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Abstract. The influence of the temporal changes in lateral inflow rate on the discharge 8 

variability in stream channels is explored through the analysis of the diffusion wave 9 

equation (i.e., the linearized Saint-Venant equation). To account for variability and 10 

uncertainty, the lateral inflow rate is regarded as a temporal random function. On the 11 

basis of the spectral representation theory, analytical expressions for the covariance 12 

function and evolutionary power spectral density of the random discharge perturbation 13 

process are derived to quantify variability in stream flow discharge induced by the 14 

temporal changes in lateral inflow rate. The treatment of the discharge variance (square 15 

root of the variance) gives us a quantitative estimate of uncertainty in predictions from 16 

the deterministic model. It is found that the discharge variability of stream flow is very 17 

large in the downstream reach, indicating large uncertainty anticipated from the use of the 18 

deterministic model. A larger temporal correlation scale of inflow rate fluctuations, 19 

representing more temporal consistency of fluctuations in inflow rate around the mean, 20 

introduces a higher variability in stream flow discharge. 21 

 22 

1. Introduction 23 



2 

 24 

Surface runoff originates from precipitation intensities exceeding the infiltration capacity 25 

of the surface (e.g., Duan et al., 1992; Sivakumar et al., 2000; Ruiz-Villanueva et al., 26 

2012; Valipour, 2015). This process may result in lateral inflow to nearby stream channels. 27 

Significant lateral inflows may contribute to streams during storm-runoff periods when 28 

stream reaches are of large lateral watershed areas or upslope accumulated areas (Jencso 29 

et al., 2009). These lateral inflows may be not only a source of water to streams, but also 30 

a source of contaminants to surface water. Agricultural chemicals are frequently mixed 31 

into shallow soil layers and lateral inflows may cause the release and migration of them 32 

into streams (Govindaraju, 1996). The effect of the lateral inflow on the stream flow 33 

provides an important basis for analyzing contaminant transport in surface water. 34 

Understanding and quantification of the influence of inflow process on stream flow 35 

discharge is therefore essential for water resource planning and management. 36 

Natural variability, such as significant variability of rainfall events on both 37 

temporal and spatial scales (e.g., Ogden and Julien, 1993; Redano and Lorente, 1993; 38 

Wheater et al., 2000; Zhang et al., 2001; De Michele and Bernardara, 2005; Haberlandt et 39 

al., 2008; Valipour, 2012; Bewket and Lal, 2014) and the great heterogeneity of soil types 40 

at the ground surface (e.g., Jencso et al., 2009; Fournier et al., 2013) and surface 41 

saturation (e.g., Schumann et al., 2009; Riley and Shen, 2014) over a watershed, creates a 42 

very complex runoff process on the land surface. Many practical problems of flood wave 43 

routing require predictions over relatively large time and space scales. The key issue is 44 

how one can realistically incorporate the effect of natural heterogeneity into models to 45 

predict flood wave behavior at large time and space scales. Due to a high degree of the 46 
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natural heterogeneity of the surface runoff process, the use of deterministic analysis 47 

techniques in stream flow modeling is inevitably subject to large uncertainty. The 48 

theoretical understanding of variability in flood wave routing is far from complete. 49 

Motivated by that, this article focuses on quantification of the discharge variability in a 50 

lateral-inflow-dominated stream. 51 

In the follows, the response of transient stream flow process to spatiotemporal 52 

lateral inflow in a diffusion wave model is analyzed stochastically by treating the 53 

fluctuations in lateral inflow rate as temporal stationary random processes. The 54 

non-stationary spectral techniques are employed to obtain closed-form solutions for 55 

quantifying the discharge variability in stream channels. These solutions provide variance 56 

relations for flow discharge, and thereby allow for assessing the impact of statistical 57 

properties of lateral inflow rate process on the discharge variability.  58 

To the best of our knowledge, the issue on quantifying the effect of temporal 59 

variation of lateral inflow on the stream flow variability using non-stationary spectral 60 

techniques so far has not been addressed. The approach presented herein provides not 61 

only an analytical methodology but also a basic framework for understanding the 62 

response of transient stream flow process and quantifying the stream flow variability. It 63 

is hoped that the proposed approach and our findings obtained in this study are useful for 64 

further research in this area.  65 

 66 

2. Description of the problem 67 

 68 

This study considers the case of unsteady flow in open channels. The equations that 69 
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describe the propagation of a flood wave with respect to distance along the channel and 70 

time in open channels, are the so-called Saint-Venant equations, consisting of the 71 

continuity equation and the momentum equation. For most flood events, in most rivers 72 

the inertial terms appearing in the momentum equation of the Saint-Venant equations can 73 

be neglected as they are relatively smaller than the terms arising from gravity and 74 

resistance forces (Henderson, 1963; Dooge and Harley, 1967; Daluz Viera, 1983), 75 

leading to a simplified model of open channel flow. The diffusion wave equation is then 76 

expressed as (e.g., Moussa, 1996; Sivapalan et al., 1997):  77 
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where Q is the discharge, Cd and Dh are non-linear function of discharge generally known 79 

as wave celerity and hydraulic diffusivity, respectively, S0 is the bed slope, and qL(X, t) 80 

represents the net lateral inflow distribution. The diffusion wave equation (1) is 81 

formulated by combining the continuity equations for both mass and momentum. The 82 

diffusion wave approximation is appropriate for simulations of the flood waves in rivers 83 

and on flood plains with milder slopes ranging between 0.001 and 0.0001 84 

(Kazezyılmaz-Alhan, 2012). Most natural flood waves can then be described with the 85 

diffusion wave model. Some of the successful applications of the simplified channel flow 86 

models to flood routing are available in the literature (e.g., Ponce et al., 1978; Singh and 87 

Aravamuthan, 1995; Moramarco and Singh, 2002; Khasraghi et al., 2015).  88 

Equation (1) is a nonlinear partial differential equation and has a complex behavior 89 

of the stream flow in general. No analytical solution of Eq. (1) is available in the 90 

literature. However, the problem can be solved analytically by some simplifications to Eq. 91 
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(1), such as linearization for the case of an initially steady uniform flow. On the basis of 92 

expansion of the dependent variable and the nonlinear terms in Eq. (1) around the initial 93 

condition of steady uniform flow and limitation of the expansion to the first-order 94 

variation from the steady state, the resulting linearized Eq. (1) can be written as   95 
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In Eq. (2), Q = Q - Q0 (Q0 >> Q, qL), Q0 is the initial uniform steady-state flow discharge, 97 

and C and D represent constant celerity and diffusivity, respectively, depending on the 98 

initially uniform flow (velocity and flow depth). The reader may be referred to Dooge 99 

and Napiorkowski (1987), Ponce (1990), Yen and Tsai (2001) or Tsai and Yen (2001) for 100 

the detailed development. 101 

 The problem of interest here is the stream flow response to the temporal changes in 102 

lateral inflow rate, which is governed by Eq. (2). The solution to Eq. (2) with associated initial 103 

and boundary conditions will serve as the starting point for conducting the following 104 

investigation of stream flow variability. 105 

To derive the analytical solution of Eq. (2), one needs to specify the form of qL(X, t). 106 

In the present work, the focus is placed on the case that the net lateral inflow is 107 

well-approximated by the following spatiotemporal distribution (e.g., Lane, 1982; 108 

Capsoni et al., 1987; Goodrich et al., 1997; Féral et al., 2003). 109 

)exp()(),(

X
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              (3) 110 

where qM is the peak inflow rate, and  is the distance along the X-axis for which the 111 

inflow rate decreases by a factor e-1 with respect to qM. In particular, qM is considered to 112 
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be a temporally correlated stationary random field. It is apparent from Eq. (2) that the last 113 

two terms associated with the lateral inflow are introduced as the sources of fluctuations 114 

in stream flow discharge and treated here as temporally correlated stochastic processes. 115 

Equation (2) is then viewed as a stochastic differential equation with a stochastic output 116 

Q. The solution of Eq. (2) will provide a rational basis for quantifying the flow 117 

variability through the representation theorem. 118 

Consider that the flow domain is bounded within the range 0  X  L. The associated 119 

initial and boundary conditions can be expressed as 120 

0)0,(  XQ  (4a) 121 

0),0(  tQ  (4b) 122 

0),( 



tLQ
X

 (4c) 123 

Equations (4a) signifies that there is no perturbation from the reference discharge initially 124 

while Eq. (4b) assumes no inflow at the upstream boundary at all times. The downstream 125 

boundary condition represented by Eq. (4c) is under the condition of a zero-discharge 126 

gradient. Morris (1979) showed that this downstream boundary condition is applicable to 127 

a large class of problems. 128 

 129 

3. General solutions via spectral theory 130 

 131 

The approach followed is to develop the analytical solution of Eq. (2) in the Fourier 132 

frequency domain. 133 

 Temporal stationarity of the qM perturbation process admits a spectral representation 134 
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of the form (e.g., Priestley, 1965)  135 
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 (5) 136 

where  is the frequency parameter, Zq() is an orthogonal process, and dZq is a 137 

zero-mean orthogonal increment process with  138 

 ddSdZdZE qqqq 2121121 )()()()( ][ *   (6) 139 

in which E[-] denotes the ensemble average, the superscript asterisk stands for the 140 

complex-conjugation operator, and Sqq(-) is the power spectral density for the stationary 141 

random qM perturbation process. On the other hand, without the restriction on the 142 

assumption of stationarity the random perturbed quantities Q may be expressed in the 143 

form of the Fourier-Stieltjes integral representation as (e.g., Priestley, 1965; Li and 144 

McLaughlin, 1991)  145 
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where Qq(-) is the transfer function depending on space, time, and frequency.  147 

It follows from Eqs. (5) and (7) that Eq. (2) takes the form  148 
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subject to the following initial and boundary conditions  150 
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The method of eigenfunction expansion is used to solve this inhomogeneous boundary 154 

value problem, and the solution of Eq. (8) with Eq. (9) is:  155 
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where  = CL/D,  = /L, an = (2n+1)/2,  = X/L, = (/2)+1/, and Fn = D[an
2+2/4]/L2. 158 

Rewriting Eq. (7), and using Eq. (10), yields the solution of Eq. (2) in the frequency 159 

domain as  160 
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The covariance function of the flow discharge field, CQQ(-), can be computed on the 163 

basis of the representation theorem for Q by  164 
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where am = (2m+1)/2 and Fm = D[am
2+2/4]/L2. The variance of flow discharge 170 

fluctuations is obtained by evaluating Eq. (12) at zero time lag as  171 
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 In addition, following Priestley (1965), the variance of the Q process may be 175 

written in the form of  176 
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so that the evolutionary power spectral density of the non-stationary random process can 178 

be defined as  179 

)]()([)()],,(),,([ **
2
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  (15) 180 

where At(-) is referred to as the modulating function of the non-stationary process. The 181 

evolutionary spectrum has the same physical interpretation as the spectrum of a stationary 182 

process, namely, that it describes the distribution of mean square signal content (or 183 

fluctuations) of the random process at a given time t. Comparing Eq. (14) to Eq. (13) 184 
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leads Eq. (15) to  185 
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where SQQ (-) is the spectral density of the Q perturbation process.  189 

The infinite series in Eq. (10) converges rapidly when c = Dt/L2 >> 1/2. 190 

Accordingly, Eq. (10) can reduce to 191 
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where  = D[2+2]/(4L2) and  = t. The time scale of the hydraulic system, c, is 193 

referred to as the hydraulic response time (Gelhar, 1993). Here, it is interpreted as the 194 

characteristic time for a change in upstream discharge to reach the downstream end of the 195 

stream. For most practical applications, it is much greater than unity, which is the main 196 

interest of this study. 197 

The use of Eq. (17), in turn, simplifies Eqs. (13) and (16), respectively, to 198 
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Equation (19) states that the spectrum of the discharge is a result of a competitive relation 203 

between the signal frequency and the properties of the stream channel and inflow. 204 

Generally, it is very difficult to quantify the variability of inflow rate. Equation (19) thus 205 

provides information about the nature of inflow processes. For example, on the basis of 206 

an observed discharge perturbation time series with known hydraulic parameters, the 207 

nature of inflow processes may be determined from Eq. (19). After normalizing by the 208 

spectral density Sqq(-), the evolutionary power spectral density Eq. (19) as a function of 209 

dimensionless frequency for various time scales and locations are graphed in Figures 1a-b, 210 

respectively. It shows that the spatial variation of spectral amplitude associated with a 211 

given frequency increases with the time and the distance from the upstream boundary as 212 

well. It reveals that the variability of flow discharge increases with time and distance. 213 

 214 

4. Closed-form expressions for the variance and spectral density of discharge 215 

fluctuations 216 

 217 

In this work, the spectrum of red noise is used to evaluate Eqs. (18) and (19) explicitly. 218 

The analysis of discharge variability in this section assumes an exponential form for the 219 

autocovariance function of the random fluctuations in the peak inflow rate (Jin and Duffy, 220 

1994; Kumar and Duffy, 2009), namely, 221 
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which has the following spectral density function 223 
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where S  is the time lag and q
2 and  are, respectively, the variance and temporal 225 

correlation scale of peak inflow rate fluctuations. 226 

Upon substituting Eq. (20b) into Eq. (18) and integrating it over the frequency 227 

domain, one obtains the following expression for the variance of flow discharge 228 

fluctuations as 229 
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where R = . Equation (21) indicates a linear relationship between the variances of 232 

fluctuations in the flow discharge and inflow rate, implying that the flow variability 233 

increases linearly with the heterogeneity of the inflow rate. With Eq. (20b), the resulting 234 

expression for the evolutionary power spectral density in Eq. (19) is given by  235 
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 Figure 2 shows the plot of the dimensionless variance of discharge fluctuations in Eq. 238 
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(21) as a function of dimensionless time for various dimensionless temporal correlation 239 

scales of inflow rate fluctuations. The figure indicates that the variability of flow 240 

discharge induced by the variation of inflow rate increases gradually with time toward its 241 

asymptotic value at large time. The correlation scale provides a measure of the strength of 242 

the persistence of fluctuations around the mean. It is anticipated that the stochastic 243 

processes will exhibit rather clear trends with relatively little noise (a smoother data 244 

profile) if the correlation scale is larger. In other words, the temporal fluctuations in 245 

inflow rate are either consistently above or below the profile of mean inflow rate in the 246 

case of a larger temporal correlation scale. Those larger inclusions in turn lead to larger 247 

deviations of flow discharge from the initially uniform steady-state flow discharge.  248 

 Variation of flow discharge with the distance from the upstream boundary is 249 

depicted in Figure 3 according to Eq. (21). As noted in the figure, the variability of flow 250 

discharge grows monotonically with distance, implying that due to the naturally inherent 251 

variability of lateral inflow, uncertainty in the flow discharge calculations from a 252 

deterministic model increases with the distance from the upstream boundary. In other 253 

words, the prediction of flow discharge distribution based on the deterministic simulation 254 

results is subject to the largest uncertainty in the downstream region. The downstream 255 

region is important in most real applications of modeling, and Eq. (21) provides a way of 256 

assessing the variation around the deterministic model prediction. 257 

Many practical applications involving prediction over a large scale require 258 

measurement of uncertainty. Standard deviation is the best way to accomplish that. In this 259 

sense, the prediction results from a deterministic model are treated as the mean values. 260 

The mean value plus one standard deviation (square root of Eq. (21)) provides a rational 261 
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basis for extrapolating relatively small-scale field observations to these large space scales. 262 

Moreover, the likelihood of the flow discharge falling in the range of one standard 263 

deviation greater and smaller than the mean is about 68.27%. 264 

 265 

5. Conclusions 266 

 267 

The problem of fluctuations in flow discharge in open channels in response to temporal 268 

changes in lateral inflow rate is investigated stochastically for a finite flow domain. In 269 

this study, the inflow perturbation field is modeled as a temporally stationary random 270 

process. For a complete stochastic description of flow discharge variability, expressions 271 

for the covariance function and evolutionary power spectral density of the random flow 272 

discharge perturbation process are developed. These expressions are obtained using a 273 

spectral representation theory. The variance relation developed here provides a rational 274 

basis for quantifying the uncertainty in applying the deterministic model. 275 

This work represents an initial step in stochastic study of the effect of temporal 276 

variation of lateral inflow on the stream flow discharge variability. To take the advantage 277 

of a closed-form solution, the linearized diffusion wave equation (2) is therefore used as 278 

the starting point for this research. It is important to recognize that the results developed 279 

in this work are valid only for the case of small variations in flow discharge around an 280 

initially uniform flow regime. 281 

It is found from our closed-form expressions that the discharge variability in stream 282 

channels induced by the temporal changes in lateral inflow rate increases gradually with 283 

time toward its asymptotic value at large time. A larger temporal correlation scale of 284 
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inflow rate fluctuations which is of a more persistence of inflow perturbation process will 285 

introduce more variability of the flow discharge. The increase of discharge variability 286 

with the distance from the upstream boundary suggests that prediction of flow discharge 287 

distribution in channels using a deterministic model is subject to large uncertainty at the 288 

downstream reach of the stream. 289 
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Figures 400 

a) 401 

 402 

b) 403 

 404 

Fig. 1. Dimensionless evolutionary power spectral density as a function of dimensionless 405 

frequency for various (a) time scales and (b) locations. 406 
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 407 

Fig. 2. Dimensionless variance of discharge fluctuations as a function of dimensionless 408 

time for various dimensionless temporal correlation scales of inflow rate 409 

fluctuations. 410 

 411 

Fig. 3. Dimensionless variance of discharge fluctuations as a function of dimensionless 412 

distance from the upstream boundary. 413 


