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1. Line 114: Correct “Sjiono” to Shiono 

Reply: We corrected the mistake. 

 

2. Add reasons for using ANSYS CFX solver instead of RANS (Reynolds averaged 

continuity and Navier – Stokes equations with normal wall function approach) or 

DANS (double averaged continuity and Navier - Stokes equations approach) 

 

Reply: The double-averaging methodology (DANS) is usually performed to model the 

multiscale property of water flow with complex physical and biological boundary 
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CFX solver with a standard k-epsilon turbulence model, which uses only a single 

turbulence length scale, because the modelled domain has not such complex boundary 

conditions.  

In the revised paper we expanded the text by adding in line 447: 

"... which solves the Reynolds-average Navier Stokes (RANS) equations..." 

 

3. Lines 560 to 563: The anisotropic redistribution of turbulent kinetic energy in 

straight channels cannot be simulated with the standard k-e turbulence model 

therefore the secondary flow. I am not sure about Figure 14 (Is it real secondary 

flow!). Remove Figure 14 and associated text. 

Reply: We followed the reviewer indication; We removed Figure 14 and  also lines 
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ABSTRACT 25 

Two new methods for vertically averaged velocity computation are presented, 26 

validated and compared with other available formulas. The first method derives from 27 

the well-known Huthoff algorithm, which is first shown to be dependent on the way 28 

the river cross-section is discretized into several sub-sections. The second method 29 

assumes the vertically averaged longitudinal velocity to be a function only of the 30 

friction factor and of the so-called "local hydraulic radius", computed as the ratio 31 

between the integral of the elementary areas around a given vertical and the integral 32 

of the elementary solid boundaries around the same vertical. Both integrals are 33 

weighted with a linear shape function, equal to zero at a distance from the integration 34 

variable which is proportional to the water depth according to an empirical coefficient 35 

β. Both formulas are validated against 1) laboratory experimental data, 2) discharge 36 

hydrographs measured in a real site, where the friction factor is estimated from an 37 

unsteady-state analysis of water levels recorded  in two different river cross sections, 38 

3) the 3D solution obtained using the commercial ANSYS CFX code, computing the 39 

steady state uniform flow in a cross section of the Alzette river.  40 

 41 
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1 Introduction 50 

Computation of vertically averaged velocities is the first step of two major 51 

calculations  in 1D shallow water modelling: 1) estimation of the discharge  given the 52 

energy slope and the water stage and 2) estimation of the bottom shear stress for 53 

computing the bed load in a given river section.  54 

Many popular software tools, like  MIKE11 (MIKE11, 2009), compute the discharge 55 

Q, in each river section, as the sum of discharges computed in different sub-sections, 56 

assuming a single water stage for all of them. Similarly, HEC-RAS (HEC-RAS,2010) 57 

calculates the conveyance of the cross-section by the following form of Manning's 58 

equation: 59 

2/1

fKSQ =                                                               (1), 60 

where Sf  is the energy slope and K is the conveyance, computed assuming the same 61 

hypothesis and solving each sub-section according to the traditional Manning 62 

equation.  63 

The uniform flow formula almost universally applied in each sub-section is still the 64 

Chezy equation (Herschel, C., 1897). The advantage of using the Chezy equation is 65 

that the associated Manning’s coefficient has been calibrated worldwide for several 66 

types of bed surface and a single value is ready to use for each application. However, 67 

it is well known that the Chezy equation was derived from laboratory measurements 68 

taken in channels with a regular, convex cross-sectional shape. When the section 69 

results from the union of different parts, each with a strongly different average water 70 

depth, one of two options is usually selected. The first option, called Single Channel 71 

Method (SCM) is simply to ignore the problem. This leads to strong underestimation 72 

of the discharge, because the Chezy formula assumes a homogeneous vertically 73 

averaged velocity and this homogeneous value provides strong energy dissipation in 74 

the parts of the section with lower water depths. The second option, called Divided 75 

Channel Method (DCM) is to compute the total discharge as the sum of the discharges 76 

flowing in each convex part of the section (called subsection) , assuming a single 77 

water level for all parts (Chow 1959; Shiono et al. 1999; Myers and Brennan, 1990). 78 

In this approach, the wet perimeter of each subsection is restricted to the component 79 

of the original one pertaining to the subsection, but the new components shared by 80 

each couple of subsections are neglected. This is equivalent to neglecting the shear 81 

stresses coming from the vortices with vertical axes (if subsections are divided by 82 
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vertical lines) and considering additional resistance for higher velocities, which 83 

results in overestimation of discharge capacity (Lyness et al. 2001). 84 

Knight and Hamed (1984) compared  the accuracy of several subdivision methods for 85 

compound straight channels by including or excluding the vertical division line in the 86 

computation of the wetted perimeters of the main channel and the floodplains. 87 

However, their results show that conventional calculation methods result in larger 88 

errors. Wormleaton et al. (1982) and Wormleaton and Hadjipanos(1985) also 89 

discussed, in the case of compound sections, the horizontal division through the 90 

junction point between the main channel and the floodplains. Their studies show that 91 

these subdivision methods cannot well assess the discharge in compound channels.  92 

The interaction phenomenon in compound channels has also extensively studied by 93 

many other researchers (e.g., Sellin 1964; Knight and Demetriou 1983; Stephenson 94 

and Kolovopoulos 1990; Rhodes and Knight 1994; Bousmar and Zech 1999; van 95 

Prooijen et al. 2005; Moreta and Martin-Vide 2010). These studies demonstrate that 96 

there is a large velocity difference between the main channel and the floodplain, 97 

especially at low relative depth, leading to a significant lateral  momentum  transfer. 98 

The studies by Knight and Hamed(1984), Wormleaton et al. (1982) indicate that 99 

vertical transfer of momentum between the upper and the lower main channels exists, 100 

causing significant horizontal shear able to dissipate a large part of the flow energy. 101 

Furthermore, many authors have tried to quantify flow interaction among the 102 

subsections, at least in the case of compound, but regular channels. To this end 103 

turbulent stress was modelled through the Reynolds equations and coupled with the 104 

continuity equation (Shiono and Knight, 1991). This coupling leads to equations that 105 

can be analytically solved only under the assumption of negligible secondary flows. 106 

Approximated solutions can also be obtained, although they are based on some 107 

empirical parameters. Shiono and Knight developed the Shiono-Knight Method 108 

(SKM) for prediction of lateral distribution of depth-averaged velocities and boundary 109 

shear stress in prismatic compound channels (Shiono and Knight, 1991; Knight and 110 

Shiono, 1996). The method can deal with all channel shapes that can be discretized 111 

into linear elements (Knight and Abril, 1996; Abril and Knight, 2004). 112 

Other studies based on the Shiono and Knight method can be found in Liao and 113 

Knight (2007), Rameshwaran and Shiono (2007), Tang and Knight (2008) and Omran 114 

and Knight (2010). Apart from SKM, some other methods for analysing the 115 

conveyance capacity of compound channels have been proposed. For example, 116 
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Ackers (1993) formulated the so called empirical coherence method. Lambert and 117 

Sellin(1996) suggested a mixing length approach at the interface, whereas more 118 

recently Cao et al. (2006) reformulated flow resistance through lateral integration 119 

using a simple and rational function of depth-averaged velocity. Bousmar and Zech 120 

(1999) considered the main channel/floodplain momentum transfer proportional to the 121 

product of the velocity gradient at the interface times the mass discharge exchanged 122 

through this interface due to turbulence. This method, called EDM, also requires a 123 

geometrical exchange correction factor and turbulent exchange model coefficient for 124 

evaluating discharge. 125 

A simplified version of the EDM, called Interactive Divided Channel Method 126 

(IDCM), was proposed by Huthoff et al. (2008). In IDCM  lateral momentum is 127 

considered negligible and  turbulent stress at the interface is assumed to be 128 

proportional to the span wise kinetic energy gradient through a dimensionless 129 

empirical parameter α. IDCM has the strong advantage of using only two parameters, 130 

α and the friction factor, f. Nevertheless, as shown in the next section, α depends on 131 

the way the original section is divided. 132 

An alternative approach could be to simulate the flow structure in its complexity by 133 

using a three-dimensional code for computational fluid dynamics (CFD). In these 134 

codes flow is represented both in terms of transport motion (mean flow) and 135 

turbulence by solving the Reynolds Averaged Navier Stokes (RANS) equations 136 

(Wilcox, 2006) coupled with turbulence models. These models allow closure of the 137 

mathematical problem by adding a certain number of additional partial differential 138 

transport equations equal to the order of the model. In the field of the simulation of 139 

industrial and environmental laws second order models (e.g. k-ε and k-ω models) are 140 

widely used. Nonetheless, CFD codes need a mesh fine enough to solve the boundary 141 

layer (Wilcox, 2006), resulting in a computational cost that can be prohibitive even 142 

for river of few km. 143 

In this study two new methods, aimed to represent subsection interactions in a 144 

compound channel, are presented. The first method, named "INtegrated Channel 145 

Method" (INCM), derives from the previous Huthoff  formula, which is shown to give 146 

results depending on the way the river cross section is discretized in sub-sections. The 147 

same dynamic balance adopted by Huthoff is written in differential form, but its 148 
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diffusive term is weighted according to a ξ coefficient proportional to the local water 149 

depth. 150 

The second one, named “local hydraulic radius method” (LHRM), derives from the 151 

observation that, in the Manning formula, the mean velocity per unit energy gradient 152 

is proportional to a power of the hydraulic radius. It should then be possible to get the 153 

vertically averaged velocity along each vertical by using the same Manning formula, 154 

where the original hydraulic radius is changed with a "local" one. This "local" 155 

hydraulic radius should take into account the effect of the surrounding section 156 

geometry, up to a maximum distance which is likely to be proportional to the local 157 

water depth, according to an empirical β coefficient. The method gives up the idea of 158 

solving the Reynolds equations, due to the uncertainty of its parameters, but relies on 159 

the solid grounds of the historical experience of the Manning equation. 160 

The present paper is organized as follows: Two of the most popular approaches 161 

adopted for computation of the vertically averaged velocities  are explained in details, 162 

along with the proposed INCM and LHRM methods. The ξ and β parameters of 163 

respectively the INCM and LHRM methods are then calibrated from available 164 

discharge lab experimental data and a sensitivity analysis is carried out. The INCM 165 

and LHRM methods are finally validated according to three different criteria. The first 166 

criterion is comparison with other series of the previous laboratory data, not used for 167 

calibration. The second criterion is comparison with discharge data measured in one 168 

section of the Alzette river Basin (Luxembourg). Because the friction factor is not 169 

known a priori, INCM and LHRM formulas are applied in the context of the indirect 170 

discharge estimation method, which simultaneously estimates the friction factor and 171 

the discharge hydrograph from the unsteady state water level analysis of two water 172 

level hydrographs measured in two different river sections. The third validation 173 

criterion is comparison with the vertical velocity profiles obtained by the ANSYS 174 

CFX solver, in a cross section of the Alzette river. In the conclusions, it is finally 175 

shown that application of bed load formulas, carried out by integration of elementary 176 

solid fluxes computed as function of the vertically averaged velocities, can lead to 177 

results that are strongly different from those obtained by using the simple mean 178 

velocity and water depth section values.   179 
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2 Divided Channel Method (DCM) and Interactive Divided Channel 180 

Method (IDCM) 181 

In the DCM method the river section is divided into subsections with uniform 182 

velocities and roughness (Chow, 1959). Division is made by vertical lines and no 183 

interaction between adjacent subsections is considered. Discharge is obtained by 184 

summing the contributions of each subsection, obtained by applying the Manning 185 

formula: 186 

2
3

i i

i f

i i i

R A
q = q = S

n
∑ ∑   (2), 187 

where q is the total discharge, Ai , Ri and ni are the area, the hydraulic radius and the 188 

Manning’s roughness coefficient of each sub section i of a compound channel and Sf  189 

is the energy slope, assumed constant across the river section. DCM is extensively 190 

applied in most of the commercial codes, two of them cited in the introduction. 191 

In order to model the interaction between adjacent subsections of a compound section, 192 

the Reynolds and the continuity equations can be coupled (Shiono and Knight, 1991), 193 

to get: 194 

( ) ( )
1 2

0 2

1
1

/

v d xy b
HU V gHS H -

y y s
ρ ρ τ τ

∂ ∂  
= + + 

∂ ∂  
  (3), 195 

where ρ is the water density, g is the gravity acceleration, y is the abscissa according 196 

to the lateral direction, U and V are respectively the velocity components along the 197 

flow x direction and the lateral y direction, H is the water depth, the sub-index d 198 

marks the vertically averaged quantities and the bar the time average along the 199 

turbulence period, S0 is the bed slope, s is the section lateral slope, and 
βτ  is the bed 200 

shear stress. The xyτ  turbulent stress is given by the eddy viscosity equation, that is: 201 

d
xy xy=

U
τ ρε

y

∂

∂
  (4a), 202 

*xyε = λU H
  (4b), 203 

where the friction velocity *
U  is set equal to: 204 

1 / 2

* d

f
U = U

8g

 
 
 

  (5), 205 
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and  f  is the friction factor, depending on the bed material. The analytical solution of 206 

Eqs. (3)-(5) can be found only if the left hand side of Eq. (3) is zero, which is 207 

equivalent to neglecting secondary flows. Other solutions can only be found by 208 

assuming a known Γ value for the lateral derivative. Moreover, λ is another 209 

experimental factor depending on the section geometry. The result is that solution of 210 

Eq. (3) strongly depends on the choice of two coefficients, λ and Γ, which are 211 

additional unknowns with respect to the friction factor f. 212 

In order to reduce to one the number of empirical parameters (in addition to f) Huthoff 213 

et al. (2008) proposed the so-called Interactive Divided Channel Method (IDCM).  214 

Integration of Eq. (3) over each i
th

 subsection, neglecting the averaged flow lateral 215 

momentum, leads to: 216 

2

i 0 i i i i+1 i+1 i iρgA S = ρ f PU + τ H + τ H   (6), 217 

where the left-hand side of Eq.(6) is the gravitational force per unit length, 218 

proportional to the density of water ρ, to the gravity acceleration g, to the cross-219 

sectional area Ai, and to the stream wise channel slope S0. The terms at the right-hand 220 

side are the friction forces, proportional to the friction factor f and to the wet solid 221 

boundary Pi, as well as the turbulent lateral momentum on the left and right sides, 222 

proportional to the turbulent stress τ and to the water depth H.  223 

Turbulent stresses are modelled quite simply as:  224 

( )2 2

i+1 i+1 i

1
τ = α U -U

2
ρ

  
(7), 225 

where α is a dimensionless interface coefficient, 
2

iU is the square of the vertically 226 

averaged velocity and τi is the turbulent stress along the plane between subsection i-1 227 

and i. If subsection i is the first (or the last) one, velocity Ui-1 (or Ui+1 ) is set equal to 228 

zero. 229 

Following a wall-resistance approach (Chow, 1959), the friction factor  fi  is computed 230 

as: 231 

2

i

1/ 3i

i

g n
f =

R   (8), 
232 

where ni is the Manning’s roughness coefficient and Ri(=Ai/Pi) is the hydraulic radius 233 

of subsection i.  234 
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Equations (6) forms a system with an order equal to the number m of subsections, 235 

which is linear in the 
2

iU unknowns. The results are affected by the choice of the α 236 

coefficient, which is recommended by Huthoff et al. (2008), on the basis of lab 237 

experiments, equal to 0.02. Computation of the velocities Ui  makes it easy to estimate 238 

discharge q. 239 

IDCM has the main advantage of using only two parameters, the f and α coefficients. 240 

On the other hand, it can be easily shown that α, although it is dimensionless, depends 241 

on the way the original section is divided. The reason is that the continuous form of 242 

Eq. (6) is given by: 243 

( )
2

0

f  U
ρg HS - = τH

g cos y

  ∂
 

θ ∂ 
  (9), 244 

where θ is the bed slope in the lateral direction. Following the same approach as the 245 

IDCM, if we assume the turbulent stress τ to be proportional to both the velocity 246 

gradient in the lateral direction and to the velocity itself, we can write the right-hand 247 

side of Eq. (9) in the form: 248 

( )  
2

H U
H U H

y y y

α
τ ρ

 ∂ ∂ ∂
=  

∂ ∂ ∂ 
  (10), 249 

and Eq. (9) becomes: 250 

( )
2

2

0 H

f  U
ρ gHS - = H α ρU

g cos y y

   ∂ ∂
   

θ ∂ ∂     (11). 

251 

In Eq. (10) αH is no longer dimensionless, but is a length. To get the same Huthoff 252 

formula from numerical discretization of Eq. (10), we should set: 253 

0.02H yα = ∆
  (12), 

254 

where ∆y  is the subsection width, i.e. the integration step size. This implies that the 255 

solution of Eq. (11), according to the Huthoff formula, depends on the way  the 256 

equation is discretized and the turbulence stress term on the r.h.s. vanishes along with 257 

the integration step size. 258 
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3 The new methods 259 

3.1 Integrated Channel Method (INCM) 260 

INCM derives from the IDCM idea of evaluating the turbulent stresses as proportional 261 

to the gradient of the squared averaged velocities, leading to Eqs. (7) and (11). 262 

Observe that dimensionless coefficient α, in the stress computation given by Eq. (7), 263 

can be written as the ratio between Hα  and the distance between verticals i and i+1. 264 

For this reason, coefficient Hα can be thought of as a sort of mixing length, related to 265 

the scale of the vortices with horizontal axes. INCM assumes the optimal Hα to be 266 

proportional to the local water depth, because water depth is at least an upper limit for 267 

this scale, and the following relationship is applied: 268 

H Hα = ξ
  (13), 

269 

where ξ  is an empirical coefficient to be further estimated. 270 

3.2 Local hydraulic radius method (LHRM) 271 

LHRM derives from the observation that, in the Manning equation, the average 272 

velocity is set equal to: 273 

2 / 3

0

R
V = S

n   (14), 

274 

and has a one-to-one relationship with the hydraulic radius. In this context the 275 

hydraulic radius has the meaning of a global parameter, measuring the interactions of 276 

the particles along all the section as the ratio between an area and a length. The 277 

inconvenience is that, according to Eq. (14), the vertically averaged velocities in 278 

points very far from each other remain linked anyway, because the infinitesimal area 279 

and the infinitesimal length around two verticals are summed to the numerator and to 280 

the denominator of the hydraulic radius independently from the distance between the 281 

two verticals. To avoid this, LHRM computes the discharge as an integral of the 282 

vertically averaged velocities, in the following form: 283 

( ) ( )L

0
q = h y U y dy∫   (15), 

284 

where U is set equal to: 285 
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2/3

0

lU S
n

ℜ
=

  (16), 

286 

and lℜ  is defined as local hydraulic radius, computed as: 287 

( )
( ) ( )

( ) 2 2

,

,

b

a

l b

a

h s N y s ds
y

N y s ds dz

∫
ℜ =

+∫   (17a), 

288 

max(0,  y )a h= − β   (17b), 

289 

min( ,  y )b L h= + β   (17c), 

290 

where z is the topographic elevation (function of s), β is an empirical coefficient and L 291 

is the section top width. Moreover N(y, s) is a shape function where: 292 

( )

( )
( )

( )
( )

if

, if

0 otherwise

y h y s
a s y

h y

y h y s
N y s b s y

h y

  −β − − < <
β


 −β −  = > >

β





             (18). 293 

Equations (18) show how the influence of the section geometry, far from the abscissa 294 

y, continuously decreases up to a maximum distance, which is proportional to the 295 

water depth according to an empirical positive coefficient β. After numerical 296 

discretization, Eqs (15)-(17) can be solved to get the unknown q, as well as the 297 

vertically averaged velocities in each subsection. If β is close to zero and the size of 298 

each subsection is common for both formulas, LHRM is equivalent to DCM; if β is 299 

very large LHRM is equivalent to the traditional Manning formula. In the following, 300 

β is calibrated using experimental data available in the literature. A sensitivity 301 

analysis is also carried out, to show that the estimated discharge is only weakly 302 

dependent on the choice of the β coefficient, far from its possible extreme values. 303 

3.3 Evaluation of the ξ and β parameters by means of lab experimental data  304 

INCM and LHRM parameters were calibrated by using data selected from six series of 305 

experiments run at the large scale Flood Channel Facility (FCF) of HR Wallingford 306 

(UK), (Knight and Sellin, 1987; Shiono and Knight, 1991; Ackers, 1993), as well as 307 
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from four series of experiments run in the small-scale experimental apparatus of the 308 

Civil Engineering Department at the University of Birmingham (Knight and 309 

Demetriou, 1983). The FCF series were named F1, F2, F3, F6, F8 and F10; the 310 

Knight and Demetriou series were named K1, K2, K3 and K4. Series F1, F2, and F3 311 

covered different floodplain widths, while series F2, F8, and F10 kept the floodplain 312 

widths constant, but covered different main channel side slopes. Series F2 and F6 313 

provided a comparison between the symmetric case of two floodplains and the 314 

asymmetric case of a single floodplain. All the experiments of Knight and Demetriou 315 

(1983) were run with a vertical main channel wall, but with different B/b ratios. The 316 

series K1 has B/b = 1 and its section is simply rectangular. The B/b ratio, for Knight’s 317 

experimental apparatus, was varied by adding an adjustable side wall to each of the 318 

floodplains either in pairs or singly to obtain a symmetrical or asymmetrical cross 319 

section. The geometric and hydraulic parameters are shown in Table 1; all notations 320 

of the parameters can be found in Fig. 1 and S0 is the bed slope. The subscripts "mc" 321 

and "fp" of the side slope refer to the main channel and floodplain, respectively. 322 

Perspex was used for both main flume and floodplains in all tests. The related 323 

Manning roughness is 0.01 m
-1/3

s.  324 

The experiments were run with several channel configurations, differing mainly for 325 

floodplain geometry (widths and side slopes) and main channel side slopes (see Table 326 

1). The K series were characterized by vertical main channel walls. More information 327 

concerning the experimental setup can be found in Table 1 (Knight and Demetriou, 328 

1983; Knight and Sellin, 1987; Shiono and Knight, 1991). 329 

Four series, named F1, F2, F3 and F6, were selected for calibration of the β 330 

coefficient, using the Nash Sutcliffe (NS) index of the measured and the computed 331 

flow rates as a measure of the model’s performance (Nash and Sutcliffe, 1970). 332 

The remaining three series, named F2, F8 and F10, plus four series from Knight and 333 

Demetriou, named K1, K2, K3 and K4, were used for validation (no.) 1, as reported in 334 

the next section. NS is given by: 335 

, , , ,1,2 1, 1,

, , , ,1,2 1, 1,

2

2

( )
1

( )

i j k i j kj i N K MJ NJ

i j k i j kj i N K MJ NJ

obs sim

obs obs

q q
NS

q q

= = =

= = =

 −
 = −
 −
  

∑ ∑ ∑

∑ ∑ ∑
  (19), 

336 

where Nj is the number of series, MNj is the number of tests for each series, kji
sim

q ,,337 

and kji
obs

q ,,  are respectively the computed and the observed discharge (j = 1 for the 338 
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FCF series and j = 2 for the Knight series; i is the series index and K is the water 339 

depth index). , ,

obs

i j k
q

 is the average value of the measured discharges. 340 

Both ξ and β parameters were calibrated by maximizing the Nash Sutcliffe (NS) 341 

index, computed using all the data of the four series used for calibration. See the NS 342 

versus ξ and β curves in Figs. 2a and 2b. 343 

Calibration provides optimal ξ and β coefficients respectively equal to 0.08 and 9. 344 

The authors will show in the next sensitivity analysis that even a one-digit 345 

approximation of the ξ and β coefficients provides a stable discharge estimation. 346 

3.4 Sensitivity analysis 347 

We carried out a discharge sensitivity analysis of both new methods using the 348 

computed ξ = 0.08 and β=9 optimal values and the data of the F2 and K4 series. 349 

Sensitivities were normalized in the following form: 350 

1
s

INCM

q
I

q

∆
=

∆ξ
  (20), 

351 

1
s

LHRM

q
L

q

∆
=

∆β
  (21), 

352 

 353 

where ∆q is the difference between the discharges computed using two different β and 354 

ξ  values. The assumed perturbations"∆β" and "∆ξ" are respectively ∆β = 0.001 β, ∆ξ  355 

= 0.001 ξ.  356 

The results of this analysis are shown in Table 2a for the F2 series, where  H is the 357 

water depth and Qmeas the corresponding measured discharge. 358 

They show very low sensitivity of both the INCM and LHRM results, such that a one 359 

digit approximation of both model parameters (ξ and β) should guarantee a computed 360 

discharge variability of less than 2%. 361 

The results of the sensitivity analysis, carried out for series K4 and shown in Table 362 

2b, are similar to the previous ones computed for F2 series.  363 
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4 Validation criterion 364 

4.1 Validation n.1 - Comparison with laboratory experimental data 365 

A first validation of the two methods was carried out by using the calibrated 366 

parameter values, the same Nash-Sutcliffe performance measure and all the available 367 

experimental series. The results were also compared with results of DCM and IDCM 368 

methods, the latter applied using the suggested α = 0.02 value and five subsections, 369 

each one corresponding to a different bottom slope in the lateral y direction. The NS 370 

index for all data series is shown in Table 3. 371 

The DCM results are always worse and are particularly bad for all the K series. The 372 

results of both the IDCM and INCM methods are very good for the two F series not 373 

used for calibration, but are both poor for the K series. The LHRM method is always 374 

the best and also performs very well in the K series. The reason is probably that the K 375 

series tests have very low discharges, and the constant α = 0.02, the coefficient 376 

adopted in the IDCM method, does not fit the size of the subsections and Eq. (13) is 377 

not a good approximation of the mixing length αH in Eq. (12) for low values of the 378 

water depth. In Figs. 3a and 3b the NS curves obtained by using DCM, IDCM, INCM 379 

and LHRM, for series F2 and K4, are shown. 380 

4.2 Validation n.2 - Comparison with field data 381 

Although rating curves are available in different river sites around the world, field 382 

validation of the uniform flow formulas is not easy, for at least two reasons: 383 

1) The average friction factor f  and the related Manning’s coefficient are not known 384 

as in the lab case and the results of all the formulas need to be scaled according to the 385 

Manning’s coefficient to be compared with the actually measured discharges; 386 

2) River bed roughness does change, along with the Manning’s coefficient, from one 387 

water stage to another (it usually increases along with the water level).  388 

A possible way to circumvent the problem is to apply the compared methods in the 389 

context of a calibration problem, where both the average Manning’s coefficient and 390 

the discharge hydrograph are computed from the known level hydrographs measured 391 

in two different river cross sections (Perumal et al., 2007; Aricò et al., 2009). The 392 

authors solved the diffusive wave simulation problem using one known level 393 
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hydrograph as the upstream boundary condition and the second one as the benchmark 394 

downstream hydrograph for the Manning’s coefficient calibration. 395 

It is well-known in the parameter estimation theory (Aster et al., 2012) that the 396 

uncertainty of the estimated parameters (in our case the roughness coefficient) grows 397 

quickly with the number of parameters, even if the matching between the measured 398 

and the estimated model variables (in our case the water stages in the downstream 399 

section) improves. The use of only one single parameter over all the computational 400 

domain is motivated by the need of getting a robust estimation of the Manning’s 401 

coefficient and of the corresponding discharge hydrograph. 402 

Although the accuracy of the results is restricted by several modeling assumptions, a 403 

positive indication about the robustness of the simulation model (and the embedded 404 

relationship between the water depth and the uniform flow discharge) is given by: 1) 405 

the match between the computed and the measured discharges in the upstream 406 

section, 2) the compatibility of the estimated average Manning’s coefficient with the 407 

site environment. 408 

The area of interest is located in the Alzette River basin (Gran-Duchy of 409 

Luxembourg) between the gauged sections of Pfaffenthal and Lintgen (Fig. 4). The 410 

river reach length is about 19 km, with a mean channel width of ~30 m and an 411 

average depth of ~4 m. The river meanders in a relatively large and flat plain about 412 

300 m, with a mean slope of ~0.08%. 413 

The methodology was applied to a river reach 13 Km long, between two instrumented 414 

sections, Pfaffenthal (upstream section) and Hunsdorf (downstream section), in order 415 

to have no significant lateral inflow between the two sections. 416 

Events of January 2003, January 2007 and January 2011 were analysed. For these 417 

events, stage records and reliable rating curves are available at the two gauging 418 

stations of Pfaffenthal and Hunsdorf. The main hydraulic characteristics of these 419 

events, that is duration (∆t), peak water depth (Hpeak) and peak discharge (qpeak),  are 420 

shown in Table 4.  421 

In this area a topographical survey of 125 river cross sections was available. The 422 

hydrometric data were recorded every 15 min. The performances of the discharge 423 

estimation procedures were compared by means of the Nash Suctliffe criterion. 424 

The results of the INCM and LHRM methods were also compared with those of the 425 

DCM and IDCM methods, the latter applied by using α = 0.02 and an average 426 
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subsection width equal to 7 m. The computed average Manning’s coefficients nopt, 427 

reported in Table 5, are all consistent with the site environment, although they attain 428 

very large values, according to DCM an IDCM, in the 2011 event. 429 

The estimated and observed dimensionless water stages in the Hunsdorf gauged site, 430 

for 2003, 2007 and 2011 events are shown in Figs. 5-7.  431 

Only the steepest part of the rising limb, located inside the colored window of each 432 

Figure, was used for calibration. The falling limb is not included, since it has a lower 433 

slope and is less sensitive to the Manning’s coefficient value. 434 

A good match between recorded and simulated discharge hydrographs can be 435 

observed (Figs. 8-10) in the upstream gauged site for each event. 436 

For all investigated events the Nash Sutcliffe efficiency NSq is greater than 0.90, as 437 

shown in Table 6. 438 

The error obtained between measured and computed discharges, with all methods, is 439 

of the same order of the discharge measurement error. Moreover, this measurement 440 

error is well known to be much larger around the peak flow, where the estimation 441 

error has a larger impact on the NS coefficient. The NS coefficients computed with 442 

the LHRM  and INCM methods are anyway a little better than the other two. 443 

4.3 Validation n.3 - Comparison with results of 3D ANSYS CFX solver 444 

The vertically averaged velocities computed using DCM, IDCM, INCM and LHRM 445 

were compared with the results of the well known ANSYS 3D code, named CFX, 446 

which solves the Reynolds-average Navier Stokes (RANS) equations, applied to a 447 

prismatic reach with the irregular cross-section measured at the Hunsdorf gauged 448 

section of the Alzette river. The length of the reach is about four times the top width 449 

of the section. 450 

In the homogeneous multiphase model adopted by CFX, water and air are assumed to 451 

share the same dynamic fields of pressure, velocity and turbulence and water is 452 

assumed to be incompressible. CFX solves the conservation of mass and momentum 453 

equations, coupled with the air pressure-density relationship and the global continuity 454 

equation in each node. Callαl, ρl, µl and lU respectively the volume fraction, the 455 

density, the viscosity and the time averaged value of the velocity vector for phase l (l 456 

= w (water), a (air)), that is: 457 
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l l

l w,a=

= ∑ρ α ρ
  (22a), 

458 

l l

l w,a=

= ∑µ α µ
  (22b), 

459 

where ρ and µ are the density and the viscosity of the “averaged” phase. The air 460 

density is assumed to be a function of the pressure p, according to the state equation: 461 

( )
0

p po

a a ,
e

γρ ρ −=
  (22c), 

462 

where the sub-index 0 marks the reference state values and γ is the air compressibility 463 

coefficient. 464 

The governing equations are the following: 1) the mass conservation equation, 2) the 465 

Reynolds averaged continuity equation of each phase and 3) the Reynolds averaged 466 

momentum equations. Mass conservation implies: 467 

1l
l w,a

α
=

=∑
  (23). 

468 

The Reynolds averaged continuity equation of each phase l can be written as: 469 

( )l
l l S

t

ρ
ρ

∂
+ ∇⋅ =

∂
U

  (24), 

470 

where Sl is an external source term. The momentum equation instead refers to the 471 

“averaged” phase and is written as: 472 

( )
( ) ( )( )( )T

eff M
p S

t

∂
′+ ∇ ⋅ ⊗ − ∇ ⋅ µ ∇ + ∇ + ∇ =

∂

U
U U U U

ρ
ρ

 (25), 

473 

where ⊗ is the dyadic symbol, SM is the momentum of the external source term S, and 474 

µeff is the effective viscosity accounting for turbulence and defined as: 475 

eff tµ µ µ= +
  (26), 

476 

where µt is the turbulence viscosity and p ′ is the modified pressure, equal to: 477 

2 2

3 3
effp p kρ µ′ = + + ∇⋅U

  (27), 

478 

where k is the turbulence kinetic energy, defined as the variance of the velocity 479 

fluctuations and p is the pressure. Both phases share the same pressure p and the same 480 

velocity U . 481 
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To close the set of six scalar equations (Eq.23, Eq.24 (two) and Eq.25 (three)), we 482 

finally apply the k-ε turbulence model implemented in the CFX solver. The 483 

implemented turbulence model is a two equation model, including two extra transport 484 

equations to represent the turbulent properties of the flow. 485 

Two-equation models account for history effects like convection and diffusion of 486 

turbulent energy. The first transported variable is turbulent kinetic energy, k; the 487 

second transported variable is the turbulent dissipation, ε. The K-epsilon model has 488 

been shown (Jones, 1972; Launder, 1974) to be useful for free-shear layer flows with 489 

relatively small pressure gradients. Similarly, for wall-bounded and internal flows, the 490 

model gives good results, but only in cases where the mean pressure gradients are 491 

small. 492 

The computational domain was divided using both tetrahedral and prismatic elements 493 

(Fig. 11). The prismatic elements were used to discretize the computational domain in 494 

the near-wall region over the river bottom and the boundary surfaces, where a 495 

boundary layer is present, while the tetrahedral elements were used to discretize the 496 

remaining domain. The number of elements and nodes, in the mesh used for the 497 

specific case are of the order respectively 4*10
6
 and 20*10

6
.  498 

A section of the mesh is shown in Fig.12. The quality of the mesh was verified by 499 

using a pre-processing procedure by ANSYS® ICEM CFD™ (Ansys inc., 2006). 500 

The six unknowns in each node are the pressure, the velocity components, and the 501 

volume fractions of the two phases. At each boundary node three of the first four 502 

unknowns have to be specified. In the inlet section a constant velocity, normal to the 503 

section, is applied, and the pressure is left unknown. In the outlet section the 504 

hydrostatic distribution is given, the velocity is assumed to be still normal to the 505 

section and its norm is left unknown. All boundary conditions are reported in Table 7. 506 

The opening condition means that that velocity direction is set normal to the surface, 507 

but its norm is left unknown and a negative (entering) flux of both air and water is 508 

allowed. Along open boundaries the water volume fraction is set equal to zero. The 509 

solution of the problem converges towards two extremes: nodes with zero water 510 

fraction, above the water level, and nodes with zero air fraction below the water level.  511 

On the bottom boundary, between the nodes with zero velocity and the turbulent flow 512 

a boundary layer  exists that would require the modelling of micro scale irregularities. 513 

CFX allows the use, inside the boundary layer, of a velocity logarithmic law, 514 
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according to an equivalent granular size. The relationship between the granular size 515 

and the Manning’s coefficient, according to Yen (1994), is given by: 516 

6

50

n
d = ( )

0.0474   (28), 

517 

where d50 is the average granular size to be given as the input in the CFX code.  518 

Observe that the assumption of known and constant velocity directions in the inlet and 519 

outlet section is a simplification of reality. A more appropriate boundary condition at 520 

the outlet section, not available in the CFX code, would have been given by zero 521 

velocity and turbulence gradients (Rameshwaran et al. 2013). For this reason, a better 522 

reconstruction of the velocity field can be found in an intermediate section, where 523 

secondary currents with velocity components normal to the mean flow direction can 524 

be easily detected (Peters and Goldberg, 1989; Richardson and Colin, 1996). See in 525 

Fig. 13 how the intermediate section was divided to compute the vertically averaged 526 

velocities in each segment section. These 3D numerical simulations confirm that the 527 

momentum Γ, proportional to the derivative  of the average tangent velocities and 528 

equivalent to the left hand side of Eq. 2, cannot be set equal to zero, if a rigorous 529 

reconstruction of the velocity field is sought after. 530 

To compute the uniform flow discharge, for a given outlet section, CFX code is run 531 

iteratively, each time with a different average longitudinal velocity in the inlet section, 532 

until the same water depth as in the outlet section is attained in the inlet section for 533 

steady state conditions.Using the velocity distribution computed in the middle section 534 

along the steady state computation as upstream boundary condition, transient analysis 535 

is carried on until pressure and velocity oscillations become periodic. 536 

In order to test the achievement of the fully developed state within the first half of the 537 

modeled length the authors plotted the vertical profiles of the streamwise velocity 538 

components for ten verticals, equally spaced along the longitudinal axis of the main 539 

channel. See in Fig.14 the plot of four of them and their location. The streamwise 540 

velocity evolves longitudinally and becomes almost completely self similar starting 541 

from the vertical line in the middle section. 542 

Stability of the results has been finally checked against the variation of the length of 543 

the simulated channel. The dimensionless sensitivity of the discharge with respect to 544 

the channel length is equal to 0.2%. 545 
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See in Table 8 the comparison between the vertically averaged state velocities, 546 

computed through the DCM, IDCM, INCM, LHRM formulas (uDCM, uIDCM, uINCM, 547 

uLHRM) and through the CFX code (uCFX). Table 9 also shows the relative difference, 548 

∆u, evaluated  as: 549 

100CFX

CFX

u u
u

u

−
∆ = ×

  (29), 

550 

As shown in Table 8, both INCM and LHRM perform very well in this validation test 551 

instead of DCM, which clearly overestimates averaged velocities. In the central area 552 

of the section the averaged velocities calculated by the INCM, LHRM and CFX code 553 

are quite close with a maximum difference ~7%. By contrast, larger differences are 554 

evident close to the river bank, in segments 1 and 9, where INCM and LHRM 555 

underestimate the CFX values. These larger differences show the limit of using a 1D 556 

code. Close to the bank the wall resistance is stronger and the velocity field is more 557 

sensitive to the turbulent exchange of energy with the central area of the section, 558 

where higher kinetic energy occurs.  559 

5 Conclusions 560 

Two new methods computing the vertically averaged velocities along irregular 561 

sections have been presented. The first method, named INCM, develops from the 562 

original IDCM method and it is shown to perform better than the previous one, with 563 

the exception of lab tests with very small discharge values. The second one, named 564 

LHRM, has empirical bases, and gives up the ambition of estimating turbulent 565 

stresses, but has the following important advantages: 566 

1. It relies on the use of only two parameters: the friction factor f (or the 567 

corresponding Manning’s coefficient n) and a second parameter βwhich on the basis 568 

of the available laboratory data was estimated to be equal to 9.  569 

2. The β coefficient has a simple and clear physical meaning: the correlation distance, 570 

measured in water depth units, of the vertically averaged velocities between two 571 

different verticals of the river cross-section. 572 

3. The sensitivity of the results with respect to the model β parameter was shown to 573 

be very low, and a one digit approximation is sufficient to get a discharge variability 574 

less than 2%. A fully positive validation of the method was carried out using lab 575 

experimental data, as well as field discharge and roughness data obtained  by using 576 
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the unsteady-state level analysis proposed by Aricò et al. (Aricò et al., 2009) and 577 

applied to the Alzette river, in the grand Duchy of Luxembourg.  578 

4. Comparison between the results of the CFX 3D turbulence model and the LHRM 579 

model shows a very good match between the two computed total discharges, although 580 

the vertically averaged velocities computed by the two models are quite different near 581 

to the banks of the river.  582 

Moreover, the estimation of the velocity profiles in each of the considered sub-583 

sections could be used in order to evaluate the vertical average velocity and so the 584 

shear stresses at the boundary of the whole cross section. In fact, it is well-known that 585 

bed load transport is directly related to the bed shear stress and that this is 586 

proportional in each point of the section to the second power of the vertically 587 

averaged velocity, according to Darcy Weisbach (Ferguson, 2007): 588 

2

0
8

f
Uτ ρ=                    (30), 589 

Moreover, it is well-known that bed load transport is directly related to the bed shear 590 

stress and that this is proportional in each point of the section to the second power of 591 

the vertically averaged velocity, according to Darcy Weisbach formula (Ferguson, 592 

2007): 593 

2

0
8

f
Uτ ρ=                    (30), 594 

All the bed load formulas available in literature compute the solid flux per unit width. 595 

For example, the popular Schoklisch formula (Gyr et al., 2006) is: 596 

)(
/

5.2
2

3

c

s

s qqSq −=
ρρ

                 (31),

 597 

where q and qs are respectively the liquid and the solid  discharge per unit width. This 598 

implies that the information given by  the mean velocity and by the cross section 599 

geometry is not sufficient for a good estimation of the bed load in irregular sections. If 600 

Eq.(31) holds, the error in the bed load estimation is proportional to the error in the 601 

volumetric discharge, discussed in the previous sections.    602 
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 607 

Notation 608 

Ai = area of each subsection “i” of a compound channel 609 

B  = top width of compound channel 610 

b = main channel width at bottom  611 

f = friction factor 612 

g = gravity acceleration 613 

H = total depth of a compound channel  614 

nmc and nfp= Manning’s roughness coefficient for the main channel and floodplain, 615 

respectively  616 

Pi = wetted perimeter of each subsection “i” of a compound channel  617 

Qmeas= measured discharge  618 

Ri = hydraulic radius of each subsection “i” of a compound channel 619 

S0 = longitudinal channel bed slope  620 

Sf = energy slope 621 

τ = turbulent stress 622 

ε = turbulent dissipation 623 

ρ = fluid density 624 

µ = fluid viscosity 625 

α = IDCM interface coefficient 626 

β = LHRM coefficient 627 

ξ = INCM coefficient 628 

 629 

 630 

 631 

 632 
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Table 1 Geometric and Hydraulic Laboratory Parameters of the experiment  series.  807 

Series 
S0  

[%0] 

h 

[m] 

B 

[m] 

b4 

[m] 

b1 

[m] 

b3 

[m] 
 

sfp 

[-] 

smc 

[-] 

F1 

1.027 0.15 1.8 1.5 

4.1 4.100 

 

0 1 

F2 2.25 2.250 1 1 

F3 0.75 0.750 1 1 

F6 2.25 0 1 1 

F8 2.25 2.250 1 0 

F10 2.25 2.250 1 2 

K1 

0.966 0.08 0.15 0.152 

0.229 0.229 

 0 0 
K2 0.152 0.152 

K3 0.076 0.076 

K4 - - 

 808 

Table 2a Sensitivities Is and Ls computed in the  F2 series for the optimal parameter 809 

values.  810 

H [m] Qmeas[m
3
s

-1
] Is Ls               

0.156 0.212 0.2209 0.2402 

0.169 0.248 0.1817 0.2194 

0.178 0.282 0.1651 0.2044 

0.187 0.324 0.1506 0.1777 

0.198 0.383 0.1441 0.1584 

0.214 0.480 0.1305 0.1336 

0.249 0.763 0.1267 0.1320 

 811 

 812 

 813 

 814 

 815 

 816 

 817 

 818 

 819 
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Table 2b Sensitivities Is and Ls computed in the  K4 series for the optimal parameter 820 

values.  821 

H 

[m] 

Qmeas 

[m
3
s

-1
] 

Is Ls 

0.085 0.005 0.3248 0.3282 

0.096 0.008 0.2052 0.2250 

0.102 0.009 0.1600 0.1709 

0.114 0.014 0.1354 0.1372 

0.127 0.018 0.1174 0.1208 

0.154 0.029 0.0851 0.0866 

 822 

Table 3 Nash-Sutcliffe Efficiency for all (calibration and validation) experimental 823 

series.  824 

 Series DCM IDCM INCM LHRM 

Calibration 

Set 

F1 0.7428 0.9807 0.9847 0.9999 

F2 0.6182 0.9923 0.9955 0.9965 

F3 0.7219 0.9744 0.9261 0.9915 

F6 0.7366 0.9733 0.9888 0.9955 

Validation 

Set 

F8 -0.0786 0.9881 0.9885 0.9964 

F10 -0.0885 0.9965 0.9975 0.9978  

K1 -14.490 -0.7007 -8.2942 0.9968 

K2 -0.9801 0.3452 -1.8348 0.9619 

K3 0.1762 0.6479 -0.3944 0.9790 

K4 0.2878 0.888 0.3548 0.9958 

 825 

 826 

 827 

 828 

 829 

 830 

 831 

 832 
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Table 4 Main characteristics of  the flood events at the Pfaffenthal and Hunsdorf 833 

gauged sites. 834 

  
  

  

Event ∆t [h] 

    Pfaffenthal                 Hunsdorf  

Hpeak 

[m] 

qpeak 

[m
3
s

-1
] 

Hpeak 

[m] 

Qpeak 

[m
3
s

-1
] 

January 2003 380 3.42 70.98 4.52 67.80 

January 2007 140 2.90 53.68 4.06 57.17 

January 2011 336 3.81 84.85 4.84 75.10 

 835 

Table 5 Optimum roughness coefficient, nopt, for the three flood events. 836 

Event 

DCM IDCM INCM LHRM 

nopt nopt nopt nopt 

[sm
-1/3

] [sm
-1/3

] [sm
-1/3

] [sm
-1/3

] 

January 2003 0.054 0.047 0.045 0.045 

January 2007 0.051 0.047 0.046 0.045 

January 2011 0.070 0.070 0.057 0.055 

 837 

Table 6 Nash-Sutcliffe efficiency of estimated discharge hydrographs for the analysed 838 

flood events. 839 

Event 

DCM IDCM INCM LHRM 

NSq NSq NSq NSq 

[-] [-] [-] [-] 

January 2003 0.977 0.987 0.991 0.989 

January 2007 0.983 0.988 0.989 0.992 

January 2011 0.898 0.899 0.927 0.930 

 840 

 841 

 842 

 843 

 844 

 845 

 846 
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Table 7 Boundary conditions assigned in the CFX simulation. 847 

 848 

Geometry Face Boundary Condition 

Inlet All velocity components 

Outlet 

Velocity direction and 

hydrostatic pressure 

distribution 

Side-Walls Opening 

Top Opening 

Bottom 

No-slip wall condition, with 

roughness given by 

equivalent granular size d50. 

 849 

 850 

Table 8 Simulated mean velocities in each segment section using 1D hydraulic 851 

models with DCM, IDCM, INCM, LHRM and CFX, and corresponding differences.  852 

Subsection 
uCFX 

[ms-1] 

uDCM 

[ms-1] 

uIDCM 

[ms-1] 

uINCM 

[ms-1] 

uLHRM  

[ms-1] 

∆uDCM ∆uIDCM ∆uINCM ∆uLHRM 

[%] [%] [%] [%] 

1 1.33 1.58 1.47 1.23 1.12 18.79 10.52 -7.52 -15.78 

2 1.37 1.42 1.4 1.36 1.38 3.65 2.19 -0.73 0.73 

3 1.38 1.53 1.48 1.38 1.4 10.87 7.25 0 1.45 

4 1.47 1.64 1.6 1.56 1.57 11.56 8.84 6.13 6.80 

5 1.53 1.94 1.8 1.59 1.61 26.79 17.65 3.92 5.23 

6 1.57 2.01 1.81 1.6 1.68 28.02 15.29 1.91 7.00 

7 1.46 1.66 1.65 1.49 1.5 13.69 13.01 2.05 2.74 

8 1.42 1.48 1.46 1.44 1.43 4.22 2.82 1.40 0.70 

9 0.88 0.91 0.90 0.70 0.69 3.40 2.27 -20.45 -21.59 

 853 
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 854 

Figure 1 Compound channel geometric parameters. 855 

 856 

 857 

Figure 2 NS versus ξ and β curves respectively for INCM (a) and LHRM (b) methods. 858 

 859 
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 860 

Figure 3 Estimated discharge values against HR Wallingford FCF measures for F2 (a) 861 

and K4 (b) series. 862 
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 863 

Figure 4 The Alzette Study Area. 864 

 865 

Figure 5 Observed and simulated stage hydrographs at Hunsdorf gauged site in the 866 

event of January 2003. 867 
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 868 

Figure 6 Observed and simulated stage hydrographs at Hunsdorf gauged site in the 869 

event of January 2007. 870 

 871 

Figure 7 Observed and simulated stage hydrographs at Hunsdorf gauged site in the 872 

event of January 2011. 873 
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 874 

Figure 8 Observed and simulated discharge hydrographs at Pfaffenthal gauged site in 875 

the event of January 2003. 876 

 877 

Figure 9 Observed and simulated discharge hydrographs at Pfaffenthal gauged site in 878 

the event of January 2007. 879 
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 880 

Figure 10 Observed and simulated discharge hydrographs at Pfaffenthal gauged site in 881 

the event of January 2011. 882 

 883 

 884 

Figure 11 Computational domain of the reach of the Alzette river. 885 
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 886 

Figure 12 A mesh section along the inlet surface. 887 

 888 

 889 

Figure 13 Hunsdorf river cross-section: subsections used to compute the vertically 890 

averaged velocities. 891 

 892 

 893 

Figure 14 Streamwise vertical profile along the longitudinal axis of the mean channel. 894 

 895 
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