
Authors’ responses to the comments of anonymous Reviewer 1 1 
 2 
We would like to thank Reviewer 1 for the constructive criticisms and suggestions made to 3 
our manuscript. Below, we respond to the comments in a point-by-point manner.  4 
 5 
 6 
Responses to Specific Comments 7 
1. Description of two models should be a bit extended. It should include a description of 8 
spatial disaggregation schemes and routing schemes used in both models 9 
 10 
We agree with the Reviewer and extended description of the models with respect to their 11 
spatial disaggregation and routing schemes. The following paragraphs have been added  12 

The ECOMAG model utilizes semi-distributed approach with the whole river basin interpreted 13 
as a number of sub-basins. It takes into consideration topography, soil and land cover 14 
characteristics of a particular sub-basin. For each sub-basin hydraulic properties of soil as well 15 
as land-cover properties are scaled taking into account sub-basin area (Motovilov et al. 1999a, 16 
b). Subsurface and groundwater routing is based on the Darcy law, while the surface runoff and 17 
channel flow are described by the kinematic wave equation.  18 
The SWAP model utilizes a regular spatial grid with a size of 1o×1o. The cells are connected by 19 
channel's network.  Streamflow transformation within network is calculated with the use of a 20 
linear model using the TRIP algorithm (Oki et al., 1999)  21 

 22 
 23 
2. The model performance is described too shortly in section 3 (only references). In addition 24 
to references it would be good to describe shortly, in 2-3 sentences, how the model 25 
calibration/ validation was done for these large river basins (for multiple gauges?), and to 26 
list obtained criteria of fit for the calibration and validation periods. 27 
 28 
We have included the following paragraph and additional Table in order to clarify these 29 
issues 30 
 31 

Both models have been applied earlier for simulating runoff hydrographs on the basis of multi-32 
year hydrometeorological observations in the Lena and Northern Dvina River basins and 33 
demonstrated good performance of simulations (Motovilov and Gelfan 2013; Gusev et. al, 34 
2011; ; Krylenko et al., 2014, Gusev et al., 2015). Both trial-and-error manual procedure and 35 
Shuffle Complex Evolution (SCE-UA) automatic algorithm were applied for calibration of 36 
ECOMAG and SWAP, respectively. The widely-used Split-Sample Test (Klemeš, 1986) was 37 
utilized for validation of the models.  Both calibration and validation procedures were carried 38 
out against daily streamflow data measured at several gauges of these large basins. The Nash 39 
and Sutcliffe (1970) efficiency, NSE, and bias evaluation criteria were adopted to summarize 40 
the goodness of fit of the simulated and measured daily discharge series. As an example, the 41 
evaluation criteria calculated for the outlets of Lena and Northern Dvina River basins and 42 
adopted from (Motovilov and Gelfan 2013; Gusev et. al, 2011; ; Krylenko et al., 2014, Gusev 43 
et al., 2015) are shown in Table 1.   44 
 45 
 46 
 47 
 48 
 49 
 50 



 1 
 2 
Table 1 The Nash and Sutcliffe efficiency, NSE, and bias evaluation criteria calculated from 3 
simulated and measured daily discharge at the outlets of Lena and Northern Dvina River basins  4 

River (Gauge) Period NSE Bias, % 

ECOMAG (calibration period) 
Lena (Stolb) 2000-2009 0.90 -2.9 

N. Dvina(Ust’-Penega) 2000-2009  0.88 1.4 
ECOMAG (validation period) 

Lena (Stolb) 1987-1999 0.86 1.4 
N. Dvina(Ust’-Penega) 1970-1999  0.81 2.0 

SWAT (calibration period) 
Lena (Stolb) 1971-1977 0.82 -4.9 

N. Dvina(Ust’-Penega) 1986-1990  0.86 -1.1 
SWAT (validation period) 

Lena (Stolb) 1978-1999 0.80 -3.7 
N. Dvina(Ust’-Penega) 1967-1985; 1991-1998  0.85 -0.6 

 5 
3. Both models are assigned as the physically based tools. Most probably, major processes 6 
are parametrized using physically-based approaches. However, the question is: is it sufficient 7 
to assign them to the class of physically-based models? Are both models fully distributed (3-8 
dimentional), and what is the grid size? Do they both include full surface and groundwater 9 
balances and energy balance? Do they both include ONLY physically-based equations, and 10 
no any empirical or semi-empirical ones? Do they correspond to criteria outlined in Freeze 11 
and Harlan (1969) for a “physically based digitally simulated hydrologic response model”? 12 
(see also K. Beven paper, 13 
http://eprints.lancs.ac.uk/4421/1/Blueprint.pdf). Maybe the applied models should be rather 14 
classified as models of intermediate complexity or process-based models? 15 
 16 
There are many different ways of classifying models in watershed hydrology and the 17 
most prevalent is the discrimination between black-box, conceptual and physically based 18 
models (e.g. Grayson, Blöschl, 2000) that is founded on the relationship between a priori 19 
(theoretical) and a posteriori (based on data) information assimilated by the model. K. 20 
Beven (2000, page 41) used the term “process based model” as a synonym of “physically 21 
based model”. In contrast, R. Grayson and G. Blöschl (2000, page 55) used this term as a 22 
synonym of “conceptual model”. If the respected reviewer shares the last opinion, then 23 
we would like to note that conceptualization of the dominant hydrological processes in 24 
the ECOMAG and SWAP models is based mostly on fundamental equations of hydro- 25 
and thermodynamics (in integrated form) that offers some advantages over conceptual 26 
model. The most important among these advantages is that a large amount of a priori 27 
information is used in conceptualization and parameters. Utilization of such prior 28 
knowledge and experience that modeler has brought, among other things, to the 29 
parametrization process greatly reduces the space for physically realistic parameter 30 
values and, consequently, reduces uncertainty of the model response associated with the 31 
parameter uncertainty.  32 

Of course, neither ECOMAG nor SWAP model include only physically-based 33 
equations without any empirical or semi-empirical ones. However, in our opinion, use of 34 
the empirical relationships (particularly for calculation of the parameters through the 35 
basin attributes) does not convert a physically-based model into conceptual one. 36 



Moreover, we do not know any physically-based model (and widely recognized as such 1 
model; SHE, for instance) which could work without the empirical relationships.    2 

Thus, taking into account these notes, we prefer to keep the term “physically 3 
based model” in the paper.      4 
 5 
Beven, K. (2000): Rainfall-Runoff Modelling – The Primer. John Wiley & Sons, Chichester. 6 
Grayson, R. and Blöschl, G. (2000) Spatial Modelling of Catchment Dynamics. In: Rodger 7 
Grayson and Günter Blöschl, eds. Spatial Patterns in Catchment Hydrology: Observations and 8 
Modelling. p. 51-81. 9 
 10 
 11 
Responses to Technical Corrections 12 
1. All abbreviations should be written in full when first mentioned (e.g., 2305, l. 16) 13 
Changed 14 
 15 
2, 3 2306: why “artificial” scenarios?  why hydrometeorological “impact” (if it is forcing) 16 
 17 
The sentence has been changed as follows  18 

The second group includes the approaches that are based on hydrological models forced by 19 
assigned scenarios of hydrometeorological inputs. 20 

 21 
4. 2306: why “development” of this approach (maybe rather “application”?).  22 
Changed 23 
 24 
5. 2306: differ within ! differ by  25 
Changed 26 
 27 
6. 2307, l.2: favors ! favor  28 
Changed 29 
 30 
7. 2307: measurement data ! measured data  31 
Changed 32 
 33 
8. 2307: , primarily,! primarily  34 
Changed 35 
 36 
9. 2311, l. 27: belong to ! occurs in  37 
Changed 38 
 39 
10. 2312, l. 11: successively ! successfully?  40 
Changed 41 
 42 
11. Fig. 2: two identical graphs for P, no graph for T, please exchange. 43 
Figure 2 has been changed. 44 
 45 
12. 2316: similar fields ! similar patterns 46 
Changed 47 
  48 
13. 2317: to explain more accurately: if monthly or daily water discharge, then other indices 49 
are needed, and not j = 1, 2, . . ., 34.  50 



We clarify this misunderstanding as follows: 1 
ijX can be either annual discharge for a specific year, or monthly discharge for a specific 2 

calendar month, or daily discharge for a specific calendar day, derived from i-th realization and 3 
related to j-th year. Thus, according to the experimental design, any variable, be it annual, 4 
monthly or daily, is considered as 45×34 matrix (for instance, matrix of January discharges or 5 
matrix of July 25 discharges).       6 
 7 

14. 2321, p. 4: not only “require different input data”, but also “are differently structured 8 
and parametrized”.  9 
Thank you for this comment. Changed. 10 
 11 
15. All Figures: please increase size of font on axes and subtitles.  12 
All sizes are increased 13 
 14 
16. 2326, l. 19-25: not necessary to repeat this here.  15 
We would prefer to keep this fragment. 16 
 17 
17. 2327: point 1 could be subdivided into two. 18 
We have reduced the corresponding paragraph. 19 
 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 



Authors’ responses to the comments of Dr. Hagemann 1 
We would like to thank Dr. Hagemann for helpful and constructive comments. Below, we 2 
respond to the comments in a point-by-point manner. 3 
 4 
Major remarks  5 
The authors present a robust analysis of a large ensemble of GCM-HM simulations to 6 
investigate the impact of internal variability on simulated river runoff. The study is interesting 7 
and worth publishing but a few things need to be addressed before.  8 
 9 
1. It needs to be pointed out clearly that the considered time scales are important for the 10 
validity of results of the study. To separate the study from other research working on longer, 11 
climatological time scales, time scales longer than one year should be notably excluded, i.e. 12 
the impact of internal variability diminishes compared to other uncertainty sources if, e.g., 13 
multi-year monthly or annual means are considered (e.g. Déqué, M., D. Rowell, D. Lüthi, F. 14 
Giorgi, J.H. Christensen, B. Rockel, D. Jacob, E. Kjellstrom, M. de Castro and B. van den 15 
Hurk (2007) An intercomparison of regional climate models for Europe: assessing 16 
uncertainties in model projections. Climatic Change 81, Supplement 1, 53-70)  17 
 18 
We in agree with this comment and are thankful to the reviewer for providing 19 
important references (also from the following comment) that are relevant to the subject 20 
of our study. These papers are now cited and the remark of the reviewer is now pointed 21 
out in the Introduction. We note, however, that although our study mainly presents 22 
uncertainties of the seasonal cycle component statistics, uncertainties of long-term 23 
climatic trends in annual component are also considered (in particular, in Fig. 12, where 24 
34-yr trend distribution is shown) and may be relevant also for near-term climate 25 
predictions.  26 
 27 
2. Studies such as Deque et al. (2007) or (Hagemann, S., H. Göttel, D. Jacob, P. Lorenz and 28 
E. Roeckner, 2009: Improved regional scale processes reflected in projected hydrological 29 
changes over large European catchments.  Climate Dynamics 32 (6), doi: 10.1007/s00382-30 
008-0403-9: 767-781) considering uncertainty introduced by internal variability at longer 31 
time scales should also be referred to in the introduction section.  32 
 33 
These papers are now cited. 34 
 35 
3. In the conclusions section it would be interesting to address the following question based 36 
on the results: What are the implications for seasonal to decadal predictions using GCMs? 37 
 38 
Our general implication for GCM prediction is basically in line with conclusions by 39 
Deser et al. (2012; 2014) who indicate an importance of large ensembles of climate model 40 
realizations. This is now added in the Conclusions section. 41 

Our results, in line with the conclusions of Deser et al. (2012; 2014) who analyzed temperature 42 
and precipitation changes, suggest an importance of performing large ensembles of climate 43 
change projections with climate models also for making robust estimates of uncertainty and 44 
externally forced signal in hydrological response on decadal to multi-decadal time scale.  45 

 46 
 47 
4. Technically I recommend a careful checking regarding the use/non-use of ‘a’ and ‘the’ in 48 
the manuscript. These seem to be missing at many places.  49 



 1 
We have revised the manuscript regarding the use of the articles.  2 
 3 
Minor Comments  4 
In the following suggestions for editorial corrections are marked in Italic.  5 
 6 
p. 2306 – line 25  7 
… mean value, which indicates …  8 
 9 
Corrected 10 
 11 
p. 2306 – line 26  12 
It is written: “…a considerable portion of the observed trend can be externally driven.”  13 
As you only deal with simulations I would not recommend using the word “observed” in this 14 
context.  15 
 16 
We might have not properly formulated this sentence. The simulated ensemble mean 17 
Lena River discharge is statistically different from zero (when estimated from model 18 
ensemble spread) and fits well to the observed value. This allows us to suggest that 19 
observed trend has a contribution from external to the atmosphere forcing (SST, sea 20 
ice). This is not the case for Northern Dvina River. Now, this sentence is corrected both 21 
in the Abstract and Conclusions.  22 
 23 
p. 2311 – line 25  24 
In Section 5, runoff characteristics …  25 
 26 
Corrected 27 
 28 
p. 2313 – line 14  29 
… Geophysics; Motovilov et al. 1999a) has been…  30 
 31 
Corrected 32 
 33 
p. 2313 – line 23-24  34 
(SWAP; Gusev and Nasonova 1998) has been …  35 
 36 
Corrected 37 
 38 
p. 2314 – line 10-11  39 
It is written: “Some key-parameters of the models are calibrated against streamflow 40 
measurements and …”  41 
Some more information on the calibration and the respective parameters is desirable.  42 
 43 
Some information about the parameter calibration procedure was added at page 8 of the 44 
revised manuscript. As to the calibrated parameters, we believe that including the list of 45 
the respective parameters is not too usefull without description of both models (that is 46 
unreal within the framework of the manuscript). The issues concerning the choice and 47 
justification of calibrated parameters can be found in (Motovilov and Gelfan 2013; 48 
Gusev et. al, 2011; ; Krylenko et al., 2014, Gusev et al., 2015). All these publications are 49 



cited in the revised manuscript  1 
 2 
p. 2314 – line 25-27  3 
It is written: “In particular, ECHAM5 similar to majority of climate models (Flato et al., 4 
2013; IPCC AR5) simulates colder climate in winter in high latitudes of the Northern 5 
Hemisphere …”  6 
I doubt this statement. Hagemann et al. (2006, 2013) show a distinct warm bias of ECHAM5 7 
(AMIP simulation, but also coupled to an ocean model) in the winter over the high northern 8 
latitudes land area (or the area covered by the six largest Arctic rivers).   9 
References: Hagemann. S., K. Arpe and E. Roeckner, 2006: Evaluation of the hydrological 10 
cycle in the ECHAM5 model. J. Climate, 19, 3810-3827 Hagemann, S., A. Loew, A. 11 
Andersson, 2013: Combined evaluation of MPI-ESM land surface water and energy fluxes. J. 12 
Adv. Model. Earth Syst., 5: 259-286, doi:10.1029/2012MS000173.  13 
 14 
We agree that cold bias found in our simulations (see the Figures 1 and b for SAT and 15 
SLP biases) may not be a characteristic feature for the ECHAM5 model. Different 16 
biases may result, in particular, from different setup (e.g., we employ the old cloud 17 
scheme (Roeckner et al., 1996, ECHAM4 description), not the statistical-dynamical 18 
approach based on Tompkins (2002)). Also, coupled and uncoupled results may 19 
considerably differ. We, therefore, reformulated the indicated statement in a more 20 
generalized manner with citing the outlined papers.  21 
 22 

 
Figure 1. DJF (a) and JJA (b) surface air temperature difference between ECHAM5 (ensemble 
mean) and NCEP reanalysis, averaged for 1979-2012 period, K.  



 
Figure 2. As in Fig. 1 but for sea level pressure, hPa.  
 1 
 2 
p. 2317 – line 10-11  3 
It is written: “One can see from this Figure that the applied post-processing allowed us to 4 
obtain rather similar fields of the above listed variables..”  5 
The similarity between the model data and observations used for corrections is rather trivial as 6 
this can be expected from a bias correction approach. It would be of interest to show the 7 
uncorrected (original) fields in addition to see how large the correction actually is.   8 
 9 
We do not fully agree that the similarity is always trivial result of the bias correction 10 
procedure. This result was, on the contrary, rather surprising for us, because the 11 
assigned correction factor equals difference between the model data and observations 12 
averaged spatially (over the very large basin) and temporally (over large time interval). 13 
In this case, similarity between the areal averages is trivial indeed, however similarity of 14 
spatial patterns is not. We have clarified this issue in the corresponding paragraph of 15 
the revised manuscript 16 
 17 

In addition, the similarity is rather surprising taking into account that the assigned correction 18 
factor is based on the model-observation differences averaged over the very large basin. Thus 19 
ECHAM5 demonstrates good performance in simulating spatial distribution of deviations from 20 
the basin averaged values of precipitation, air temperature and humidity.  21 

 22 
p. 2325 – line 12  23 
It is written: “… which is particularly noticeable for the winter season, when the SD-estimates 24 
are sometimes lower by hundreds percent in comparison with their observed variability.”  25 
Maybe it should be noted that discharges in winter are usually small for high latitude rivers so 26 
that even absolute small differences may yield large relative differences. 27 
 28 
This is now indicated in the text. 29 
 30 
p. 2327 – line 7-8 31 
It is written: 32 



“Importantly, the role of the internal atmospheric variability is most visible for the time scales 1 
from years to first decades …” 2 
This is only true if one does not consider multi-annual monthly or annual means. See major 3 
remark [1]. 4 
 5 
We now added “in the presented simulations” to this sentence, which makes it clear that 6 
we do not imply multi-annual climatic averages.  7 
 8 
p. 2328 – line 2 … runoff trend, were estimated.  9 
 10 
Corrected 11 
 12 
p. 2338 – Fig. 2 The top left panel is a duplicate of the top right panel. I assume, it should 13 
show temperature, not precipitation.  14 
 15 
Sorry for misprinting. The figure is corrected. 16 
 17 
p. 2343 – Fig. 7 Panels for the same river should be merged to allow an easier comparison 18 
between the two models. If this is not feasible, please use at least the same y-axis scaling for 19 
panels belonging to the same river.  20 
p. 2346 – Fig. 10 Panels for the same river should be merged to allow an easier comparison 21 
between the two models. If this is not feasible, please use at least the same y-axis scaling for 22 
panels belonging to the same river. 23 
 24 
According to your suggestion, we use the same y-axis for panels belonging to the same 25 
river  26 
 27 
p. 2340 – Fig. 4 Instead of showing one curve per panel, the panels for the same river should 28 
be merged to allow an easier comparison between the two models.  29 
p. 2344 – Fig. 8 Instead of showing one curve per panel, the panels for the same river should 30 
be merged to allow an easier comparison between the two models.  31 
p. 2342 – Fig. 6 Panels for the same river should be merged to allow an easier comparison 32 
between the two models 33 
p. 2345 – Fig. 9 Panels for the same river should be merged to allow an easier comparison 34 
between the two models.  35 
 36 
We prefer keeping the listed Figures as are because of two reasons  37 
1. The comparison between two models is not the purpose of our study. The models 38 
require different input data, are differently structured and parametrized, so their 39 
responses to the internal atmospheric  variability can be incomparable. This is the case 40 
for Figures 4 and 8.   41 
2. Figures 6, 9 are not readable if the corresponding panels would be merged. 42 
 43 

 44 
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 14 

Abstract 15 

Approach is proposed to assess hydrological simulation uncertainty originating from internal 16 

atmospheric variability. The latter is one of three major factors contributing to uncertainty of 17 

simulated climate change projections (along with so-called “forcing” and “climate model” 18 

uncertainties). Importantly, the role of internal atmospheric variability is the most visible over 19 

spatio-temporal scales of water management in large river basins. Internal atmospheric 20 

variability is represented by large ensemble simulations (45 members) with ECHAM5 21 

atmospheric general circulation model. Ensemble simulations are performed using identical 22 

prescribed lower boundary conditions (observed sea surface temperature, SST, and sea ice 23 

concentration, SIC, for 1979-2012) and constant external forcing parameters but different 24 

initial conditions of the atmosphere. The ensemble of bias-corrected ECHAM5-outputs and 25 

ensemble averaged ECHAM5-output are used as a distributed input for ECOMAG and SWAP 26 

hydrological models. The corresponding ensembles of runoff hydrographs are calculated for 27 

two large rivers of the Arctic basin: the Lena and the Northern Dvina rivers. A number of 28 

runoff statistics including the mean and the standard deviation of annual, monthly and daily 29 

runoff, as well as annual runoff trend are assessed. Uncertainties of runoff statistics caused by 30 

internal atmospheric variability are estimated. It is found that uncertainty of the mean and the 31 

Отформатировано:
английский  (США)

Отформатировано:
английский  (США)

Отформатировано:
английский  (США)

Удалено: the 

Удалено: the 

Удалено: n a

Удалено: the 

Удалено: the 

Удалено: alone 

Удалено: the 

Удалено: the 

Удалено: al

Удалено: The i

Удалено: the 

Удалено: The e

Удалено: the 

Удалено: s well as

Удалено: the 

Удалено: the 

Удалено: the 

Удалено: The u

Удалено: the 

Удалено: the 



standard deviation of runoff has a significant seasonal dependence on the maximum during 1 

the periods of spring-summer snowmelt and summer-autumn rainfall floods. Noticeable non-2 

linearity of the hydrological models’ results in the ensemble ECHAM5 output is found most 3 

strongly expressed for the Northern Dvina River basin. It is shown that the averaging over 4 

ensemble members effectively filters stochastic term related to internal atmospheric 5 

variability. Simulated discharge trends are close to normally distributed around the ensemble 6 

mean value, which fits well to empirical estimates and, for the Lena River, indicates that a 7 

considerable portion of the observed trend can be externally driven. 8 

 9 

1 Introduction 10 

In river basin hydrology, two groups of approaches are usually applied to assess the impact of 11 

changing climate on river runoff. The first group of empirical (data-based) approaches is 12 

based on treatment of available hydrometeorological records and includes, for instance, time 13 

series analysis of runoff characteristics (see reviews presented by Lins, 2005; Shiklomanov, 14 

2008; Bates et al., 2008), analysis of these characteristics sensitivity to climate variations, 15 

particularly by using “elasticity” indices (Sankarasubramanian et al., 2001; Vano and 16 

Lettenmaier, 2014), analysis of relationships between spatial and temporal runoff variations 17 

(“trading space for time”) (Peel and Blöschl, 2011; Singh et al., 2011), etc. The second group 18 

includes approaches that are based on hydrological models forced by assigned scenarios of 19 

hydrometeorological inputs. These scenarios are constructed either by a transformation of 20 

available series of meteorological observations (for example, “delta-change transformation” 21 

(Chiew et al., 2009; Motovilov and Gelfan, 2013), “power transformation” (Driessen et al., 22 

2010), or using the global (GCM) and regional (RCM) climate models simulations output (see 23 

reviews in Praskievicz and Chang, 2009; Chiew et al., 2009; Peel and Blöschl, 2011; 24 

Teutschbein and Seibert, 2010). The latter approach synthesizes up-to-date hydrological 25 

models with climate models and provides a better basis to take into account various physical 26 

mechanisms of a hydrological system response to the climate change impacts. However,  27 

application of this approach is hampered by a number of limitations, first of all, the 28 

inconsistency between spatial/temporal resolution of climate models and characteristic scales 29 

of hydrological processes in river basin, which differ by several orders of magnitude, both in 30 

time and space (Blöschl and Sivapalan, 1995)). Another serious limitation is related to climate 31 

models’ capability to accurately reproduce variability and the mean state for many 32 
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meteorological characteristics, especially for precipitation (see, for example, Kundzewicz et 1 

al., 2008; Kundzewicz and Stakhiv, 2010; Anagnostopoulos et al., 2010). Explosive increase 2 

in computing resources occurred during the last years, development of measuring 3 

technologies and methods of data processing, as well as numerical methods, favor for the 4 

improvement of climate models, significant increase in their productivity and spatial 5 

resolution, and better simulation of regional climate (Flato et al., 2013). This promotes a 6 

wider usage of the model-based approach for assessment of the climate change impact on 7 

river runoff. However, a significant uncertainty in these assessments still remains and their 8 

interpretation should be considered with caution, especially for practical applications in the 9 

field of long-term water management (Wilby, 2010; Kundzewicz and Stakhiv, 2010). 10 

Part of the total uncertainty inherent to assessments of climate change hydrological 11 

consequences is caused by limitations of our knowledge about  the dynamics of climatic and 12 

hydrological systems, nature of their interrelationships, insufficiency of measured data, etc., 13 

and, potentially, can be reduced with increasing understanding of these systems (epistemic 14 

uncertainty). Another part of this uncertainty is a structural one, which does not depend on 15 

acquiring new knowledge and data and is an inherent property of these systems. Evaluation of 16 

this structural, inherent uncertainty impact is the key issue to realize the potential to obtain 17 

reliable assessments of climate-driven changes in river runoff (see, e.g., discussion in 18 

Koutsoyiannis et al., 2009). 19 

Uncertainty of assessments of hydrological response to climate change is primarily caused by 20 

uncertainty of the future climate projections. The latter is related to three independent factors 21 

(Hawkins and Sutton, 2009; Deser et al., 2012). The first, so-called “response uncertainty” or 22 

“model uncertainty”, is caused by differences in climate response to identical external (e.g., 23 

anthropogenic) forcing in different climate models. The model uncertainty arises from 24 

structural differences (in particular spatial resolution) between climate models, different 25 

parameterizations of physical processes, numerical methods, etc., related to scientific 26 

advances in understanding and description of a climate system and therefore can be 27 

potentially reduced. The second factor is so-called “scenario uncertainty” and represents 28 

uncertainties related to prescribed scenarios of future anthropogenic greenhouse and aerosols 29 

emissions. The third factor is the internal, natural variability of climate system (or so-called 30 

“climatic noise”), which exists also in the absence of external forcing and results from 31 

stochastic nature of atmospheric dynamics, its instability to small perturbations, and also 32 
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internal (often non-linear) modes of variability in the atmosphere and the ocean at different 1 

time and spatial scales. Climatic noise is a major source of physically based structural 2 

uncertainty in climate change projections and it determines a lower limit of uncertainty that 3 

can be reached in climate system modeling (Braun et al., 2012). 4 

The major components of climatic noise are stochastic fluctuations in the atmosphere and the 5 

ocean. Large heat capacity, relatively low ocean circulation velocities (relative to atmosphere) 6 

and existence of internal oscillatory modes with (quasi) periodicity ranging from years to 7 

centuries (Semenov et al., 2010; Latif and Keenlyside 2011, Latif et al., 2013) provide a 8 

certain predictability of oceanic processes. This so-called “second kind of predictability”, 9 

particularly predictability on time scale of about ten years that has been recently found to be 10 

potentially approached by modern climate models, is currently an object of intense research 11 

(e.g., Latif and Keenlyside 2011). Another source of uncertainty is caused by internal 12 

atmospheric variability and related to stochastic dynamics of atmosphere, instability of 13 

atmospheric circulation to small perturbation of parameters. Commonly known as the 14 

“butterfly effect”, this kind of instability was illustrated in the classical work by Edward 15 

Lorenz (1963). Such an uncertainty determines a time limit for a weather forecast that does 16 

not exceed two weeks and leads to essentially different realizations of the atmospheric state 17 

beyond this limit given the same boundary and external forcing but small (within the 18 

measurement error) changes in initial conditions. Hereinafter, we use the term “climatic 19 

noise” to refer only to this kind of uncertainty caused by internal atmospheric variability. Our 20 

study focuses on transformation of the climatic noise by hydrological models and its impact 21 

on the uncertainty of simulated runoff. Note that the role of the climatic noise is most 22 

important on time scales from years to first decades and on regional spatial scales (Räisänen, 23 

2001; Hawkins and Sutton, 2009), i.e. on the spatial-temporal scales of water resource 24 

management in large river basins. 25 

Analysis of uncertainty related to internal atmospheric variability is based on ensemble 26 

climate model simulations with identical external forcing and different initial conditions 27 

(“multireplicate ensemble”). This approach results in ensemble of realizations or trajectories 28 

of climate system states that differ from each other solely due to internal variability (Yip et 29 

al., 2011; Braun et al., 2012; Deser et al., 2012; Sansom et al., 2013; Semenov, 2014). To 30 

obtain reliable statistical assessments of variability within an ensemble, it is necessary to 31 

calculate several dozens of simulation trajectories as a minimum. Such calculations using 32 
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GCM require large computational resources. Simulations with climate models participating in 1 

the World Climate Research Programme (WCRP) Coupled Model Intercomparison Project 2 

Phase 3 and 5 (CMIP3 and CMIP5) (Meehl et al., 2007; Taylor et al., 2012) used for the 4th 3 

and 5th IPCC assessment reports respectively include just a few (usually not exceeding ten) 4 

trajectories for any particular model (Peel et al., 2014). This fact is partially responsible for 5 

the absence, till recently, of studies of climate noise effect on assessments of uncertainty in 6 

river runoff climate-driven changes. The first publications in this field appeared, to our 7 

knowledge, in 2014 (Seiller, Anctil, 2014; Lafaysse et al., 2014; Peel et al., 2014). 8 

Seiller and Anctil (2014) constructed climate scenarios using Canadian GCM (СGCM) with 9 

spatial resolution of 33.75 followed by dynamic downscaling of the calculated data to a 10 

local scale with resolution of 45 km. Ensemble of realizations calculated under different 11 

initial conditions for simulating climate system internal variability consisted of 5 members. 12 

The realizations were assigned as an input for 20 conceptual runoff models with lumped 13 

parameters to calculate river runoff in a small, around 30 km2, basin in the south-west of 14 

Canada. The authors demonstrated that the uncertainty of river runoff assessments caused by 15 

climate noise exceeds the uncertainty of hydrological models. 16 

To increase the climate scenarios ensemble size, which simulates internal variability, Lafaysse 17 

et al. (2014) used stochastic generators and assigned the constructed stochastic scenarios as an 18 

input into ISBA/Durance land surface model. Similar approach was presented by Peel et al. 19 

(2014) to increase the number of climatic trajectories simulated by five GCMs. The authors 20 

developed a stochastic procedure to generate time series of monthly meteorological variables 21 

with statistics close to those obtained from GCM simulations. The generated hundred of 250-22 

year meteorological time series were used to force the conceptual PERM hydrological model.  23 

On the one hand, the use of stochastic generators for calculating a large ensemble of climate 24 

system trajectories is a much more efficient (from the computational point of view) approach 25 

to assess climate-driven changes in river runoff when compared to simulation of GCM-26 

realizations ensemble (Hawkins and Sutton, 2009; Yip et al., 2011; Deser et al., 2012; 27 

Sansom et al., 2013). On the other hand, the applied stochastic procedures create an additional 28 

and ambiguously interpreted source of uncertainty. 29 

In this paper we have tried to assess, using physically based hydrological models, the 30 

uncertainty in simulated river runoff characteristics of large river basins taking into 31 

consideration internal variability of the atmosphere. The latter was simulated in a large (45 32 
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members) ensemble of GCM-realizations of the current climate period (1979-2012) initialized 1 

under different initial conditions but using identical boundary forcing (sea surface 2 

temperatures and sea ice concentrations). Case studies were carried out for two large 3 

watersheds of the Arctic basin: the Lena River (catchment area F=2 488 000 km2) and the 4 

Northen Dvina River (F= 357 000 km2).  We emphasize that our study focuses on present day 5 

climate variations with relatively smaller contribution of the external forcing compared to 6 

studies considering future climate projections to the end of the 21st century (e.g., Déqué et al., 7 

2007; Hagemann et al., 2009). On such time scales, the impact of internal variability 8 

diminishes compared to other uncertainty sources. 9 

The paper is structured as follows. Section 2 presents the main physiographic and climatic 10 

characteristics of the basins under consideration. Further a short description of the used 11 

hydrological models ECOMAG and SWAP can be found, as well as the results of their 12 

validation against hydrological observations in the basins under study. Section 4 contains a 13 

brief description of the atmospheric general circulation model (AGCM) ECHAM5, the design 14 

and results of numerical experiments on simulating internal atmospheric variability. In 15 

Section 5, runoff characteristics uncertainty caused by internal atmospheric variability is 16 

analyzed on the basis of the simulated runoff ensemble. Uncertainties of the mean and the 17 

variance of the river discharge averaged over different time intervals (calendar day, calendar 18 

month, year), as well as to the uncertainty in long-term trend of the simulated annual 19 

discharge are emphasized. The last section summarizes the results and presents the main 20 

conclusions. 21 

 22 

2 Study basins and datasets  23 

The case studies were carried out for two Arctic river basins: the Lena River and the Northern 24 

Dvina basins. The Lena River is one of the largest rivers in the Arctic that flows northward 25 

from mid latitudes to the Arctic Ocean (Fig. 1), and it contributes about 15% of total 26 

freshwater flow into the ocean. The basin occupies an area of 2 460 000 km2 extending from 27 

103°E to 142°E and from 52°N to 74°N. The length of the basin from the South to the North 28 

is more than 2400 km; its average width is about 2000 km. There are four main types of 29 

landscapes within the Lena River basin: Arctic wilderness, tundra, forest tundra and taiga 30 

forests, which occupy almost 70% of the basin area. The main part of the basin has mountain 31 

relief with heights ranging in general from 600 to 2000 m (reaching 3500 m in the southern 32 
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part of the basin). The climate is extremely continental, with surface air temperatures being 1 

extremely low in winter (as cold as -50  -65оC) and high in summer (up to +20 -+35о C). The 2 

whole territory of the basin is located in the permafrost zone. The Lena River runoff is 3 

characterized by spring-summer snowmelt flood, summer and autumn rain floods and 4 

extremely low water levels in winter. Maximum discharge of 189 000 m3/s was observed at 5 

the basin outlet Stolb – on  June the 1st, 1984. The average annual discharge of the Lena 6 

River is about 15 370 m3/s. There are over 80 meteorological and over 20 runoff hydrological 7 

stations within the basin. 8 

The Northern Dvina River basin with an area of 360 000 km2 occupies vast flat forested 9 

territory in the northern part of East European plain from 39°E to 56°E and from 58°N to 10 

66°N and flows northward to the White Sea basin. Taiga forest covers more than 80% of the 11 

river basin with the northern part changing for tundra landscapes. The climate of the territory 12 

is influenced by cyclonic activity. Precipitation exceeds evaporation which leads to excessive 13 

wetness. More than 60% of the annual runoff belongs to spring flood period. Maximum 14 

discharge of 36 200 m3/s was observed at the basin outlet Ust-Pinega on 28th of April 1953. 15 

The average annual discharge of the Northern Dvina River is about 3400 m3/s. There are 35 16 

meteorological and over 10 runoff hydrological stations within the basin.  17 

Due to low anthropogenic burden and absence of reservoirs for regulating the main river flow, 18 

the Northern Dvina and the Lena River basins are good objects for case studies aimed to 19 

estimate runoff response to climate variations.  20 

 21 

3  Hydrological models  22 

Two hydrological models, ECOMAG (Motovilov et al., 1999a) and SWAP (Gusev and 23 

Nasonova, 1998), developed at the Water Problems Institute of RAS (Moscow) are used in 24 

this study. These models have been successfully tested against observation data all over the 25 

world.  26 

Physically-based semi-distributed model ECOMAG (ECOlogical Model for Applied 27 

Geophysics) developed by Yu. Motovilov (Motovilov et al., 1999a) was earlier applied for 28 

hydrological simulations in many river basins of various sizes and located in different natural 29 

conditions: from small-to-middle size Scandinavian basins (e.g. Motovilov et al., 1999b) to 30 

the great Volga and Lena Rivers with watershed areas exceeding a million km2 (Gelfan and 31 
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Motovilov, 2009; Motovilov and Gelfan, 2013). Since 2004, the ECOMAG model has been 1 

utilized in an operational mode for hydrological characteristics and water inflow simulation 2 

into the Volga-Kama and the Angara-Yenisey reservoir cascades in Russia, which are among 3 

the largest reservoir cascades worldwide. 4 

Physically based land surface model Soil Water-Atmosphere-Plants (SWAP) developed by 5 

Ye. Gusev and O. Nasonova (Gusev and Nasonova, 1998) was intensively validated, in 6 

particular, within several model intercomparison projects (PILPS, Rhone-AGG, MOPEX, 7 

SnowMIP, GSWP-2) for different river basins and experimental sites located in various 8 

natural zones (from areas in tropical zone to regions with permafrost) and characterized by 9 

different spatial scales (from small experimental sites and catchments to the whole land 10 

surface of the Earth). The results of the model testing are presented, particularly, in (Gusev 11 

and Nasonova, 1998, 2003; Gusev et. al, 2011) 12 

Both models describe interception of rainfall/snowfall by the canopy, processes of snow 13 

accumulation and melt, soil freezing and thawing, water infiltration into unfrozen and frozen 14 

soil, evapotranspiration, thermal and water regime of soil, overland, subsurface and channel 15 

flow. ECOMAG model utilizes semi-distributed approach with the whole river basin 16 

interpreted as a number of sub-basins. It takes into consideration topography, soil and land 17 

cover characteristics of a particular sub-basin. For each sub-basin, hydraulic properties of soil 18 

as well as land-cover properties are scaled taking into account sub-basin area (Motovilov et al. 19 

1999a, b). Subsurface and groundwater routing is based on the Darcy law, while the surface 20 

runoff and channel flow are described by a kinematic wave equation. SWAP model utilizes a 21 

regular spatial grid with a size of 1o×1o. The cells are connected into channel network. 22 

 Streamflow transformation within the network is calculated with the use of a linear model 23 

using TRIP algorithm (Oki et al., 1999)  24 

Most of the parameters are physically meaningful and can be assigned from literature or 25 

derived through available measured characteristics of topography, soil, and land-cover. Some 26 

key-parameters of the models are calibrated against streamflow measurements and, if 27 

available, measurements of the internal basin variables (snow characteristics, soil moisture, 28 

groundwater level, etc.). 29 

ECOMAG model is forced by daily time series of air temperature, air humidity and 30 

precipitation. The SWAP inputs include 3-hour data of incoming radiation, precipitation, air 31 
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temperature and humidity, atmospheric pressure, and wind speed. The forcing data can be 1 

taken from meteorological observations or GCM-outputs.  2 

Both models were applied earlier for simulating runoff hydrographs based on multi-year 3 

hydrometeorological observations in the Lena and the Northern Dvina River basins and 4 

demonstrated good performance of simulations (Motovilov and Gelfan 2013; Gusev et. al, 5 

2011; ; Krylenko et al., 2014, Gusev et al., 2015). Trial-and-error manual procedure and 6 

Shuffle Complex Evolution (SCE-UA) automatic algorithm were applied for calibration of 7 

ECOMAG and SWAP, respectively. Widely-used Split-Sample Test (Klemeš, 1986) was 8 

utilized for model validation.  Both calibration and validation procedures were carried out 9 

against daily streamflow data measured at several gauges of these large basins. Nash and 10 

Sutcliffe (1970) efficiency, NSE, and bias evaluation criteria were adopted to summarize the 11 

goodness of fit of simulated and measured daily discharge series. As an example, the 12 

evaluation criteria calculated for the outlets of the Lena and the Northern Dvina River basins 13 

and adopted from (Motovilov and Gelfan 2013; Gusev et. al, 2011; ; Krylenko et al., 2014, 14 

Gusev et al., 2015) are shown in Table 1.   15 

 16 

4 Atmospheric general circulation model description and inernal variability 17 

simulations   18 

Ensemble simulations were performed with atmospheric general circulation model (AGCM) 19 

ECHAM5 developed at the Max Planck Institute for Meteorology (Roeckner et al., 2003). 20 

This model is a climatic version of AGCM based on spectral weather forecast model of the 21 

European Centre for Medium-Range Weather Forecasts (ECMWF) that employs state-of-the-22 

art physics. The model version used here has a horizontal resolution of T63 (1.8°  1.8° 23 

latitude  longitude) and 31 vertical levels. All 45 ensemble simulations use identical 24 

prescribed lower boundary conditions at atmosphere-ocean interface. These conditions are 25 

taken from HadISST1.1 (Hadley Centre, UK) dataset that consists of global empirical analysis 26 

of the sea surface temperature (SST) and the sea ice concentrations (SIC, a portion of model 27 

grid cell covered by sea ice) (Rayner et al. 2003). The simulation period is from 1979 to 2012. 28 

The start of simulations in 1979 was motivated by beginning of the era of continuous satellite 29 

monitoring of the sea ice cover that provides most reliable SIC data. This is important for 30 

correct simulations of the climate in high-latitudes (Semenov and Latif, 2012). Greenhouse 31 

gas concentrations in the model are kept constant and represent modern climate conditions 32 
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(348 ppm for СО2, and 1.64 ppm for methane). All other external forcing parameters (such as 1 

orbital parameters, solar radiation, other radiative-active gases and aerosols) also correspond 2 

to modern climate conditions and do not vary. The only differences between the simulations 3 

are initial conditions of the atmosphere (model atmospheric state on the 1st of January, 1979) 4 

that are prescribed as instant atmospheric states at different 12 hour intervals in December 5 

1978. Thus, the ensemble consists of 45 simulations with identical boundary and external 6 

forcing but different initial conditions. Note that the characteristics at atmospheric lower 7 

boundary over land (soil temperature and moisture, snow cover) are computed by AGCM 8 

using a land surface model and simulated heat and water fluxes (Roeckner et al. 2003). 9 

Such ensemble simulations with time-varying SST and SIC according to observational data 10 

allow one to estimate a contribution of the varying SST and SIC fields to the observed 11 

changes in atmospheric characteristics (the mean, trends, variability) during the simulation 12 

period (assuming that AGCM correctly reproduces a response to varying boundary 13 

conditions). When considering changes of atmospheric variables consisting of changes caused 14 

by external to atmosphere factors (SST and SIC) that are supposed to be the same in all 15 

simulations and internal variability (due to stochastic atmosphere dynamics and thus 16 

independently distributed), the averaging over large ensemble members effectively filters 17 

stochastic terms (climatic noise) and results in an estimate of the external signal related to 18 

SST and SIC changes. Similar approach will be applied in section 5.3 to estimate externally 19 

forced part of long-term changes in hydrological characteristics that provides a basis for 20 

estimating potential predictability limits for hydrological systems. 21 

To illustrate differences between individual ensemble members arising from internal 22 

atmospheric dynamics, several meteorological characteristics were averaged over the Lena 23 

River catchment area. Figs. 2 (top) show ensemble (45 realizations) of the mean annual 24 

temperature and precipitation for the period of simulations (1979-2012); Figs. 2 (bottom) 25 

demonstrate ensemble of the mean daily values of these variables averaged over the 26 

simulation period. 27 

A positive trend for both temperature and precipitation (Fig. 2 top) agrees with global 28 

warming and the tendency of precipitation increase in high northern latitudes accompanying 29 

temperature increase. Intra-ensemble standard deviations of the annual temperature and 30 

precipitation values caused by internal stochastic atmospheric dynamics account for 0.5°С 31 

and 0.08 mm/day respectively. The standard deviations of the daily mean temperature vary 32 
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within 0.4-0.8 °С during a year, while the deviations of precipitation are about 0.02-0.04 1 

mm/day in winter and reach as much as 0.30 mm/day for some summer days. The following 2 

section will address a question how such uncertainty is transformed to uncertainty in river 3 

discharge. 4 

An important factor that should be taken into account while analyzing ECHAM5 simulations 5 

is a model bias (e.g., Hagemann et al., 2006; 2013). Even when forced with observed fields of 6 

SST and SIC, ECHAM5 simulates the mean climate over land areas that differs from 7 

observations of the corresponding period. The sources for model bias include deficiencies in 8 

parameterizations and incomplete description of some physical processes, numerical schemes, 9 

low model resolution (Flato et al., 2013, IPCC AR5). In our experiments, ECHAM5 simulates 10 

a colder winter climate in high latitudes of the Northern Hemisphere that is related to higher 11 

sea level pressure over the Arctic and weakened zonal flow in mid and high latitudes (not 12 

shown).  13 

A post-processing procedure, analogous to that proposed by Velázquez et al. (2013), was 14 

applied to correct biases in ECHAM5-outputs before using them as inputs into hydrological 15 

models. The correction factors were computed based on the difference between the ensemble-16 

mean climate variables modelled for the reference period (1979-2009) and corresponding 17 

observed variables averaged over the basin areas under consideration. The correction factors 18 

were then added to ECHAM5-simulated 6-hour meteorological fields. Comparison of the 19 

spatial fields of mean annual values of precipitation, air temperature and humidity obtained 20 

from data registered in the meteorological stations located within the Lena River basin and 21 

processed from the simulated data is illustrated, as an example, by Fig. 3. Figure 3 shows that 22 

the applied post-processing allowed us to obtain rather similar patterns of the above listed 23 

variables taking into account sparseness of the meteorological monitoring network in the 24 

basin.  In addition, the similarity is rather surprising taking into account that the assigned 25 

correction factor is based on the model-observation differences averaged over very large 26 

basin. Thus, ECHAM5 demonstrates good performance in simulating spatial distribution of 27 

deviations from the basin averaged values of precipitation, air temperature and humidity.  28 

 29 

5. Experiment design, results and discussion  30 

Due to stochastic nature of climate, hydrological models cannot provide predictions of 31 

specific streamflow hydrograph series (even for the past, not to mention for the future) on the 32 
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basis of the climate model outputs. In other words, hydrological models operating on outputs 1 

from climate model are confined, similar to climate models, to making projections rather than 2 

predictions (Refsgaard et al, 2014) and are able to provide only information on statistical 3 

characteristics of runoff series. Below we present approaches to and results of estimating 4 

these statistical characteristics from simulated ensembles of multi-year streamflow 5 

hydrographs, as well as analysing uncertainty of the estimations.  6 

An ensemble of NI=45 time series of meteorological variables simulated by ECHAM5 for the 7 

period of NY=34 years (from 1.01.1979 to 31.12.2012) was assigned as a distributed input 8 

into ECOMAG and SWAP hydrological models. With the help of these two models, 45-9 

member ensembles of daily streamflow series each of 34-year length were calculated for the 10 

Lena River and the Northern Dvina River. From these hydrograph ensembles, the mean 11 

values and the standard deviations of annual, monthly and daily runoff were estimated. Then, 12 

95% confidence intervals for the estimates were calculated as an indication of uncertainty in 13 

these estimates caused by the internal variability of the atmosphere. Whilst calculating the 14 

confidence intervals, it was assumed that these estimates followed the Gaussian probability 15 

distribution. 16 

More precisely, the estimates were calculated as follows. Assume a calculated water 17 

discharge be ijX , where i=1,2,…,45 is the realization number referred to the assigned initial 18 

conditions in the climate model; j=1,2,…34 is the number of year within the simulation 19 

period. In this study, ijX can be either an annual discharge for a specific year, or a monthly 20 

discharge for a specific calendar month, or a daily discharge for a specific calendar day, 21 

derived from i-th realization and related to j-th year. Thus, according to the experimental 22 

design, any variable, be it annual, monthly or daily, is considered as 45×34 matrix (for 23 

instance, matrix of January discharges or matrix of July 25 discharges).       24 

To obtain the above mentioned statistical characteristics and their confidence intervals, the 25 

following formulae were used: 26 

M -estimate of the mean value:  27 
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SD -estimate of the standard deviation:  29 
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where   is the confidence probability,  x1  is the inverse of the cumulative normal 6 

distribution function; M  is the standard deviation of M , equal to    7 

 

1
1

2








NI

MM
NI

i
i

M ,     (5) 8 





NY

j
iji X

NY
M

1

1 ;  9 

SD  is the standard deviation of SD , equal to 10 

 

1
1

2








NI

MSD
NI

i
SDi

SD ,      (6) 11 

 






NY

j
iiji MX

NY
SD

1

2

)1(
1 , 




NI

i
iSD SD

NI
M

1

1  12 

 Hereafter, the confidence intervals of estimates are evaluated for  =95% confidence 13 

probability, i.e. 





 



2
95.011 =1.96 14 

To compare uncertainty in statistical estimates of runoff characteristics, which differ in their 15 

absolute value, normalized widths of the confidence intervals were used. Uncertainty indices 16 

 MUN  and  SDUN  of M  and SD  estimates, respectively, are introduced which are 17 
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considered to be half of the width of 95% confidence interval of the corresponding estimate 1 

divided by its mean value, i.e.: 2 

 
MM

MUN MMM  96.1
2







  (7) 3 

 
SDSD

SDUN SDSDSD  96.1
2







  (8) 4 

where 
  and _

  are the right and the left limits of the confidence interval, respectively.  5 

In the next Subsections, the results of ensemble simulation of river runoff for each study basin 6 

are presented. First, analysis of the uncertainty indices of annual, monthly and daily mean 7 

estimates for both river basins is presented. The calculated estimates are compared to the 8 

corresponding observation data estimates. Then, analogous results are shown for standard 9 

deviations of runoff values averaged over the same time intervals (a year, a month, a day). 10 

Finally, uncertainty in trends in annual runoff is calculated and discussed. 11 

5.1 Estimates of the mean runoff and their uncertainty 12 

Table 2 demonstrates the uncertainty indices  MUN  for M -estimates of annual, monthly 13 

and daily runoff calculated by formula (7). Intra-annual variation of uncertainty indices 14 

 MUN  for M -estimates of daily runoff is shown in Fig. 4.  15 

The following conclusions can be derived based on the presented results: 16 

(1) Uncertainty in the mean runoff values calculated by both of the models for both 17 

rivers decreases with the increasing interval of runoff averaging.  18 

It is shown in Table 2 that the uncertainty index  MUN  for the M -estimates of daily runoff 19 

varies from 8% to 24% ;  MUN  for monthly runoff - from 7% to 19%;  MUN  for annual 20 

runoff – from 6% to 10% depending on the model used and the study river basin. However, 21 

uncertainty indices for monthly and daily runoff estimates have distinguished seasonal 22 

variations, and maximum values of the uncertainty considerably exceed their average values 23 

within a year. For example, as can be seen from Fig. 4, uncertainty index  MUN  for daily 24 

runoff can be more than 50%, and  MUN  for mean monthly runoff estimates reaches 41% 25 

(Table 2). 26 
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(2) Internal atmospheric variability has maximal influence on uncertainty in the 1 

estimates of the mean runoff during snowmelt/rainfall flood periods for both 2 

rivers. Uncertainty of estimates of the mean runoff during winter months is small. 3 

Uncertainty indices  MUN  for M -estimates of monthly runoff during the period of 4 

snowmelt floods and rainfall floods amount to 21-24% for the Lena River and 35-41% for the 5 

Northern Dvina River depending on the applied hydrological model (see Table 2). The 6 

uncertainty  MUN  for daily runoff is even greater (Fig. 4): for snowmelt flood this value is 7 

42-55% for both rivers. Uncertainty  MUN  for monthly runoff during winter periods is 8 

much less (2-13% for the Lena River and 2-19% for the Northern Dvina River); the same 9 

applies to daily runoff during winter (see Fig. 4). Possible explanation of these findings is that 10 

physical mechanisms of flood events are more sensitive to intra-ensemble changes of the 11 

climate model outputs than more inertial mechanisms of low flow generation.    12 

(3) Uncertainty in the mean runoff estimates for the Lena River basin appeared to be 13 

significantly less than the ones for the Northern Dvina River when using both 14 

models. Moreover, intra-annual irregularity of  MUN  is more noticeable for the 15 

Northern Dvina simulations both on monthly (Table 2) and daily (Fig. 4) time 16 

scales. In other words, the Northern Dvina simulated hydrographs appeared to be 17 

more sensitive to the atmospheric variability. 18 

This difference of uncertainty in the mean runoff estimates is related to peculiarities of river 19 

runoff generation in the study basins. These peculiarities can manifest themselves, for 20 

example, in a degree of non-linearity of river basin response to climate impact: increase in 21 

non-linearity, generally speaking, should lead to increase in the uncertainty in the calculated 22 

runoff characteristics. Therefore, one can assume that the mechanisms of runoff generation 23 

and transformation of climate impact on variations of river runoff are more linear in the Lena 24 

River basin than in the Northern Dvina River basin. To validate this assumption, we 25 

compared two mean hydrographs for each basin. One was calculated by averaging over the 26 

ensemble of 45 simulated mean hydrographs (an averaged response to ensemble input) and 27 

the other simulated by the hydrological models using one meteorological input obtained by 28 

averaging over 45 ECHAM5-outputs (a response to the ensemble averaged input).  29 
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If the response of the hydrological system to climate impact is linear, these hydrographs 1 

should be similar, whereas non-linearity should lead to an increased difference between these 2 

hydrographs. The results of the comparison are shown in Fig.5. 3 

As one can see from Fig. 5, both models show that the response of the hydrological system of 4 

the Lena River basin is close to linear, while the response of the Northern Dvina River is 5 

essentially non-linear. This supports the above mentioned assumption about an increased 6 

effect of internal atmospheric variability on uncertainty of the  mean river runoff estimates in 7 

the Northern Dvina River basin due to a greater non-linearity of the mechanisms of runoff 8 

generation compared with the Lena River basin. Note, that due to the effect of averaging, 9 

peak discharge of the ensemble mean hydrographs is always lower than the hydrograph peak 10 

simulated from the mean outputs (see Fig. 5).   11 

(4) Uncertainty of the mean runoff estimates determined using different models vary 12 

insignificantly, despite the fact that these models require different input data, are 13 

differently structured and parametrized. Thus, the average uncertainty indices 14 

 MUN  for SWAP-simulated monthly runoff are 11% for the Lena River and 19% 15 

for the Northern Dvina River; when using ECOMAG, the values are 7% and 19%, 16 

respectively. 17 

As the next step, we compare the obtained M -estimates of the simulated runoff with the 18 

corresponding estimates derived from streamflow observations in the basins under 19 

consideration.  20 

Figs. 6 and 7 present a comparison between M -estimates for annual, monthly and daily 21 

discharges calculated at the basin outlets with the corresponding estimates obtained from the 22 

time series of the discharges observed for 31 years (1979-2009). These Figures also show 23 

95% confidence intervals M  for the calculated estimates of the mean values computed by 24 

formulae (3) and (5).   25 

The comparison of the calculated estimates with the mean runoff characteristics evaluated by 26 

available observational series has demonstrated that calculation errors, when using both 27 

models, increase with decreasing time interval of discharge averaging. Estimates of the mean 28 

annual runoff are characterized by the smallest error: 5% and 18% for the Lena River, and 29 

10% and 33% for the Northern Dvina River depending on the hydrological model used. The 30 

errors of the mean monthly and the mean daily runoff estimates are usually much greater. It is 31 
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especially noticeable for the periods of spring-summer snowmelt flood and summer-autumn 1 

rainfall floods for both rivers: error of the mean monthly runoff can reach several dozens of 2 

percent, and for the mean daily runoff – hundreds of percent. Winter months are an exception 3 

with errors for both mean monthly and mean daily runoff usually not exceeding 30-40%. It 4 

turned out that all calculated estimates of mean runoff were closer to the corresponding 5 

estimates based on empirical data for the Lena River than for the Northern Dvina River. This 6 

can be explained by a weaker natural variability of the runoff characteristics at a larger basin 7 

of the Lena River. 8 

5.2 Estimates of the standard deviation of runoff and their uncertainty 9 

While analyzing SD -estimates of runoff, we focused on the same issues, which were 10 

discussed in the previous sections when analyzing the corresponding M -estimates. 11 

Specifically, we considered dependence of uncertainty indices  SDUN  on the interval of 12 

runoff averaging, intra-annual changes in  SDUN , difference in  SDUN  for different 13 

basins, and comparison of the SD -estimates with the corresponding estimates calculated from 14 

the available observed streamflow time series. 15 

Table 3 presents the uncertainty indices  SDUN  for SD -estimates of annual, monthly and 16 

daily runoff at the outlet of the studied rivers, which were calculated by equation (8). Intra-17 

annual variation of the uncertainty indices  SDUN  for daily runoff SD -estimates is shown in 18 

Fig. 8. 19 

A comparison of the uncertainty indices estimates for the standard deviation (Table 3, Fig. 8) 20 

and the mean (Table 2, Fig. 4) reveals that the uncertainty indices  SDUN  for SD -estimates 21 

of runoff characteristics are, unsurprisingly, much higher than the uncertainty  MUN  for 22 

M -estimates for the same runoff averaging interval.  Similar to  MUN , an uncertainty trend 23 

of the standard deviation can be noticed when the time averaging interval of water discharge 24 

decreases:  SDUN  increases from 24-31% for annual runoff to 30-52%, as the average, for 25 

monthly runoff, and 36-98% for daily runoff. 26 

At the same time uncertainty in SD -estimates of monthly and daily water discharges 27 

significantly varies within a year, and the maximum values of the uncertainty index  SDUN  28 

for these estimates considerably exceed their mean values. For example,  SDUN  for some 29 
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calendar months is close to 100% (Table 3), and  SDUN  for daily runoff estimates reaches 1 

hundreds of percent (Fig. 8). 2 

Similar to the results for the uncertainty of the mean runoff estimates, the impact of 3 

atmospheric variability on standard deviation uncertainty has a significant intra-annual 4 

variation. Uncertainty  SDUN  for monthly and daily runoff reaches its maximum in the 5 

periods of spring-summer snowmelt floods and summer-autumn rainfall floods at both rivers 6 

(see Table 3 and Fig. 8). Uncertainty  SDUN  for winter runoff is somewhat smaller but still 7 

large in contrast to the uncertainty in the mean values during winter months, which, as it was 8 

shown above, significantly decreases. This result can be explained by a small variation of 9 

winter runoff.  10 

Uncertainty indices  SDUN  for SD -estimates of the Lena River runoff for both hydrological 11 

models are smaller than for the Northern Dvina River (which is similar to results for 12 

 MUN ). Uncertainty in annual runoff varies very slightly (24-36% for the Lena River and 13 

30-31% for the Northern Dvina River). However, the decrease of the averaging interval to a 14 

month and a day leads to a significant increase in  SDUN  variations for both basins. As it 15 

was shown above, the difference of  SDUN  values can be accounted for stronger non-16 

linearity of the runoff generation mechanisms for the Northern Dvina River than for the Lena 17 

River. 18 

Figs. 9 and 10 show comparison of SD -estimates for annual, monthly and daily discharges 19 

calculated at the basin outlets with the corresponding estimates obtained from the observed 20 

time series of the discharge for the period 1979-2009. These Figures also present 95% 21 

confidence intervals SD of the standard deviation calculated estimates (according to equation 22 

(4)). 23 

The calculations showed that the relative errors of the SD -estimates derived by simulated 24 

runoff time series were fairly large in comparison with the corresponding estimates based on 25 

empirical data. These estimates were most similar for the annual runoff: 3% and 21% for the 26 

Lena River and 41% and 57% for the Northern Dvina River depending on hydrological 27 

model. When the time averaging interval for water discharge decreases, errors in the estimates 28 

increase for both models and both rivers, which is particularly noticeable for the winter 29 

season, when the SD -estimates are sometimes hundreds percent lower in comparison with 30 
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their observed variability. It should be noted that large relative errors may result from the 1 

small absolute differences due to very small discharge values in winter season. Similar to M -2 

estimates, SD -estimates are closer to corresponding estimates based on empirical data for the 3 

Lena River than for the Northern Dvina River. 4 

5.3 Estimate of annual runoff trend and its uncertainty  5 

As it has been already discussed in Section 4, averaging over the ensemble of simulated 6 

realizations allowed us to filter off a random component caused by atmospheric variability 7 

and to assess the impact of the “signal” caused by factors external to atmosphere (related to 8 

the prescribed observed SST and SIC changes in our experiments). Such an assessment is 9 

presented in this Subsection with an analysis of long-term annual runoff trend. 10 

Fig. 11 shows long-term variations of the annual discharge values observed at the outlets of 11 

both rivers compared with the corresponding values averaged over the ensemble of 45 runoff 12 

hydrographs realizations calculated using ECOMAG model.  13 

It is shown that individual realizations of calculated annual discharges differ from each other 14 

and are, in general, only slightly correlated with corresponding observed time series. For the 15 

Lena River simulations, correlation coefficients vary from -0.31 to of 0.56 with the mean 16 

value of 0.17. Note that correlation between the observed annual discharges and the ensemble 17 

mean annual discharges is rather high (0.51). However, the standard deviation of the observed 18 

discharge time series (17 616 m3/s) is almost 1.3 orders greater than that of the mean 19 

ensemble discharge time series (901 m3/s). It is necessary to mention, that corresponding 20 

correlations derived from SWAP simulation experiments are very close to ones listed above: 21 

correlation coefficients vary from the minimum of -0.29 to the maximum of 0.53 with the 22 

mean value of 0.14.  23 

For the Northern Dvina River, correlation coefficients between individual realizations and the 24 

observed annual discharge series are, mostly, statistically insignificant under a reasonable 25 

significance level. The coefficients vary from the minimum of -0.56 to the maximum of 0.30 26 

with the mean value of -0.04. The correlation coefficient between the observed annual 27 

discharges and mean ensemble annual discharges is also insignificant (-0.19). Again, 28 

corresponding correlations derived from the SWAP simulation experiments are very close to 29 

those obtained by ECOMAG simulations: correlation coefficients vary from the minimum of -30 

0.40 to the maximum of 0.33 with the mean value of -0.03, as well as correlation between the 31 
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observed annual discharges and the mean ensemble annual discharges calculated by SWAP 1 

model is insignificant and equals to  -0.13. 2 

Fig. 12 shows histograms of linear trends of annual runoff obtained for each realization from 3 

the calculated ensembles. The trend calculated from the observational data (Slope(fact)) and 4 

the mean trend calculated by averaging over 45 trends for the individual realizations 5 

(Slope(mean calc)) are also shown. Both models in most cases reproduce well the observed 6 

trend of annual runoff changes. Calculated increase of annual discharge at the outlet of the 7 

Lena River is around 748 m3/s and 581 m3/s per decade for ECOMAG and SWAP models, 8 

respectively (in other words, 235.9 km3/decade and 183.2 km3/decade, respectively). The 9 

observational data for 1979-2009 result in the increase of approximately 1000 m3/s per decade 10 

(315.4 km3/decade). The simulated ensemble mean Lena River discharge is statistically 11 

different from zero indicating that a considerable portion of the observed trend can be 12 

externally driven. For the Northern Dvina River, the simulated trends are insignificant, as well 13 

as the observed trend. 14 

 15 

6. Conclusions 16 

We have presented an analysis of large-basin hydrological response uncertainty originating 17 

from internal atmospheric variability that was for the first time performed with such a large 18 

(45 members) ensemble of climate model simulations. Internal variability is considered as one 19 

of three main factors of uncertainty in hydrological response to climate change (together with 20 

so-called “forcing” and “climate model” uncertainties). Importantly, in the presented 21 

simulations, the role of internal atmospheric variability is most visible for the time scales 22 

from years to first decades and for the regional spatial scales (e.g.  Hawkins and Sutton, 23 

2009), i.e. over spatial-temporal scales of water management in large river basins. 24 

Our study focused on transformation of internal atmospheric variability by physically based 25 

hydrological models ECOMAG and SWAP and on impact of the variability on simulated 26 

runoff for the large Lena and Northen Dvina River basins located within the Arctic basin. It is 27 

important to emphasize, that due to stochastic nature of atmospheric variability, hydrological 28 

models driven by the output of a climate model are confined, as well as a climate model, to 29 

making projections rather than predictions (even in the past, not to mention the future), i.e. 30 

hydrological models are only able to provide information on statistical characteristics of 31 

runoff time series. 32 
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Internal atmospheric variability was simulated using ensemble simulations with the ECHAM5 1 

atmospheric general circulation model. The ensemble consists of 45 simulations performed 2 

under identical prescribed lower boundary conditions (observed the sea surface temperature 3 

and the sea ice concentration for 1979-2012) and constant external forcing parameters 4 

corresponded to modern climate conditions. The only differences between the simulations 5 

were initial conditions of the atmosphere prescribed as instant atmospheric states changed by 6 

small perturbations.  7 

The ensemble of the bias-corrected ECHAM5-outputs was assigned as distributed input for 8 

ECOMAG and SWAP hydrological models, and corresponding ensembles of runoff 9 

hydrographs were calculated for the Lena River and the Northern Dvina River. From these 10 

hydrographs, hydrological indicators, namely, the mean and the standard deviations of the 11 

annual, monthly and daily runoff, annual runoff trend, were estimated. Uncertainties of the 12 

hydrological indicators caused by the internal variability of the atmosphere were determined 13 

as normalized confidence intervals of the corresponding estimates.  14 

The main findings of our research are the following:  15 

1. Uncertainty in estimates of both the mean and the standard runoff deviation values 16 

increases with decreasing time interval of runoff averaging: from minimal uncertainty 17 

for annual runoff to maximal one for daily runoff. The mean annual runoff uncertainty 18 

originated from the internal variability of the atmosphere was found to be 6-10% 19 

depending on the model used and the study basin.  20 

2. Atmospheric variability impact on uncertainties of the mean and the standard runoff 21 

deviation has a significant seasonal dependence. Uncertainties of monthly and daily 22 

runoff reach their maximum values during the periods of spring-summer snowmelt 23 

and summer-autumn rainfall floods for both rivers. Possible explanation of this finding 24 

is that physical mechanisms of flood events are more sensitive to intra-ensemble 25 

changes of the climate model outputs than more inertial mechanisms of low flow 26 

generation.    27 

3. Simulated hydrographs for the Northern Dvina runoff are found to be more sensitive 28 

to internal atmospheric variability than those for the Lena River runoff. This is also 29 

manifested by the findings that runoff estimate uncertainties and their intra-annual 30 

irregularity are much higher for the Northern Dvina River simulations, when using 31 

both hydrological models. It is shown that increased effect of the internal atmospheric 32 
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variability in uncertainty of the Northern Dvina River runoff estimates can be 1 

explained by stronger non-linearity of runoff generation mechanisms compared to 2 

those of the Lena River basin.  3 

4. Individual realizations of the simulated annual discharge series differ and are, in 4 

general, insignificantly correlated with the corresponding observed time series for both 5 

the Lena and the Northern Dvina River. However, for some individual realizations the 6 

linear link to observations is found to be quite strong: maximum correlation 7 

coefficients are 0.56 and 0.30 for the Lena and the Northern Dvina River simulations 8 

respectively. 9 

5. It is shown that the averaging over large ensemble members effectively filters 10 

stochastic term related to internal atmospheric variability and results in an estimate of 11 

an externally forced signal related, in our experiments, to global sea surface 12 

temperature and sea ice concentration changes. We found that both models for the 13 

ensemble mean results reproduce the observed trend of the annual Lena River 14 

discharge. The simulated trends are (close to) normally distributed around the 15 

ensemble mean value that indicates, for the Lena River discharge, that a considerable 16 

portion of the observed trend can be externally driven. The trend for the Northern 17 

Dvina River changes appeared to be insignificant both for the simulation results and 18 

the observational data. This assumes a dominant role of internal variability in 19 

generating the Northern Dvina runoff changes during the simulation period. 20 

Our results, in line with the conclusions of Deser et al. (2012; 2014) who analyzed 21 

temperature and precipitation changes, assume the importance of performing large 22 

ensembles of climate change projections with climate models also for making robust 23 

estimates of uncertainty and externally forced signal in hydrological response on decadal 24 

to multi-decadal time scale.  25 
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Table 1 The Nash and Sutcliffe efficiency, NSE, and bias evaluation criteria calculated from 1 

simulated and measured daily discharge at the outlets of Lena and Northern Dvina River 2 

basins  3 

River (Gauge) Period NSE Bias, % 

ECOMAG (calibration period) 

Lena (Stolb) 2000-2009 0.90 -2.9 

N. Dvina(Ust’-Penega) 2000-2009  0.88 1.4 

ECOMAG (validation period) 

Lena (Stolb) 1987-1999 0.86 1.4 

N. Dvina(Ust’-Penega) 1970-1999  0.81 2.0 

SWAP (calibration period) 

Lena (Stolb) 1971-1977 0.82 -4.9 

N. Dvina(Ust’-Penega) 1986-1990  0.86 -1.1 

SWAP (validation period) 

Lena (Stolb) 1978-1999 0.80 -3.7 

N. Dvina(Ust’-Penega) 1967-1985; 1991-1998  0.85 -0.6 

 4 
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Table 2. Uncertainty indices  MUN  (in %) for M -estimates of annual, monthly and daily 1 

runoff  2 

Lena River  Northern Dvina River 
Runoff characteristic 

ECOMAG SWAP ECOMAG SWAP 

Annual runoff 6 7 10 7 

Monthly runoff 7 11 19 19 

January 3 9 5 9 

February 2 8 2 9 

March 1 8 5 23 

April 1 24 33 41 

May 21 9 10 23 

June 6 9 14 18 

July 8 9 22 9 

August 10 9 32 14 

September 13 10 35 17 

October 10 11 29 21 

November 8 12 22 24 

December 5 13 17 19 

Daily runoff 8 12 24 21 

 3 

 4 

 5 

 6 

 7 

 8 

 9 
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Table 3. Uncertainty Indices  SDUN  (in %) for SD -estimates of the Annual and Monthly 1 

runoff  2 

Lena River  Northern Dvina River 
Runoff characteristic 

ECOMAG SWAP ECOMAG SWAP 

Annual runoff 24 26 30 31 

Monthly runoff 32 30 52 33 

January 29 35 85 29 

February 30 33 95 29 

March 30 25 104 36 

April 31 23 36 42 

May 84 55 24 45 

June 25 21 27 39 

July 29 17 39 23 

August 25 26 46 26 

September 26 28 47 27 

October 22 34 37 30 

November 23 32 33 29 

December 28 33 51 35 

Daily runoff 45 36 98 45 

 3 
 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

Удалено: 2
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 2 

Figure 1. Case study basins: location (a), Northern Dvina River basin (b), Lena River basin 3 

(c) 4 
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Figure 2. ECHAM5-simulated ensembles of mean annual surface air temperature (SAT) (top; left) and precipitation (top; right), as well as mean daily SAT 

(bottom; left) and precipitation (bottom; right) averaged over the Lena River basin. Dots in top figures and bold line in bottom figures denote corresponding 

ensemble mean values 
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Figure 3. Observed (left) and the bias-corrected ECHAM5-simulated (right) patterns of mean 1 

annual values of air temperature (°C), precipitation (cm) and air humidity deficit (hPa) within 2 

the Lena River basin.  3 
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Figure 4. Intra-annual variation of uncertainty indices  MUN  (in %) for the M -estimates of daily runoff  
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Figure 5. Mean hydrographs calculated as an averaged response to ensemble input (solid line) and as a response to ensemble averaged input (dotted line)  
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Figure 6. M -estimates of annual and monthly discharges at the outlets of the Lena River (top) and the Northern Dvina River (bottom).   

- black columns show estimates obtained from the observation data for 1979-2009.  

- gray columns show estimates obtained from the ensemble simulation (with indicated 95% confidence intervals M for these estimates)  
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Figure 7. M -estimates of the daily discharges at the outlets of the Lena River (top) and the Northern Dvina River (bottom)  

- blue points show estimates based on observational data for the period of 1979-2012.  

- red points show estimates based on ensemble simulations (gray thin lines).  

- red dotted line shows the boundaries of 95% confidence interval of mean daily discharges.  
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Figure 8. Uncertainty indices  SDUN  (in %) for the SD -estimates of the daily runoff  
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Figure 9. SD -estimates of the annual and monthly discharges at the outlets of the Lena River (top) and the Northern Dvina River (bottom).   

- black columns show estimates obtained from the observational data for 1979-2009.  

- gray columns show estimates obtained from the ensemble simulation (with indicated 95% confidence intervals SD  for these estimates)  
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Figure 10. SD -estimates of the daily discharges at the outlets of the Lena River (top) and the Northern Dvina River (bottom)  

- blue points show estimates based on observational data for the period of 1979-2012.  

- red points show estimates based on ensemble simulations (gray thin lines).  

- red dotted line shows the boundaries of 95% confidence interval of mean daily discharges  
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Figure 11. Observed (line with blue markers) and simulated series of annual discharges   

- thin lines show ensemble (45 realizations) of the calculated annual discharges   

- the line with red markers shows the ensemble mean   

- the line with green markers shows the realization most strongly correlated with the observed time series   
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Fig. 12. Histograms of the linear trend slope derived from the ensembles of simulated annual discharge time series  

  


