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Abstract

Timely forecasts of the onset or possible evolution of droughts are an important contribution
to mitigate their manifold negative effects. In this paper we therefore analyse and compare
the performance of the first month of the probabilistic extended range forecast and of the
seasonal forecast from ECMWF in predicting droughts over the European continent. The
Standardized Precipitation Index (SPI-1) is used to quantify the onset or likely evolution of
ongoing droughts for the next month.

It can be shown that on average the extended range forecast has greater skill than the
seasonal forecast whilst both outperform climatology. No significant spatial or temporal pat-
terns can be observed but the scores are improved when focussing on large-scale droughts.
In a second step we then analyse several different methods to convert the probabilistic fore-
casts of SPI into a Boolean drought warning. It can be demonstrated that methodologies
which convert low percentiles of the forecasted SPI cumulative distribution function into
warnings are superior in comparison with alternatives such as the mean or the median
of the ensemble. The paper demonstrates that up to 40 % of droughts are correctly fore-
casted one month in advance. Nevertheless, during false alarms or misses, we did not
find significant differences in the distribution of the ensemble members that would allow for
a quantitative assessment of the uncertainty.

1 Introduction

Droughts can impact many human activities and environmental processes including agri-
culture, water resources management, inland water transport, energy production and fresh-
water ecology (Fraser et al., 2013). They often spread over vast geographical regions and
last for many months or even years (Lloyd-Hughes and Saunders, 2002). The spatial ex-
tent and manifold impacts makes them one of the costliest natural disasters (Below et al.,
2007). Given this situation, continuous monitoring as well as forecasting the onset or likely
evolution of an ongoing drought over the next few weeks are important to trigger actions
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for mitigating negative impacts in the mentioned fields. To do so, decision makers and end
users require simple and robust forecast indicators which are capable of informing about
the onset, possible duration and end of drought conditions.

Droughts can be classified in several categories (Wilhite and Glantz, 1985): (i) meteoro-
logical drought which is defined as a rainfall deficit over a certain space and period of time;
(ii) agricultural or soil moisture drought, which describes the propagation of precipitation
deficits to soil moisture deficits resulting in plant water stress; and (iii) finally hydrological
drought, which is associated with the effects of precipitation deficits on surface and sub-
surface water supplies. In this study we focus on meteorological droughts using monthly
precipitation forecasts from the ECMWF ensemble systems. This timescale is considered
as a challenge because located between the medium-range forecasting, which is strongly
related to initial conditions, and the seasonal time-scale, mainly driven by oceanic vari-
abilities (Vitart, 2014). The goal is to test the possibilities to provide to decision makers
a forecast of the onset or likely evolution of a drought during the next month.

It has been demonstrated that droughts can be forecasted using stochastic or neural net-
works (Kim and Valdés, 2003; Mishra et al., 2007). While Mishra and Desai (2005) demon-
strated that these forecasts can provide “reasonably good agreement for forecasting with
1 to 2 months lead times”, they do not quantify the improvement of these methods with re-
spect to using probabilistic forecasts of the precipitation fields. Forecasts of droughts can
also be produced using deterministic Numerical Weather Prediction Models. Such fore-
casts are highly uncertain due to the chaotic nature of the atmosphere, which is particu-
larly strong on a sub-seasonal time scale (Stockdale et al., 1998; Vitart, 2014). Therefore,
ensemble prediction systems have been developed that forecast multiple scenarios of fu-
ture weather. Probabilistic forecasts become particularly important to assess the risks as-
sociated with high-impact and rare weather events such as tropical cyclones or droughts
(Hamill et al., 2012; Dutra et al., 2013, 2014) as well as for identifying uncertainties in the
forecasts (Buizza et al., 2005).

Forecasts on the sub-seasonal time-scale and seasonal forecasts from dynamical mod-
els have considerably evolved over recent years and demonstrate potential usefulness
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to predict large-scale features and teleconnections (Barnston et al., 2012; Arribas et al.,
2011). The latter can be used in statistical downscaling methods using weather types.
Eshel et al. (2000), for example, used the North Atlantic sea level pressure precursors to
forecast drought over the eastern Mediterranean. However, while their forecasts are sta-
tistically significant for several months lead time, this region represents a relatively small
part of Europe known to be one of the most sensitive to weather types. In general, the
published literature indicates that the skill of the precipitation fields produced by Numerical
Weather Predictions over Europe is low (Richardson et al., 2013; Weisheimer and Palmer,
2014; Singleton, 2012) even though there are considerable spatial variations. However,
these analyses tend to be performed from the point of view of weather forecasting and do
not incorporate specific properties that are relevant for drought forecasting such as persis-
tence.

Drought forecasts can be based on different lead times, ranging from a few weeks to
several months and the accuracy of any forecast will decrease with increasing lead times.
Nevertheless, so far, there is no reference study providing a general assessment of meteo-
rological drought forecasting over Europe. Such a study is necessary to provide a base for
researchers that develop new forecast methods. It is also necessary for decision makers
and end users to assess the uncertainties of the warning provided by forecast services.

The European Centre for Medium-range Weather Forecasts (ECMWF) provides two dif-
ferent types of forecasts for this time range: an extended range forecast, with lead times
up to 32 days which is issued twice a week and a seasonal forecast, with lead times of up
to 12 months issued once a month. The extended range forecast incorporates more recent
model developments and is usually of higher resolution (Vitart et al., 2008). The seasonal
forecasting system is based on an older model cycle (Molteni et al., 2011), among other
significant differences. Analysing the potential of both products requires understanding the
property and skill differences between the two systems for the particular application. For
the case of droughts such an analysis needs to include both the numerical forecasting skill
and the possibilities for binary decisions to issue drought warnings. In particular, the latter
is challenging if such decisions are based on probabilistic forecasts.
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The objectives of this paper are to analyse the possibilities for issuing 30 day forecasts
of drought conditions based on Ensemble Prediction Systems and the Standardized
Precipitation Index (SPI, McKee et al., 1993). The latter is a normalized quantification of
the precipitation anomalies (Vicente-Serrano, 2006; Dutra et al., 2013) and considered as
a good indicator for analyzing meteorological droughts over different time scales (WMO,
2012). Considering the difficulties to predict drought, in this study, we focus on the evolution
of the precipitation for the next month, calculating the rainfall anomaly for the same
time period (SPI-1). This product, which provides the trend of precipitation for the next
month in relation to the climatology, could be combined with routine drought monitoring
to create more robust and useful information for stakeholders. To do so, the extended
range and seasonal forecasting systems are compared directly but also within the setting
of a decision-making framework. Multiple scores as well as multiple methodologies which
allow the transformation of probabilistic forecasts into binary decisions are developed and
tested.

Underlying issues are : what is the predictability of a drought based on the SPI for a
1 month rainfall accumulation period (SPI-1), what is the most useful model between the
Seasonal (SEAS) and the monthly ENSemble system (ENS) for forecasting 30 day cumula-
tive precipitation; and what are the spatial and temporal variabilities of the model’s ability?
Adapted skill scores provide information about the ability of the probabilistic models to ac-
curately forecast such kind of extreme events. The paper is organized as follows; the tools
and methods used will be detailed in Sect. 2 and the results will be discussed in Sect. 3.
Final conclusions are drawn in Sect. 4.
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2 Data and methods

2.1 Precipitation

2.1.1 Observations

In this study, the combined gridded precipitation dataset from the ENSEMBLES project and
ECA & D (Haylock et al., 2008; Van den Besselaar et al., 2011, E-OBS Version 5) was used
which is available from 1950 onwards and is continuously updated. The spatial resolution of
the dataset is 0.25◦ by 0.25◦, which was up-scaled by averaging the cumulative precipitation
to a 1◦ by 1◦ grid as this analysis focuses on large-scale droughts.

Validation of the original datasets has been performed by Pereira et al. (2013) and
Sunyer et al. (2013), who found that datasets from ECA & D show higher values for ex-
treme precipitation, and E-OBS tends to over-smooth the data. This can generate some
problems when analysing intense precipitation events but appears of secondary importance
in drought analysis. Daily precipitation values have been aggregated to monthly values to
provide comparison with monthly forecasts. To be consistent with the data provided by the
ensembles from ECMWF, a common period of the hindcast that covers the period from
1992 to 2013 is used to calculate the precipitation anomalies.

2.1.2 Forecasts

Two sets of coupled ensemble forecasting systems are provided by ECMWF to forecast one
month ahead: an extended range monthly forecast and a seasonal forecast.

The ECMWF monthly (32 day) extended range ensemble forecasting system (ENS here-
after; Vitart, 2004), has been routinely issued twice a week since October 2011. This model
is the latest version of the ECMWF Integrated Forecasting System. For lead times up to
day 10 the model is not coupled to the ocean and has a resolution of ∼ 32 km (T639). It is
forced by persistent sea-surface temperature anomalies. Beyond a lead time of 10 days the
resolution of the model is coarser (T319, 64 km), however, it is coupled to an ocean model.
The vertical resolution remains unchanged during the entire simulation at 62 vertical levels.
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ECMWF provides a back statistic (hindcasts) for ENS which is a 5-member ensemble start-
ing on the same day and month as each Thursday’s real-time forecast for each of the past
20 years. For a more detailed description see Vitart (2014).

The second ECMWF ensemble system used in this study is the seasonal forecast called
System 4 (Molteni et al., 2011; SEAS hereafter), which is launched once a month (on the
first day of the month). It has lead times up to 13 months and a resolution of T255 (80 km).
This model is the 2011 version of the Integrated Forecast System, with 91 vertical levels.
SEAS provides a back statistic, which is a 15/51 member ensemble (number depends on
month) identical to SEAS for every month from 1980 onwards. In this study, only the first
forecast month is used.

SEAS and ENS are composed of 50 members, which are generated by perturbing initial
conditions and physical tendency (Molteni et al., 1996; Weisheimer et al., 2014) and one
unperturbed member. Both datasets were re-gridded to a one square degree resolution
using a mass conservative interpolation. The two systems will be compared over their hind-
cast periods as well as over a forecast period as can be seen in Table 1. This allows for
a larger sample size and enables a more significant comparison.

However, despite this technique being robust and frequently used, it also has a few dis-
advantages: the ensemble size of the reforecasts is only five members instead of 51 mem-
bers for the real-time forecasts. Ensemble size can have an impact on skill scores, which
needs to be corrected for. Weigel et al. (2008) faced the same issue when they scored the
ECMWF reforecasts produced in 2006 and used a correction of the probabilistic skill score
which takes into account the ensemble size.

2.2 Drought detection

In this study the Standardized Precipitation Index (SPI) is used to detect droughts. It was
developed by McKee et al. (1993) and is currently used in many scientific studies or op-
erational systems (Guttman, 1999; Khan et al., 2008; Dutra et al., 2013, 2014). SPI has
the advantage that it is provides easily understandable information about the precipita-
tion anomaly. In addition it is also very flexible, allowing calculations aggregated over
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different spatial scales (from station data to large-scale area) as well as temporal do-
mains (from 10 day to several month’s cumulative precipitation, Mishra and Desai, 2006;
Cacciamani et al., 2007).

This study focuses on the monthly timescale and therefore the SPI was cal-
culated using monthly accumulated precipitation (SPI-1). The SPI is usually com-
puted by fitting a probability density function (often a Gamma distribution) to
the data (Lloyd-Hughes and Saunders, 2002; Edossa et al., 2010; Dutra et al., 2013;
Guy Merlin and Kamga, 2014). Through the application of an inverse normal (Gaussian)
function, data are transformed into normal space with a mean equal to 0 and a standart de-
viation (SD) equal to 1. It is important that the hypothesis that the data can be approximated
by a Gamma distribution is tested to ensure that all conclusions are valid. The Gamma func-
tion cannot be fitted when only a low number of data points (events) or very low data values
(precipitation) exist because numerical convergence of the optimization process cannot be
achieved. Therefore, the SPI methodology cannot be applied in very arid regions.

The SPI value can be broken down into different classes (WMO, 2012): normal condi-
tions from −1 to 1; moderate drought with SPI < −1; severe droughts with SPI< −1.5; and
extreme drought for SPI < −2. The time series of the analysed forecasts in this paper are
too short to justify any focus on an SPI lower than −2 (last 2.3 % of the distribution). There-
fore, this study focuses on moderate and severe droughts only. One strong advantage of
this method is that it produces an unbiased product with a homogeneous rank histogram
(Talagrand Diagram) of the observed precipitation onto the forecasted precipitation (not
shown).

2.3 Deriving a decision from probabilistic forecasts

One of the main objectives of this work is to provide decision makers and end users with
a simple and robust Boolean index to forecast a drought based on a probabilistic forecasting
system. Several methods to select the Boolean solution are tested and are compared with
a deterministic model (defined here as the unperturbed member of the Ensemble). Also,
a comparison against a climatological forecast will be performed. Methods to derive this
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index are given in Table 2 and can be categorized into three types: individual, where the
index is based on an individual member or percentile; partially integrative, where the sum of
particular individual members or percentiles are used; and integrative which is represented
by the ensemble mean. The individual types should be seen as providing complementary
information giving information about the intensity of the SPI-1, but also the distribution of
the members.

The individual types have been subdivided into 5 classes representing dry members
(Q13, Q23), wet ones (Q77, Q88) or the median. The extreme members of the distribution
are not used to avoid outliers generally associated with ensemble systems (Lavaysse et al.,
2013). For each method, a threshold was defined. A SPI lower than −1 or −1.5 will se-
lect 16 % and 6.7 % respectively of the normalized series. Therefore, to be coherent, the
thresholds have been defined to select the same number of events.

2.4 Evaluation scores

A plethora of scores to evaluate probabilistic forecasts exist (Nurmi, 2003) and in this study
we have chosen scores which are suitable for drought forecasting.

The Relative Operating Characteristic (ROC) score was proposed by Mason (1982) and
is plotting the false alarm rate against the hit rate. The objective of that score is to calculate
the ability of the forecast to discriminate between events and non-events. This score is not
bias sensitive to the forecast and can be considered as a measure of potential usefulness
because it is conditioned by the observations (i.e., given that a drought occurred, what was
the corresponding forecast?). The area under the ROC curve can be calculated and ranges
between 0 and 1. Higher numbers indicate a better forecast.

The reliability diagram, which is conditioned on the forecasts, is a good complementary
score to the ROC because it assesses the average agreement between the forecast values
and the observed values. In a reliability diagram the forecast probability is plotted against
the observed relative frequency (Nurmi, 2003). A perfect score is associated with the 1 : 1
line, the climatology score (i.e. no resolution) corresponds to the mean observed frequency
(i.e. observed relative frequency of y = 0.159 for SPI < −1).
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The accuracy of the probability forecasts is assessed using the Brier Score (Brier, 1950)
:

BSf =

r∑

k=1

m∑

j=1

(pf (j,k)− Io(j,k))2 (1)

where pt is the probability that was forecast, Io the observation of the event (1 or 0 if it
does happen or not), r the number of classes (here 2) and m is the number of forecasting
instances. A skill score can be derived by comparing the Brier score to climatology.

BSS = 1−BSf/BSc (2)

The Brier Skill Score ranges from −inf to 1. The higher the score the more skilful is the
forecast and any negative values indicate that the climatological forecast outperforms the
probabilistic forecast. The scores above are complemented by the correlation of the ensem-
ble mean and the Root Mean Square Error of the ensemble mean as those are frequently
used in the evaluation of seasonal forecasts.

Several scores exist which deal with the contingency table and where the forecasted and
observed solutions are Booleans. In this paper, we have used 5 of them. The Probability Of
Detection (POD, perfect = 1) is the ratio of the total number of observed events that have
been forecasted.

POD =
hits

hits + misses
(3)

The False Alarm Rate (FAR, perfect = 0) is the fraction of the forecasted events which
actually did not occur.

FAR =
falsealarms

hits + falsealarms
(4)

The extreme dependency score (EDS, see equation 5) is an informative assessment of skill
in deterministic forecasts of rare events that can converge to different values for different
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forecasting systems and furthermore it does not explicitly depend upon the bias of the
forecasting system. (Ferro and Stephenson, 2011).

EDS =
2log(hits+misses

total
)

log( hits
total

)
− 1 (5)

The percent correct (PC, perfect = 1) is the ratio of good forecasting events in relation to
the total number of events.

PC =
hits + correctnegative

total
(6)

Finally, the Gilbert score balances POD and PC cases (Jolliffe and Stephenson, 2003;
Hogan et al., 2010) and measures the fraction of observed and/or forecasted events that
were correctly predicted, and adjusted for hits associated with random chance.

GSS =
hits−hitsrandom

hits + misses + falsealarms−hitsrandom

(7)

3 Results

3.1 Evaluation of the SPI calculation

The sensitive part of the SPI calculation is the fitting of a theoretical distribution to the em-
pirical distribution. In this study, the Gamma distribution is fitted to the probability density
function of monthly precipitation. It is therefore necessary to set a threshold at which mini-
mum cumulative precipitation can be considered as significant.

Different thresholds were tested (0, 1, 5, 10 and 20 mm, not shown) and it was decided
that only monthly precipitations larger than 10 mm are considered significant. This threshold
allows the retention of a large number of events and the discarding of events or regions
with non significant monthly accumulated rainfall. As outlined in the methodology, fitting
a Gamma distribution to precipitation data relies on an adequate sample size (adequate with

11



DisussionPaper|DisussionPaper|DisussionPaper|DisussionPaper|

respect to the variability of the data). The Gamma distribution was fitted to the distribution
if a grid point possesses at least 66 % of values significantly larger than 0 (i.e. larger than
10 mm). That ensures a minimum number of events to fit the distribution. These thresholds
allow for the removal of arid areas, where the fitting of the Gamma distribution resulted in
biased values due to the low spread and low sampling of the time series.

The performance of the fitting procedure and of the underlying assumptions can be anal-
ysed by investigating the resulting SPI-1 distribution. This was done by calculating the inte-
gral of the differences between the fitted Gamma distribution and the empirical distribution.
Zero values are considered as perfect values (no bias of the SPI-1 calculated), whereas
positive or negative values indicate bias and therefore question the validity of the fitting pro-
cedure. In Fig. 1 the bias of the Gamma distribution over the entire globe is shown. It can be
seen that the Gamma distribution is well adapted for most of Europe (see also Stagge et al.
(2015)).

Nevertheless, the low precipitation amounts over the southern part of Spain can create
some bias in the fitting. This is especially true during the summer season and therefore the
assumptions for fitting the Gamma distribution are not valid for the entire year. This analysis
shows that it will be necessary to adapt the method in particular over dry areas, for example,
by focusing the study only during the rainy seasons.

3.2 Validation during the hindcast period

This evaluation is based on the hindcast period (see Table 1) of ENS and SEAS. It allows
a long-term evaluation using the same version of the model. The correlation and root mean
square error of the ensemble means are displayed in Fig. 2. The mean correlation (0.32)
and the mean RMSE (1.02) for ENS is better than that for SEAS (0.05 and 1.45 respec-
tively, not shown). Neither the correlation nor the RMSE are significantly different from zero
suggesting that a mean monthly forecast has no skill. In addition, the spatial variability is
low, meaning that there is no significant spatial difference in the ability of the model to
predict the SPI-1, on average. Note that the correlation of the SPI-1 is comparable to the
anomaly correlation coefficient (ACC) that removes the seasonal cycle. Indeed, the SPI-1 is
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the anomaly of a monthly precipitation in relation to the climatology of that specific month.
So this correlation coefficient is much more robust but also less likely significant.

The SPI-1 values of individual ensemble members and observations were analysed in
bins to assess whether these results are also valid for extreme events. Here, the individual
ability (for each member independently) was assessed by decomposing the SPI-1 fore-
casted and observed over Europe during the hindcast period in 10 classes (from SPI-1
lower than −2, to SPI-1 larger than +2, at intervals of 0.5). The frequency in each bin nat-
urally follows the Gamma distribution which generates a large number of cases centred
around 0. This distribution was normalized by computing the ratio between the empirical
distribution and the theoretical distribution. The result is shown in Fig. 3. The figure shows
that the more a drought is forecasted, the more it is observed (red bars). In addition it has
to be noted that the distribution is highly non-symmetric. This indicates that the forecasts of
extreme dry events are more accurate than the forecasts of extreme wet events. This result
could be explained by the usually large spatial and temporal scales of drought events that
are better predictable by a global model even one month ahead.

3.3 Validation during the forecast period

The analysis of the forecast period from November 2012 to November 2013 largely confirms
earlier findings in this paper of the forecasts over a significantly longer temporal period,
but allows for a more detailed investigation of the distributions due to the larger ensemble
number (see Table 1).

Figure 4a compares the behaviour of the ENS members during observed extreme wet
and dry events. In both cases, the normal distributions of the ranked ensemble members are
quite similar. The only difference is the shift towards negative values of forecasted SPI when
a drought is observed (red line) in comparison with when wet events are observed (blue
line). Nevertheless, the SD (indicated by the barlines) highlights that there is no significant
difference (significance level of 0.9) between the two events. It is interesting to observe
that the value of the ensemble mean increases with the increase of the observed SPI-1
(black line in Fig. 4b), whereas the spread of the ensemble (defined as the SD) shows
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little sensitivity (yellow line in Fig. 4b). It can be concluded that only the ensemble mean
displays a significant difference between wet and dry anomalies, whilst there is no such
relation in the SD. In SEAS, the same trends are observed but the difference between
the two conditional distributions is reduced (Fig. 4c and d). This indicates that ENS has
a stronger resolution than SEAS, and therefore a greater ability to discriminate events with
different frequency distributions.

These results are confirmed by analysing the ROC curve. Over the European continent,
the ROC curves show an improvement in relation to the no skill curve (1 : 1 in Fig. 5). The
ROC area is slightly better for ENS than for SEAS (+0.4 and +0.2 for SPI-1< −1 and
SPI-1 < −1.5, respectively).

Both ENS and SEAS present a positive but low reliability for detection of SPI-1< −1
(Fig. 6). Indeed, the observed relative frequencies increase with the increase in the forecast
probabilities. The distribution of cases per percentage (not shown) indicates more events
with a large percentage of members associated with a drought in ENS rather than SEAS.
This result indicates the better consistency between the members in ENS to forecast an
extreme rainfall deficit than in a case of SEAS. Using ENS, several events are forecasted
with more than 93 % of members associated with a drought forecasting, whereas using
SEAS, the maximum is 81 %. The ENS and SEAS systems are better than climatology,
achieving values of 0.14 and 0.12 respectively. But, here the difference between ENS and
SEAS is not significant.

3.4 Sensitivity to drought scales

All analysis so far has been performed on a scale of 1 ◦ by 1 ◦, however the sensitivity to
different resolutions needs to be analysed, because the impacts of large-scale droughts
will be stronger. Figure 5 shows SPI-1 values smoothed to 3 and 5 square degrees, using
a simple upscaling method based on the average of the values. The resolution of about 1
square degree has been kept to compare the impact of the resolution in the native grid.
The results show a slight improvement of the ROC area with a coarser resolution (broken
and dotted lines in Fig. 5). The smoothed signal favours the large-scale signatures that are
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better represented in models than small-scale structures of droughts. The effect of spatial
upscaling can also be seen in the ROC results as a little positive impact of SEAS for the
largest forecast probabilities (Fig. 6d). However as mentioned previously, the number of
events in these cases is low. The effect has been quantified using the BSS (see equation
2), which goes up to 0.17 and 0.14 respectively for the 5-degree smoothed signal.

3.5 Spatial and seasonal variabilities

3.5.1 Spatial variability

The analysis so far has ignored the spatial and seasonal scale. Figure 7 shows the ROC
anomaly for the forecast period, which is the ROC area for each grid cell in relation to the
average (0.67 for ENS). The anomaly is preferred to the raw value to highlight regions where
the ROC is improved or reduced. A maximum variability of 20 % can be observed. For the
hindcast period (not shown), this variability is much lower at ∼ 6%. There is a difference
in spatial patterns between the two periods, suggesting that the spatial patterns are not
significant and are mainly driven by the extreme cases encountered during the period.

3.5.2 Seasonal variability

A seasonal decomposition is used to highlight the temporal variabilities. ROC scores and
curves where independently calculated for the autumn (September to November), winter
(December to February), spring (March to May) and summer (June to August) seasons and
are displayed in Fig. 8 (for SPI-1< −1).

The four ROC areas are very similar, and the four distributions are identical for ENS,
meaning that the skill to forecast droughts is identical throughout the year. In contrast, SEAS
shows some differences between the seasons, with a small improvement in the forecast
during the autumn season. Identical interpretations can be derived for the SPI-1< −1.5
and are therefore not shown.
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3.6 Index performance

Figure 9 shows the POD (see equation 3) and the FAR (see equation 4) for ENS and
SEAS. POD indicates that, on average, one in three drought events over Europe is correctly
forecasted one month in advance. This is significantly better than the climatology (16 %) and
better than the deterministic forecast (around 25 %, green line in Fig. 9).

The importance of the drought duration has also been tested. The scores were calculated
independently for a drought onset (first SPI-1 lower than thresholds), persistence (consecu-
tive SPI-1 lower than the threshold), or end of the drought (first SPI-1 above the threshold).
First, the duration of a large majority of SPI-1 lower than -1 (more than 80 %) is one month
(isolated values, dry spell). The scores display a slight increase of the score for the persis-
tent droughts (condition unchanged), for the median the POD score increases from 0.33 to
0.36. But the difference is not significant according to the t-test.

The highest POD is achieved by using the 13 percentile (7th member of the ranked
ensemble distribution), and the product using the Q13 and Q23 (noted SpD). The mean of
the ensemble (last point on the right of each panel), which is used widely, is not the best
method for detecting droughts.

The POD values of the wettest members of the ranked distribution (noted Q77 and Q88
in Fig. 9) give the worst results of all methods, meaning that there is a low consistency
between the extreme dry and wet members. The FAR displays a low variability between the
methods, but every single one is better than the deterministic solution (red lines). It is also
worth noting that, using the ENS, the driest members are associated with a decrease of FAR
in relation to the dry members. This can be explained by the previous scores, which show
a larger consistency between the members. However, it could also be due to a technical
effect, since the number of events selected is constant, these scores could be dependent
on each other.

The highest EDS is achieved for the driest members (Q13 and Q23, Fig. 10), whereas
the wettest members (Q77 and Q88) have the lowest scores. The score of the ensemble
mean is better than that of the median. Even if the POD and FAR differences are partially
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statistically significant, the improvement of the EDS for the driest members is significant for
all differences larger than 0.04.

ENS and SEAS are reliable (see Fig. 6) and hence a potentiel method for drought fore-
casting could be simply based on the percentage of ensembles predicting a drought. In total,
10 different percentage thresholds were selected. Figure 11 shows that the percentage cor-
rect is increasing with the increase in the percentage used for both models (black points in
Fig. 11a and c) which is in agreement with the positive reliability. This means that with more
members forecasting a drought, the chance to observe one is increased. However, with an
increasing threshold, the number of misses also increases (provided by the POD value, red
points in Fig. 11a and c). For example, if the threshold to determine a drought is defined
with the 10 % of members associated with a drought forecasting, around 80 % of droughts
that occurred were correctly detected (red points), but more than 50 % of those forecasted
are associated with false alarms. Contrarily, if the threshold of detection is defined with
a percentage larger than 70 %, the percentage correct is about 85 %, but the POD is close
to 3 %. Based on this result, the user can tune the percentage depending on an acceptable
false alarm ration and misses.

The maximum Gilbert score (Fig. 11b and d, see equation 7) is achieved for a threshold
of 30 % for ENS and 40 % for SEAS. In that case, 40 % of droughts observed are forecasted
and 75 % of forecasts are hits. The number of missed events becomes too high with a larger
percentage threshold, whereas for lower percentage thresholds the errors are associated
with false alarms.

3.7 Assessing the uncertainties of the forecasts

Several previous studies (He et al., 2009; Palmer, 2000; Georgakakos et al., 2004;
Doblas-Reyes et al., 2009) have shown that probabilistic simulations can provide additional
information to assess the uncertainties of the simulation.

The idea here is to estimate the quality of the forecast, based on a specific behaviour
of the simulation. So the characteristics of the ensemble in the four different cases of the
contingency table have been analysed. This table has been built using the threshold of SPI-

17



DisussionPaper|DisussionPaper|DisussionPaper|DisussionPaper|

1 < −1 to detect a drought and the forecast method is based on the median of the members.
The mean SPI-1 of the 51 ranked members for the four cases is illustrated in Fig. 12. During
correct negative events (i.e. events without droughts forecasted nor observed), where more
than 70 % of the events are located, a normal distribution is observed, with a mean slightly
larger than 0. During the missed cases, the median is very close to 0 and the distribution of
the ranked members is very close to the ensemble mean.

In addition, the spread of the members is displayed (barb lines) and shows the increase
of the spread for extreme members. The fact that the two distributions become undistin-
guishable means that the response of the model is no different to a normal distribution and
it is not significant to find a specific behaviour of the model to assess the missed events.

Finally, the distributions of the members during hits and false alarms are compared. In
that case, there is no significant difference. The average and the distribution of the mean
SPI-1 of the ensemble are quite similar. These results are in agreement with Table 3, which
quantifies the ensemble spread for each case in the contingency table. Based on these
results, it appears impossible to evaluate the uncertainties of the ensemble simulation as-
sociated with a Boolean decision.

4 Discussion

Most drought studies use SPI with three- to six- months or even longer accumulation periods
for drought monitoring and characterization. To forecast droughts over such long-term peri-
ods a very accurate and reliable atmospheric model is required. Since it is well known that
the current reliability of precipitation forecasts decreases drastically after the first month,
the benefit of using a lead time of two months or more is, however, not obvious (Dutra et al.,
2013).

This paper, therefore, looks as a first step at the possibilities to provide a reliable one
month forecast over the European continent. This information, in combination with monitor-
ing data such as satellite or in-situ measurements that provide an accurate characteriza-
tion of ongoing drought conditions (e.g. during the last two months), can provide the best
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estimate of near future conditions. However, also such a combination of monitoring and
forecasting data will not allow looking more than one month ahead and an amalgamation of
both information types would bias the testing of the forecast skill, which is the intention of
this paper. Several meteorological services or agencies, such as the Bureau of Meteorology
in Australia or the United States National Drought Mitigation Center, provide relevant moni-
toring data as well as a one month outlook. For the case of Europe, the European Drought
Observatory (EDO) at the Joint Research Centre of the European Commission provides
relevant monitoring data, but up to now lacks the forecast beyond 7 days.

A one month forecast with a good reliability is considered to be a very valuable product
for decision makers as it provides information on the probability of occurrence of a dry spell
(in case of ongoing normal conditions) and of the probable persistence or end of a drought
(in case of an ongoing precipitation deficit). Before providing such information, it is however
necessary to assess the quality of the forecasts, which was the first aim of this study. The
second objective was to define the most robust (Boolean) method to activate alert levels for
the end users of the forecast information. Both steps are essential in an operational early
warning environment.

5 Conclusions

This study provides the first assessment of the predictability of meteorological droughts over
Europe and of the ability to issue an early warning of such droughts with a one month lead
time. The analysis is based on the one month forecast of the SPI-1 from the precipitation
outputs provided by two ECMWF ensemble systems. In a first step the ability to forecast
SPI-1 from the ensemble outputs was tested, showing that

– The reliability of the ensemble is better than the climatology,

– The spatial variability of the scores can reach up to 20 % over Europe and the sea-
sonal variability is not significant,

– Ensemble models are better at forecasting large-scale droughts.
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In a second step the ability to provide a robust Boolean index for drought forecasting was
analyzed. The best method is defined by using a threshold of 30 % of ensemble members
associated with a drought. In that case, slightly more than 40 % of the droughts observed
are forecasted correctly one month ahead, with only 25 % of false alarms. This is signifi-
cantly better than using the climatology (16 %) or the deterministic models (around 25 %).
Finally, this study has shown that there is no possibility to provide uncertainties associated
with the boolean index.

By providing the first assessment of meteorological drought forecasting in Europe, this
work will be particularly useful by as a benchmark comparison for future studies using, for
example, statistical weather prediction methods based on atmospheric predictors, which
are better represented in the seasonal models. As a follow-up of the analysis presented in
this paper work, we will assess the advantages of predicting droughts by analysing specific
Weather Types that are related to the occurrence and persistence of droughts in Europe
(Kingston et al., 2015). It could further be useful to investigate the use of moving windows
of 10 day cumulative precipitation to detail the temporal behaviour of the forecasted SPI-1.
As the forecast skills are better for short lead times, an SPI-1 lower than −1, explained by
a strong decrease in precipitation at the beginning of the period, should be more reliable.
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Table 1. ENS and SEAS configurations for the hindcast and the forecast periods.

Periods Evaluation Period ENS SEAS

Hindcasts Nov 1992 to Oct 2012 5 members 15/51 members
Forecasts 1 Nov 2012 to 31 Oct 2013 51 members 51 members
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Table 2. List of the 10 methods used to provide a Boolean index for drought forecasting using an
ensemble system.

Name Definition

13 percentile (Q13) member located at the 13 % of the CDF
23 percentile (Q23) member located at the 23 % of the CDF
Median (MED) member located at the 50 % of the CDF
77 percentile (Q77) member located at the 77 % of the CDF
88 percentile (Q88) member located at the 88 % of the CDF
Large spread (SpL) sum of the extreme members (Q13 + Q88)
Low spread (Spl) sum of the members (Q23 + Q78)
Dry spread (SpD) sum of the dry members (Q13 + Q23)
Flood spread (SpF) sum of the wet members (Q77 + Q88)
Mean ensemble mean
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Table 3. Contingency table (in percentage) obtained using the median of ENS to forecast a drought.
The definition of the drought observed is an SPI-1 lower than −1 and a drought forecasted is when
the ensemble median is lower than the 16th percentile. The second values of each case indicate the
ensemble spread and its SD is given in brackets.

drought observed

yes no
drought yes 4.4 %/2.31 (0.4) 10.7 %/2.37 (0.4)
forecasted no 10.4 %/1.99 (0.4) 74.5 %/1.88 (0.3)
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Figure 1. Bias of the SPI-1 calculated between the fitted Gamma distribution and the observed
monthly cumulative precipitation (see text for more details). Regions in white are considered as too
dry to fit this distribution. Regions where the bias becomes significantly different to 0 (non-hatched
areas) could generate bias in the SPI calculation.
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(a) Correlation (b) RMSE

Figure 2. (a) Correlation of the forecasted (using the mean of the ensemble) and observed SPI-1
during the hindcast period (from November 1992 to November 2012). (b) Same but for the RMSE.
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Figure 3. Ratio of events following the forecasted (x axis) and observed SPI-1 (color bars) over
Europe using the hindcast period in relation to the theoretical distribution. Results are standardized
by the theoretical normal distribution of events.
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Figure 4. (a) Mean SPI-1 forecasted of ranked members using ENS during observed drought or
floods (SPI-1 < −1.5 and SPI-1 > 1.5 respectively). (b) Ensemble mean and SD of the SPI-1 fore-
casted using ENS following the associated observed SPI-1. (c) and (d) are the same panels as (a)
and (b) but using SEAS.
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Figure 5. ROC curve using ENS and SEAS (red and black lines respectively) for the period from
November 2012 to November 2013 over Europe to detect a drought defined as an SPI lower than −1
(a) or lower than −1.5 (b). The ROC area values for the different spatial resolutions are indicated.
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Figure 6. Reliability diagrams for drought detection defined as a SPI-1 lower than −1 using ENS
(top panels) and SEAS (bottom panels) in the period from November 2012 to November 2013. The
spatial resolution is one square degree (left panels) and 5 square degrees (right panels).
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Figure 7. ROC anomaly (in %) in relation to the mean value of the ROC over the domain (equal to
0.67) for the period from November 2012 to November 2013 with drought defined as an SPI-1 < −1.

34



DisussionPaper|DisussionPaper|DisussionPaper|DisussionPaper|

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False alarm rate

hi
t a

la
rm

 r
at

e

Fall ~ 0.701
Winter ~ 0.701
Spring ~ 0.703
Summer ~ 0.701

(a) ENS

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False alarm rate

hi
t a

la
rm

 r
at

e

Fall ~ 0.677
Winter ~ 0.667
Spring ~ 0.666
Summer ~ 0.662

(b) SEAS

Figure 8. Seasonal decomposition of the ROC curves for drought forecasting (with the 5 square
degree smoothing) using ENS (a) and SEAS (b) over Europe for the period from November 2012 to
November 2013 with drought defined as an SPI-1< −1
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(b) SEAS

Figure 9. Probability of detection (POD, in green, perfect= 1) and False alarm ratio (FAR, in red,
perfect = 0) for different methods used to detect drought (x axis), using ENS (a) and SEAS (b). Lines
indicate the scores of the deterministic model (unperturbed member of the ensemble).
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(a) ENS
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(b) SEAS

Figure 10. Extreme Dependency Score (EDS) for the 10 methods used to forecast a drought (x axis,
see Table 1 for more details) using the ENS (a) and SEAS (b) ensemble system. Black lines indicate
the score of the unperturbed member.
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(a) ENS, POD-PC
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(b) ENS, Gilbert

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Percent

P
O

D
 v

s 
P

er
ce

nt
 c

or
re

ct

10 20 30 40 50 60 70 80 90 100

(c) SEAS, POD-PC
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(d) SEAS, Gilbert

Figure 11. (a) POD (red) and percentage correct (black) using different percentage of members to
forecast a drought event using ENS. (b) Gilbert score (see text for more details) following the per-
centage used to forecast a drought using ENS. Lines indicate the score of the deterministic model
(unperturbed member). (c) and (d) are the same panels as (a) and (b) using SEAS.
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Figure 12. Mean SPI-1 and SD of the ranked members following the four conditions in the contin-
gency table (see Table 2 and text for more details): hits (green), false alarm (red), misses (blue) and
correct negative (black line), using ENS. Vertical lines indicate the spread of the members used for
the Boolean drought detection methods.
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