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Abstract.

Validation of precipitation estimates from various products is a challenging problem, since the

true precipitation is unknown. However, with the increased availability of precipitation estimates

from a wide range of instruments (satellite, ground-based radar, and gauge), it is now possible to

apply the Triple Collocation (TC) technique to characterize the uncertainties in each of the products.5

Classical TC takes advantage of three collocated data products of the same variable and estimates the

mean squared error of each, without requiring knowledge of the truth. In this study, triplets among

NEXRAD-IV, TRMM 3B42, GPCP
:::::::
3B42RT,

::::::
GPCP

::::
1DD

:
and GPI products are used to quantify the

associated spatial error characteristics across a central part of the continental US.
::::
Data

:::
are

:::::::::
aggregated

::
to

:::::::
biweekly

::::::::::::
accumulations

:::::
from

::::::
January

:::::
2002

::::::
through

:::::
April

:::::
2014

:::::
across

:
a
:::::::
2◦× 2◦

::::::
spatial

::::
grid. This10

is the first study of its kind to explore precipitation estimation errors using TC across the United

States (US). A multiplicative (logarithmic) error model is incorporated in the original TC formu-

lation to relate the precipitation estimates to the unknown truth. For precipitation application, this

is more realistic than the additive error model used in the original TC derivations, which is gener-

ally appropriate for existing applications such as in the case of wind vector components and soil15

moisture comparisons. This study provides error estimates of the precipitation products that can be

incorporated into hydrological and meteorological models, especially those used in data assimila-

tion. Physical interpretations of the error fields (related to topography, climate, etc) are explored.

The methodology presented in this study could be used to quantify the uncertainties associated with

precipitation estimates from each of the constellation of GPM satellites. Such quantification is pre-20

requisite to optimally merging these estimates.

1



1 Introduction

Precipitation is one of the main drivers of the water cycle; therefore, accurate precipitation estimates

are necessary for studying land-atmosphere interactions as well as linkages between the water, en-

ergy and carbon cycles. Surface precipitation is also a principal driver of hydrologic models with a25

wide range of applications. A wide suite of instruments (in-situ and remote sensing) monitor pre-

cipitation incident at the Earth surface. Specifically, there has been a great effort during the last two

decades to use microwave radar and radiometer instruments on board low-earth orbit satellites to ac-

curately estimate precipitation over large areas. These estimates when combined with infrared based

cloud top temperature observations from geostationary satellites provide high spatial and temporal30

resolution precipitation estimates that are appropriate for hydrological and climatological studies.

However, precipitation estimation is inevitably subject to error. The errors are caused by different

factors depending on the measurement instrument. For gauge measurements, the sparse distribution

of gauges, environmental conditions such as wind and evaporation, and topography contribute to the

errors. For ground-based radars, beam blockages in mountainous regions, the empirical backscatter-35

rain rate relationship (and the simplifications embededded
::::::::
embedded in their functional form) and

clutter are among the sources of error. Lastly, for satellite retrievals (both radiometer and radar),

assumptions about the surface emissivity, neglecting evaporation below clouds, and empirical rela-

tionships are the driving factors of error.

The new Global Precipitation Measurement (GPM) mission aims to integrate precipitation esti-40

mates from a constellation of satellites to provide high spatial and temporal resolution estimates of

precipitation over the Earth (Hou et al., 2013). However, successful data integration requires that the

errors in each estimate are known. Since the truth is not known, only indirect methods are generally

developed to estimate errors.

Several studies investigate and model the uncertainties in remotely-sensed precipitation estimates;45

however, they all depend on assuming the ground-based (gauge and/or radar) observations or models

representing the zero-error precipitation (Krajewski et al. (2000); McCollum et al. (2002); Ebert et al. (2007); Su et al. (2008); Sapiano and Arkin (2009); Tian et al. (2009); Vila et al. (2009); Anagnostou et al. (2010); Stampoulis and Anagnostou (2012); Habib et al. (2012); Kirstetter et al. (2012); Chen et al. (2013); Kirstetter et al. (2013); Alemohammad et al. (2014); Maggioni et al. (2014); Seyyedi (2014); Tang et al. (2014); Salio et al. (2014); Prat and Nelson (2014); Gebregiorgis and Hossain (2015)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Krajewski et al. (2000); McCollum et al. (2002); Ebert et al. (2007); Su et al. (2008); Sapiano and Arkin (2009); Tian et al. (2009); Vila et al. (2009); Anagnostou et al. (2010); Stampoulis and Anagnostou (2012); Habib et al. (2012); Kirstetter et al. (2012); Chen et al. (2013); Kirstetter et al. (2013); Alemohammad et al. (2014); Maggioni et al. (2014); Seyyedi (2014); Tang et al. (2014); Salio et al. (2014); Prat and Nelson (2014); Alemohammad et al. (2015); Gebregiorgis and Hossain (2015) ;

among others).

Triple Collocation (TC) provides a platform for quantifying the Root-Mean-Square-Error (RMSE)

in three or more products that estimate the same geophysical variable. Developed by Stoffelen50

(1998), TC takes advantage of at least three spatially and temporally collocated measurements of

the variable of interest to solve a system of equations and estimate the error variances of each of

the measurements. To make this system of equations determined, some assumptions are built into

the technique including zero error cross covariance between different products and zero covariance

between errors and truth.55

While TC has been used extensively to estimate errors in soil moisture products (Miralles et al.,

2010; Dorigo et al., 2010; Parinussa et al., 2011; Anderson et al., 2012; Draper et al., 2013), it has

also been successfully applied to other geophysical variables such as ocean wind speed and wave
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height (Stoffelen, 1998; Janssen et al., 2007; Portabella and Stoffelen, 2009), leaf area index (LAI)

(Fang et al., 2012), fraction of absorbed photosynthetically active radiation (FAPAR) (D’Odorico60

et al., 2014), sea-ice thickness (Scott et al., 2014), atmospheric columnar integrated water vapor

(Cimini et al., 2012; Thao et al., 2014), sea surface salinity (Ratheesh et al., 2013), and land water

storage (van Dijk et al., 2014).

Roebeling et al. (2012) for the first time apply the TC technique to precipitation products and

estimate errors for three precipitation products across Europe. The results show that a gridded gauge65

product and satellite retrievals (microwave) have TC errors less than 1.0 mm day−1 while the Euro-

pean weather radar estimates have errors up to 18 mm day−1 in some mountainous regions.

New variants of TC are introduced with wider applications in recent years. McColl et al. (2014)

introduce the Extended TC (ETC) that can be used to easily estimate the correlation coefficient

between each of the triplets and the unknown truth as well as their RMSEs. ETC is mathematically70

equivalent to the original TC; however, the ease of calculating the correlation coefficients in ETC

provides a different perspective on the performance of each product.

Su et al. (2014) introduce an implementation of instrument variables to reduce the minimum

number of products necessary for TC analysis to two. In this framework, the lagged version of one

of the two products is used as the third product to conduct the TC analysis (lagged-TC). If the lagged75

product is sampled at time intervals shorter than the temporal correlation length of the variable of

interest, this approach can provide RMSE estimates of two collocated products.

In this study, we estimate the spatial RMSE between triplets of precipitation products across a

central part of the US. Unlike Roebeling et al. (2012), we introduce a new logarithmic (multiplica-

tive) error model that is more realistic for precipitation estimates. Moreover, the ETC approach is80

used in this study to estimate the correlation coefficients for each of the products.

Yilmaz and Crow (2014) present an extensive evaluation of the TC assumptions when applied to

soil moisture products. We take a similar approach here, and use rain gauge data to validate the error

estimates from TC analysis in a subset of pixels of the study domain. These pixels (located in the

state of Oklahoma) have a dense network of rain gauges with a high quality data processing system85

that enables us to do this evaluation. The results of this evaluation provide a better understanding of

the errors in precipitation products estimated by TC.

This paper is organized as following: Section 2 introduces the multiplicative TC analysis. Section

3 reviews the products used in this study. Section 4 presents the results of TC error estimates. Section

5 evaluates the assumptions of TC analysis using gauge data and Section 6 discusses the results and90

conclusions.
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2 Triple Collocation Formulation

In this section, we review the TC formulation and introduce the multiplicative error model. In the

multiplicative error model for precipitation, the true precipitation is related to the estimation as:

Ri = aiT
βieεi (1)95

in which Ri is the precipitation intensity estimate from product i, T is the true precipitation intensity,

ai is the multiplicative error, βi is the deformation error and εi is the residual (random) error. The

multiplicative error model is used in several studies to investigate the errors associated with precipi-

tation estimates (Hossain and Anagnostou, 2006; Ciach et al., 2007; Villarini et al., 2009; Tian et al.,

2013). It is generally concluded that the multiplicative model is more appropriate for quantifying er-100

rors in precipitation estimates. Moreover, Tian et al. (2013) present a comparison between the linear

and multiplicative error models applied to daily precipitation estimates across the US. They show

that the multiplicative model has a better prediction skill and it is applicable to the variable and wide

range of daily precipitation values.
::
We

::::
also

::::::::
evaluated

:::
the

::::
joint

::::::::::
probability

::::::
density

::::::::
functions

::::::
(PDF)

::
of

::::
pairs

::
of

::::::::
products

::
to

:::::
check

::::
their

::::::
spread

::::::
across

:::::::
different

::::::
values

::
of

:::::::::::
precipitation.

::::::
Results

:::::
show

::::
that105

::::
PDFs

:::::::::
generated

::::
from

:::
the

::::::::::::
multiplicative

::::::
model

::::
have

:::::
better

::::::
spread

::::::::
compared

:::
to

:::
the

:::::::
additive

::::::
model.

::::::::
Therefore,

:::
we

:::::::::
concluded

:::
that

:::
for

::::::::
biweekly

::::
data

::
it

:
is
:::::
better

::
to
:::::::
assume

:::
the

:::::::::::
multiplicative

::::::
model.

:

In this study, we use the multiplicative model to relate the precipitation estimates to the true value;

however, without having the truth or making any assumptions about the distribution of the error, we

estimate the RMSE of each estimate. Taking the logarithm of (1), results in:110

ln(Ri) = αi+βiln(T)+ εi (2)

in which, αi = ln(ai) is the offset. Defining ri = ln(Ri) and t= ln(T) the equation is simplified

to:

ri = αi+βit+ εi (3)

This linear equation makes it possible to apply TC to the precipitation data assuming a multiplica-115

tive error model. Therefore, log-transformation of the precipitation estimates from all the products

is performed in this study and then TC is applied. Assuming there are three collocated estimates

of precipitation with zero mean residual errors (E(εi) = 0) that are uncorrelated with each other

(Cov(εi, εj) = 0) and with the true precipitation (Cov(εi,t) = 0), the RMSE of each product can be

estimated using the following sets of equations (McColl et al., 2014):120

σ2
r1 = C11 −

C12C13

C23
(4)

σ2
r2 = C22 −

C12C23

C13
(5)

σ2
r3 = C33 −

C13C23

C12
(6)
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where Cij is the (i, j)th element of the sample covariance matrix between the transformed triplets,125

and σri is the RMSE of the ri product. Equations (4) - (6) estimate the mean-square-error of each

product in logarithmic scale. In Section 4, the results of these estimates along with RMSE estimates

of Ri products are presented.

Based on the ETC introduced by McColl et al. (2014), the correlation coefficient between the truth

and each of the triplets is:130

ρ2t,1 =
C12C13

C11C23
(7)

ρ2t,2 =
C12C23

C22C13
(8)

ρ2t,3 =
C13C23

C33C12
(9)

where ρ2t,i is the correlation coefficient between the truth and product i in the logarithmic scale (i.e.135

between t and ri). In defining the sign of the ρt,i, it is assumed that the measurements are positively

correlated with the truth to overcome sign ambiguity.

3 Study Domain and Data Pre-Processing

Figure 1 shows the analysis domain and the spatial grid used in this study. The study domain ranges

from 30◦ to 40◦N latitudes and 110◦ to 80◦ W longitudes. This region is selected to maximize the140

overlapping spatial coverage between the data sets that are used here. Major water-bodies (Great

Lakes and the Gulf of Mexico) and strong terrain (i.e. Rocky Mountains) are excluded.

Precipitation estimates from four
:::
five

:
products NEXRAD-IV, TRMM

:::::::
3B42RT,

:::::::
TRMM 3B42, GPI

and GPCP
::::
1DD are evaluated. NEXRAD-IV is the national mosaicked precipitation estimates from

the National Weather Service ground-based WSR-88D radar network (Fulton et al., 1998)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(National Center for Environmental Prediction, 2005; Fulton et al., 1998) .145

This product is based on merged gauge and radar estimates from 12 river forecast centers across the

Continental United States (CONUS) that are mosaicked to a 4km grid over CONUS. The product

is available through the National Center for Atmospheric Research (NCAR) Earth Observing Lab-

oratory (EOL; Lin and Mitchell (2005)). Using nearest neighbor sampling, we map this product

to a 0.05◦× 0.05◦ latitude-longitude grid. The original NEXRAD-IV (hereafter called NEXRAD)150

product is hourly accumulation in mm and is available from Jan. 2002 to present.

TRMM 3B42
::::::
3B42RT

:
is a multi-satellite precipitation estimate from the Tropical Rainfall Mea-

suring Mission (TRMM) together with other low Earth-orbit microwave instruments (Huffman et al., 2007)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Tropical Rainfall Measurement Mission Project (TRMM); Huffman et al., 2007) .

The precipitation estimates from several microwave instruments are calibrated against the merged

radar and radiometer precipitation product from TRMM, and then merged to produce a near-global155

3-hr precipitation product. The pixels with no microwave instrument observations are filled with

measurements from IR instruments on board geostationary satellites
:::
that

:::
are

:::::::::
calibrated

::::
using

:::::::
Passive

:::::::::
Microwave

:::::::
(PMW)

::::::::::::
measurements. The TRMM

:::::::
3B42RT

::
is
:::
the

::::::::
real-time

:::::::
version

:::
of

:::
the

:::::::
product

:::
that

::::
does

::::
not

::::
have

::
a

:::::
gauge

:::::::::
correction;

::::::::
however,

:::
the

:::::::
TRMM

:
3B42 (hereafter called TRMM ) is a
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gauge corrected product meaning that the monthly accumulation of estimates in each pixel are cali-160

brated against GPCC gauge product to have similar monthly magnitudes. This product is
:::::
These

::::
two

:::::::
products

:::
are available on a 0.25◦× 0.25◦ latitude-longitude grid from Jan. 1998 to present. We use

the current V7 of this product
::::
them.

The GOES Precipitation Index (GPI) is a rainfall retrieval algorithm that only uses cloud-top tem-

peratures from IR-based observations of geostationary satellites to estimate rain rate (Arkin and Meisner, 1987; ?)
:::::::::::::::::::::::::::::::::::::::
(Arkin and Meisner, 1987; Arkin and Janowiak) .165

The main advantage of this product is that it only uses observations from geostationary satellites that

are frequently available across the globe. However, the physics of the precipitation process is not

considered in this retrieval algorithm. Therefore, the estimates are only useful in the tropics and

warm-season extra-tropics in which most of the precipitation originates from deep convective cloud

systems. This product contains daily precipitation rates on a 1◦× 1◦ spatial grid from Oct. 1996 to170

present.

The Global Precipitation Climatology Project (GPCP) is globally merged daily precipitation rate

at 1◦×1◦ spatial resolution from Oct. 1996 to the present (Huffman et al., 2001)
::::::::::::::::::::::::
(Huffman et al., 2001, 2013) .

This is a merged estimate of precipitation from low earth orbit Passive Microwave (PMW )
:::::
PMW

instruments, the GOES IR-based observations, and surface rain gauge measurements. The merging175

approach utilizes the higher accuracy of the PMW observations to calibrate the more frequent GOES

observations. In this study, V1.2 of the One-Degree Daily (1DD) product of GPCP is used.

The NEXRADand TRMM
:
,
:::::::
TRMM

:::::
3B42

:::
and

:::::::
TRMM

:::::::
3B42RT

:
data are upscaled to a 1◦× 1◦

spatial grid to be consistent with the spatial resolution of the GPI and GPCP
::::
1DD

:
data.

The time domain for this error estimation study is from Jan. 2002 until Apr. 2014. All the data180

products have complete record within this time window which is more than one decade. Moreover,

to generate temporally uncorrelated samples that do not have zero precipitation, the data from each

product is temporally aggregated to biweekly values. A large number of zero values
::::::::::
Precipitation

::
is

:
a
:::::::
bounded

:::::::
variable

::::
and

:::
can

::::
only

::::
take

::::::
values

::::::
greater

:::
and

:::::
equal

::
to

:::::
zero.

::
If

:::
the

::::::::::
precipitation

::::::::
estimate

:
at
::

a
:::::::
specific

::::
time

:::
and

:::::
space

::
is
:::::

equal
:::

to
::::
zero;

:::::
then,

:::
the

::::
error

:::
in

:::
that

:::::::
estimate

::::
can

::
be

:::::
from

:
a
:::::::

limited185

::
set

:::
of

:::::::
numbers

:::::::::
(basically

:::
any

:::::::
number

::::::
greater

::::
than

:::::
zero).

:::::::::
Therefore,

::::
the

::::
error

::
is

:::::::::
dependent

:::
on

:::
the

:::::::::::
measurement

:::
(or

::::::::::
equivalently

::::
the

:::::
truth).

::::
As

:
a
::::::

result,
::
if
:::
we

:::::
have

::::
zero

:::::
value

::
in
::::

the
:::::::::::
precipitation

:::::::::::
measurement

:::
for

::
all

:::
the

:::::::
triplets,

:::
the

:::::
error

::
of

:::::
each

::
of

:::::
them

::
is

::::::::
dependent

:::
on

:::
the

::::::::::::
measurement;

::::
and

::::::::
therefore,

::
on

::::
each

::::::
other.

::::
This

::::::::::
dependence would violate the assumption that all errors are indepen-

dent and identically distributed.
:::
The

:::::
error

::::::::::
dependence

::::::::
decreases

:::
as

:::
the

:::::::::::
measurement

:::::
value

::::::
moves190

::::
away

:::::
from

::::
zero.

:
Among the aggregated data, there are a few percentage of samples that have zero

biweekly precipitation accumulation which are removed from the analysis. The percentage of sam-

ples with zero value is less than 2% in most of the region other than 8 pixels in the southwest of

the region (the driest part of the domain) that have up to 8% of the samples equal to zero. In the

accumulation algorithm, any biweekly data with missing hourly or daily measurements is treated as195

a missing value.
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This data aggregation reduces the number of samples across the temporal domain of this study. TC

analysis needs enough samples to be able to provide an accurate estimation of the error. Therefore,

we combine the estimates from four neighboring 1◦× 1◦ pixels to form data points for the 2◦×
2◦ grids shown in Figure 1. This means measurements taken over each of the four 1◦× 1◦ pixels200

inside the 2◦× 2◦ pixel are each treated to be measurements over the 2◦× 2◦ pixel, increasing the

total number of samples for each 2◦× 2◦ pixel. Under the assumption that the estimated rainfall is

:::::::::
statistically

:
homogeneous over each 2◦× 2◦ pixel, we can trade off space and time in this way to

increase the number of samples.

::
In

:::
the

::::
main

:::::::
analyses

:::
of

:::
the

:::::
paper,

:::
the

::::
four

:::::::
products

::::::::::
NEXRAD,

::::::
TRMM

::::::::
3B42RT,

::::
GPI

:::
and

::::::
GPCP205

::::
1DD

:::
are

::::
used.

::::
The

:::::::
TRMM

:::::
3B42

:
is
:::::
used

::
in

::::::
Section

::
5

::
to

::::
show

:::
the

::::::
impact

::
of

::::::
gauge

::::::::
correction

:::
on

:::
the

::::::::
estimated

::::
error

::::::::::::
characteristics.

:
Figure 2 shows the climatology of precipitation derived from each of

the four products. There is a good agreement between NEXRAD, TRMM and GPCP
:::::::
3B42RT

::::
and

:::::
GPCP

::::
1DD

:
estimates; however, GPI has a different climatological pattern across the domain. This

difference is not unexpected. GPI’s retrieval algorithm is very simple and only considers the cloud210

top temperature; therefore, it is less accurate compared to the other three products that are either

based on ground-based radar or have microwave estimates of precipitation combined with IR-based

observations.

4 Results of TC Analysis

In this section, we apply the multiplicative TC technique to the precipitation products introduced in215

Section 3 and present the estimated RMSE and correlation coefficients for each of the products. The

four products are grouped to two triplets; Group 1 includes NEXRAD, TRMM
:::::::
3B42RT

:
and GPI

products, and Group 2 includes NEXRAD, TRMM and GPCP
:::::::
3B42RT

:::
and

::::::
GPCP

:::::
1DD. Similar

results were obtained from other triplet combinations (not shown here).

Figures 3 and 4 show the RMSE of each ri product in groups 1 and 2 respectively. These figures220

also show the number of data points (biweekly precipitation measurements) that are used in each

pixel to do the TC estimate. Generally there are more than 1000 data points in each pixel. The sharp

decline in the number of data points in the pixels in the south west of the study domain is due to the

NEXRAD product, which had one of its radar systems repeatedly inactive during 2002 and 2003.

The RMSE reported in these figures is based on a bootstrap analysis. We run 1000 bootstrap sim-225

ulations (i.e. sampling with replacement from the original data time series) and estimate the RMSE

using Equations (4) - (6). The mean of these 1000 RMSE estimates are reported in Figures 3 and

4. Additionally, the standard deviation of these bootstrap estimates is reported in the supplementary

materials Figure S1. The standard deviations of RMSE from the bootstrap simulations are one order

of magnitude smaller than the RMSE estimate itself and the results are consistent between the two230

groups. GPI has a more uniform pattern for standard deviation of RMSE compared to NEXRAD,
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TRMM and GPCP
::::::
3B42RT

::::
and

:::::
GPCP

:::::
1DD that have the east-west pattern. The standard deviation

plots provide a range of confidence on the RMSE estimates from TC analysis. Since the standard de-

viations are an order of magnitude smaller than the RMSE itself, the mean RMSE from the bootstrap

simulations is a reasonable estimate of the RMSE.235

The first observation and control check from Figures 3 and 4 is that the RMSE estimates of pre-

cipitation from NEXRAD and TRMM
:::::::
3B42RT in both of the groups are very similar. This shows

that the TC analysis is robust and the results are not in general dependent on the choice of triplets.

Moreover, TRMM
:::::::
3B42RT

:
product has a lower RMSE in most of the region.

The RMSE estimates shown in Figures 3 and 4 are in logarithmic scale which are informative240

and useful if someone is assimilating the products in the logarithmic scale (equivalently using the ri

products). However, the RMSE estimates of Ri products in units of precipitation intensity (mm/day

in this case) provide another perspective and might be simpler to interpret. Denoting µRi
as the mean

of Ri, expansion of (2) using Taylor series results in:

ln(Ri)≈ ln(µRi
)+ (Ri −µRi

)
1

µRi

(10)245

Therefore,

V ar[ri] = (
1

µRi

)2V ar[(Ri −µRi
)] (11)

σ2
ri
= (

1

µRi

)2σ2
Ri

(12)

σRi
= µRi

σri (13)250

Equation (13) is used to report the RMSE of each of the precipitation product errors after carrying

out the TC analysis on the log-transformed products. Figures 5 and 6 show the RMSE of precipitation

products in each group in units of mm/day. The standard deviation of these RMSE estimate are also

presented in Figure S2 of supplementary materials.

There is again consistency between the results of NEXRAD and TRMM
:::::::
3B42RT

:
in both groups.255

Similar to Figure 3 and 4, the
::::
The RMSE of the TRMM

:::::::
3B42RT product in both of the triplets

:::
and

::
in

:::::::
majority

::
of

:::
the

:::::
pixels

:
is small compared to the other two productsand ,

::::
and

:
it
:
is also relatively small

compared to the mean precipitation from climatology maps in Figure 2. NEXRAD has
::::::::
relatively

higher RMSE compared to TRMM
::::::
3B42RT, but is considerably smaller than GPCP

::::
1DD or GPI.

Comparing the pattern of RMSE in NEXRAD, TRMM and GPCP
::::::
3B42RT

::::
and

:::::
GPCP

:::::
1DD with260

the climatology maps (Figure 2), it is clear that the RMSE in each product increases east to west

similar to the climatology. This means that in regions with higher mean precipitation rate, the RMSE

is higher. This is consistent with other studies that have found that the mean error of precipitation

estimates is proportional to the mean precipitation (Tian et al. (2013); Gebregiorgis and Hossain

(2014); Tang et al. (2014); Alemohammad et al. (2014), among others).265

A recent study by Prat and Nelson (2014) investigates the error of several precipitation products

(ground-based radar and microwave instruments) over CONUS by assuming the gauge data as truth.
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They mainly characterize the bias in precipitation estimates and evaluate detection of precipitation

events at different intensity thresholds and time scales. However, their results show a similar pattern

in the error estimates; higher estimation errors for higher mean precipitation.270

Figure 7 shows the estimated correlation coefficients between the underlying truth and each pre-

cipitation product in the logarithmic scale. Similar to Figures S1 and S2 each column is showing

the results of one of the triplet groups. Estimates of ρ2 for TRMM
:::::::
3B42RT

:
and NEXRAD products

from the two groups are very similar and again shows the robustness of results from the TC tech-

nique. Among the products analyzed here, the TRMM
:::::::
3B42RT

:
product has the highest correlation275

coefficient with the truth in almost all
:::::::
majority of the pixels. NEXRAD also has high correlation

with the truth but there is
:
,
:::
and

:::::::::
NEXRAD

::
is
::::::
ranked

::::::
second

:::::
after

::::::
TRMM

::::::::
3B42RT.

:::::
There

::
is
::::
also

:
a

pattern that pixels toward the east of the region have higher correlation coefficients in the NEXRAD

product. GPCP
::::::::
compared

::
to

:::
the

::::
west

::
of

:::
the

:::::::
region.

:::::
GPCP

:::::
1DD

:::
has less correlation with the truth,

and it has a similar east-west pattern. GPI exhibits very low correlation coefficients (∼ 0.1) toward280

the west of the region.

The combined and quantitative analyses of the RMSE estimate and the correlation coefficients

show that the TRMM
:::::::
3B42RT

:
product has the best performance among the four products consid-

ered here. The RMSE and correlation coefficient for TRMM have little
::
for

:::::::
TRMM

:::::::
3B42RT

::::
has

:::::::
relatively

::::
less variations across the domain. This means that the TRMM

:::::::
3B42RT product has better285

performance in diverse climatic and geographical conditions.
::::::::
However,

:::
the

:::::::::
correlation

::::::::::
coefficients

::
in

::::::
TRMM

:::::::
3B42RT

::::::::
decrease

::
in

:::
the

::::
west

::::
side

::
of

:::
the

:::::::
domain.

::::
This

::::::
region

::
is

:::
the

::::::
coldest

:::
and

::::::::
snowiest

:::
part

::
of

:::
the

:::::::
domain

:::
and

::
it

::
is

::::::
covered

::::
with

:::::
snow

::::::
during

:::
the

::::::
winter.

:::
The

::::::::
accuracy

::
of

:::::::::::::::
microwave-based

::::::::::
precipitation

:::::::::
retrievals,

::::::
which

:::
are

:::
the

:::::
input

:::::::::::::
measurements

::
to

:::
the

:::::::
TRMM

::::::::
3B42RT

:::::::
product,

::::
are

::::::
affected

:::
by

:::
the

:::::
snow

::
on

::::
the

::::::
ground.

:::::
Some

:::
of

:::
the

:::::::
retrieval

:::::::::
algorithms

:::
for

:::::
these

::::::::::
instruments

::::::
cannot290

:::::::::::
appropriately

:::::::::
distinguish

:::
the

:::::
snow

:::
on

:::
the

::::::
ground

::::
from

:::
the

::::::
falling

::::::::::::
precipitation.

::::
This

:::::::::::
phenomenon

:::
can

::::::::
contribute

:::
to

:::
the

:::
low

::::::::::
correlation

:::::::::
coefficient

:::::::
between

:::
the

:::::::
TRMM

:::::::
3B42RT

::::
and

:::
the

::::
truth

:::
in

:::
the

::::
west

:::
part

::
of

:::
the

:::::::
domain.

:

The NEXRAD product has a distinct error pattern. Both the RMSE and correlation coefficient

of the NEXRAD estimates are small toward the west of the domain. However, comparing the error295

estimates from NEXRAD with the climatology values reveals that the errors are sometimes on the

same order as the climatology toward the west of the domain. This is also revealed by the correlation

coefficient values, which have a smaller value in the west side of the domain for NEXRAD. This

pattern is consistent with the NEXRAD coverage maps provided by Maddox et al. (2002) that shows

the effect of terrain on radar beam blockage in mountainous regions of CONUS. Beam blockage is300

one of the sources of error in ground-based radar estimates of precipitation in mountainous regions.

The GPI and GPCP
::::
1DD

:
products have, in general, lower quality than TRMM

:::::::
3B42RT

:
and

NEXRAD. They have higher RMSE and lower correlation coefficients with the truth. They both

have the east-west pattern in the correlation coefficient; however, the GPI product has a sharper

9



gradient and is poorly correlated with the truth toward the west of the study domain. Precipita-305

tion events in this region are mostly driven by frontal systems
:::
that

:::::::
generate

::::::
clouds

:::
not

::::::::::
necessarily

::::::::::::
well-correlated

::
to

:::::::::::
precipitation; therefore, the GPI estimates that are solely based on cloud-top tem-

perature are not well correlated with the truth. GPCP
::::
1DD also uses IR-based observations of the

clouds, but those are merged with microwave observations from low earth orbit satellites that are

more accurate. Therefore, the resulting correlation coefficients are generally higher, especially in310

the west side of the study domain. If the analysis was limited to the RMSE estimates, GPI might

be considered to be performing uniformly well across the entire domain. But with the correlation

coefficients we can clearly see the change in quality of GPI estimates across the domain.

5 Gauge Analysis

In this section,
:
we will review the assumptions that are embedded in TC estimates of RMSE and315

evaluate them using in-situ gauge data. Gauge data are used a proxy for truth. As mentioned in

Section 2, TC assumes zero correlation between errors of the triplets (zero error cross-covariance

assumption) and between the errors and the truth (error orthogonality assumption). However, this

assumption can be violated in many applications if the retrieval algorithms have similar error struc-

tures. Yilmaz and Crow (2014) investigated the assumptions of TC and introduced a decomposition320

of RMSE derived from TC as following:

σ2
TC1

= σ2
TRE1

+σ2
LS1

+σ2
OE1

+σ2
XCE1

(14)

In this equation, σ2
TC1

is the error variance of product 1 that is estimated by TC, and σ2
TRE1

is the

true error variance of product 1 that TC is aiming to estimate. σ2
LS1

is the leaked portion of σ2
T (the

variance of the true data), σ2
OE1

represents the bias term due to the violation of error orthogonality325

assumption and σ2
XCE1

is the bias term due to the violation of zero error cross-covariance assump-

tion between different products. Note, σ2
XCE1

is affected by non-zero error cross covariance between

any pair of the products, and it is not only between product 1 and the gauge. Using similar notations

as in Section 2, these four elements are defined as:

σ2
TRE1

= ε1ε1 (15)330

σ2
LS1

= (β1 − c3|1β3)(β1 − c2|1β2)σ
2
t (16)

σ2
OE1

= (β1 − c3|1β3)(tε1 − c2|1tε2)+ (β1 − c2|1β2)(tε1 − c3|1tε3) (17)

σ2
XCE1

=−c2|1ε1ε2 − c3|1ε1ε3 + c3|1c2|1ε2ε3 (18)

in which ci|j is the scaling factor of product i assuming product j as the reference and overbar335

refers to temporal averaging. Equations (15) - (18) indicate the error decomposition for product 1

in the triplet. Similar equations can be derived for other products. Derivations of equations for these

decomposition terms using the multiplicative error model is presented in Appendix A. For a detailed

10



explanation on how to estimate different variables in these equations, the reader is referred to Section

2.c of Yilmaz and Crow (2014).340

For this evaluation analysis,
:
we need accurate ground based observations in order to avoid errors

due to differences in the spatial coverage between the gauges and the other products. The six pixels

shown in Figure 1 are selected for this evaluation since they have a dense network of rain gauges.

These pixels are located in the state of Oklahoma and the gauge data are retrieved from the Oklahoma

Mesonet network. This network provides quality controlled daily precipitation estimates across the345

state of Oklahoma from an automatic and spatially dense set of rain gauges. We have located the

gauges in each of the pixels; each pixel at every time contains at least 12 gauges and some of the

pixels have up to 39 monitoring gauges. The daily data from the gauges in each pixel are averaged

to estimate the true rain of the pixel and are then accumulated to biweekly values.

It is understood that gauge data also have errors including representativeness error
::::
(they

:::
are

:::::
point350

:::::::::::
measurements

::::::
unlike

:::
the

:::::
other

::::::::
products

:::
that

:::::::
provide

:::
an

::::::
average

:::::
value

:::::
over

::::
each

:::::
pixel); however,

as it is shown in Yilmaz and Crow (2014) (Appendix A) the representativeness error
:
in

:::
the

::::::
gauge

:::::::::::
measurements

:
causes a positive bias in the TC-based RMSE estimates while the cross correlation

error
::::::::::::::
cross-correlation

:::::::
between

:::
the

:::::
errors

::
of

:::::::
different

::::::::
products

::
in

::::
each

:::::
triplet

:
causes a negative bias.

Therefore, it is reasonable to assume gauge data as an unbiased estimate of truth. Moreover, in this355

study the average of estimates from several gauges is used as the unbiased estimate of the truth.

The representativeness error of the gauge estimates is basically interpreted as part of the total error

variance in the gauge product. However, since the gauge estimates are unbiased estimates of the

truth, it can be used a proxy to decompose the error variance estimates from TC technique.

Figure 8 shows the results of error decomposition for the RMSE of the NEXRAD product.
:::::
These360

:::::::
estimates

::::
are

:::::
based

:::
on

::::::
another

:::::::::
bootstrap

:::::::::
simulation

::::
with

:::::
1000

::::::::
samples,

::::
with

::::::::::::
corresponding

::::
one

:::::::
standard

::::::::
deviation

:::::::::
confidence

::::::::
intervals.

:
This figure shows that the bias caused by the leaked sig-

nal and error orthogonality assumption is almost zero in all of the cases. However, the zero error

cross-covariance
::::
cross

:::::::::
covariance

:
assumption is causing significant underestimation in the RMSE

estimated by TC. Therefore, the NEXRAD RMSE estimate from TC is a lower bound for the error.365

Figures S3 - S5 in the supplementary material show similar decomposition of the RMSE in TRMM

, GPCP
:::::::
3B42RT,

:::::
GPCP

:::::
1DD and GPI products across these pixels. These figures also confirm that

the violation of the zero cross covariance error leads to underestimation of the true RMSE by TC

analysis. The noticeable difference between Figures 8, S3, S4 and S5 is that in Figure S5 that shows

the error decomposition of GPI product the contribution of error cross covariance to the total TC370

estimate is small, and in 4 of the pixels is almost zero. This is consistent with the fact that GPI has a

completely different retrieval algorithm and is only based on could top temperature measurements.

Therefore, it has less correlation with other products. These results are consistent with the findings

in Yilmaz and Crow (2014). Moreover, this analysis shows that similar to the soil moisture data it is

appropriate to assume that the errors of precipitation products are not correlated with the truth.375
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The estimates in Figure 8 are based on another bootstrap simulation with 1000 samples, with

corresponding one standard deviation confidence intervals.
::::
Here,

:::
we

::::::::
compare

:::
the

:::::::
ranking

::
of
::::

the

:::::::
products

:::::
based

:::
on

:::
the

::::::::::
TC-derived

:::::
errors

::::
and

:::
the

:::::
ones

:::::
based

:::
on

:::
the

:::::
gauge

:::::::
analysis

::::::::
(σTRE).

::::
The

:::
goal

:::
of

:::
this

::::::::::
comparison

::
is
::
to

:::::
show

::::
how

:::::
much

:::
the

::::::::
violation

::
of

::::
zero

:::::
error

:::::
cross

:::::::::
covariance

:::::::
impacts

::
the

::::::
RMSE

:::::::::
estimates.

::
In

:::
all

::
of

:::
the

:
6
::::::

pixels
:::
that

:::
we

:::::::::
conducted

:::
the

:::::::::::
gauge-based

:::::::
analysis,

:::
the

:::::::
TRMM380

:::::::
3B42RT

:::
and

:::::::::
NEXRAD

::::::::
products

:::
are

::::::
ranked

:::
1st

::::
and

:::
2nd

:::
for

:::
the

::::::
lowest

:::::
error

:::::
based

::
on

::::
the

::::::
RMSE

::::
from

::::
TC,

::::::::::
respectively.

:::::::::
Moreover,

:::::
based

:::
on

:::
the

:::::::
rankings

::
in
::::

the
::::::::::
gauge-based

:::
TC

:::::::
analysis

:::::::
(σTRE ::

in

::::::
Figures

::
8,

:::
S3,

:::
S4

:::
and

:::
S5)

::
in
::
5
:::
out

::
of

:::
the

::
6

:::::
pixels,

:::::::
TRMM

:::::::
3B42RT

:::
has

:::
the

::::::
lowest

:::::
error,

:::
and

::
in

::
4

:::
out

::
of

:::
the

:
6
:::::::::
NEXRAD

:::
has

:::
the

::::
best

::::
error

::::
after

:::::::
TRMM

:::::::
3B42RT.

::::::::
However,

::::::
GPCP

::::
1DD

::::
and

:::
GPI

::::::::
rankings

::
are

:::::
only

::::::::
preserved

::
on

::
3
:::
out

::
of

:::
the

::
6
::::::
pixels.

:::::::::
Therefore,

::
in

:::::::
general,

:::
we

:::
can

:::::
make

:::
the

:::::::::
conclusion

::::
that385

::
the

:::::::
relative

::::::::
rankings

:::
for

:::
the

:::::::
products

::::
with

:::
the

::::::
lowest

:::::
error

:::::::
remains

::::::
almost

:::
the

:::::
same

:::
but

:
it
::

is
:::::

hard

::
to

::::
make

::::
any

:::::::::
conclusion

:::::
about

:::
the

:::::::
ranking

::
of

:::
the

::::
other

::::::::
products.

::::::::::::
Nevertheless,

:::
this

::
is

:::::
based

:::
on

::::
only

:
6
:::::
pixels

::::
out

::
of

:::
the

:::
75

:::::
pixels

::::::
across

:::
the

:::::
whole

::::::::
domain.

:::::::::
Therefore,

:
it
::

is
::::

not
:::::::
possible

::
to

::::::
extend

::::
this

:::::::::
conclusion

::
to

:::
the

::::::
whole

:::::
study.

::::
We

:::
can

::::::::
conclude

:::::
from

:::
this

:::::::::::
comparison

:::
that

:::
the

:::::::::::::::
cross-correlation

::::
error

:::
can

::::::
impact

:::
the

::::::::::
performance

:::::::
ranking

::
of

:::
the

:::::::::::
precipitation

::::::::
products,

:::
but

:::
the

:::::::
relative

::::::
impact

:::::
needs390

:::::
further

::::::::
analysis.

::
To

::::::
further

:::::::
evaluate

:::
the

::::::
impact

::
of

:::::
error

::::
cross

::::::::::
covariance,

:::
we

::::::
replace

:::
the

:::::::
TRMM

:::::::
3B42RT

:::::::
product

::::
with

:::
the

::::::
TRMM

:::::
3B42

:::::::
product

:::
and

::::::::
estimate

:::
the

::::::
RMSEs

:::
in

::::
each

:::::
triplet

:::::
again.

:::
As

::
it
::::
was

:::::::::
mentioned

::
in

::::::
Section

::
3,

:::
the

:::::::
TRMM

:::::
3B42

::::::
product

::::
has

:
a
:::::::
monthly

::::::
gauge

::::::::
correction

::
in
:::

its
:::::::::
estimation

:::::::::
algorithm.

:::
Our

:::::::::
hypothesis

::
is

::::
that

:::
this

:::::
gauge

::::::::::
dependence

::::::::
increases

:::
the

::::
error

:::::
cross

:::::::::
covariance

:::::::
between

::::::::
different395

:::::::
products

:::
and

::::
will

::::
lead

::
to

:::::
lower

::::::
RMSE

:::::::
estimates

:::
in

:::::::::
NEXRAD,

::::::
TRMM

:::::
3B42

::::
and

:::::
GPCP

::::
1DD

::::::
(these

::::
three

:::::
have

:::::
gauge

:::::::::
correction

:::
in

::::
their

::::::::::
algorithms)

:::::::::
compared

::
to

::::
the

:::::
initial

::::::::
estimate

:::::
using

:::::::
TRMM

:::::::
3B42RT.

:::
We

:::::::::
conducted

:::
this

:::::::
analysis

:::
and

:::
the

:::::::
resulting

::::::
RMSE

::::::::
estimates

::::
from

::::
two

::::::
triplets

::::::::::
(NEXRAD,

::::::
TRMM

:::::
3B42,

:::::
GPI)

:::
and

::::::::::
(NEXRAD,

:::::::
TRMM

:::::
3B42,

:::::
GPCP

:::::
1DD)

:::
are

::::::::
presented

::
in

:::::::
Figures

::
S6

::::
and

:::
S7.

:::::::::
Comparing

:::::::
Figures

:
5
::::

and
::
6
::::
with

:::
S6

::::
and

:::
S7,

::
it
::
is

:::::::
evident

:::
that

::::
the

:::::::::
TC-derived

:::::
error

::::::::
estimates

:::
of400

:::::::::
NEXRAD,

:::::::
TRMM

::::
3B42

::::
and

::::::
GPCP

::::
1DD

:::
are

:::::::
smaller

:::::
when

::::
using

:::
the

::::
non

::::::::
real-time

::::::
version

:::
of

:::
the

::::::
TRMM

:::::
3B42

:::::::
product.

::::
This

::::::
further

::::::::
confirms

:::
that

::::::::
violation

::
of

:::
the

::::
zero

::::
error

:::::
cross

:::::::::
covariance

::::::
causes

:
a
:::::::
negative

::::
bias

::
in

:::
the

::::::::
TC-based

::::::
RMSE

::::::::
estimates.

:

6 Conclusions

This study presents, for the first time, error estimates of four precipitation products across a central405

part of the continental US using Triple Collocation (TC). A multiplicative error model is introduced

to TC analysis that is a more realistic error model for precipitation. Furthermore, an extended version

of TC is used with which not only the standard deviation of random errors in each product, but the

correlation coefficient of each product with respect to an underlying truth are estimated. The results

show that the TRMM
:::::::
3B42RT product is performing relatively better than the other three products.410
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TRMM
:::::::
3B42RT has the lowest RMSE across the domain, and the highest correlation coefficient

with the underlying truth. Meanwhile, NEXRAD performs relatively poorly in the west side of the

study domain that is probably caused by the terrain beam blockage. The performance of the GPCP

::::
1DD and GPI product were lower than that of TRMM

:::::::
3B42RT and NEXRAD. GPI has significantly

lower performance in the west side of the study domain that is likely caused by the simple retrieval415

algorithm used in this product. Meanwhile, GPI has a reasonably good correlation with underlying

the truth in the east side of the domain.

In the second part of the paper, an evaluation of the assumptions built into TC is carried out using

surface gauge data as proxy for the truth across selective pixels. These pixels have a dense coverage

of in-situ gauges. The results of this evaluation reveal that the TC error estimates underestimate the420

true error in different products due to a violation of the assumption of zero error cross covariance.

::::::::
Moreover,

::::::::
replacing

:::
the

:::::::
TRMM

::::::::
3B42RT

::::
with

::::::
TRMM

:::::
3B42

::::::::
revealed

:::
that

:::
the

::::::
gauge

::::::::
correction

:::
in

::
the

:::::::
TRMM

:::::
3B42

:::::::
violates

:::
the

::::
zero

:::::
error

:::::
cross

:::::::::
covariance

::::::::::
assumption

:::
and

:::::
leads

::
to

:::::::
smaller

::::::
RMSE

::::::::
estimates. However, the result of RMSE estimates from TC have a lot of potential to be incorporated

into data assimilation and data merging algorithms.425

Triple Collocation analysis has a lot of potential to be applied to various precipitation products

at a wide range of spatial and temporal resolutions. This will provide a better understanding of the

true error patterns in different products. Error quantification of precipitation products is a necessity

if one aims to merge precipitation estimates from several instruments/models. However, care should

be taken in choosing triplets that have zero or small error cross covariance. Otherwise, the error430

variances will be underestimated.

The multiplicative error model used in this study is shown to be an appropriate choice relative to

the additive model. However, it would be beneficial to investigate more complex models that can take

into account any higher order dependence of the estimate on the truth. A modification to this study

would be to include a gauge-only precipitation product. This would reduce the error cross covariance435

between the products, since the gauge measurement system is different from the remote-sensing

instruments. Although gauge estimates have representativeness error, this error will be part of the

total error in the gauge product resulting in higher RMSE values of gauge product. Furthermore,

conducting TC analysis on precipitation data with different temporal resolution will provide valuable

insight on the performance of different products at different temporal scales. However, this should440

be carried out with care, as precipitation errors at certain temporal resolutions are highly correlated

and are not appropriate for TC analysis.
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Appendix A: Error Decomposition

In this section, we derive Equations 15 - 18 starting with the multiplicative error model in logarithmic

scale:445

ri = αi+βit+ εi (A1)

Without loss of generality, we assume ri and t be the anomalies from a climatological mean; then,

the model is simplified to:

ri = βit+ εi (A2)

Choosing product r1 as the reference, the scaling factors are defined as:450

c2|1 =
r1r3
r2r3

(A3)

c3|1 =
r1r2
r3r2

(A4)

Therefore, the rescaled data sets are defined as: r2∗ = c2|1r2 and r3
∗ = c3|1r3. Then, TC-based

error variance of product 1 is defined as:455

σ2
TC1

= (r1 − r∗3)(r1 − r∗2) (A5)

Inserting r∗2 , r∗3 and (A2) into (A5):

σ2
TC1

= [(β1 − c3|1β3)t+(ε1 − c3|1ε3)][(β1 − c2|1β2)t+(ε1 − c2|1ε2)] (A6)

σ2
TC1

= (β1 − c3|1β3)(β1 − c2|1β2)σ
2
t460

+(β1 − c3|1β3)(tε1 − c2|1tε2)+ (β1 − c2|1β2)(tε1 − c3|1tε3)

+ (ε1ε1 − c2|1ε1ε2 − c3|1ε1ε3 + c3|1c2|1ε2ε3) (A7)

Rewriting (A7) as:

σ2
TC1

= σ2
TRE1

+σ2
LS1

+σ2
OE1

+σ2
XCE1

(A8)465

where:

σ2
TRE1

= ε1ε1 (A9)

σ2
LS1

= (β1 − c3|1β3)(β1 − c2|1β2)σ
2
t (A10)

σ2
OE1

= (β1 − c3|1β3)(tε1 − c2|1tε2)+ (β1 − c2|1β2)(tε1 − c3|1tε3) (A11)

σ2
XCE1

=−c2|1ε1ε2 − c3|1ε1ε3 + c3|1c2|1ε2ε3 (A12)470

Equations (A9) - (A12) are the same as (15) - (18) that are used to decompose the RMSE estimates

of TC analysis.
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Figure 1. Study Domain. The six numbered pixels are used in Section 5 for evaluation of TC assumptions in

estimating RMSE.

Figure 2. Climatology of precipitation across the study domain from each of the products.
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Figure 3. RMSE of the precipitation rate in logarithmic scale estimated from TC using triplets in group 1; a)

NEXRAD, b) TRMM
::::::
3B42RT, c) GPI. Panel d) shows the number of data points (biweekly measurements) in

each pixel that are used for error estimation in TC analysis.

Figure 4. RMSE of the precipitation rate in logarithmic scale estimated from TC using triplets in group 2;

a) NEXRAD, b) TRMM
::::::
3B42RT, c) GPI

::::
GPCP

::::
1DD

:
. Panel d) shows the number of data points (biweekly

measurements) in each pixel that are used for error estimation in TC analysis.
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Figure 5. RMSE of the precipitation rate estimated from TC using triplets in group 1; a) NEXRAD, b) TRMM

::::::
3B42RT, c) GPI. Panel d) shows the number of data points (biweekly measurements) in each pixel that are used

for error estimation in TC analysis.

Figure 6. RMSE of the precipitation rate estimated from TC using triplets in group 2; a) NEXRAD, b) TRMM

::::::
3B42RT, c) GPCP

:::
1DD. Panel d) shows the number of datapoints

:::
data

:::::
points

:
(biweekly measurements) in each

pixel that are used for error estimation in TC analysis.
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Figure 7. Correlation coefficient between the truth and each precipitation product. The left column shows the

results for triplets in group 1, and the right column shows the results for triplets in group 2.

Figure 8. Decomposition of TC-based estimate of RMSE in the NEXRAD product across the six pixels shown

in Figure 1. Error bars show one standard deviation of the estimates from a bootstrap run with 100 samples.
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We thank referee #1 for their positive and insightful comments. Here, we respond to
the general and specific comments included in their review:

General Comments:

- The authors provide a creative and original study of the errors of several “stan-
dard” precipitation data sets using the Triple Collocation approach. Critically, this
allows them to use the radar analyses without having to assume that they are
exact. It also raises the interesting question of what the result would be if the
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gauges used in Section 5 were entered as yet another dataset in the Triple Collo-
cation study (obviously, only for the subset of boxes that have gauge data). How
close would they turn out to be to the unknown true precipitation?

Response/Action: We evaluated all possible triplets of gauge with two other
products among the four products we have in this study. The results show that
the gauge is in most of the cases the product with lowest RMSE, and in some
others the second one with RMSEs close to the first product. This result is from
the six pixels that we have dense gauge measurements; therefore, it should be
interpreted carefully and may not be transferable to the whole domain. This is
addressed in the supplementary material, Figures S3-S5, which was submitted
together with the initial submission.

- The fundamental assumption is that the errors are multiplicative. The background
literature tends to advocate this approach for short-interval data – daily or sub-
daily. By the time you get to monthly averages the precipitation itself (not the log-
arithm) tends to be settling toward Gaussian, indicating additive error, although
this depends on how frequent the precipitation is. The biweekly interval is in
between; is there any way to assess how correct a multiplicative model is?

Response/Action: Here, we distinguish between the distribution of the precip-
itation data and the additive/multiplicative error model. In our study, we do not
assume any distribution for either the data or the errors. We only make the as-
sumption that the error model be multiplicative. This can be evaluated using the
joint PDFs of each pair of the products. If the joint PDFs have a constant spread
across different values of precipitation; then, the error model is an appropriate
one. We made this evaluation, and the PDFs resulting from the multiplicative
model have better spread compared to the additive model. So, we concluded
that for biweekly data it is better to assume the multiplicative model. We added
this discussion on the model selection to the final submission to better justify the
choice of multiplicative model.
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- Finally, the English is extremely clean; if there were an annual award for such
excellence, you would deserve it. Overall, a very strong manuscript that just
needs some tune-up on the way to acceptance.

Specific Comments:

1. Abstract: It would strengthen the Abstract to be more specific about the details of
the comparison: 2◦× 2◦ grid boxes for a specific part of CONUS (not just “across
the U.S.”), using biweekly accumulations for the period January 2002 through
April 2014.

Response/Action: We incorporated this in the final submission and revise the
abstract accordingly.

2. Dataset citation: The various datasets used are not cited and acknowledged in
a consistent fashion, but should be. However, I would suggest that one of the
newly emerging best practices in publication is to provide a reference-list cita-
tion for the data sets used, just as is done for journal articles. See the AMS
policy http://www2.ametsoc.org/ams/index.cfm/publications/authors/journal-and-
bamsauthors/journal-and-bams-authors-guide/data-archiving-and-citation/ for a
discussion and examples. I would urge the authors to adopt this approach to
give proper credit and guide the interested reader to the appropriate archives.

Response/Action: We thank the reviewer for the informative reference on data
citation. We list appropriate citation to the datasets in the final version.

3. Dataset names: Shortening “TRMM 3B42” to “TRMM” is ambiguous, since there
are many TRMM products, while “3B42” is specific. The same comment applies
to the GPCP 1DD, for which “GPCP” is ambiguous, while “1DD” is not.

Response/Action: We replaced the appropriate abbreviations in the final ver-
sion.
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4. P.14,L.2-3: It would seem that the insightful statement is that the cloud systems
are driven by frontal systems. GPI reacts to clouds, and fronts generate clouds
that are not necessarily well-correlated to precipitation.

Response/Action: We acknowledge the revised statement, and corrected it in
the final version.

Technical Corrections

5. P.8,L.22: The IR in 3B42 is calibrated by microwave before use in the product.

Response/Action: We point out this calibration in the revised manuscript.

Interactive comment on Hydrol. Earth Syst. Sci. Discuss., 12, 2527, 2015.
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We thank Dr. Crow for his constructive and insightful comments. Here, we respond to
the general and specific comments included in the review:

General Comments:

- The paper describes the application of a modified triple collocation approach
to the problem of evaluating large-scale precipitation data sets. The proposed
modification allows for the more appropriate treatment of precipitation errors as
multiplicative in nature. Issues surrounding the potential impact of error cross-
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correlation are examined via the decomposition of triple collocation error results
over heavily-gauged reference sites. Overall, this is a high-quality paper on a
topic of significant interest. The application of a log-transform to deal with multi-
plicative precipitation errors is a very nice methodological extension and clearly
superior to the existing approach (of naively assuming that all errors are additive
in nature in order to shoehorn them into a TC framework).

I also appreciated the effort to explicitly examine the role of error cross-correlation
on TC-derived error estimates (in Section 5). However, the one important thing I
felt was missing was a re-examination of results in Section 4 based on the (non-
trivial) impacts of cross-correlated errors (isolated in Section 5). For example, a
key result in Section 4 is the relative lack of accuracy for the GPI precipitation
product. However, in Section 5 (and the supplementary materials) we also see
that GPI is relatively more independent (i.e. contains less error cross-correlation)
than the other precipitation data sets. Given that TC will penalize GPI for this lack
of dependence . . . does this mean that the analysis in Section 4 is truly even-
handed? Is GPI being unfairly penalized due to being truly independent from the
other products – as opposed to it being FAIRLY penalized for its weak relationship
with "true" precipitation? So basically, I’d like a little bit of guidance about how
the conclusions presented in Section 4 should be re-examined given the cross-
correlation issues presented in Section 5. Should the reader really trust that
relative rankings presented in Section 4?

I understand that this is a generic problem with any TC analysis; however, I think
there are a couple of things that the authors could do to better address this point.
First, they could examine whether or not the relative rankings that they derive
using TC (at the 6 reference pixel sites examined in Section 5) accurately reflect
the rankings they achieve when comparing all the products against the high-
quality rain gauge observations acquired at each sites. If TC can successfully
replicate the gauge-based rank correlation analysis at these 6 sites – that would
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be good evidence that the spatially-distributed TC results in Section 4 are robust
in a relative sense (despite the known bias issues associated with the neglect of
error cross-correlation).

Response/Action: This is a very interesting comparison and we appreciate it. In
all of the 6 pixels that we conducted the gauge-based analysis, the TRMM 3B42
and NEXRAD products are ranked 1st and 2nd for the lowest error based on the
RMSE from TC, respectively. Looking at the rankings in the gauge-based TC
analysis (σTRE in Figures 8, S3, S4 and S5 in the original submission) in 5 out
of the 6 pixels, TRMM 3B42 has the lowest error, and in 4 out of the 6 NEXRAD
has the best error after TRMM 3B42. Therefore, in general, we can make the
conclusion, the relative rankings for the products with the lowest error remains
almost the same. However, GPCP 1DD and GPI rankings are only preserved
on 3 out of the 6 pixels. This makes it hard to make the conclusion that these
rankings are preserved for all the cases. Nevertheless, this is based on only 6
pixels out of the 75 pixels across the whole domain. So it is not possible to extend
this conclusion to the whole study. We can conclude from this comparison that
the cross-correlation error can impact the performance ranking of the precipita-
tion products, but the relative impact needs further analysis. We included this
comparison in the final submission with detailed explanations.

- Another step that could be taken would be replace the TMPA 3B42 dataset with
its "real-time" (RT) equivalent (TMPA 3B42RT) which is not gauge-corrected.
This transition would make the "TRMM" precipitation product relatively more in-
dependent from the NEXRAD and GPCP datasets (which also have a gauge-
correction component). Therefore, this transition towards greater error indepen-
dence should lead to an increase in TC-derived error for the NEXRAD and GPCP
products and a decrease in error for GPI (when considered as part of triplet that
includes GPI) . The size of this increase (or decrease) could be used of an in-
dication of how serious the cross-correlation problem is across the entire study
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domain. Does it – for example – significantly close the gap between GPI and
NEXRAD TC results over the eastern part of the study area?

Response/Action: We implemented this analysis, and included the detailed re-
sults in the final paper. Here, we present two figures showing the result of ap-
plying TC to the two sets of triplets while replacing TRMM 3B42 with TRMM
3B42RT (Figures 1 and 2). These figures indicate that using the real-time prod-
uct of TRMM 3B42 will increase the TC-derived errors in NEXRAD and TRMM
products and decrease the errors in GPI. This is a direct result of the non-zero
cross-correlation. However, the general pattern of the error and the relative val-
ues between the the three products remains the same. The TRMM 3B42RT is
still doing a better job compared to NEXRAD and GPI; then, NEXRAD is ranked
2nd in performance and GPI is the last one. From this example, we can conclude
that the cross-correlation problem is a not a major issue in applying TC analysis
to precipitation products in this case; however, it definitely impacts the absolute
value of RMSEs derived from TC.

- Therefore, prior to publication, I would strongly recommend that the authors ad-
dress this issue in some manner. At the very least, add 2-3 sentences describing
the consequences of the analysis in Section 5 on earlier results in Section 4.

Minor Suggestions:

1. Page 2536, Line 9-11: Clarify what exactly is meant by “homogeneous”? You
mean homogeneous in a statistical climate sense . . . correct?

Response/Action: Exactly, this refers to the spatial homogeneity of the precip-
itation in a statistical climate sense. The statement will be revised in the final
paper to clarify this.

2. Page 2535, Line 20-22: I don’t see how zeros would violate the assumption of
error independence . . . however I can see how they would cause fatal problems
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in a logtransform analysis. The authors might want to re-write this sentence (or
improve its clarity). Also, what about extremely low rainfall values (right at the
edge of numerical precision) . . . can they skew results conducted in log-transform
space?

Response/Action: The issue with zeros is both violation of the error indepen-
dence and log-transformation. Precipitation can only take values greater and
equal to zero; therefore, it is bounded from one side. And if the precipitation esti-
mate at a specific time and space is equal to zero; then, the error in that estimate
can be from a limited set of numbers (basically any number greater than zero).
So, it is dependent on the measurement (or equivalently the truth). As a result, if
we have zero value in the precipitation measurement for all the triplets, the error
of each of them is dependent on the measurement; and therefore, on each other.
This error dependence decreases as the measurement value moves away from
zero, and it can be present for rainfall values close to numerical precision of the
system. This is also a minor problem when using TC on soil moisture data that
is a bounded variable but is it a major issue with daily and subdaily precipitation
data which has a lot of zeros. Therefore, in our analysis we are using biweekly
accumulation and excluding the few percentage of zero values to reduce the im-
pact of this dependence. Moreover, it is not possible to represent a non-zero error
together with zero precipitation as the truth in the multiplicative model of Eq. (1).

3. Page 2541, Line 1-4: I had to read this sentence several times to follow it
. . . I’d recommend re-writing to clarify its meaning (e.g. be a bit more specific
. . . representativeness error in what? . . . and cross-correlation in errors between
what and what?).

Response/Action: We believe this statement refers to page 2542, Lines 1-4.
Assuming this, we revised the sentence to the following in our final submission
to clarify the points: ”It is understood that gauge data also have errors including
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representativeness error (they are point measurements unlike the other prod-
ucts that provide an average value over each pixel); however, as it is shown
in Yilmaz and Crow (2014) (Appendix) the representativeness error in the gauge
measurements causes a positive bias in the TC-based RMSE estimates while the
cross-correlation between the errors of different products in each triplet causes a
negative bias."

List of Figures

1. Figure 1: RMSE of the precipitation rate estimated from TC using triplets in group
1; a) NEXRAD, b) TRMM 3B42RT, c) GPI. Panel d) shows the number of data
points (biweekly measurements) in each pixel that are used for error estimation
in TC analysis.

2. Figure 2: RMSE of the precipitation rate estimated from TC using triplets in
group 2; a) NEXRAD, b) TRMM 3B42RT, c) GPCP 1DD. Panel d) shows the
number of data points (biweekly measurements) in each pixel that are used for
error estimation in TC analysis.

Interactive comment on Hydrol. Earth Syst. Sci. Discuss., 12, 2527, 2015.

C1987

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/C1982/2015/hessd-12-C1982-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/2527/2015/hessd-12-2527-2015-discussion.html
http://www.hydrol-earth-syst-sci-discuss.net/12/2527/2015/hessd-12-2527-2015.pdf
http://creativecommons.org/licenses/by/3.0/


HESSD
12, C1982–C1989, 2015

Interactive
Comment

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

Fig. 1.
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