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Abstract

Groundwater head and stream discharge is assimilated using the Ensemble Transform
Kalman Filter in an integrated hydrological model with the aim of studying the relation-
ship between the filter performance and the ensemble size. In an attempt to reduce
the required number of ensemble members, an adaptive localization method is used.
The performance of the adaptive localization method is compared to the more com-
mon local analysis localization. The relationship between filter performance in terms of
hydraulic head and discharge error and the number of ensemble members is investi-
gated for varying numbers and spatial distributions of groundwater head observations
and with or without discharge assimilation and parameter estimation. The study shows
that (1) more ensemble members are needed when fewer groundwater head obser-
vations are assimilated, and (2) assimilating discharge observations and estimating
parameters requires a much larger ensemble size than just assimilating groundwater
head observations. However, the required ensemble size can be greatly reduced with
the use of adaptive localization, which by far outperforms local analysis localization.

1 Introduction

Data assimilation (DA) is frequently used in hydrological modelling for correcting er-
rors in the models. Stemming from parameter uncertainty, model structure uncertainty,
uncertainty in forcing data and boundary condition uncertainty, the errors can lead to
significant bias in the model states. Data assimilation can help reduce the bias in the
model sequentially, leading to improved predictive capabilities of the model. It is also
commonly used for history matching, for quantifying uncertainty and for estimation of
model parameters.

Application of data assimilation for state updating in hydrological modelling has been
studied extensively using a number of different models with most models focusing only
on a part of the hydrological cycle. These include groundwater models (e.g. Hendricks
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Franssen et al., 2011), land-surface models (e.g. Albergel et al., 2008), rainfall-runoff
models (e.g. Moradkhani et al., 2005) and others. A few studies have also used more
integrated hydrological models in conjunction with assimilation of multiple types of ob-
servations, but the subject is still in its infancy as a research topic. Studies that fo-
cused on integrated hydrological modeling include Camporese et al. (2009) and Shi
et al. (2014). Camporese et al. (2009) applied the Ensemble Kalman filter (EnKF) to
a coupled surface—subsurface model of a synthetic tilted v-catchment and assimilated
both stream discharge and groundwater hydraulic head observations with the aim of
updating both groundwater and stream states. Shi et al. (2014) applied the EnKF to
a coupled physically-based land surface hydrological model of a small catchment. Us-
ing observations of seven different model states ranging from discharge to transpira-
tion, they successfully estimated six parameters pertaining to different processes in the
model while simultaneously updating the model states.

Using data assimilation for parameter estimation has become common in hydrolog-
ical modelling (Moradkhani et al., 2005; Vrugt et al., 2005; Hendricks Franssen and
Kinzelbach, 2008; Nie et al., 2008) due to the importance of parameter uncertainty
in hydrological models. Notably, Hendricks Franssen and Kinzelbach (2008) used the
augmented state vector approach to update a spatially distributed groundwater hy-
draulic conductivity field in a groundwater model. As previously stated, Shi et al. (2014)
also successfully estimated several parameters in their coupled surface—subsurface
hydrological model.

The effects of observation densities and patterns on parameter estimation in hydro-
logical modeling have been studied using a number of hydrological models and inverse
modeling methods. Juston et al. (2009) studied the effect of varying the observation
intervals of groundwater head and stream discharge for calibration of a hydrological
model of a small catchment. They found that even relatively sparse observation sub-
sets can provide similar restraints to the model parameters as complete (frequent) ob-
servation sets, as long as significant hydrological events are represented by the data.
The effect of differing observation densities and assimilation/updating frequencies of
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hydraulic head observations in a groundwater model was also studied by Hendricks
Franssen and Kinzelbach (2008). Experimenting with 3 and 28 observation points, re-
spectively, and updating frequencies of 1 month™" and 5month™", they found the ob-
servation point density to have the largest effect on filter performance. However, no
in-depth analysis of the subject was performed in their study.

Spurious correlations in EnKF arise when the correlation cannot be properly de-
scribed by the ensemble of models, and have a detrimental effect on the filter perfor-
mance. Localization is a commonly used method for reducing these spurious corre-
lations, and as such has been the subject of several studies (Anderson, 2007; Hunt
et al., 2007; Sakov and Bertino, 2011). Applying localization often allows for the use
of a significantly reduced ensemble size, making it particularly useful for computation-
ally heavy models, as a means for reducing the required computational time. Sev-
eral localization methods exist, with distance-based methods being the most common
(Sakov and Bertino, 2011; Ott et al., 2004; Fertig et al., 2007). Distance-based meth-
ods, such as Local Analysis, specify the area of influence of an observation based on
spatial distance and often removes or reduces correlation between observations and
model states beyond a user-specified distance. Alternatively, several adaptive localiza-
tion methods have been developed (Anderson, 2007; Bishop and Hodyss, 2009), that
attempt to distinguish real correlation from spurious correlation, making them partic-
ularly useful if distance-based localization is problematic, for example due to model
structure.

This study investigates the relationship between ensemble size and number of obser-
vations with filter performance in a catchment size coupled surface—subsurface model
with the objective of assessing an optimal ensemble size. Furthermore, a new ap-
proach to adaptive localization is used and compared to Local Analysis localization and
the possible benefits of applying adaptive localization with different ensemble sizes and
groundwater head observation densities are evaluated. The study is performed using
a synthetic test setup of a catchment located in Denmark, and includes the applica-
tion of parameter estimation and assimilation of both groundwater head and stream
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discharge observations. The novelty of the study lies in the extensive study in the re-
lationship between the observation density and the required ensemble size, as well
as in the application of adaptive localization, neither of which, despite potentially hav-
ing big impact on the filter performance, has previously been investigated in detail for
application in integrated hydrological models.

2 Methods
2.1 Model

The hydrological model used in this study is a transient, spatially distributed model
based on the MIKE SHE model code (Graham and Butts, 2005). This code allows for
an integrated approach to hydrological modeling, in which all the major hydrological
processes are included, comprising feedback between the processes. As such, it is
a good platform for investigating the assimilation of multiple observation types in hy-
drological models, as well as estimation of parameters related to different hydrological
processes.

2.2 Study area
2.21 The Karup catchment

The Karup catchment, which is located in the northern part of the Jutland peninsula
in Denmark, forms the basis for this study. The catchment has a size of 440 km? and
its land use is primarily agriculture. The geology of the catchment is dominated by
quaternary sand. The catchment is very flat, with a south—north slope ranging from
93 ma.s.l. in the southern part to 22ma.s.l. in the northern part. The main drainage
feature of the catchment is the Karup river, which springs at the southern edge of the
catchment and runs from southeast to northwest, and is joined by seven tributaries
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(Fig. 1). The stream is strongly groundwater dominated, meaning that the interaction
between surface water and groundwater is very strong.

2.2.2 Model setup

An integrated approach to modeling of the catchment is used in this study, which in-
cludes modelling of the groundwater flow, vadose zone flow, stream flow, surface flow
and evapotranspiration. Surface-, stream-, vadose zone- and groundwater flows are
coupled dynamically, allowing water to be exchanged between the modules at each
time step.

Modeling of the groundwater is done using a finite difference approximation of the
governing 2-D Boussinesq equation, which is coupled to a one-dimensional and ver-
tical description of unsaturated flow using the gravity flow formulation of unsaturated
flow (Graham and Butts, 2005). Evapotranspiration is modeled using the Kristensen
and Jensen (1975) model. Stream flow is modeled using the MIKE 11 river model with
a kinematic routing description.

A horizontal grid size of 1km x 1km is used, with the vertical discretization of the
unsaturated zone gradually increasing from 0.05m at the top to 1 m below a depth of
10m.

2.2.3 Model parameterization

A 3-D geological model delineating six geological units forms the basis for the spatial
distribution of hydrogeological parameters. Meltwater sand is the dominating geologi-
cal unit, and five lenses (clay, quartz sand, mica Sand, mica clay/silt, and limestone) of
varying extent make up the remaining geology. The parameter values specified in the
geological model are in a preprocessing step interpolated and gridded to the horizontal
2-D computational grid to ease the computational requirements of the model. The pa-
rameters for the groundwater zone are: hydraulic conductivity (horizontal and vertical,
respectively), specific yield and specific storage for the six units.
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The parameterization of the unsaturated zone is spatially distributed and is based
on texture data classified into nine soil types (Greve et al., 2007). These range from
coarse sandy soil (Soil type 1) to heavy clayey soil (Soil type 8), and also includes
organic soil (Soil type 11). The dominating soil type is Soil type 1, which accounts for
approximately 90 % of the catchment. The parameters of the unsaturated zone are the
saturated and residual moisture contents, Saturated hydraulic conductivity as well as
soil matric potentials at field capacity and at wilting point.

Land use is based on data from local authorities and divided into four classes: agri-
culture (56 %), forest (18 %), heath (18 %) and wetlands (7 %). Forest and heath are
described using constant values for the land use related parameters Leaf Area Index
(LAI) and Root Depth (RD), while LAl and RD of agricultural land are seasonally de-
pendent, divided into a growing season and a non-growing season.

Parameterization of the stream discharge model is done in a non-distributed manner,
with each branch (the Karup river and each of the seven tributaries) having the same
parameter values. The parameters of the stream discharge model are the Manning
number, the drain level and the drain time constant describing the drainage in the
wetland areas near the river, and the leakage coefficient describing the river-aquifer
interaction.

2.3 Data assimilation
2.3.1 Ensemble Transform Kalman Filter

This study uses the Ensemble Transform Kalman Filter (ETKF) (Bishop et al., 2001),
which is a computationally efficient implementation of the Ensemble Kalman Filter. The
ETKEF is also deterministic and does not require a full error covariance matrix to be gen-
erated, which makes it computationally less demanding. The practical implementation
of the ETKEF in this studfy is based on that of Harlim and Hunt (2005).

The m x n matrix, X', is a forecasted ensemble of state variables (Groundwater
hydraulic head, stream discharge and stream water level) composed of n numbers
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of 1 x m vectors containing the state variables of the respective ensemble members,
where n is the number of ensemble members and m is the number of state variables.
It is structured as

1 9 \n

X' =[x, X (1)

A k x n matrix Y' of model observations (k is the number of observations) is formed
by applying a linear operator H that maps the state space into observation space to
each column of X. This matrix is averaged over the columns to form a k x 1 vector of

mean model observations, 7f, which is then columnwise subtracted from Y’ to form the
k x n matrix of model observation anomalies Y°. Next, X is averaged columnwise to

form the m x 1 vector of mean model states Yb and this vector is subtracted from each
column of X to create a m x n matrix of model state anomalies X°.
A n x k matrix, C, is computed as follows:

C=(Y?)-R™"- Py, (2)

where R is a k x kK matrix of observation covariance, and P, is a k x k diagonal
matrix with the localization weights of each observation on the diagonal. The k x k
error covariance matrix is computed by

P?=[(k-1)-1+CY*T", ()

where | is a k x k identity matrix. The k x kK matrix of analysis error covariance is com-
puted as

W = [(k - 1)-P]'"/2. (4)
The k x 1 matrix of updating weights, w?, is computed as

w?=PC.(y-¥"), (5)
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where y is a k x 1 vector of observations and ?b is a k x 1 vector of the mean model
observations. w? is then added each column of W?, forming the k x k matrix of updated
error covariance W. Finally, the updated ensemble of model states is calculated:

XY = XPw. (6)

2.3.2 Localization

This study uses an adaptive localization method that is a combination of two separate
adaptive localization methods proposed by Anderson (2001) and Bishop and Hodyss
(2007) respectively. Anderson (2007) proposed to split the ensemble into a number of
sub-ensembles, and for each sub-ensemble calculate the correlation coefficients be-
tween the state variables and the model observations. The correlation coefficients for
each sub-ensemble are then cross-validated, and the observations are given a localiza-
tion weight based on the cross-validation. That means that observations where the sub-
ensembles agree on the correlation coefficient are given a high localization weight, as
opposed to points in which there is disagreement between the sub-ensembles. Bishop
and Hodyss (2007) proposed to calculate the sample correlation coefficient of the entire
ensemble, and simply raising it to a power. The localization weight of an observation
then equals the power of the correlation coefficient, giving observations with higher
correlation coefficients exponentially higher localization weight than observations with
low correlation. The adaptive localization method used in this study is a combination of
Anderson (2001) and Bishop and Hodyss (2007), as proposed by Miyoshi (2010).

The following procedure is applied to each state variable in the state vector: the
ensemble is first split into two sub-ensembles with equal number of members. For each
sub-ensemble, the sample correlation coefficient between the state variable in question
and each of the model observations is determined and these are then cross-validated
using

ey - col\®
Pobs,a = (1 - = ) (7)

2
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where p,s 4 is the localization weight, ¢ and ¢, are the correlation coefficients from
the first and second sub-ensembles, and a is a constant used for tuning the localization.

Another localization weight, p, , is determined using the sample correlation coef-
ficient for the entire ensemble, ¢, and another tuning constant, b:

Pobs,b = |C|b- (8)

The final (applied) localization weight, p,,s (EQ. 2), is calculated as the product of
Pobs,a @Nd Pops p- Tuning the localization (i.e. determining the optimal values for the
constants a and b), is in this study done by evaluating the mean Root Mean Square
Error (RMSE) for the entire model domain.

For comparison, a Local Analysis (LA) localization method was used. The concept
behind LA is that model grid points that are located far from each other should be ex-
pected to have little or no correlation, and so it creates a spatial window around each
observation in which non-zero localization weights are applied. Model grid points lo-
cated further away from the observation are given a localization weight of zero. Several
methods for calculating distributions of the localization weights in the spatial window
exist, but in this study the Gaussian decay is used:

2

2-(3)°

9)

Pobs = €XP

where d is the physical distance between two points, and r is a user-specified localiza-
tion radius. This weight is for each observation calculated for all model state variables,
and results in a smooth distribution of localization weights from 1 at a distance of zero
to 0 as the distance increases. At a distance of r, the localization weight is 0.135.

2.3.3 Parameter estimation with the ETKF

The data assimilation framework is set up as a joint state updating and parameter
estimation framework, where parameter estimation is conducted using the augmented
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state vector approach (Drécourt et al., 2005; Lui and Gupta, 2007). The state vectors
(Eq. 1) are extended to also contain the parameters that are to be estimated as follows:

f f
xf=|%,.., %o, (10)
0, 6,

where 0; is the set of parameters used to propagate the /th ensemble member. The
mapping matrix H is extended accordingly, and the standard ETKF approach is applied.

2.3.4 Inflation

In order to compensate for the systematic underestimation of error variance that is
common in the EnKF, covariance inflation (Anderson and Anderson, 1999) was applied
to both the groundwater head states and the stream discharge states. The inflation is
applied by adding a percentage to the ensemble of forecast anomalies:

X?=(1+a)-x?, (11)

where ¢ is the inflation factor.

Covariance inflation of the ensemble of parameter values was performed by inflating
the spread to a fixed spread (as described by the SD). This is done using an adaptive
inflation factor that was calculated as follows:

O
a= Target (1 2)

)
OForecast

where o is the SD. oy, denotes the desired spread of the ensemble of parameter
values and Opecast denotes the spread of the ensemble before updating. This method
is only applied if the forecast SD of the ensemble of parameters is smaller than the
target SD which in this study is set to 10 % of the initial SD of the ensemble. This value
has shown to produce the best results, by maintaining a sufficient spread, that does
not create instabilities in any of the ensemble members.
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2.3.5 Asynchronous assimilation

This study utilizes asynchronous assimilation, which refers to the assimilation of ob-
servations available at times different from the updating time. The AEnkF (Sakov et al.,
2010) is a simple extension of the EnKF that allows for the asynchronous observa-
tions to be assimilated with little cost to the computational time or the storage require-
ments. The AEnKF requires the storage of model observations at the time that the
asynchronous observations are available, which are then appended to the state vector,
and through the covariance matrix used to update states and parameters at the time
of assimilation.

The term “Assimilation window” is in the following used as the time span between
two assimilation time steps. The observations collected in this assimilation window are
assimilated at the time of the update, which requires that the ensemble model results
stored at the observation time steps are used. So, given a set of j observations at times
ty,...,t; collected in the assimilation window, the ensemble observations is formulated
as follows:

HX' = [(Hx" q,...,(fo);]. (13)

Similarly, the observation vector is extended to correspond to the ensemble obser-
vations and filtering is carried out as described in Sect. 2.3.1.

2.3.6 State variables

In this study, the groundwater hydraulic head, the stream discharge, and the stream
water level are updated at each assimilation step. The states are updated every two
weeks, when groundwater head observations are available. Discharge observations
in the assimilation window are included as asynchronous observations. This method
allows all observations to be included without having to update the states at daily inter-
vals, which would require significant computational time.
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2.3.7 Estimated parameters

A sensitivity analysis performed using the AUTOCAL software (Madsen, 2003; MIKE
by DHI, 2014) was used to choose the parameters to be estimated. Only parameters
with scaled sensitivities (Table 1) of 1 % or more of the sensitivity of the most sensitive
parameter were included. For practical reasons, as they tended to cause instabilities,
parameters relating to the vadose zone were excluded. The exclusion of vadose zone
parameters, even if they are sensitive, also means that the spread of the ensemble of
parameter values is not sequentially decreased, which helps maintain a spread in the
ensemble of state variables and avoid an ensemble collapse.

The hydraulic conductivities of meltwater sand and quaternary sand are included.
Despite being hydrogeological parameters related to the groundwater module of the
model, these are as evident from Table 1 also sensitive to the discharge observations.
Also included are the drain level and drain time constant, which control the amount
and dynamics of groundwater drained to the nearest stream once the groundwater
table exceeds the drain level, and are as such particularly important for drain flow. The
leakage coefficient, which is important with respect to base flow, is another coupling
parameter, which represents the hydraulic properties of the thin layer of the sediments
at the bottom of the stream.

Four of the five estimated parameters, the hydraulic conductivities of meltwater sand
and quaternary sand, as well as the stream bed leakage coefficient and the drain time
constant were transformed logarithmically in the filter, with drain level being the only pa-
rameter not transformed. As commonly practiced in calibration of hydrological models,
the horizontal hydraulic conductivities were tied to the vertical hydraulic conductivities
of the respective geological units at a fixed ratio of 10 to 1.

2.4 Twin test setup

This study is conducted as a twin test setup, in which a “true” model state is gener-
ated by perturbing the selected parameters of a model. Observations are generated by
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adding noise to the states of the true model in the locations where observations are de-
sired and with specified frequency. The original model, hereafter denoted base model,
forms the basis for the ensemble that is used in the data assimilation. The parameter
values used to generate the base model and the true model can be seen in Table 2.

2.5 Model noise

Model noise is added to the ensemble through the forcings, i.e. precipitation and refer-
ence evapotranspiration, and the parameters. Noise on forcings is added as a Gaus-
sian noise with a SD of 20 % of the observed value, while no spatial correlation of the
noise is considered.

Noise is added to a large number of model parameters relating to all model pro-
cesses as seen in Table 2. In total noise is added to 66 parameters, only five of which
are estimated. Adding noise to parameters that are not estimated helps maintain the
spread of the ensemble even as the spread of the estimated parameters is reduced.

2.6 Data availability

The spatial distributions of hydraulic head observations studied are visualized in Fig. 2.
The spatial distribution denoted “35 obs” contains observations in all the locations
where actual (i.e. real world) observations are also available and presents an extensive
spatial coverage of observations, with observations located in between almost all the
branches of the river network and with many of the observations located in neighboring
model grid cells. The spatial distribution “8 obs” is a subset of “35 obs” and represents
a less extensive coverage of observations and with significantly fewer observations
than “35 obs”. “2 obs” is a subset of “8 obs” and contains only two observations lo-
cated approximately halfway downstream of the Karup river, and as such represents
a scenario in which the spatial coverage of observations is poor. Finally, “0 obs” (not
depicted in the figure) represents a scenario in which no groundwater head observa-
tions are available. Discharge observations are made available in five locations (see
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Fig. 1), two of which are on the main river branch (one at the catchment outlet and
one approximately halfway downstream) with the remaining observations located on
the north-western tributary.

The frequency of groundwater head observations is 28 days", while the frequency
of discharge observations is daily. Head observations are added a normally distributed
white noise with a SD of 0.05 m. Discharge observations are assigned a normally dis-
tributed white noise that is proportional to the observed value using a SD of 5 % of the
observed discharge, which is a common error observed in real world observations of
discharge Herschy (1999). This means that discharge measurement errors increase
in peak flow situations and is larger for downstream locations, while the measurement
error of head is not related to the location or the observed value.

2.7 Scenarios

This study will consist of four scenarios, with varying availability of discharge obser-
vations and with and without parameter estimation. In all four scenarios groundwater
head data are assimilated.

InclParlnclQ: The primary scenario in this study, in which discharge observations
are assimilated and parameters are estimated, constitutes the most complex scenario.
Estimating parameters makes the updates more nonlinear compared to stand-alone
state updating, and assimilating discharge observations can be expected to require
more ensemble members due to the complex relationship between stream discharge
and groundwater head.

InclParNoQ: This scenario includes parameter estimation, but excludes discharge
observations (stream discharge and water level are still included in the state vector).
This means that the update of groundwater head, stream discharge and stream water
level as well as the parameter estimation is based only on head observations.

NoParinclQ: This scenario includes the assimilation of discharge observations but
excludes parameter estimation. This way, the influence of differing parameter sets is
removed, allowing the direct results of updating the states to be seen.

2281

Jladed uoissnosiq | Jadeq uoissnosiq | Jedeq uoissnosiq | Jaded uoissnosiqg

HESSD
12, 22672304, 2015

Evaluating the effect
of ensemble size and
localization on filter
performance

J. Rasmussen et al.

' III III


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/2267/2015/hessd-12-2267-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/2267/2015/hessd-12-2267-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

NoParNoQ: This scenario excludes both the assimilation of discharge observations
and parameter estimation. The simplest of the included scenarios, this scenario, when
compared to scenario NoParlnclQ illustrates the value of discharge observations on
state updating.

2.8 Performance indicators
The performance of the filter will be evaluated based on three indicators:

— Mean root mean square error of hydraulic head for the entire domain (every model
grid), calculated based on the mean of the ensemble at each time step (12 h time
steps) and the true model state. Hereafter denoted head RMSE.

— Mean root mean square error of discharge in all grid point in the river network
model, calculated based on the mean of the ensemble at each time step (2 h time
steps) and the true model state. Hereafter denoted discharge RMSE. Note that
this indicator inadvertently is dominated by downstream grid points with higher
flow.

— The convergence of estimated parameters to the true value, including the spread
and mean of the ensemble of parameters.
3 Results and discussion
3.1 Localization tuning

Tuning of the localization algorithm is carried out using a scenario in which two hy-
draulic head observations and all five discharge observations are available. An ensem-
ble size of 50 is used, as experience had shown that this ensemble size resulted in
significant spurious correlation with this number of observations.
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The head RMSE as a function of the two localization constants can be seen in Fig. 4.
Based on these results, constant values of a and b of 2 are used in the remainder of
this study. Due to the computational time required, only integer values of the constants
are tested, although it may have been possible to fine-tune the localization algorithm
by using fractions.

Localization using LA was analyzed with varying localization distances and com-
pared to using adaptive localization and no localization, as seen in Fig. 4. Overall lo-
calization distances of 20 and 10 km that apply to both the groundwater domain and
the stream domain were tested. Compared to using no localization, a small reduction
in head RMSE is obtained in the case of 20 km localization distance, whereas a sig-
nificant increase in head RMSE is seen when a localization distance of 10 km is used.
Compared to adaptive localization worse results are obtained, and it is clear that sim-
ple LA localization with localization distances that apply to both groundwater variables
and stream variables is not sufficient. It should be noted that the LA method applied
do not distinguish between model processes and that the localization distance also
applies to the cross-correlation between the different state variables (i.e. groundwater
observations are localized with the described distance with regards to stream variables
and vice versa).

As a result, using lower localization distances for correlation across model processes
was tested. This means that head observations are localized with a smaller radius with
regards to stream discharge and water level, and vice versa. Two scenarios were anal-
ysed in which the localization distance within the same model process is Infinite (i.e. no
localization) and with localization distances across processes of 5 and 0km, respec-
tively. The latter scenario means that there is no update across model processes and
the two model states (groundwater and stream) are therefore updated independently
from each other. As Fig. 3 shows, both scenarios led to a reduction in head RMSE
compared to not using localization, yet head RMSE is still significantly higher than for
the scenario with adaptive localization.
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The effect of localization becomes clear when studying the time series of head RMSE
(Fig. 4). Using no localization, the spurious correlations become dominant, as evident
from the regular spikes visible in the dark blue line in Fig. 4. Using the LA localization
method with 20 km localization radius does little to remove the spikes (and by exten-
sion, the spurious correlation), and a localization radius of 10 km only exacerbates
them. Using differentiated localization radii for intra- and cross-process correlation re-
moves a significant part of the spurious correlation with 0 km radius significantly outper-
forming 5 km radius. However, a few spikes do persist, and compared to the adaptive
localization the decrease in head RMSE during some updates is not as big, suggesting
that real correlation is removed.

The lower graph of Fig. 4, which shows the discharge RMSE as a function of time, il-
lustrates why spurious correlation is a particular problem for discharge modelling. While
the filter can reduce the discharge RMSE to almost zero at the updating time, peaks in
the RMSE often appear in the time step immediately after the update. These peaks are
the results of spurious correlation in the groundwater manifesting itself in the discharge
and are due to the nature of the groundwater-stream flow interaction. Spurious corre-
lation in groundwater appears where little real correlation with the observation points is
present, which makes the grid cells that exchange water with the stream more sensitive
than others. The dynamics of these cells are significantly different from the slow chang-
ing dynamics of most groundwater model cells, and any change in the interaction cells
are reflected in the stream flow. Put simply, a change in the groundwater head of a few
centimeters is barely noticeable in most grid cells, but may result in a significant change
in the stream flow if the change is found in the grid cells that controls the interaction
with the stream flow.

Figure 5 gives an insight into why the LA localization methods perform worse than
the adaptive localization. As the figure shows, the localization weight derived from
the adaptive localization algorithm is not a simple function of distance. In the case
of groundwater localization weights, they seem to be highly correlated with the prox-
imity to the stream network, with model grid points located next to the stream network
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(and therefore exchanging water with the stream network) generally assigned very
low weights. This may be explained by the dynamics of these groundwater model grid
points displaying significantly different dynamics as previously discussed. As for stream
model grid points, the distribution of localization weights appears to primarily depend
on the branch on which the observation is located. The most downstream observation
(at the model outlet) has the highest localization weights on the main branch of the
network while the observation located on the tributary has the highest weights on that
tributary (and on its tributaries). For both observations there is an alternation between
high and medium to low localization weights visible in the figure, which is a result of
the alternation between discharge and water level calculation used in the model. The
adaptive localization algorithm assigns a lower weight to water level variables than to
discharge variables due to the fact that discharge is what is being observed. One could
think that this could lead to some discrepancies in the stream network states after up-
dates, due to improper discharge-water level relations, but no effects (i.e. post update
instability or state fluctuations) of this were seen, leading to the conclusion that the
model is able to adjust any discrepancies there might be quickly after the states have
been updated.

3.2 InclParinclQ

Head RMSE as a function of ensemble size for the scenario InclParinclQ can be seen
in Fig. 6. Using 35 observations and no localization, a small improvement in head
RMSE is seen when increasing the ensemble size from 25 to 50, but no change is
seen when increasing from 50 to 100, and it appears that an ensemble size of 50
is sufficient in this case. When applying localization, almost no improvement is seen
when increasing the ensemble size, suggesting that an ensemble size of 25 (or even
less) is sufficient. Reducing the number of observations to 8, an improvement is seen
when increasing the ensemble size from 25 to 50, 100 and even 200, with the largest
improvement achieved when increasing from 25 to 50. The results suggest that some
improvement may still be possible with ensemble sizes larger than 200. However, an
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ensemble size of 200 is already very time consuming, despite the relatively small area
and large spatial discretization of the model, and larger ensemble sizes are not realistic
for practical applications. Using localization, the improvement seen when increasing the
ensemble size is very small, and a small increase in head RMSE is even seen when
increasing the ensemble size from 50 to 100, suggesting that 50 ensemble members is
sufficient in this case. Using two or no head observations also results in improvement
when increasing the ensemble size to 200. Using localization results in improvement
in both scenarios, but even with localization applied, an ensemble size of 200 may not
be sulfficient.

The results show that the ensemble size needed depends strongly on the number of
observations available. With fewer observations, the information from the observations
needs to be spread further spatially, and the small correlation that exists relatively far
from an observation needs to be estimated well, which requires more ensemble mem-
bers. With a more extensive spatial coverage of observations, the small correlation
of an observation and a distant model grid point becomes less important, as there is
more likely to be another observation closer with a higher correlation which is better es-
timated with fewer ensemble members to estimate. As a result, a larger ensemble size
is required when the spatial coverage of observations is poor. Localization removes
the spurious correlation and thus improves the performance at lower ensemble sizes
or lower observation numbers, but does not affect the sampling error itself. As a result,
very large ensemble sizes are necessary when very few observations are available,
even if localization is applied.

In terms of discharge RMSE (the lower graph in Fig. 1) the relationship between
ensemble size and RMSE is a bit more unclear, due to spurious correlation being
significant in most cases except “35 obs”. However, a general improvement is observed
when using localization in most cases, with a significant improvement observed in the
“0 obs” case, where spurious correlations are also most apparent.

As Fig. 7 shows, the performance of parameter estimation is related to the ensem-
ble size and the number of observations as well as to the application of localization.
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When assimilating eight observations, a slight improvement in the estimation of the
drain level and drain constant is observed, while little or no improvement is observed
when estimating the remaining parameters. The improvement with localization is more
pronounced when only two or no head observations are assimilated, where an im-
provement can also be observed when the ensemble size is increased.

3.3 InclParNoQ

The head RMSE as a function of ensemble size for the scenario InclParNoQ can be
seen in the left-most graphs in Fig. 8. Whether using eight observations or two obser-
vations, the use of localization and the increase in ensemble size has a much smaller
effect on the performance in terms of head RMSE compared to the scenario in which
discharge observations are assimilated. This suggests that the issue of spurious cor-
relation is most dominant in the cross-process correlation, as is also suggested by the
localization weights seen in Fig. 5. Generally, an improvement in terms of head RMSE
is seen compared to the scenario in which discharge observations are assimilated
(InclParInclQ), but the convergence of the two scenarios with increasing ensemble
size suggests that this is due to spurious correlation in the InclParInclQ scenario. This
means that if one is only interested in optimizing the filter for groundwater head updat-
ing, discharge observations could be left out, as they result in little or no improvement
in the groundwater domain and requires a larger ensemble size.

The discharge RMSE in Fig. 7 shows that clear improvements in the discharge
RMSE is achieved with the assimilation of discharge observations. Both the scenario
with 8 observations and with 2 observations show increasing trends with respect to
discharge RMSE vs. ensemble size, which seems to be related to the estimation of
parameters, particularly the leakage coefficient which was estimated worse with in-
creasing ensemble size (i.e. the mean of the ensemble of parameter values was offset
from the true value). This is presumably done by the filter to optimize the groundwater
state, but led to significant biases in the estimated parameter values.
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The estimated parameter values can be seen in Fig. 7, which shows that little or no
improvement in the estimation of parameters is obtained by increasing the ensemble
size or by adding localization. When comparing to the parameter estimation of the
InclParInclQ scenario, the estimation of all parameters is clearly worse in InclParNoQ,
both in terms of the mean and the spread of the ensemble, underlining the necessity
of assimilating discharge observations in integrated hydrological models, if the aim is
to estimate parameters.

3.4 NoParinclQ

For the scenario NoParInlQ the head and discharge RMSE as a function of ensemble
size can be seen in the two middle graphs in Fig. 8. In the case of two head obser-
vations, a significant reduction in head RMSE is observed when increasing the en-
semble size from 25 to 50, followed by an increase in head RMSE with increasing
ensemble size. The decrease in head RMSE is followed by a corresponding increase
in discharge RMSE, indicating that the trade-off between groundwater and stream flow
has shifted. Due to bias in the parameters that control the groundwater-stream flow
interaction which is not being sequentially reduced due to the exclusion of parameter
estimation, a more correct determination of the groundwater head will inevitably result
in larger errors in the discharge. A visual study of the head RMSE as a function of time
shows that while the update is approximately equally effective when using 25 or 50
ensemble members (in terms of discharge RMSE at the updating time), the increase in
discharge RMSE between updates is larger for the 50 ensemble scenario, suggesting
that the error in the interaction with the groundwater is more pronounced. It seems that
the combination of parameter noise and stream discharge present in the 50 ensemble
member case favors the correct description of groundwater head over discharge, even
if all other factors (observation noise, uncertainty, and inflation) are the same in all sce-
narios. The increase in discharge and head RMSE observed from 100 to 200 ensemble
members is due to an increase in spurious correlation. It seems counterintuitive that an
increase in ensemble size would increase spurious correlation, but an increase in en-
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semble size also increases the parameter space spanned by the ensemble, which may
lead to spurious correlation appearing. This increase is not observed in InclParinclQ,
as the parameter spread there is sequentially reduced.

When using eight observations, a general decrease in head and discharge RMSE is
observed with increasing ensemble size. There is a significant difference when using
localization, with localization increasing the head RMSE and decreasing the discharge
RMSE substantially. The decrease in discharge RMSE is explained by the removal of
spurious correlation, which can cause significant problems for the discharge in par-
ticular (see Sect. 3.1). The general increase in head RMSE may be explained by the
trade-off effect shifting between the groundwater and the discharge observations.

In both cases when using either eight or two observations, the effect on the head
RMSE is relatively small. This is most likely due to the slow changing dynamics of
groundwater, which means that the groundwater head is well constrained, and does
not deviate significantly from the “true” groundwater head in between updates. The
discharge on the other hand, changes very rapidly, and the effect of updating the dis-
charge at a specific time will quickly disappear after the model is started again. Adding
to this is the problem with spurious correlation and its relevance to discharge modelling
(see Sect. 3.1) which often results in very high discharge RMSE and makes direct
comparison of discharge RMSE between scenarios difficult.

3.5 NoParNoQ

The head and discharge RMSE when parameter estimation and discharge observa-
tions are omitted can be seen in the two rightmost graphs of Fig. 8. Both when using
two observations and eight observations, the resulting changes in head and discharge
RMSE with increasing ensemble size are very small. Likewise, the benefit of using lo-
calization is negligible. This may be explained by the updating being much more linear
than in any of the other scenarios, thus reducing the need for a large ensemble size.
When comparing the NoParNoQ results with the NoParInclQ results, it becomes
clear that the impact of assimilating discharge (without estimating parameters) is small
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with respect to both head RMSE and discharge RMSE both in the case of using
eight observations and two observations. However, the trade-off issue does not ex-
ist in the NoParNoQ scenario, causing this scenario to perform better with respect to
head RMSE when two observations are used.

4 Conclusion

This study investigated the impact of localization and ensemble size when applying
data assimilation to a coupled surface—subsurface model, considering different types
and varying amount of observation data and parameter estimation.

The adaptive localization method used in this study was in many cases able to re-
duce the required ensemble size significantly. The method resulted in a complex distri-
bution of localization weights in both domains of the model (groundwater and stream
flow) that depended heavily on the geology and the position of the observation relative
to the stream network. This distribution could not be obtained using the common local
analysis (LA) methods, and direct comparison of the adaptive localization and LA local-
ization also showed that adaptive localization outperformed LA localization with respect
to head RMSE. Adaptive localization is not only easily implemented in the ETKEF, it also
automatically ensures that the cross-process correlation is localized differently than the
intra-process correlation, making it particularly suitable for data assimilation in coupled
surface—subsurface models. Others have encountered the problem with cross-process
correlation, notably Zupanski (2013), although no definitive solution to the problem has
been presented. Adaptive localization, such as the method applied in this study, may
be one possible solution.

When assimilating both groundwater head observations and estimating parameters,
localization and large ensemble sizes are important due to the nonlinearity of the state
and parameter updates. This tendency is increasingly pronounced with decreasing
number of observations assimilated due to the small correlations between observa-
tions and model states being more important when the spatial distribution of obser-
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vations is poor. Excluding discharge observations reduces the benefits of localization
and increasing ensemble size, as does the exclusion of parameter estimation. When
excluding both discharge observation assimilation and parameter estimation applying
localization or increasing the ensemble size from 25 to 50, 100 or 200 has almost no
effect on the filter performance. The effects of increasing ensemble size in hydrological
modelling has previously been studied (Chen et al., 2013; Xie and Xhang, 2010), with
findings similar to the ones of this study. Both studies found that increases in ensemble
size improved filter performance, with Xie and Xhang (2010) increasing the ensemble
size to 1000, and still observed improvements. However, neither of the studies related
the ensemble size to the amount of observations assimilated or to the estimation of
parameters.

Like with state updating, estimation of parameters was primarily improved by an in-
creasing ensemble size when discharge observations were assimilated. With discharge
observations assimilated, clear improvements in parameter estimation were observed
when applying localization, and to some extent when increasing the ensemble size
(depending on the number of assimilated head observations). However, no improve-
ment was observed when applying localization or increasing the ensemble size when
discharge observations were not assimilated.

In conclusion, the required ensemble size depends heavily on the assimilation of
discharge observations and estimation of parameters, as well as on the available num-
ber of observations. A large ensemble size is necessary when discharge observations
are assimilated, parameters are estimated and few observations are available, while
a significantly smaller ensemble size is sufficient when only groundwater head is as-
similated and updated. However, the best overall filter performance (i.e. a combination
of groundwater head and stream flow modelling) is found when discharge observations
are assimilated and parameters are estimated. While the findings of this study could
to a certain extent be derived intuitively, this is to our knowledge the first time that they
have been quantified and documented in integrated hydrological modeling.
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Table 1. List of parameters included for estimation, including their normalized sensitivity coeffi-

cients to head and discharge observations respectively.

Parameter Parameter Normalized sensitivity = Normalized sensitivity
name description coefficient (Head) coefficient (Discharge)
HK_mws Horizontal hydraulic ~ 1.00 1.00
conductivity of
meltwater sand
Leakage Stream bed leakage 0.22 0.29
coefficient
HK_gs Horizontal hydraulic  0.06 0.11
conductivity
of quaternary sand
Drain level Drain level 0.03 0.07
Drain constant  Drain constant 0.01 0.04

2295

| Jadeq uoissnosigq | Jedeq uoissnosiq | Jaded uoissnosiqg

Jaded uoissnosiq

HESSD
12, 22672304, 2015

Evaluating the effect
of ensemble size and
localization on filter
performance

J. Rasmussen et al.

(8
K ()


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/2267/2015/hessd-12-2267-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/2267/2015/hessd-12-2267-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

@)
Table 2. List of parameters perturbed to create the true model and to add noise to the filter ~ © HESSD
ensemble. Parameters in bold are included in the parameter estimation. Parameters with very  $
low sensitivity were omitted. Parameters are perturbed using Gaussian noise with SD shownin S 12, 2267-2304, 2015
the table. T
9
Parameter name Distribution True value Initial value SD  Log transformed D Evaluating the effect
Hor. Hyd. conductivity Meltwater sand -8.52 -7.60 0.818 X _ of ensemble size and
Hor. Hyd. conductivity Quarternary sand —-6.21 -7.01 1.151 X localization on filter
Hor. Hyd. conductivity Clay -15.42 -15.42 0.194 X g £
Hor. Hyd. conductivity Mica Sand -11.74 -11.74  0.201 x @ periormance
Hor. Hyd. conductivity Mica clay/sand -16.34 -16.34 0.213 X g
Specific yield Meltwater sand 0.25 0.25 0.025 0 J. Rasmussen et al.
Specific yield Clay 0.05 0.05 0.004 <
Specific yield Quarternary sand 0.25 0.25 0.023 U
Specific yield Mica Sand 0.20 0.20 0.022 %
Specific yield Mica clay/sand 0.05 0.05 0.005 @ _
Specific storage Meltwater sand -11.62 -9.90 0.308 X
Specific storage Clay -9.57 -9.90 0.335 X — - -
Specific storage Quarternary sand -11.74 -9.90 0.318 X
Specific storage Mica Sand -9.21 -9.90 0.320 X ) - -
Specific storage Mica clay/sand -6.21 -9.21 0.367 X I
Drain level Global -1.00 -090 0215 i - -
Drain time constant Global -14.33 -15.02 0.381 X g-
Leakage coefficient Global -15.48 -14.79 0.885 X =)
Overland manning no. Global 4.00 5 0.213 Q"JJ - -
Overland detention Global 0.01 0.02 0.001 o
Leaf area index Forest 5.00 6 0.431 w2 - -
Leaf area index Heath 2.50 2 0.209
Leaf area index Agriculture 4.00 5 0.413 o - -
Root depth Agriculture 900 1000 43.87 o
Leaf area index Wetland 5.00 6 0.435 ~ FullSoreen/Esc
Root depth Wetland 710 700 98.91 o
Stream manning number Global 20 25 1.964 7
Sat. moisture content Soil type 1 0.40 0.40 0.020 o _
Soil matric pot. (field cap) Soil type 1 2.00 2.00 0.088 =
Soil matric pot. (wilting point)  Soil type 1 4.20 4.20 0.168 Q_,U _
Sat. Hyd. conductivity Soil type 1 -11.18 -11.18 0.345 X 8
@
.
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Legend
|:| Catchment delineation
—— Stream network

*  Groundwater head observation locations
X Discharge observation locations

0 3 6 12 Kilometers

Figure 1. Karup catchment with locations of discharge and hydraulic head observations.
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2 obs

Figure 2. Spatial distributions of observations. Dots and crosses respectively denote ground-
water hydraulic head and stream discharge observation locations, respectively.
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Figure 3. Head RMSE as a function of the localization constants a and b (left) and head RMSE
using different localization methods (right).
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Figure 4. Head (top) and discharge (bottom) RMSE for the entire model domain as a function
of time with different types of localization applied.
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Figure 5. Mean localization weight derived from the localization algorithm. Top row shows the
localization weight in groundwater head and the bottom row shows the localization weights in
stream variables (discharge and water level). Magenta crosses indicate the observation loca-
tions. Only two selected discharge observations are shown.
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Figure 6. Head RMSE (top) and discharge RMSE (bottom) as a function of ensemble size in
the InclParlnclQ scenario for different numbers of groundwater head observations.
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Figure 7. Spread of estimated parameters at the final update. Thin blue lines show the total
spread of the ensemble and thick blue lines show the 25th and 75th percentile. Dots show the
mean of the ensemble. The horizontal black and magenta lines show the true and the base
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parameter values, respectively.
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Figure 8. Head RMSE (top) and discharge RMSE (bottom) as a function of ensemble size
for three of the scenarios. For comparison, the dashed lines indicate the head and discharge

RMSE of the InclParInclQ scenario (without localization).
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