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Abstract 9 

Spatio-temporal precipitation is modelled for urban application at 1-hour temporal resolution 10 

on a 2 km grid using a Spatio-Temporal Neyman-Scott Rectangular Pulses weather generator 11 

(WG). Precipitation time series for fitting the model are obtained from a network of 60 12 

tipping-bucket rain gauges irregularly placed in a 40 by 60 km model domain. The model 13 

simulates precipitation time series that are comparable to the observations with respect to 14 

extreme precipitation statistics. The WG is used for downscaling climate change signals from 15 

Regional Climate Models (RCMs) with spatial resolutions of 25 km and 8 km respectively. 16 

Six different RCM simulations are used to perturb the WG with climate change signals 17 

resulting in six very different perturbation schemes. All perturbed WGs result in more 18 

extreme precipitation at the sub-daily to multi-daily level and these extremes exhibit a much 19 

more realistic spatial pattern than what is observed in RCM precipitation output. The WG 20 

seems to correlate increased extreme intensities with an increased spatial extent of the 21 

extremes meaning that the climate-change-perturbed extremes have a larger spatial extent 22 

than those of the present climate. Overall, the WG produces robust results and is seen as a 23 

reliable procedure for downscaling RCM precipitation output for use in urban hydrology. 24 

1 Introduction 25 

Pluvial flooding of urban areas is often caused by very local extreme precipitation at sub-daily 26 

temporal scale (Berndtsson and Niemczynowicz, 1988, Schilling, 1991). Traditionally, 27 

historical gauge measurements of precipitation at minute-scale temporal resolution are thus 28 

used as input to design and analysis of urban water infrastructure (Mikkelsen et al., 1998, 29 

Madsen et al., 2009, Arnbjerg-Nielsen et al., 2013). Climate change is however expected to 30 
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change the occurrence rate and magnitude of extreme events causing urban pluvial flooding 1 

(Fowler and Hennessy, 1995; Larsen et al., 2009; Olsson et al., 2009, Sunyer et al., 2014), and 2 

high-resolution input time series representing future climates are therefore needed. Even 3 

though the overall qualitative features of precipitation are reproduced realistically by regional 4 

climate models (RCMs) (Christensen and Christensen, 2007) they are, however, not able to 5 

capture the very fine-scale spatio-temporal features of precipitation satisfactorily and yield 6 

output that is too spatially correlated (Tebaldi and Knutti, 2007; Gregersen et al., 2013). To 7 

overcome this, either dynamic downscaling with climate models has to operate at much finer 8 

scales in order to properly describe convective precipitation dynamics (Kendon et al., 2014: 9 

Mayer et al., 2015) or further statistical downscaling of the climate model output has to be 10 

performed (Olsson and Burlando, 2002; Wood et al., 2004; Cowpertwait, 2006; Molnar and 11 

Burlando, 2008; Willems et al., 2012; Sunyer et al., 2012; Arnbjerg-Nielsen et al., 2013). Fine 12 

scale dynamic downscaling is computationally extremely expensive and statistical 13 

downscaling is therefore often favoured (Maraun et al., 2010). Several approaches exist 14 

within statistical downscaling, each with its pros and cons (Wilks and Wilby, 1999; Willems 15 

et al., 2012; Arnbjerg-Nielsen et al., 2013). In the present study a stochastic weather generator 16 

(WG) is used for statistical downscaling.  17 

WGs can take different forms (Vrac et al., 2007; Burton et al., 2008; Arnbjerg-Nielsen and 18 

Onof, 2009; Chen et al., 2010; Cowpertwait et al., 2006; 2013) but they generally work by 19 

analysing observed precipitation (and possibly other weather related variables) and use the 20 

obtained statistics to create artificial stochastic precipitation (or weather) time series that 21 

replicate the behaviour of the observations with respect to these statistics (Maraun et al, 2010, 22 

Sunyer et al., 2012). Perturbation of the WG to yield output time series representing future 23 

climates is then possible by application of climate change factors calculated from output from 24 

RCMs (operation at too large space-time scales) to relevant parameters of the WG (that 25 

operates at the right space-time scale). 26 

Several WGs exist that model precipitation as a stochastic point process where the given 27 

observations are considered single realisations of an underlying precipitation process 28 

(Waymire and Gupta 1981). Rodríguez-Iturbe et al. (1987a,b) developed the stochastic point 29 

process models in a way to better characterise and describe the precipitation process at the 30 

event level. Implementations of the stochastic point process models for spatio-temporal 31 

precipitation seem to work satisfactorily at a temporal resolution of one hour or higher 32 
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(Cowpertwait and O’Connell, 1997; Burton et al., 2008; 2010; Cowpertwait et al., 2006: 1 

2013). Also, downscaling to finer resolution than one hour is inherently problematic as the 2 

scaling properties change below this point (Nguyen et al., 2002; Molnar and Burlando, 2008).  3 

Thus, for downscaling of extreme precipitation at sub-daily level and subsequent application 4 

of climate change signals from climate models, stochastic weather generators implementing 5 

stochastic point process models seem useful (Cowpertwait, 1998; Furrer and Katz, 2008; 6 

Hundecha et al., 2009; Verhoest et al., 2010; Sunyer et al., 2012). The trade-off is that the 7 

models do not involve rainfall movement and, hence that the spatio-temporal scale of the 8 

model has to be such that rainfall movement is not the main descriptor of the spatial rainfall 9 

pattern. 10 

At the daily level, the Neyman-Scott Rectangular Pulses (NSRP) and the Spatio-Temporal 11 

Neyman-Scott Rectangular Pulses (STNSRP) models (Burton et al., 2008; 2010; Cowpertwait 12 

et al., 2013) have shown good skill in downscaling point precipitation extremes. This applies 13 

for individual gauges (Sunyer et al., 2012) as well as for spatially averaged precipitation 14 

covering large areas considered as having a uniform climate described by relatively few 15 

gauges (e.g. 5 gauges for a 4000 km2 basin in the Pyrenees (Burton et al., 2010a) and 3 16 

gauges used to calibrate a regional model covering a catchment of 342 km2 in the Basque 17 

Country (Cowpertwait et al., 2013)). This is however inadequate in urban hydrology where 18 

the rainfall dynamics causing effects under study occur on much smaller time and space 19 

scales.  20 

In the present study, the STNSRP weather generator (WG) in the form of the software 21 

package RainSim (version 3.1.1, Burton et al., (2008)) is used in a new, urban hydrology 22 

context focusing on much smaller space and time scales than what has been done in previous 23 

studies. Due to the limitations in scalability of both RCM model output and precipitation 24 

measurements discussed above a temporal resolution of 1 hour is adopted, even though a 25 

higher resolution would be preferable from an urban hydrology perspective. It is fitted to 26 

hourly data from 60 rain gauges from a dense rain gauge network in Denmark and used to 27 

generate synthetic precipitation data series on an equally dense grid covering approximately 28 

2400 km2. The synthetic precipitation data is then evaluated with respect to its applicability 29 

for urban hydrological purposes. A 1-hour temporal resolution on a 2 km grid is chosen as 30 

realistic and sufficient performance scales of the model for fine-scale precipitation data in 31 

urban hydrology. The evaluation of the WG is done from an engineering perspective with 32 
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respect to its ability to reproduce rainfall features relevant for urban hydrological modelling. 1 

We will thus focus on: 2 

• the WG’s ability to produce realistic extreme event intensities at point scale 3 

• the WG’s ability to reproduce the seasonal distribution of extreme events at point 4 
scale 5 

• the WG’s ability to reproduce small scale spatio-temporal correlation structures 6 
of the extreme events 7 

This study uses the presented WG to analyse climate change in precipitation at scales 8 

comparable to the observational data sets traditionally used today for urban water 9 

infrastructure design and analysis. The WG is perturbed with climate change information 10 

obtained from a collection of temporal high resolution RCMs. Six RCM runs using three 11 

different RCMs, driven by three different GCMs and covering three different emission 12 

scenarios (ranging from average to very high emissions) are included in the analysis and four 13 

of the RCM runs are run as high resolution models at an 8 km grid. Finally, climate change at 14 

urban scale is assessed based on the perturbed WG output.   15 

2 Data and weather generator 16 

2.1 Data representing present conditions 17 

The model area is a 40 by 60 km region covering the North-Eastern part of Zealand 18 

(Denmark) including Copenhagen, see Figure 1. This study uses two different observational 19 

data sets; Table 1 summarises their main characteristics. 20 

The area is highly urbanised and has a dense but irregular network of rain gauges designed 21 

and used for urban hydrology applications. The main observational precipitation data set, 22 

SVK (abbreviation for Spildevandskomiteen, the Water Pollution Committee of the Society of 23 

Danish Engineers) is obtained from this dense network of high-resolution tipping bucket rain 24 

gauges (Jørgensen et al., 1998; Sunyer et al., 2013). Data from 60 stations that have been 25 

active between 2 and 34 years in the period 1979 and 2012 are included in the analysis; see 26 

Figure 1 for locations within the study area. Figure 2 shows the temporal development of 27 

(top) the number of active stations and (middle) the average distance between nearest 28 

neighbouring stations through the measuring period, and Figure 2 (bottom) shows the 29 

distribution of record lengths by 2012. Generally, there has been an increase in the number of 30 

stations and a densification of the network over the years. Some studies impose a minimum 31 

length of the time series to be included in regionalisation studies, e.g. Madsen et al. (2009), 32 
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but in this study the cross-correlation is of key interest and hence all gauges are included in 1 

the analysis regardless of their record length. The original data resolution is 1 min and 0.2 mm 2 

but for the present study, data is aggregated to hourly time series. This data set is used to 3 

estimate (or calibrate, or fit) most of the parameters of the WG. 4 

The second observational data set included in the analysis is referred to as the Climate Grid 5 

Denmark (CGD) (Scharling 2012). It comprises spatially averaged daily data in a uniform 10 6 

km grid for all of Denmark from 1989 to 2010 inclusive, cf. Figure 1. This data is generated 7 

based on a national network of gauges with 27 gauges within the study site (Scharling 1999) 8 

and is only used to estimate the spatial component in the WG. 9 

Finally, a third data set is the output from the applied weather generator (WG). A total of 10 10 

data sets comprising sets of 50 years’ time series in the 2 km grid (as shown on Figure 1) are 11 

simulated as output from the WG. These data sets are used to corroborate the WG by refitting 12 

and rerunning it, evaluating the output variability and comparing the output statistics to those 13 

of observations. 14 

2.2 Regional climate model data 15 

Precipitation output from six different RCM runs is used in this study, see Table 2. Two of the 16 

model runs are identical to the ones used by Gregersen et al. (2013), namely the two SRES 17 

A1B scenarios driving the RCM RACMO (version 2.1, Meijgaard et al., 2008) and the RCM 18 

HIRHAM (version 5, Christensen et al., 2006), which are both driven by the GCM ECHAM5 19 

(Roeckner et al., 2003) and are part on the ENSEMBLES project (van der Linden and 20 

Mitchell, 2009). Both have a spatial resolution of 25 km and a temporal output resolution of 1 21 

hour. These were the two ENSEMBLES runs we had available through personal contacts for 22 

the present study at true 1-hour resolution. The more generally available data series with only 23 

daily maximum 1-hour intensity are not sufficient for the employed downscaling procedure. 24 

The four other simulations used in this study are run with the RCM HIRHAM driven by the 25 

GCM EC-EARTH (Hazeleger et al., 2012) and the RCM WRF (Skamarock et al., 2005) 26 

driven by the GCM NorESM (Bentsen et al., 2013). The four simulations use the RCP 4.5 and 27 

RCP 8.5 scenarios (van Vuuren et al., 2011), see Table 2. The spatial resolution of these 28 

simulations is 8 km and the output frequency is 1 hour (Mayer et al., 2015). The simulations 29 

were carried out as part of the research project RiskChange (www.riskchange.dhigroup.com). 30 
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The SRES A1B and RCP 4.5 scenarios are considered comparable moderate forcing scenarios 1 

whereas the RCP 8.5 scenario is a very strong forcing scenario.  2 

As in Gregersen et al. (2013), climate change is considered uniform for all land cells over 3 

Denmark; this results in 87 considered grid cells for the ENSEMBLES simulations and 648 4 

for the RiskChange simulations. 5 

2.3 Weather generator 6 

The RainSim WG describes the spatio-temporal rain field as discs of rain (rain cells) with 7 

uniform rain intensity that temporarily occur and overlap in space and time to produce output 8 

that realistically describe the statistical properties of precipitation (see Burton et al. (2010a) 9 

for a thorough description of the weather generator). As the calibration data set consists of 10 

point observations, the time series from the simulations are not grid cell averages but strictly 11 

comparable to what a gauge would have measured if present in a grid point.  12 

A uniform Poisson process governed by λ describes the storm occurrences. For each storm a 13 

random number of rain cells are produced, which occur at independent time intervals after the 14 

storm origin and where the time intervals follow an exponential distribution with parameter β. 15 

A uniform spatial Poisson process governed by ρ describes the density of the rain cells in 16 

space. The cell radii are randomly drawn from an exponential distribution described by γ, and 17 

the duration and intensity of each rain cell is independent and follows an exponential 18 

distribution with parameters η and ξ, respectively. The rain intensity at a given point is 19 

therefore the sum of all overlapping rain cell intensities at a given time. In all, seven 20 

parameters describe the WG (Burton et al., 2010a): 21 

• λ-1, the mean waiting time between storm origins (in hours) 22 

• β-1, the mean waiting time for rain cell origins after storm origin (in hours) 23 

• η-1, the mean duration of rain cells (in hours) 24 

• ρ, the spatial density of rainfall cell centres (cells per km2) 25 

• ξ-1, the mean intensity of the rain cells (in mm/h) 26 

• γ-1, the mean radius of the rain cells (in km) 27 

• Φ, the non-homogeneous intensity scaling field describing how the mean 28 

monthly rainfall intensity varies in space within the model area (-) 29 
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The non-homogeneous intensity scaling field, Φ, is a proxy for the spatial variation of mean 1 

monthly precipitation and is used for relative scaling of the precipitation in space; for this 2 

study it is interpolated from the CGD data set using inverse distance weighting. Regional 3 

modelling of short-duration extreme precipitation for Denmark using the SVK data set has 4 

shown that the only significant parameter that can explain the geographical variation of point 5 

extremes statistically is the corresponding mean annual precipitation (Madsen et al., 2002; 6 

2009). Thus, taking Φ as the only spatially varying parameter in the WG, and as such the only 7 

parameter describing spatial differences within the WG, is considered to be an acceptable 8 

approximation. The actual spatial variation of mean monthly precipitation calculated from the 9 

CGD data set is considerable (see Figure 3), even though the model area is small in size and 10 

relatively flat. Especially in June and July there is a clear North-South gradient with 75-80 11 

mm/month in the North of the area and 55-60 mm/month in the South.  12 

3 Methodology 13 

3.1 Fitting of the weather generator 14 

RainSim is fitted to daily and hourly statistics for each calendar month from the observed 15 

time series (SVK) to best reproduce features at both hourly and daily levels, as described by 16 

Burton et al. (2008; 2010a,b). A custom weighing scheme is used to support the features of 17 

rainfall that are important in the context of the present study. RainSim uses the Shuffled 18 

Complex Evolution fitting algorithm in combination with an objective function that 19 

normalises the fitting statistics (to avoid bias) for optimisation; furthermore, the algorithm is 20 

run thrice to avoid sub-optima (Burton et al., 2008). The statistics used for fitting the WG are: 21 

• The mean daily precipitation intensity from the individual gauges (24 hour 22 

mean) 23 

• The variance of the intensity of the daily and hourly observations from the 24 

individual gauges (1 hour and 24 hour variance) 25 

• The skewness of the intensity of the daily and hourly observations from the 26 

individual gauges (1 hour and 24 hour skewness) 27 

• The probability of dry days and of dry hours based on the observations from 28 

the individual gauges and with thresholds of 1.0 and 0.1 mm respectively as 29 

suggested by Burton et al. (2008). 30 

• The lag-1 auto-correlation of the hourly precipitation intensity calculated 31 

from the observations at the individual gauges  32 
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• The cross-correlation between observations of hourly precipitation intensity 1 

at the individual gauges 2 

A weighing scheme is created from general knowledge on rainfall and urban hydrology, 3 

which prioritizes rainfall features relevant for the present study. The chosen weighing scheme 4 

(see Table 3) favours the higher order moment statistics, variance and skewness, over the 5 

mean as the extreme characteristics of the simulated precipitation is prioritised. Furthermore, 6 

the cross-correlation and auto-correlation are given high weights to ensure a realistic 7 

representation of the spatio-temporal extent of the simulated precipitation. The different 8 

observation time series are furthermore weighted relative to each other according to the 9 

effective length of the time series to give more weight to longer time series. This is done to 10 

increase the data basis for cross-correlation analysis, utilising that a great deal of the short 11 

time series are from recent years and thus overlap in time, see Figure 2.  12 

The standard fitting bounds suggested by Burton et al. (2008) are applied in the fitting 13 

procedure to ensure that the WG is fitted with values that are considered realistic by the 14 

model developers for a North European climate. 15 

3.2 Evaluation of simulated time series 16 

The evaluation of the simulated time series will be in line with previous studies such as 17 

Olsson and Burlando (2002), Cowpertwait (2006) and Molnar and Burlando (2008). This 18 

implies that simulated time series are not evaluated against the observations with the 19 

expectation of a perfect fit; the expectation is rather that the simulated series should resemble 20 

measured precipitation. In practise this is achieved by analysis of the statistics used in the 21 

fitting procedure and through analysis of statistics which are independent of the fitting 22 

statistics as will be outlined in Section 3.4. 23 

For evaluation of all realisations of the WG the 60 grid cells closest to the observational 24 

gauges are extracted and evaluated point-wise with respect to all the fitting statistics as 25 

recommended by Burton et al. (2008). Furthermore, the WG is refitted to the simulated data 26 

sets to evaluate if the realisation is representative and results in model parameters that are 27 

comparable to the parameters estimated from the SVK observational data set. 28 

Ten realisations of the WG, named WG1 to WG10, are used in this study. The actual 29 

simulation time is very short, but the process of writing data to text files for the complete grid 30 

takes long time. Also, the refitting of the WG data sets takes a long time to complete, making 31 
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it a rather cumbersome approach, which limits the number of realisations evaluated in this 1 

study. 2 

The refitted WG data is evaluated with respect to the fitting statistics, Y, through discussion of 3 

the density plots for the normalized error against the SVK data set:  4 ߳ = ௒ೈಸି௒ೄೇ಼௒ೄೇ಼           (1) 5 

3.3 Perturbation of the weather generator with climate change signals  6 

The fitted WG is perturbed with climate change signals by application of change 7 

factors,αi,j,k’s, to the statistics, Yi,j,k
Present’s, calculated from the SVK data set and used to fit the 8 

original WG for the present climate. In this manner new statistics are produced for the future 9 

climate, Yi,j,k
Future’s, as (Fowler et al., 2007, Burton et al., 2010b): 10 

௜ܻ,௝,௞ி௨௧௨௥௘ = ௜,௝,௞ߙ ௜ܻ,௝,௞௉௥௘௦௘௡௧        (2) 11 

where one climate change factor, α, is calculated for each statistic, i, for each month, j, for 12 

each RCM, k. The change factors are calculated using the methodology introduced by Burton 13 

et al. (2010b) which includes transformations that ensure that the bounded statistics 14 

(probabilities of dry days and hours and auto-correlation) stays within their prescribed 15 

boundaries. No change factor is calculated for the cross-correlation as this statistic is 16 

described poorly by the RCMs (Gregersen et al., 2013). 17 

3.4 Evaluation of extremes 18 

Gregersen et al. (2013) compare extreme precipitation observations with RCM output. One 19 

issue is the difference in absolute magnitude of the extremes, which can partly be explained 20 

by the inherent difference between gridded data and point observations; another issue is the 21 

spatial correlation structure of the extremes, where extremes calculated from RCM output 22 

have much too large spatial correlation distances at the sub-daily time scale. In this study, a 23 

simulated data set will be considered better than using RCM data directly for the specified 24 

purpose if it better resembles the observations with respect to both the absolute magnitude and 25 

the spatial correlation structure of the extremes. 26 

The statistics used in this study to evaluate the WG’s performance with respect to simulating 27 

extreme precipitation are based on the identification of independent rainfall events, as done 28 

when estimating intensity-frequency-duration relationships, see e.g. Madsen et al. (2002). 29 



 

 10

Individual events are separated by dry periods equal to or longer than the chosen event 1 

duration (i.e. 1-hour events have at least 1 hour of dry weather between them and 24-hour 2 

events have at least 24 hours of dry weather between them) and the maximum averaged event 3 

intensities over the chosen durations are noted. Furthermore, the Peak over Threshold (POT) 4 

approach from Mikkelsen et al. (1996) and Madsen et al. (2002) is adopted with a global 5 

constant intensity threshold (i.e. Type I censoring) to derive the extreme event intensities for 6 

each gauge/grid point. In this study, extreme precipitation events are evaluated for 11 distinct 7 

durations of 1, 2, 3, 4, 6, 8, 12, 24, 48, 72 and 120 hours with thresholds ranging 8 

(approximately log-linearly) from 7.6 to 0.34 mm/hour (the same as used by Gregersen et al. 9 

(2013) for the SVK data set). Three different event-based indices of extreme precipitation are 10 

evaluated as explained below. 11 

3.4.1 Extreme event statistics  12 

The return period of extreme events extracted from an observed or simulated rainfall time 13 

series is calculated using the California plotting position formula:  14 

௠ܶ = ்೚್ೞ௠           (3) 15 

where Tm is the return period of the event (years) with rank m and Tobs is the observation 16 

period (years) of the time series. Tm is obviously affected by sampling variability and is 17 

biased, especially for large return periods. There are more elaborate methods to estimate Tm 18 

than Eq (2), but we use Eq (2) here because it allows for comparing extreme value curves 19 

from multiple sites (including sampling variability and spatial variability) in a straightforward 20 

way. 21 

A Generalised Pareto Distribution is fitted to extremes from every single time series:  22 ்ݖ = ଴ݖ + ߤ ଵା఑఑ ቀ1 − ቀ ଵఒ்ቁ఑ቁ        (4) 23 

where: 24 

 is the intensity for extreme event with return period ܶ 25 ்ݖ •

 ଴ is the threshold 26ݖ •

 is the mean intensity of the extreme events 27 ߤ •

 is the mean number of extremes per year 28 ߣ •

 is the shape parameter 29 ߢ •

• ܶ is the return period 30 
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Based on z(T)’s intensity-duration-frequency curves are calculated for each data set. 1 

For the climate change scenarios, climate factors for the intensity of the extreme events are 2 

calculated as a function of the return period for different T-year event durations. This is done 3 

as a simple ratio between the present and future levels for a given return period as 4 

்ܨܥ = 	 ௭(்)೑ೠ೟ೠೝ೐௭(்)೛ೝ೐ೞ೐೙೟         (5) 5 

3.4.2 Seasonality of extreme events 6 

The seasonality of the extreme events is determined to further evaluate the realism of the 7 

behaviour of the WG. This is done to evaluate whether the WG data set constructed with 8 

individual monthly model parameters results in a realistic distribution of the extremes 9 

throughout the year. The determination is in practice performed by counting the number of 10 

extremes from the POT analysis that occur within each month for the SVK and WG data sets. 11 

These are then normalised and compared with a χ2 test where the normalised counts C for the 12 

SVK data act as the expected values for the WG data set and where the summation is done 13 

over months giving a test statistic x: 14 

ݔ = ∑ ൫஼೔ೈಸି஼೔ೄೇ಼൯మ஼೔ೄೇ಼ଵଶ௜ୀଵ          (6) 15 

x then follows a χ2-distribution with (12-1)(2-1) = 11 degrees of freedom. 16 

3.4.3 Unconditional spatial correlation of extremes 17 

The unconditional spatial correlation, ρ, between the intensities of extreme events that are 18 

considered concurrent at different sites A and B is estimated. The methodology follows 19 

Mikkelsen et al. (1996) with the i’th extreme intensity ZAi measured at site A being concurrent 20 

with the j’th extreme event ZBj measured at site B if Eq. 7 is fulfilled. In this framework the 21 

precipitation process is considered to generate random occurrences of precipitation that are 22 

treated as correlated random variables, ZA and ZB, and two events are considered concurrent if 23 

they are overlapping in time or at most separated by a lag time Δt, which is introduced to 24 

account for the travel time of rain storms between sites. 25 ൛ ஺ܼ௜, ܼ஻௝ൟ: ቂݐ௦௜ − Δ௧ଶ 	 , ௘௜ݐ + Δ௧ଶ ቃ஺ ∩ ቂݐ௦௝ − ∆௧ଶ , ௘௝ݐ + ∆௧ଶ ቃ஻ ≠ ∅   (7) 26 
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Here ts is the start times of the events and te is the end time of events. A lag time of Δt = 11 1 

hours + the duration of the event is adopted in accordance with Gregersen et al. (2013). The 2 

introduction of this lag time, in combination with lack of knowledge of the movement 3 

direction of precipitation, implies that an individual event at one site can be correlated to more 4 

than one event at another site.  5 

The unconditional covariance is then estimated by also accounting for non-concurrent 6 

extreme events at the two sites as: 7 covሼ ஺ܼ, ܼ஻ሽ = cov൛Eሼ ஺ܼ|ܷሽ, Eሼܼ஻|ܷሽൟ + E൛covሼ ஺ܼ, ܼ஻|ܷሽൟ   (8) 8 

with U being a boolean operator taking the value of U = 1 if events are concurrent and U = 0 9 

otherwise. Finally, the unconditional correlation is obtained by division of Eq. (8) with the 10 

sample standard deviations of the two sites (Mikkelsen et al., 1996): 11 ߩ஺஻ = ୡ୭୴ሼ௓ಲ,௓ಳሽඥ୴ୟ୰ሼ௓ಲሽ	୴ୟ୰ሼ௓ಳሽ         (9) 12 

The unconditional correlation values are grouped together in bins where the distance between 13 

the points considered are approximately the same, and an exponential model is fitted to 14 

describe the unconditional correlation’s dependence on distance between sites using the e-15 

folding distance measure as proposed by Gregersen et al. (2013). 16 

4 Results and discussion 17 

4.1 Fitting the weather generator 18 

The WG converges to an optimum fit for the SVK and CGD data for all calendar months, 19 

resulting in a WG that is able to simulate realistic rainfall fields all year round. The parameter 20 

estimates (cf. Section 2.3) for the model fitted to SVK data, the parameter estimates for the 21 

model refitted to the 10 realisations of the WG (WG1 – WG10) and the used boundary values 22 

are given in Figure 4. All parameters vary over the course of the year, some more smoothly 23 

than others. Note that the β parameter (the parameter controlling the arrival time of cells after 24 

a storm origin) is constrained at its prescribed minimum value for four months (February, 25 

September, October and December). However, rain events can easily last for several days at 26 

these times of the year in Denmark, and this fitting artefact is therefore considered to have 27 

limited influence on those features of rainfall, which are of interest for this study. Figure 4 28 

shows that all the refitted values are different and especially the β parameter does not always 29 

seem to follow the same structural pattern as for the SVK data set. As β-1 controls the arrival 30 
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time of cells after storm origin it will be heavily dependent on the actual realisation of 1 

weather from the WG and this is not considered to be important for the realised extreme 2 

events. The ξ parameter seems to be slightly biased in the same direction for all WGs. ξ-1 3 

controls the mean intensity of the rain cells and the difference in fit suggests that the rain in 4 

the WG data sets are slightly more intense during summer than what is seen in the SVK data 5 

set. Generally, the WG data sets however represent the SVK data set well. 6 

The fitting statistics (cf. section 3.1) resulting from the direct analysis of the observations 7 

(SVK data set) and the simulations (WG data sets that are simulated based on fitting the WG 8 

to the SVK and CGD data) are compared in Figure 5 through the normalized error (Eq. 1) and 9 

directly in Table 4. Generally, the fit seems reasonable for all variables with a mean of the 10 

normalized errors close to zero. For the moment statistics the WG data sets seem to have a 11 

slight positive bias, and the variance and skewness distributions are also slightly positively 12 

skewed (Figure 5a-e). However the WG fit are still within the bounds reported for the SVK 13 

data set in Table 4. The lag-1 auto-correlation and the probabilities of dry hours seem to be 14 

fitted well even though the probability of dry days also seem to have some skewness in the 15 

error distribution. The probability of dry days is the only parameter that seems to differ 16 

between observations and WGs, indicate that the WG concentrates the precipitation on too 17 

few days. Also, it seems that none of the WG realisations performs differently than the others 18 

with respect to reproduction of the fitting statistics. Hence the discrepancies observed in 19 

Figure 4 do not seem to impede the use of the WGs as good proxies for observed 20 

precipitation.. 21 

The cross correlation of the 1-hour intensities is shown in Figure 6 for each month of the year. 22 

The 10 WG data sets seem to reflect the overall behaviour of the SVK data set very well and 23 

also capture most of the variability seen in the SVK data set. The very low correlations 24 

observed in the SVK data set for some “traces” of points, especially in March, October and 25 

November, are due to some time series only overlapping for very short time periods in recent 26 

years where the number of stations has increased dramatically (see Figure 2); hence the 27 

correlation is depending on only very few precipitation events. There is no evidence of a 28 

systematic pattern in these readings. Again, the difference between different WG realisations 29 

is very limited. 30 
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From Figures 5 and 6 the WG fit is considered satisfactory given the complex data set used 1 

and the purpose of this study. For analysis of extremes at event level this WG reproduces the 2 

features expected to have the highest influence on the produced extremes well. 3 

4.2 Evaluation of extremes for present climate conditions 4 

For durations of 1 to 120 hours the extreme events are extracted from the SVK data set at 5 

each gauge and from the WG data sets in each grid cell closest to the SVK observation points 6 

and ranked according to return period (Eq. 3). Figure 7 shows intensity-duration-frequency 7 

curves estimated for WG realisation along with the SVK data set. For both 100 and 10-year 8 

events the WG data sets result in comparable extreme intensity values for all considered 9 

durations well within the shown 68% confidence interval for the SVK IDF curve. 10 

Figure 8 shows that the seasonal distribution of these extreme events is captured very well by 11 

the considered grids from the simulated WG data sets for all considered event durations. The 12 

χ2 tests furthermore confirm that there are no significant differences between distributions for 13 

the WG and the SVK data sets for all event durations. 14 

Figure 9 shows the unconditional spatial correlation for the SVK and for the selected WG grid 15 

points calculated according to Eq. (9) and grouped in selected bins. Table 5 furthermore 16 

compares the e-folding distances based on the fitted exponential models with a set of values 17 

calculated from RCM data representing a slightly larger area, taken from Gregersen et al. 18 

(2013). 19 

Gregersen et al. (2013) show, using data from the whole of Denmark (range 0-350 km), that 20 

the spatial correlation pattern is not the same when considering output from climate models 21 

compared to SVK data as the climate model output maintains too long spatial correlation 22 

lengths at scales below approximately 150 km and 12 hours (see Table 5). Both Figure 9 and 23 

Table 5 indicate that the WG better reproduces the spatial correlation pattern of the SVK data 24 

within the spatial range (0-60 km) covered by the observations included in this study. The e-25 

folding distances computed in this study for the SVK data set are somewhat lower than the 26 

ones calculated by Gregersen et al. (2013). This is a consequence of inclusion of fewer gauges 27 

and, most importantly, that the time series in the SVK data set for this study have been 28 

aggregated into hourly time series prior to the smoothing and POT analysis. Gregersen et al. 29 

(2013) conducted the smoothing and POT analysis directly on the original time series that 30 

have a one-minute resolution. The WG data sets represent the space-time features of 31 
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precipitation of crucial importance for urban hydrology applications much better than the 1 

climate model output; the WG data set is considered realistic at this small-scale spatio-2 

temporal resolution. 3 

Overall, the results show that the WG is able to realistically simulate extreme precipitation 4 

statistics down to the hourly scale at a 2x2 km spatial resolution. 5 

4.3 Perturbation of the weather generator with climate change signals from 6 
RCMs 7 

As the different realisations of the WG produce similar weather, only one 30-years realisation 8 

is used for perturbation with climate change signals from each of the RCMs. Furthermore, all 9 

grid cells are used for both present and future evaluations as no comparisons are made to the 10 

observational data. 11 

For each RCM run and each statistic the change factors, αi,j,k’s, are calculated. They are 12 

primarily above 1 for the moment derived statistics (Figure 10a-e) but the different RCM runs 13 

appear different. For the 24 hour mean (Figure 10a) the αi,j,k’s are mostly above 1 with all 14 

RCM runs showing some months with values below 1 in an unsystematic pattern. For both the 15 

24 and 1 hour variances (Figure 10b and d) the number of RCM runs and months that show a 16 

decrease is very limited and in general the variance will increase for all seasons. The 17 

HIRHAM RCP 8.5 simulation differs from the other RCM runs with very high αi,j,k’s for the 18 

summer months. The 24 and 1 hour skewness (Figure 10c and e) show more clear seasonality 19 

than the mean and variance with higher αi,j,k’s from May to September for all RCM runs 20 

clearly indicating a shift in the distribution of precipitation intensities towards more extremes. 21 

Again the HIRHAM RCP 8.5 run stands out with very high αi,j,k’s for the 1 hour skewness for 22 

most of the year. This means that the extreme precipitation intensities are expected to be 23 

higher during summer and especially the sub-daily extremes for the HIRHAM RCP 8.5 24 

perturbation could have very high intensities as a combination of a large increase in both 25 

variance and skewness will result in many severe precipitation events with a high mean 26 

intensity.  27 

For the lag-1 hour auto-correlation (Figure 10h) the  αi,j,k are mostly below 1 indicating more 28 

variations from one hour to the next and thus a possibility of more abrupt changes in the 29 

rainfall at the hourly level. For the probability of dry days and dry hours (Figure 10f and g) 30 

the pattern is less clear. The RCM simulations show some variation around 1 (approximately 31 
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between 0.7 and 1.7) but do not agree with respect to season of these changes or their relative 1 

magnitude. This suggests that future rainfall will follow the same overall patterns as today but 2 

as all RCM runs have months with  αi,j,k below 1 there will also be more severe periods since 3 

the precipitation is concentrated on fewer days and hours. For instance, the peaks for the 4 

WRF RCP 8.5 perturbation in August for both probability of dry days and hours (Figure 10f 5 

and g) in combination with the increases in variance and skewness (Figure 10b to e) are 6 

expected to result in very severe extremes as the increased rainfall amount is expected to 7 

occur on fewer days. All in all, the αi,j,k’s indicate that for all RCM runs there will be more 8 

rainfall on average and it will be more variable resulting in more (and more severe) extremes 9 

events. This is in accordance with general findings from studies based on direct output from 10 

RCMs (Christensen and Christensen, 2007; Sunyer et al., 2014). 11 

4.4 Changes in climate changed extremes from the weather generator 12 

Calculating the climate factors, CF’s(Eq. 5), from the perturbed and original WG using the T-13 

year event estimates calculated with Eq. 4 shows that despite the differences observed in the  14 

αi,j,k for the input statistics (Figure 10), the perturbation schemes based on RCM simulations 15 

modelling comparable climate change (HIRHAM SRES A1B, RACMO SRES A1B, 16 

HIRHAM RCP 4.5 and WRF RCP 4.5) result in similar changes to extremes after 17 

downscaling with the WG (Figure 11). Clearly, and as expected from the results in Figure 10, 18 

the HIRHAM RCP 8.5 perturbed WG results in a much more severe change in extreme 19 

precipitation than the other perturbation schemes for both 10 and 100 year return periods. It is 20 

interesting that the WG perturbed with HIRHAM SRES A1B results in a rather stable CF in 21 

the range 1.35-1.55 with seemingly little dependence on return period and event duration, The 22 

WGs perturbed with RACMO SRES A1B, HIRHAM RCP 4.5 and WRF RCP 4.5 show 23 

similar CF values that are higher for 100-year extremes than for 10-year extremes but still not 24 

depend significantly on the event duration.  25 

Both the HIRHAM RCP 8.5 and WRF RCP 8.5 perturbed WGs yield CF values that depend 26 

on the event duration with higher CF for short duration precipitation extremes. This indicates 27 

that this high-end scenario is changing the climate more drastically than the more moderate 28 

scenarios (SRES A1B and RCP 4.5) and that the observed extreme effects are not linearly 29 

scalable from moderate to high end scenarios. For event durations above 48 hours the 30 

different WGs yield similar CF’s, but surprisingly the high-end scenario WRF RCP 8.5 31 

perturbation scheme results in the smallest CF for the long duration events. This may indicate 32 
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that the direct output from the RCMs underestimate the changes occurring at high spatio-1 

temporal resolutions. 2 

Despite the observed differences between WGs perturbed with different RCM runs and 3 

different forcing scenarios the results show an upwards change for all event durations (see 4 

Figure 11). The change seems to increase with the return period with a projected change 5 

factor in the order of 1.2-1.3 for T=10 years and 1.4-1.5 for T=100 years for the moderate 6 

scenarios (SRES A1B and RCP 4.5). Furthermore, the RCP 8.5 scenario perturbed WG runs 7 

suggest that short duration extreme events become relatively more severe compared to the 8 

WG runs perturbed with the other, moderate forcing scenarios. 9 

4.5 Unconditional spatial correlation of climate changed T-year events 10 

All the perturbed WG runs produce T-year precipitation events with reasonable spatial 11 

correlation structure (Figure 12, Table 6) includes calculated e-folding distances and it is 12 

noteworthy that the e-folding distance for present conditions is somewhat shorter for the full 13 

WG data set compared to the sub sets closest to the observations shown in Figure 9. The 14 

HIRHAM RCM and WRF RCM perturbed WG runs present similar results for all event 15 

durations whereas the RACMO SRES A1B perturbed WG run yield slightly larger 16 

correlations lengths for the very short durations (Figure 12a). Generally, all the perturbed WG 17 

runs have larger correlation lengths than for the present climate, suggesting that the WG 18 

implicitly expects that more severe events on average also results in events with a larger 19 

spatial extent. This behaviour has recently been observed by Kendon et al. (2014) using a 20 

high resolution regional climate model (1.5 km resolution). This difference, however, is 21 

limited, and in general the WG produces extremes with a spatial extent much closer to that of 22 

observations than RCMs. Online Resource 1 includes an animation of extreme precipitation 23 

events generated directly as output from the 25 km resolution RCM HIRHAM SRES A1B, 24 

the 8 km resolution RCM HIRHAM RCP 4.5 and the 2 km WG evaluated in this study. From 25 

these it is clear that the small-scale variability is much more pronounced for the WG output 26 

than for the output of the RCMs, but also that the WG output lacks rainfall movement. At the 27 

hourly scale this is not a problem for a catchment of the size presented in the Online Resource 28 

(same as shown in Figure 1). 29 

Only few apparent effects are observed with respect to choice of RCM, GCM and RCM 30 

spatial resolution and it is not possible to detect any systematic patterns. The WG seems to 31 
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produce robust results with respect to change in extreme precipitation due to climate change 1 

that are similar for similar climate forcing scenarios. 2 

5 Conclusions 3 

Precipitation time series based on high-resolution gauge measurements are presently used as 4 

input to design and analysis of urban water infrastructure, and time series representing future 5 

climates are needed in the future. Current RCMs operating at 25 and even 8 km spatial scales 6 

however yield too spatially correlated output that poorly represents the fine-scale precipitation 7 

features relevant for urban hydrology. The study indicate that statistical downscaling of 8 

precipitation output from RCMs using a stochastic weather generator (WG) is therefore a 9 

better solution. 10 

This study demonstrates that the chosen Spatio-Temporal Neuman-Scott Rectangular Pulses 11 

weather generator (WG) fitted to a dense network of 60 rain gauges in a 40 by 60 km region 12 

simulates realistic extreme precipitation of relevance to urban hydrology. Output is generated 13 

at the 1 hour temporal scale at a 2 km spatial grid, which is finer than what previous studies 14 

using this WG have focused on. Even though urban hydrology literature claims that rain data 15 

are ideally needed at a time scale of minutes, the hourly scale chosen here can still be of much 16 

use when assessing climate change impacts in urban hydrology as it is much finer than what 17 

regional climate models can currently provide. 18 

The WG generally reproduces statistics of the observations such as mean, variance and 19 

skewness of the rainfall intensity distribution well at both the hourly and daily levels. It also 20 

produces realistic levels of lag-1 auto-correlation, cross-correlation between output at 21 

different grid points and probabilities of dry days and hours. Evaluating the WG from an 22 

urban hydrological engineering perspective yields the following conclusions: 23 

• The extreme events of the simulated time series show realistic levels of 24 

intensity as well as a reasonable spatial variability for the full 60x40 km 25 

model area. Thus, the WG handles the large data set of spatially distributed 26 

observational input in a robust manner. 27 

• The seasonal distribution of the extremes are not significantly different in 28 

the generated WG data sets compared to the observed SVK data set, 29 

implying that the applied procedure of individual monthly model fits results 30 

in a realistic seasonal behaviour of the WG.  31 

• The spatial extent of the extreme events in the WG data set, as evidenced by 32 

the unconditional spatial correlation of extremes, is close to that of the 33 
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observational SVK data set with e-folding distances in the same order of 1 

magnitude. This is much better than what is observed for Regional Climate 2 

Model (RCM) output at 25 and 8 km grid scale in previous studies.  3 

This indicates that the WG is a good way to downscale spatio-temporal precipitation output 4 

from RCMs to relevant urban scales and that the simulated output can be used directly as 5 

input to urban hydrological models. 6 

Output from six different RCM runs representing average to high emission scenarios are used 7 

to perturb the WG for different possible future climate scenarios. Two have a 25 by 25 km 8 

spatial resolution and four have a very high 8 by 8 km spatial resolution, and all RCM data 9 

sets are available at hourly temporal resolution. A clear increase in the magnitude of extreme 10 

precipitation is observed for all climate change perturbations of the WG.  11 

This study highlights that different RCMs run with the same greenhouse gas emission 12 

scenario can result in different precipitation output and hence different CFs for perturbation of 13 

the WG. Despite these observed differences, downscaling with the WG results in similar 14 

extreme precipitation behaviour for similar emission scenarios.  15 

Most perturbed WGs confirm that there is a more severe climate change signal for extreme 16 

events. The two WGs perturbed by the RCP 8.5 scenario show a more severe climate change 17 

signal for short-duration events. However, this finding is not shared by the other emission 18 

scenarios, suggesting that extreme precipitation at T-year event level is not scalable between 19 

emission scenarios. The spatial correlation structure of the WG output is slightly altered by 20 

the perturbation indicating a built-in correlation between intensity and spatial extent and 21 

suggesting that precipitation extremes in a future climate may have larger spatial extent than 22 

extremes in the present climate.  23 
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Table 1 Main characteristics of the two observational data sets used in this study. 1 

 Type of data Spatial data 

resolution 

Temporal 

data 

resolution 

Period 

SVK Point 

observations 

60 stations Minute data 1979-2012 

CGD Gridded data 10 km grid Daily data 1989-2010 

  2 
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Table 2 Regional Climate Model (RCM) runs from which precipitation output is used to 1 
calculate perturbations schemes for the WG used in this study. All have a temporal resolution of 2 
1 hour. 3 

Name RCM GCM Spatial 

resolution 

Present 

period 

Future 

period 

HIRHAM SRES 

A1B 

HIRHAM 5 ECHAM 5 25 km 1980-2009 2070-2099 

RACMO SRES 

A1B 

RACMO 

2.1 

ECHAM 5 25 km 1980-2009 2070-2099 

HIRHAM rcp 4.5 HIRHAM 5 EC-

EARTH 

8 km 1981-2010 2071-2100 

HIRHAM rcp 8.5 HIRHAM 5 EC-

EARTH 

8 km 1981-2010 2071-2100 

WRF rcp 4.5 WRF 3 NorESM 8 km 1981-2010 2071-2100 

WRF rcp 8.5 WRF 3 NorESM 8 km 1981-2010 2071-2100 

  4 
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Table 3 The relative weights used in the fitting procedure. *All the cross-correlations of a gauge 1 
have equal weights that sum up to the value shown. 2 

Statistic Relative weight 

24 hour mean 1 

24 hour variance 3 

24 hour skewness 6 

1 hour variance 3 

1 hour skewness 6 

1 hour auto-correlation 6 

1 hour Cross-correlation 6* 

Probability of dry day 1 

Probability of dry hour 1 

  3 
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Table 4 Comparison between observational (SVK) data and the simulated (WGs) statistics. Data 1 
are averaged over the full course of the year and over the full model domain. For the SVK data 2 
set the 50th percentile is reported as well as the 16th to 84th percentiles interval to emulate the 3 
empirical standard deviation. For the WGs one central 50th percentile is reported across the ten 4 
simulations. 5 
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Table 5 e-folding distances for the SVK and WG maximum averaged intensities of extremes for 1 
1, 6, 12 and 24 hours duration, based on the fitted exponential models (cf. Figure 8) as well as 2 
for a regional climate model (HIRHAM/ECHAM) from the study by Gregersen et al. (2013) for 3 
comparison. *Values from Gregersen et al. (2013). 4 

e-folding distance 

[km] 

1 hour 6 hour 12 hour 24 hour 

SVK 3.5 5.5 7.3 8.0 

WGs 7.1 – 9.9 9.1 – 14 9.5 – 16  10 – 28 

HIRHAM/ECHAM* 56 48 48 54 

 5 

  6 
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Table 6 e-folding distances for all aggregation periods for all WG output. 1 

e-folding distance [km ] 
Aggregation period 

1 hour 6 hour 12 hour 24 hour

WG – Present Climate 3.9 5.0 4.9 5.0

WG – HIRHAM SRES A1B 5.2 7.4 7.7 8.1

WG – RACMO SRES A1B 7.3 9.7 9.1 8.4

WG – HIRHAM rcp 4.5 5.2 8.4 8.7 8.8

WG – HIRHAM rcp 8.5 4.6 7.7 9.3 9.0

WG – WRF rcp 4.5 5.1 9.1 9.3 11.5

WG – WRF rcp 8.5 4.9 9.4 9.9 10.2

  2 
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 1 

Figure 2 Temporal development in (top) the number of stations in the SVK data set and (middle) 2 
the average distance between closest neighbouring stations, and (bottom) the distribution of 3 
record lengths. 4 



 

 35

 1 

Figure 3 Spatial variation of the mean monthly precipitation calculated from the CGD data set 2 
for the model area. Isohyets are 3 mm between. 3 
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 1 

Figure 4 Monthly variation of the model parameters estimated from the SVK data set and from 2 
the simulated 10 WG data sets. Upper and lower fitting bounds are shown in light grey. 3 
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 1 

 2 
Figure 5 Density plots for the normalized error between the WG and the SVK data sets. 3 
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 1 

Figure 6 Variation of cross-correlation of the 1 hour intensity with distance between pairs of 2 
gauges in the SVK data set (black dots) and grid points in the WG data set (coloured dots). 3 
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 1 

Figure 7 Mean intensity-duration-frequency curves for 100 and 10 year return periods calculated 2 
from the SVK data set and for all 10 WG realisations. 68% confidence interval for the SVK data 3 
set. 4 
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 1 

 2 

Figure 8 Monthly variation for 1, 6, 12 and 24-hour durations of the frequency of extreme events 3 
in the SVK and WG data sets. 4 
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 1 

 2 

Figure 9 Unconditional spatial correlation for the SVK and WG data sets, calculated from 3 
maximum averaged intensities of extreme events for 1, 6, 12 and 24 hours duration. Fitted 4 
exponential models that highlight overall tendencies are shown. 5 
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 1 

Figure 10 Change factors, α's, calculated on a monthly basis for each statistic and each RCM. 2 
Each set of α's from an RCM act as a perturbation scheme for the WG. 3 
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 1 

Figure 11 Climate factors for different return periods for the different perturbed WG runs. T=10 2 
years (left) and T=100 years (right). 3 
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 1 

Figure 12 The unconditional spatial correlation of all T-year events for perturbed WG output for 2 
event durations of 1, 6, 12 and 24 hours. 3 
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