipitation 3 

per year. However, due to population growth and associated increased use of surface and 4 

groundwater resources, the future is expected to bring water stress for this area (Averyt et al., 5 

2013). Some of these changes are already being observed. For example, USGS (2013) reports 6 

on 3-10 km3 of depletion of unconsolidated and semi-consolidated sand and gravel aquifers 7 

of the east coast between 1900 and 2008. Overuse of surface water in turn does not allow 8 

recharge of groundwater leading to groundwater depletion. In parts of the eastern U.S., 9 

groundwater resources have become limited and hence municipal and industrial water users 10 

are increasingly relying on surface waters (e.g. Daniel and Dahlen, 2002). Changes in both 11 

surface water and groundwater use have impacts on low flows. 12 

4. Precipitation has likely changed over the past several decades (Karl and Knight, 1998; 13 

Small et al., 2006). Evaporation may have changed due to increasing atmospheric demand 14 

from higher temperatures (e.g. Walter et al., 2004), although direct measurements of 15 

evaporation are limited in spatial and temporal coverage. Each of these changes may impact 16 

on low flows and in some cases may combine to exacerbate or counteract changes in low 17 

flows. Warmer temperatures may have also impacted winter-time low flows, via changes in 18 

snow (Burakowski et al., 2008) and river ice (Hodgkins et al., 2005).  19 

Past evaluations of changes in low flows over the eastern U.S. have mainly been within 20 

studies on the entire U.S. and often with respect to mean and high flows. Douglas et al. (2000) 21 

estimated trends in both flood and 7-day low flows for three major geographic regions in the 22 

U.S. (East, Midwest, and West) over two time periods: 1959-1988 and 1939-1988, and found 23 

evidence of upward trends in low flows across the Midwest, but not in the eastern U.S. Other 24 

studies have attempted to explain the general patterns of low flow trends. For example, Small 25 

et al. (2006) analyzed trends in annual 7-day low flow, average, and high flows along with 26 

seasonal precipitation over individual basins in the U.S. for 1948-1997. The number of sites 27 

shown to have statistically significant trends in low flows and fall precipitation in the eastern 28 

U.S. was small and restricted to the south of Maine, western Pennsylvania, coastal areas of 29 

South Carolina, and western Florida. In the northeast and west of Pennsylvania, precipitation 30 

showed an increasing trend during the fall but not during the spring and the increase in fall 31 

precipitation appeared to result in an increase in low flows in the northeast areas. The only 32 
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statistically significant decrease in the low flows was found in the south Atlantic-Gulf region, 1 

west of Florida, consistent with the findings from Lins and Slack (1999). However, no 2 

specific reason for this decreasing trend was given. McCabe and Wolock (2002) examined 3 

historic changes in streamflow, using the annual minimum, median, and maximum daily 4 

streamflow at 400 sites across the U.S. during 1941-1999. They found an increase in annual 5 

minimum and median daily streamflow around 1970 that primarily occurred in the eastern 6 

U.S. as a step change, rather than a gradual trend. Andreadis et al. (2006) used model 7 

simulations to examine trends in soil moisture, runoff, and drought characteristics over the 8 

U.S. for the period 1915-2003. They found increasing runoff over parts of the northeast, 9 

which was most evident during winter months, with decreases in hydrological and agricultural 10 

drought, and drying trends in the summer in the southeast, with increases in drought.  These 11 

changes were attributed to changes in precipitation, and they speculated that increasing 12 

drought in the southeast was associated with higher atmospheric demand due to warming. 13 

Although these studies are generally consistent for the eastern U.S. they tend to focus on the 14 

spatial pattern of trends in 7-day low flows only, and were limited to earlier periods available 15 

at the time of the study. Furthermore, these studies focused on sites that were deemed to have 16 

minimal anthropogenic influence, and so did not explore the role of anthropogenic influences, 17 

such as land cover change or water withdrawals (Brown et al., 2013).  18 

The goal of this paper is to examine non-stationarity in low flow generation across the eastern 19 

U.S. by attempting to identify time series that are potentially free of the effects of human 20 

intervention and examine these in terms of the impact of climate variability. A way to 21 

determine whether a river has been subject to anthropogenic influences, at least in terms of 22 

regulation, is to examine the site notes for the gauging station. However, site notes might not 23 

be available, complete, or accurate, and examining the notes for multiple sites can be 24 

unwieldy. Furthermore, whether a site is determined to be regulated or not is often based on 25 

high flows and not on low flows. Here, we develop an approach that makes the simplification 26 

that the impact of human activities can be detected in the streamflow data in a systematic 27 

way. This is generally more efficient and can complement site notes or compensate for errors 28 

in them. Low flow time series (and flows in general) can show two general types of non-29 

stationarity: gradually increasing or decreasing trends, and abrupt changes (Villarini et al., 30 

2009) in the mean and/or variability. As McCabe and Wolock (2002) observe, the distinction 31 

between a gradual trend and a step change is important, particularly for climate-change 32 

impact studies, since climate change usually manifests as a trend and not a step change. We 33 
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therefore make the simplification that step changes (abrupt and visually obvious) in the time 1 

series are indicative of an anthropogenic effect, and that gradual trends reflect a climate 2 

effect, which may be due to anthropogenic climate change or long-term persistence (Cohn and 3 

Lins, 2005). As it is possible that step changes may be driven by natural variability (e.g. 4 

McCabe and Wolock, 2008) this simplification is based on identifying abrupt and visually 5 

obvious step changes.  6 

Our overall approach is to use nonparametric statistical tests to identify abrupt and gradual 7 

changes in the value and timing of n-day low flows, and identify stationary segments of the 8 

time series. Furthermore we analyze the co-variability of low flows with antecedent 9 

precipitation to understand the influence of changes in precipitation and atmospheric demand 10 

(as quantified by potential evapotranspiration) on changes in low flows. The paper is 11 

organized as follows: Section 2 describes the streamflow data and the methodology, including 12 

the use of three straightforward and already-established statistical methods, for identifying 13 

non-stationarity in annual low flow time series. The results on the systematic identification 14 

and characterization of abrupt changes in low flow volumes and timing are presented in 15 

Section 3. The results on the variability and trends in are given in Section 4. Finally, we 16 

discuss the results, the potential drivers of changes and their implications, and present 17 

conclusions in Section 5. 18 

 19 

2 Data and methods 20 

2.1 Study area 21 

Our study area covers the eastern U.S. from Maine in the northeast to Florida in the southeast 22 

and westwards to the Appalachian Mountains and the Mississippi River in the south, and is 23 

based on the 20 ecoregions of the eastern U.S. (USGS, 2012). According to the USGS (2012), 24 

52.4% of the eastern ecoregion in 2000 was forest. However, both forests and agriculture 25 

have been in decline since 1973 and instead, urbanization has increased and continues to 26 

increase. Most land cover change has occurred in the southeast and is associated with forest 27 

harvesting, agricultural abandonment, and development (USGS, 2012). Changes in the 28 

northeast have been mostly associated with timber harvesting. Changes in the north Central 29 

Appalachian region have been more heterogeneous and include examples of non-mechanical 30 

transitional change. Unlike the northeastern Coastal Plain, the southern Florida Coastal Plain 31 
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has not experienced loss of agricultural land, but the largest decrease in surface water and 1 

significant loss of wetlands (-2.4%). Changes in surface water in the southern Coastal Plain 2 

have primarily been due to urbanization (USGS, 2012).   3 

The eastern U.S. is one of the wettest parts of the country (Small et al., 2006), with average 4 

precipitation of about 1100 mm per year, with maxima along the coastal plain and the 5 

mountains of the Appalachians. Part of the precipitation in the northeast falls as snow in the 6 

wintertime (Hayhoe et al., 2007). The eastern seaboard is susceptible to tropical storms and 7 

hurricanes during the Atlantic hurricane season, normally running from June to end of 8 

November, which enhance precipitation across southern and eastern parts, and play a role in 9 

alleviating drought (Kam et al., 2013). The El Niño-southern Oscillation (ENSO) alters 10 

precipitation patterns across the southeast (Colby, 2008). Coastal extra-tropical cyclones bring 11 

the bulk of the wintertime precipitation to that region, forming along the natural temperature 12 

gradient of the Gulf stream before moving up the coastline (Gurka et al., 1995). Seasonally, 13 

there are slight changes in the precipitation distribution through the year. For example, 14 

Burlington, Vermont has a summer maximum and a winter minimum while Portland, Maine 15 

has a fall and winter maximum, with a summer minimum in precipitation. The water supply 16 

in the northeast is mainly derived from surface waters, which are heavily regulated to meet 17 

the water supply demand of urbanized areas such as New York City, although there has been 18 

an increase in groundwater sources in recent years. In contrast, the southeast, including 19 

Florida, lies on active aquifers (USGS, 2009). Projections of future climate indicate an 20 

increase in precipitation over the eastern U.S. (Hayhoe et al., 2007; EPA, 2008) with 21 

consequences for changes in low flows across the region. 22 

2.2 Streamflow data 23 

Initially, 4878 sites with daily streamflow records were retrieved from the USGS National 24 

Water Information System (NWIS) (USGS, 2014) for the eastern U.S. as defined by 25 

Hydrological Unit Codes (HUC) of 01, 02, or 03. Previous studies on low flows (e.g. Kroll et 26 

al., 2002, 2004; Douglas et al., 2000) have used the USGS Hydro-Climatic Data Network 27 

(HCDN; now updated to HCDN-2009; Lins, 2012), in part because anthropogenic influences 28 

at these sites are deemed to be negligible, but as such, is limited to 204 sites across the 29 

domain. Of the original 4878 sites, 2811 were active in the 2000's or later. Among these, 1092 30 

sites had at least 30 years worth of daily data, 740 sites had 50 years or more, and 324 sites 31 

had 75 years or more. We used sites with at least 50 years of data as a balance between having 32 
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enough of data at each site to identify long-term changes and the need to have many sites to 1 

characterize the spatial pattern of changes. We included only sites that did not have any 2 

missing years of daily data. This reduced the number of sites to 508 (Figure 1b). Only 64 of 3 

these sites are in the HCDN-2009 database and have data for the common time period (1951-4 

2005) that is used for analyzing trends across the domain (see section 4). The drainage area of 5 

the candidate sites ranges from very small (5-100km2) to large (38,000-67,000km2), with the 6 

majority of areas between 200-500 km2 and these are spread fairly uniformly across the study 7 

area. The majority of the 508 sites are clustered on the eastern flank of the Appalachians and 8 

the northeast from eastern Virginia to New Hampshire. There is also a cluster of smaller 9 

catchments in central Florida. The mean, median, minimum and maximum record lengths are 10 

74, 72, 50, and 120, respectively. 11 

Based on the USGS site notes (available on the NWIS website), we identified sites that are 12 

flagged as: regulated, partially regulated, flow below the rating curve limit, dam failure, 13 

affected by urbanization, change of base discharge, and change of gauge datum. It should be 14 

noted that the USGS flags are developed for instantaneous peak flows and while it is 15 

uncertain whether these are directly applicable to low flows, it is likely that low flows are 16 

more sensitive to regulation. Some of the flags are unrelated to anthropogenic influences and 17 

are unlikely to have impacted the continuity of flow magnitudes, such as “change of base 18 

discharge”, which is a level above which peak flows are recorded, or “change of gauge 19 

datum”, which is the arbitrary zero gauge height for the rating curve. Figure 1c shows the 20 

location, flag type, and the number of the sites under each flag. Almost half of the sites have 21 

no flag and these are located throughout the domain. A few sites have more than one type of 22 

flag and we show the flag associated with a higher likelihood of the flows being affected (e.g. 23 

regulated). The majority of regulated or partially regulated sites are concentrated in the 24 

northeast, but this is also where the majority of all sites are located. The sites in the mid-25 

Atlantic states are generally more affected by urbanization or have experienced a change of 26 

gauge datum. Overall, 198 sites out of 508 sites are flagged as affected in terms of 27 

anthropogenic influences. In the results section, we show how the results of our statistical 28 

methods compare with the USGS site flags that are related to regulation or some other human 29 

influence. 30 
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2.3 Low Flow Indices 1 

We analyze four variants of low flows based on different time scales, to understand how non-2 

stationarity is dependent on the time scale as the data become smoother, with implications for 3 

the detection of non-stationarity. The 1-day minimum low flow, Q1, is the annual minimum 4 

daily streamflow. The other three variants, Q7, Q30, Q90, are obtained by applying the same 5 

analysis to 7-day, 30-day, and 90-day moving average versions of the time series. Together, 6 

we refer to the four low flow variables as the n-day minimum flows. Q7 (dry weather flow) is 7 

the most widely used low flow statistic in the U.S. (Kroll et al., 2004; Smakhtin, 2001), but 8 

the others are important for different applications, such as Q1 for ecological assessments and 9 

Q90 for reservoir operations.  We also calculate the day of the year of low flows and use this 10 

to identify the primary (and in some regions the secondary) low flow season, as well as any 11 

long-term changes in timing. The primary season is defined as the 4-month period that 12 

contains the majority of the low flow occurrences, and the secondary season as the 4-month 13 

period that contains the majority of the remaining low flows. If the onset time of the low flow 14 

season for a site occurs 70% to 100% in a specific month, that site is assumed to have only 15 

one low flow season. The sites that have low flow events occurring 40-70% of the time in one 16 

month and 20-40% of the time in a different month are characterized as having two low flows 17 

seasons. The timing results are shown based on Q7 and Q30 flows. 18 

2.4 Identification of Stationary Time Series 19 

A sequence of realizations of random variables, Y, is stationary if the distribution of the 20 

sequence is independent of the choice of starting point (Kendall et al., 1983; Ruppert, 2011). 21 

Determining stationarity of a time series is not straightforward (Lins and Cohen, 2011) and in 22 

practice, it is common to look at restricted measures of stationarity. A time series is defined as 23 

weakly stationary if it satisfies three criteria: 24 

  

€ 

Ε(Yi) = µ, (∀i)         (1a) 25 

  

€ 

Var(Yi) =σ2, (∀i)          (1b) 26 

  

€ 

Corr(Yi,Yj ) = ρ( i − j ), (∀i,∀j)        (1c) 27 

where µ is the sample mean, σ is the standard deviation and ρ is the correlation, with i 28 

representing one realization of a time series. This means that for a weakly stationary variable, 29 

the mean and variance do not change with time and the correlation between two values 30 
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depends only on the lag (the time between values). Visual inspection of the time series and 1 

the changes therein can provide an indication in the attempt to assess stationarity, in that a 2 

change in the underlying process leads to changes in values that are obvious (Lins and Cohen, 3 

2011; Koutsoyiannis, 2011; Serinaldi and Kilsby, 2015). 4 

We apply three tests to identify weak stationarity: (1) the Mann-Kendall test (Mann, 1945; 5 

Kendall, 1975), which tests for increasing or decreasing trends; (2) the Pettitt test (Pettitt, 6 

1979), which tests for abrupt changes or change points; and (3) the Ljung-Box test (Ljung and 7 

Box, 1978), which tests for autocorrelation. An identified change in the mean by either of the 8 

first two tests would rule out stationarity, except in the case of autocorrelated data, for which 9 

the Pettitt and Mann-Kendall tests will characterize too many sequences of the time series as 10 

having a step or trend and therefore increase the rejection rate of the null hypothesis of no 11 

change (Douglas et al., 2000; Serinaldi and Kilsby, 2015). Therefore, analysis of 12 

autocorrelation is carried out before conducting the Mann-Kendall and Pettitt tests. Even 13 

when a site is identified as non-stationary, further analysis is required to understand the 14 

overall regime of the data at such a site. For example, the time series may have two separate 15 

stationary regimes with one change point in between or an overall trend. We then assume that 16 

the change year corresponds to human intervention, which is generally borne out by 17 

investigating the site notes.   18 

2.5 Decomposition Algorithm 19 

The three statistical tests (Ljung-Box, Pettitt and Mann-Kendall) were combined into a 20 

recursive algorithm to identify non-stationarity in the low flow time series and decompose the 21 

series into potentially stationary sub-series. In the first step of the algorithm, a Ljung-Box test 22 

with 20 lags was applied to the entire time series of each site, and sites with significant overall 23 

autocorrelation (5% significance level) were identified. The Ljung-Box test identifies sites 24 

that are non-stationary and is able to identify sites with abrupt changes because the series of 25 

values before the change appear to be autocorrelated relative to the values after the change, 26 

and vice-versa. This was confirmed by visual inspection of the time series. For the sites with 27 

significant overall autocorrelation, we then applied the Pettitt test (5% significance level) to 28 

confirm the existence of any step change and identify its timing. The series were pre-whitened 29 

to remove lag-1 autocorrelation using the trend-free pre-whitening method of Yue et al. 30 

(2002) and implemented by Kumar et al. (2009). It is necessary to identify sites with potential 31 

step changes using the Ljung-Box test first because the Pettitt test will identify step changes 32 
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in time series with gradual trends. Similarly the MK test will identify gradual trends in series 1 

with step changes. If a significant change is found by the Pettitt test, the series is split into two 2 

parts either side of the step change. Each part is assumed to be a new series at the same 3 

location, and if it has a record length of 30 years or more, the decomposition algorithm is 4 

applied again. If the length is less than 30 years, the site is removed from further 5 

consideration. If a statistically significant step change is not identified, we note that the series 6 

is autocorrelated overall. We then applied the Mann-Kendall (MK) test (5% significance 7 

level) on the remaining sites to identify statistically significant trends in the data. Again, the 8 

series were pre-whitened to remove lag-1 autocorrelation. The series and sub-series are 9 

assigned categories as follows: 10 

Category 1: Non-autocorrelated site with no trend (MK=0); 11 

Category 2: Non-autocorrelated site with a statistically significant decreasing trend (MK=-1); 12 

Category 3: Non-autocorrelated site with a statistically significant increasing trend (MK=1); 13 

Category 4: Autocorrelated site with statistically significant step change, time series split and 14 

the sub-series re-categorized recursively;  15 

Category 5: Autocorrelated site with no step change.  16 

 17 

3 Stationarity results 18 

3.1 Categorization of sites 19 

Figure 2 shows the spatial distribution and the number of sites in each category after the first 20 

recursive level of the decomposition algorithm. The results for all n-day low flow metrics are 21 

presented for the available length of record at each site, which ranges between 1891 and 2011. 22 

No site has a record length less than 50 years and no site has any gap in the n-day low flow 23 

series. As we move from Q1 to Q90, a larger number of sites appear stationary (category 1) 24 

and the number of sites identified using the Pettitt test as having an abrupt shift in the time 25 

series (category 4) decreases. The algorithm re-applies the Pettitt test to category 4 sites to 26 

identify useable sub-series. For example, the Q1 time series of 155 sites are split into two 27 

parts, which are subjected to further categorization.  28 
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Figure 3 summarizes the time periods that were identified as useable at each step of the 1 

recursive algorithm for all sites for Q1. The light blue lines represent the original record 2 

length for each site. The vertical axis shows the site number from 1 to 508 ordered from the 3 

lowest to highest latitude. Therefore, site 1 is the most southerly and site 508 is the most 4 

northerly. The left panel of Figure 3 shows the record length of sites, which, in the first step 5 

of categorization, had no significant autocorrelation. These sites are colored according to their 6 

MK trend value: 0 (no significant trend), -1 (significant negative trend), or 1 (significant 7 

positive trend). The middle panel again shows the original record length for each site in light 8 

blue, but highlights the sites that were identified with an abrupt step change by the Pettitt test 9 

and were split into two parts. For each part that exhibits no autocorrelation, the trend values 10 

were calculated. The right panel shows the parts of the time series that were recovered in the 11 

next step of the decomposition algorithm. As long as the record length is greater than or equal 12 

to 30 years the algorithm is applied recursively on the remaining parts of the time series. The 13 

number of sites shown in the right panel is small but their data are still useful for subsequent 14 

analysis. 15 
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3.2 Comparison with USGS flags 1 

Table 1 shows the breakdown of the number of sites in each category and the relation to 2 

USGS flags for Q7 and Q30, and indicates that in every category, anthropogenic influences 3 

are documented by the USGS. For Q7, the majority of sites in categories 4 (57%; step change) 4 

are flagged by the USGS as somehow affected. This suggests that the algorithm has some 5 

skill in identifying managed or altered flow series. However, there are also many sites in 6 

category 1 (36%; no trend), 2 (16%; decreasing trend) and 3 (42%; increasing trend) that are 7 

also flagged (see Figure 4) suggesting that anthropogenic impacts for these sites are minimal 8 

and/or are overwhelmed by any climate or land use induced changes. The fact that the 9 

majority of stationary sites (category 1) are not flagged is encouraging. Figure 4 shows all the 10 

sites from each of the 5 categories that have no anthropogenic flag for Q7: 310 out of 508 11 

sites are not flagged but only 153 of these 310 sites show absolute stationarity behavior 12 

(category 1) and the rest exhibit some form of non-stationary. 13 

From Table 1 we observe that: 14 

1. If a site is flagged and its low flow series has a trend, the flags are mostly for 15 

regulation of partial regulation; sites with increasing trends are more likely to be flagged as 16 

regulated.  17 

2. If a site is flagged and it exhibits a step change, the flag is mostly associated with 18 

regulation, or possibly urbanization; 19 

3. If a site is in category 5 (not considered further due to significant autocorrelation), it 20 

may be flagged as regulated; 21 

4. If a site shows no trend but is still flagged, the flag relates to regulation. This suggests 22 

that the impact of the flagged change was either minimal or good management practices have 23 

been put in place. The majority of these sites are located in the upper Mid-Atlantic in the 24 

states of New York, New Jersey, and Virginia.   25 

We also applied the algorithm to the HCDN-2009 sites within the domain, to confirm that the 26 

algorithm can identify sites that have been independently determined as unaffected by human 27 
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influences. We found that 82% and 86% of these sites were placed in category 1 (stationary) 1 

for Q7 and Q30, respectively, with most of the remaining sites in category 3 (increasing trend; 2 

9% and 8%) or category 6 (autocorrelated; 5% and 4%). 3 

3.3 Variability in year of abrupt change 4 

For sites that were identified by the Pettitt test as having an abrupt change, Figure 5a shows 5 

the variability of the year of change for Qn. Most of the changes occurred between 1962 and 6 

1986, and as discussed above, most of these are flagged as having regulation. The spatial 7 

distribution of changes indicates that stream regulation began in the northeast before 8 

spreading to the southeast. The Pettit test tends to identify significant changes away from the 9 

either ends of the time series, and so may not identify changes in the earlier or later part of the 10 

record. However, earlier or later step changes are identified in the second recursion of the 11 

decomposition algorithm. 12 

We further examined the consistency of the change year among the Qn series, with the 13 

expectation that abrupt changes would be identified for the same year across all or most Qn 14 

time series. Figure 5b shows the spatial distribution and the number of sites with a consistent 15 

year of change among the Qn. Out of 176 sites whose time series were identified as having a 16 

step change by the Pettitt test, 82 (almost half) showed the same change year for 3 out of 4 Qn 17 

series. Only 7 sites showed the same change year for all Qn. Although we have identified the 18 

change year for all Qn, the results for Q7 may be the most appropriate for identifying a 19 

change since the data are close to the original values, but are less affected by measurement 20 

errors than Q1 (WMO, 2008).  21 

 22 

4 Variability and Trends in Low Flows and Timing 23 

4.1 Trends in low flows 24 

We identified a time period (1951-2005) common to all sites for which they have useable 25 

data, and calculated statistics of Qn, including the trend, and the consistency of trends among 26 

Qn values. The MK trends for Qn for the sites that were categorized as 1, 2, or 3 by the 27 

decomposition algorithm are shown in Figure 6a. The sites with significant trends tend to 28 

occur in all Qn (e.g. the sites in Florida). Sites with lower trend magnitudes tend to become 29 

non-significant (MK=0) as we move from Q1 to Q90 (e.g. the two sites in the northeast in 30 
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Maine). Some sites to the east of the Mississippi River do not have significant trends for Q1 1 

but show a significant decreasing trend for Q90. Overall, the northeastern sites show 2 

increasing trends in low flows and the southeast sites show decreasing trends.  3 

A summary of the consistency of trends across n-day low flows is shown in Figure 6b. 208 4 

sites (41% of the sites) have the same trend, such that the Qn series are all increasing, 5 

decreasing, or not changing. 162 sites (32%) agree on the sign of trend for three out of four of 6 

the Qn trends, and 87 sites (17%) agree for 2 out of 4 of the Qn trends. Overall, the 7 

consistency in trends among the Qn series is generally uniformly distributed across the 8 

domain. 9 

Figure 7 (top left) shows the spatial pattern of the MK trend test values for Q7  for all sites 10 

(without testing for step changes or autocorrelation), and when we only consider sites without 11 

step changes (top right). In both cases, the pattern of increasing trend in low flows in the 12 

northeast and a decreasing trend in the southeast is apparent. However, ignoring the effect of 13 

autocorrelation may give rise to misleading results by showing a denser pattern of significant 14 

trends. The bottom left panel shows the results removing sites with step changes and pre-15 

whitening the data for the remaining sites. The bottom right panel show the trends when sites 16 

that have USGS flags are also excluded, e.g. for sites without documented anthropogenic 17 

impacts. The drivers of trends at these sites are therefore likely related to climate 18 

variability/change and/or land use change, rather than management of, or influence on, flows. 19 

 20 

4.2 Variability in low flow timing 21 

Figure 8 summarizes the distribution of the onset of the low flow season for Q7, for the 22 

primary season (top panels) and the second season (bottom panels). The left panels show the 23 

onset month of the season and the right panels show the probability of the onset season in that 24 

month. If the onset time of the low flow season for a site occurs 70% to 100% in a specific 25 

month, that site is assumed to have only one low flow season. For Q7, 353 sites out of 395 26 

(almost 90%) sites have a single low flow season, and the onset of the season changes from 27 

north to south. Most of the sites north of North Carolina have low flow seasons starting in 28 

July, which is generally driven by the slight decline in precipitation during the autumn as well 29 

as the increased evaporation during the summer (Small et al., 2006). In Florida the season 30 
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starts in April-May. For coastal sites, the season starts earlier (mostly in June), and for sites in 1 

the southwestern part of the domain, the season starts mostly in September-October.  2 

The sites with two low flows seasons are mostly in Florida, and along the coastline of 3 

Georgia, South and North Carolina, New York, New Jersey, and Maine and their second 4 

season occurs mostly in fall. For New York, New Jersey, and some sites along the west 5 

coastline of Florida, the second low flow season mostly starts in November and December. 6 

Sites near the Gulf of Mexico and some sites in North Carolina have second low flow seasons 7 

starting in April. The second low flow season for the far northeast sites begins in December or 8 

January and can be related to freezing conditions that may store water as snow and river ice. 9 

4.3 Changes in low flow timing 10 

To determine whether low flow timing has changed over time, we examined sites with one 11 

low flow season as defined as 70% of low flow occurrences in the same season, again for the 12 

common time period of 1951-2005. Analysis of changes in timing irrespective of the season 13 

(not shown) did not show evidence of shifts in timing from one season to another. For Q7, for 14 

example, 47 sites out of the total 508 were removed because their low flow season occurs less 15 

than 70% of the time in one season. Out of the remaining 467 sites, 20 sites showed a 16 

decreasing (earlier) trend in timing and were mostly in Pennsylvania and the Carolinas 17 

(Figure 9) and 14 showed an increasing (later) trend with most of these in the northeast. The 18 

MK test for Q30 timings showed mainly decreasing (earlier) trends (26 sites), with most 19 

overlap with the Q7 results in Pennsylvania. These sites have low flow seasons starting in 20 

July, and half of them are regulated or partially regulated. Only a few sites were identified by 21 

the Pettitt test (5% significance) to have a significant step change in either direction.  22 

The tendency for low flows (Q7 and Q30) to occur earlier in the season in recent years may 23 

be because of a shift of low precipitation from the late to mid summer, but given the small 24 

number of sites with significant trends and their low spatial coherence, this is speculative. 25 

Although the sites in Pennsylvania did not show a trend in low flow volumes, the overall 26 

trend for the northeast is an increasing trend in low flow volumes suggesting that early 27 

summer low precipitation might also be increasing. More investigation is required to confirm 28 

whether low precipitation is happening earlier in summer, for example during May and June, 29 

and whether the amount is increasing.  30 

 31 
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5 Discussion and conclusions 1 

5.1 Potential drivers of trends in low flows 2 

We found spatially coherent patterns of increases in low flows in the northeast and decreases 3 

in the southeast, which was robust to the presence of USGS flags and autocorrelation in the 4 

time series, despite the smaller number of sites. The pattern of increasing low flows in the 5 

northeast is consistent with regional scale studies (e.g. Hodgkins and Dudley, 2011) and are 6 

consistent with the increases in 7-day low flows and fall precipitation shown in Small et al. 7 

(2006) that focused on a smaller set of sites across the eastern U.S. from the HCDN. Several 8 

other studies (e.g. Douglas et al., 2000; McCabe and Wolock, 2002; Hayhoe et al., 2007; 9 

Andreadis and Lettenmaier, 2006) have identified an overall increasing trend in precipitation 10 

over the past 50 years, and a decreasing pattern in soil moisture drought over the much of the 11 

U.S. including the northeast (Andreadis and Lettenmaier, 2006). Therefore, an increase in low 12 

flow volumes in the northeast is consistent with the overall shift to wetter conditions. The 13 

generally decreasing trends in the southeast are also consistent with the results from Small et 14 

al. (2006) and Lins and Slack (1999), which is despite an overall increase in precipitation in 15 

the region.  16 

To understand the potential drivers of these trends more comprehensively, Figure 10 shows 17 

the Q7 trend magnitude and the antecedent precipitation for the previous 180 days. This 18 

period was chosen as it provides the highest correlation with low flow volumes (Kam et al, 19 

2015), although the results with 150 and 90 days are similar. The precipitation data are taken 20 

from the long-term precipitation dataset of Livneh et al. (2013) and are averaged over the 21 

basin corresponding to each site. The similarity between the trends in low flows and 22 

antecedent precipitation is striking with a clear increasing trend in the north and decrease in 23 

the south, although many of the trends are not statistically significant.  24 

The main disparity is in coastal plains of eastern Virginia, Maryland and northwards to 25 

Maine, where Q7 low flows have decreased but antecedent precipitation is increasing (both 26 

often statistically significant). The reason for this is unclear, but groundwater is likely playing 27 

a role across the coastal plain aquifer of the mid-Atlantic states and up into New England 28 

(Dudley and Hodgkins, 2013) either via changes in recharge or indirectly through 29 

anthropogenic impacts. Groundwater pumping has reduced levels in the north Atlantic 30 

Coastal Plain aquifer system by tens of meters (e.g. Konikow, 2013, USGS, 2006) and has 31 
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likely reduced discharge to streams in the northeast (e.g. Pucci and Pope, 1995; Brutsaert, 1 

2010; Barlow and Leake, 2012). Similarly, overuse of groundwater resources in the southeast 2 

(Konikow, 2013) may be contributing to decreases in low flows across the region (e.g. Bosch 3 

et al., 2003; Opsahl et al., 2007; Brutsaert, 2010). 4 

Increases in evaporation (Walter et al., 2004; Nolan et al., 2007; Huntington and Billmire, 5 

2014) may have also led to declines in groundwater recharge and streamflow (Hodgkins and 6 

Dudley, 2011), and potentially cancelled out the overall increases in precipitation across much 7 

of the U.S. (Andreadis and Lettenmaier, 2006). Figure 10 also shows an estimate of the trend 8 

in late summer/early fall potential evaporation based on the NLDAS2 dataset of Xia et al. 9 

(2012). Potential evaporation has increased over the eastern U.S. with statistically significant 10 

trends over much of the mid-Atlantic states and the southeast. This suggests that increasing 11 

atmospheric demand in the southeast may have exacerbated declines in low flows, and this 12 

may have offset increasing precipitation somewhat in the northeast. Changes in land use may 13 

also explain trends in both regions, whereby land abandonment in the northeast and forest 14 

harvesting and urban development in the southeast may have contributed to the respective 15 

trends in each region (Cho et al., 2009; Payne et al., 2005; USGS, 2012), although attribution 16 

is difficult. 17 

The analysis of trends in timing of low flows showed one cluster of sites with a trend to 18 

earlier timing. These sites are mostly in central and west Pennsylvania, and central southern 19 

New York. The reasons for the changes are unclear, but may be related to regulation and 20 

possibly a shift in the low precipitation season to earlier in the summer. The timing of low 21 

flows in the other parts of the domain has not changed based on a 5% significance level.  22 

5.2 Conclusions 23 

This study has examined the presence of non-stationarity in low flows across the eastern U.S. 24 

in terms of volumes and timing. We focused on the full period of available data at each site to 25 

identify abrupt shifts that may be associated with management, in particular dam construction, 26 

and gradual trends that may be an impact of climate change, land use change or 27 

surface/ground water withdrawals. A decomposition algorithm was used to identify useable 28 

sub-series of the data that could then be further analyzed for trends. Comparison with USGS 29 

site flags indicates that the majority of sites with identified step changes and increasing trends 30 

are noted to be regulated in some way, and some are documented as having undergone 31 
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urbanization. For sites with decreasing and increasing trends, about one sixth and one half, 1 

respectively, have USGS flags and these are almost all for regulation. Furthermore, about one 2 

third of sites with no trend are also flagged as being regulated or partially regulated. Our 3 

approach is therefore generally capable of identifying sites with documented regulation, and 4 

confirmed by the evaluation of the HCDN-2009 sites, but that changes do not always manifest 5 

in a detectable change in the low flow time series. This may be because the documented 6 

regulation or other change may not have an impact or that the signal is small compared to the 7 

variability in the time series. This is particularly the case for higher low flow metrics such as 8 

Q90, for which the regulation is generally less detectable. For sites with documented 9 

regulation but no detectable signal, the fact that the USGS flags relate to high flows rather 10 

than low flows may help explain this, or that the sites are well managed in terms of low flows. 11 

For example, flows are often artificially elevated above the natural levels of low flow to 12 

create ``anti-droughts" to manage the restoration of river systems (Bunn et al., 2006). 13 

Although we do not claim to make a definitive judgement on whether. 14 

Several outstanding questions remain, most importantly what are the low flow generating 15 

mechanisms across the eastern U.S. and what are the drivers of long-term changes in the 16 

volumes and timing. Potential mechanisms include, but are not limited to: changes in 17 

antecedent precipitation and teleconnections with large-scale climate (e.g. the North Atlantic 18 

Oscillation; Kam et al., 2015), land use change, surface and groundwater abstraction, and 19 

streamflow regulation. The results of this study suggest that low flow variability in the eastern 20 

U.S. is driven by a mixture of climatic and anthropogenic effects, with suggestions that 21 

changes in climate have played a role in both the northeast and southeast. However, definitive 22 

attribution will require detailed analysis of these competing factors and possibly carefully 23 

crafted modeling studies.  In parallel with calls for more rigorous efforts at attributing 24 

changes in flood time series (Merz et al., 2012), increased effort is also needed for 25 

understanding and attributing changes in low flows. Several new approaches have been put 26 

forward recently that show promise for detecting and attributing changes in hydrological time 27 

series, including extremes, based on multiple working hypotheses (Harrigan et al., 2014) and 28 

complex statistical modeling (Prosdocimi et al., 2015). 29 

The results of this study can help in understanding changes in low flows across the eastern 30 

U.S., and the impact of anthropogenic and natural changes. It can therefore provide 31 

information for water management, and restoration of stream flows and aquatic habitats. 32 
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Although we do not claim to make a definitive judgment on whether low flows at a particular 1 

site are influenced by human activities or are completely free of influences because of the 2 

complexities of low flow generation, our approach shows promise for systematically 3 

identifying sites for further investigation, especially where supporting information (such as 4 

site notes) are available to support the statistical results. Our approach may be especially 5 

useful for exploring large-scale, climate-driven changes in the low flow regime where pooling 6 

of results across sites increases confidence in the robustness of any identified changes. The 7 

methods are readily transferable to other parts of the U.S. and globally, given long enough 8 

time series of daily streamflow data, although further work is required to understand their 9 

universal application. 10 
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Table 1. Comparison of the number of streamflow gauging sites in each category of the 1 

decomposition algorithm and their USGS flags for Q7. DamFail: dam failure; RegPar: 2 

partially regulated; Reg: regulated; Urban: affected by urbanization. 3 

Category Q7 Q30 Flag Q7 Q30 Flag type Q7 Q30 

No Trend 240 260 Flagged 87 91 DamFail 1 2 

      RegPar 33 37 

      Reg 51 48 

      Urban 2 4 

   Not flagged 153 169    

Decreasing Trend 62 61 Flagged 10 6 DamFail 0 0 

      RegPar 3 1 

      Reg 5 5 

      Urban 2 0 

   Not Flagged 52 55    

Increasing Trend 55 70 Flagged 23 37 DamFail 0 0 

      RegPar 8 13 

      Reg 15 24 

      Urban 0 0 

   Not Flagged 32 33    

Step Change 111 89 Flagged 64 53 DamFail 1 0 

      RegPar 21 16 

      Reg 38 32 

      Urban 4 5 

   Not Flagged 48 36    

Autocorrelated 38 27 Flagged 13 10 DamFail 1 1 

      RegPar 4 2 



 29 

      Reg 7 7 

      Urban 1 0 

   Not Flagged 25 17    

 1 

 2 

3 
Figure 1. (a) Location of 2,352 major dams in the eastern U.S. (b) Location of the 508 4 

streamflow sites with 50 years or more of complete daily data. (c) Flagged sites according to 5 

the USGS.  6 

7 
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 1 
Figure 2. Categorization of non-stationarity of sites for Q7 and Q30.  2 



 31 

1 
Figure 3. Range of years for each site that are stationary or show a trend, for each step of the 2 
decomposition algorithm. 3 
 4 

 5 
 6 
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1 
Figure 4. Categorization of non-stationarity of sites for Q7 with no USGS flags from the first 2 
step of the decomposition algorithm.  3 

4 
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 1 

 2 
Figure 5. Year of step change for (a) Q7 and (b) Q30. (c) Agreement in year of step change 3 
between Q7 and Q30 time series. 4 

5 
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 1 

 2 
Figure 6. Trends in (a) Q7 and (b) Q30 for 1951-2005 and (c) their agreement. 3 
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 1 
Figure 7. Trends in Q1 for 1951-2005 for (a) all sites, (b) excluding sites with step changes or 2 
overall autocorrelation, (c) as (b) but with pre-whitened data, and (d) as (b) but without USGS 3 
flags.  4 
  5 
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 1 

2 
Figure 8. Primary and secondary seasons of occurrence of Q7 low flows and their frequencies. 3 
 4 
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 1 
Figure 9. Categorization of non-stationarity of sites for timing of (a) Q7 and (b) Q30.  2 
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 1 
Figure 10. (a) Trend in Q7 low flows for 1951-2005 for the warm season. (b) Corresponding 2 
trend in 180-day antecedent precipitation. For (a) and (b), trends that are statistically 3 
significant at the 0.05 level are shown in large symbols. (c) Trend in July-August-September 4 
(JAS) potential evaporation for 1979-2012. Statistically significant trends are shown by 5 
hatching. 6 


