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Abstract

Land surface modeling, in conjunction with numerical weather forecasting and satel-
lite remote sensing, is playing an increasing role in global monitoring and prediction
of extreme hydrologic events (i.e., floods and droughts). However, uncertainties in the
meteorological forcings, model structure, and parameter identifiability limit the reliability5

of model predictions. This study focuses on the latter by assessing two potential weak-
nesses that emerge due to limitations in our global runoff observations: (1) the limits of
identifying model parameters at coarser time scales than those at which the extreme
events occur, and (2) the negative impacts of not properly accounting for model pa-
rameter equifinality in the predictions of extreme events. To address these challenges,10

petascale parallel computing is used to perform the first global-scale, 10 000 mem-
ber ensemble-based evaluation of plausible model parameters using the VIC (Variable
Infiltration Capacity) land surface model, aiming to characterize the impact of parame-
ter identifiability on the uncertainty in flood and drought predictions. Additionally, VIC’s
global-scale parametric sensitivities are assessed at the annual, monthly, and daily15

timescales to determine whether coarse-timescale observations can properly constrain
extreme events. Global and climate type results indicate that parameter uncertainty re-
mains an important concern for predicting extreme events even after applying monthly
and annual constraints to the ensemble, suggesting a need for more accurate prior dis-
tributions of the model parameters and improved observations. This study contributes20

a comprehensive evaluation of land surface modeling for global flood and drought mon-
itoring and suggests paths forward to overcome the challenges posed by parameter
uncertainty.
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1 Introduction

Droughts and floods can have devastating consequences on ecosystems, food supply,
and economies (Easterling et al., 2000). Providing real-time information and predic-
tions to decision makers can be a valuable tool to mitigate their effects. This is an
especially challenging task over data sparse regions, where unreliable monitoring net-5

works and generally low institutional capacity limits the spread of timely information
(Sheffield et al., 2013). State-of-the-art land surface models, in conjunction with nu-
merical weather forecasting and satellite remote sensing, pose a plausible solution to
supplement local observation networks. Given the accessibility of these data sources,
multiple systems have arisen over the past decade that aim to provide continental and10

global monitoring and predictions of the hydrologic cycle (Sheffield et al., 2013; Svo-
boda et al., 2002; Verdin et al., 2005; Vogt et al., 2011).

The land surface model component of a monitoring system is useful to understand
the impact of flood and drought on the energy, carbon, and hydrologic cycles. This is
possible with the current generation of LSMs that include the main physical, biological,15

and chemical processes at the land surface (Niu et al., 2011). The increasing complex-
ity and sophistication of land surface models can provide a more complete assessment
of the state of the land surface but also requires an increase in the number of process
parameterizations and model parameters. In the past, parameter estimation in land
surface models consisted of using look-up tables to assign model parameters based20

on similarity between sites as a function of soil and vegetation. However, sensitivity
analysis of macroscale land surface models suggests that this is overly simplistic and
can lead to significant uncertainty (Hou et al., 2012; Rosero et al., 2010).

Parameter calibration, a common practice in hydrology, can help reduce model bias,
understand model deficiencies, and increase the model’s reliability (Cibin et al., 2010;25

Döll et al., 2003; Harding et al., 2014; Sheffield et al., 2013). However, optimizing model
performance to a limited set of observations does not ensure the model is getting the
right answer for the right reasons (Kirchner, 2006). Instead, there tend to be multiple pa-
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rameter sets that satisfy the observations; in hydrology this is known as model param-
eter equifinality (Beven, 2006). Although the performance might be similar for a given
calibration metric, the results can vary significantly when comparing other metrics, time
scales, or variables (Clark and Vrugt, 2006; Gupta et al., 2008; Herman et al., 2013;
Reusser and Zehe, 2011; Reusser et al., 2009; Wagener and Gupta, 2005).5

The model equifinality hypothesis is especially relevant in global land surface mod-
eling where the sparsity of observations in space and time and the increasing number
of model parameters leads to heavily underconstrained parameter estimation. In this
study, we use an ensemble of behavioral parameter sets to capture the spread in simu-
lated energy and water cycles. This improves model evaluation by enabling a compre-10

hensive assessment of the model parameter and model structure deficiencies (Pap-
penberger and Beven, 2006). Many existing flood and drought monitoring systems
already include the impact of uncertainty in meteorological forcing, which should be
extended to include model parameter uncertainty.

Given the significant number of model parameters in existing global land surface15

models, carefully designed sensitivity analysis can help minimize the number of uncer-
tain parameters that must be explored for effective model evaluations while reducing
computational demands. Up to now, there have only been a limited number of sen-
sitivity analyses of macroscale land surface models. These studies have shown that
parameter sensitivity varies with climate, soil, and vegetation properties (Liang and20

Guo, 2003; Rosero et al., 2010). In the hydrologic cycle, evidence suggests that the
runoff partitioning (i.e., between baseflow and surface runoff) plays a dominant role in
daily flow estimates over a number of climates (Demaria et al., 2007). The baseflow
generation model parameters can also play an important role in the seasonality of the
land surface fluxes (Hou et al., 2012). However, questions remain regarding the ap-25

plicability of these studies globally, suggesting the need for similar analyses over all
global land area.

In this study, we accomplish this goal by performing a comprehensive sensitivity anal-
ysis of the global VIC (Variable Infiltration Capacity, Liang et al., 1996) macroscale land
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surface model. A Latin Hypercube Sample of 10 000 parameter sets is used to run the
model from 1948–2010 per 1.0◦ land grid cell over the globe. The GRDC (Global Runoff
Data Centre) monthly climatology of gridded runoff observations (Fekete et al., 2002)
is used to isolate the behavioral parameter sets. The constrained ensembles are then
used to understand: first, the consequence of identifying model parameters at coarser5

time scales than those at which the extreme events occur, second, the impact of not
properly accounting for model parameter equifinality in the estimates of extreme events,
and third, the model parameters that control the hydrologic processes at the annual,
monthly, and daily timescales. Finally, the results are used to propose paths to pro-
vide reliable uncertainty estimates and suggest processes and parameters that require10

improved observations and parameterizations.

2 Data

2.1 Meteorology: Princeton global forcing dataset

The meteorological forcing dataset consists of 3 hourly, 1.0-degree resolution fields of
near-surface meteorology for global land areas for 1948–2010 (PGF; Sheffield et al.,15

2006). The dataset merges data from the NCEP-NCAR reanalysis (National Center for
Environmental Prediction and National Center for Atmospheric Research; Kalnay et al.,
1996) with the GPCP (Global Precipitation Climatology Project; Adler et al., 2003) and
TMPA (TRMM Multi-Satellite Precipitation Analysis; Huffman et al., 2007) observation-
based datasets of precipitation, temperature from CRU (Climatic Research Unit; New20

et al., 2000; Harris et al., 2013), and radiation from SRB (Surface Radiation Budget;
Stackhouse et al., 2004). For the simulations, we use precipitation, temperature, pres-
sure, downward shortwave and longwave radiation, specific humidity, and wind speed.
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2.2 Land data

The default model soil and vegetation parameters are the same as those described
in Sheffield and Wood (2007). The global soil texture comes from the 5 min FAO-
UNESCO (Food and Agricultural Organization-United Nations Educational, Scientific,
and Cultural Organization) digital soil map of the world and the World Inventory of Soil5

Emission Potentials (WISE) pedon database (Batjes, 1995). Land cover information
is given by the University of Maryland land cover type dataset (Defries et al., 2000).
The parameters for each land cover type are assigned using the sources described in
Nijssen et al. (2001). The monthly climatology of leaf area index is based on Myneni
et al. (1997). The baseline parameters for the land surface model come from these10

datasets.

2.3 Gridded runoff observations: GRDC climatology

The observations of global gridded runoff come from the GRDC global runoff clima-
tology (Fekete et al., 2002). The dataset provides the interstation observations at 663
stream gauges. To minimize river routing uncertainty, stream gauges are only used15

when the interstation area between two gauges is below 1 million squared kilome-
ters and less than 10 % of the grid cells have a travel time to the gauge above 10
days (assuming a fixed flow velocity of 1 ms−1). The gridded estimates are obtained
by spatially disaggregating the observed interstation area runoff using the VIC model
ensembles. Following the work of Fekete et al. (2002), we assume that the simula-20

tions of the land surface model provide the true spatial heterogeneity at the monthly
scale. The observed monthly climatology is then used to scale each cell’s ensemble
mean of simulated monthly flow. Further details on the model ensemble will be given
in Sect. 3.2.
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2.4 Köppen–Geiger climate

The Köppen–Geiger climate classification is used to assess how model parameter sen-
sitivity varies across climates. This dataset divides the world into five different climates
based on five vegetation groups. The second and third categories consider precipita-
tion and air temperature. The most recent version of this dataset was updated in 20065

using the CRU (Climatic Research Unit) and GPCC (Global Precipitation Climatology
Centre) datasets. These updates make the dataset suitable for the second half of the
20 century (Kottek et al., 2006). In this study only the 5 general climate groups are
used: tropical, arid, temperature, continental, and polar.

3 Methodology10

3.1 VIC: land surface hydrologic model

The macroscale VIC land surface hydrologic model (Liang et al., 1996) simulates the
land surface hydrologic and energy cycles. The model’s sub-grid heterogeneity is pa-
rameterized using the variable infiltration capacity curve and tiling of land cover classes.
Baseflow is modeled as a nonlinear recession from the lowest soil layer (Dumenil and15

Todini, 1992) and evapotranspiration is calculated using Penman–Monteith (Monteith,
1964). The subsurface is discretized into multiple soil layers; gravity drainage mod-
els the movement of moisture between the soil layers. The model captures cold land
processes through snow pack storage, frozen soils, and sub-grid distribution of snow
based on elevation banding. For further details see Sheffield and Wood (2007).20

3.2 Model parameter uncertainty: Latin Hypercube Sample

Samples of the model parameter space are obtained using a Latin Hypercube Sample
of size 10 000. LHS is used due to its strength to properly sample the parameters by
dividing the parameter space into regions of equal probability (McKay et al., 1979).
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Since this study focuses on the hydrologic cycle, we focus on sampling parameters
that contribute to runoff generation. Seven of the nine chosen parameters come from
Troy et al. (2008). A multiplier of the tabular minimum stomatal resistance values is
added due to its potential impact on the partitioning of runoff and evaporation. Table 1
shows each parameter’s name, description, units, and range. Each parameter is drawn5

from a uniform distribution; parameters that cover 2 or more orders of magnitude are
sampled in log10 space. For each LHS parameter set, the model is run at a 3 h time step
between January 1948 and December 2010 with a 10 year spin up period. The 10 000
ensembles are run for all 1.0◦ land grid cells over the globe excluding Greenland and
Antarctica (15 836 grid cells in total).10

To assess how well the model can reproduce observed runoff, a set of annual and
monthly thresholds are used to obtain each grid cell’s behavioral parameter sets. The
10 000 LHS ensembles are constrained using the 1.0◦ observed gridded runoff. The
relative error of the simulated annual runoff is used as a first constraint. For each grid
cell, all parameter sets that lead to a relative error in annual mean runoff above 10 %15

are discarded. This threshold is set relatively high due to measurement uncertainties in
the observation dataset and the spatial disaggregation method described in Sect. 2.3.
The second constraint attempts to find all ensembles that also follow the observation’s
seasonality. The simulated and observed monthly runoff climatologies are normalized
(to remove remaining annual biases) and the Pearson correlation between the obser-20

vations and simulations is computed. The correlation threshold is set to 0.75. This
threshold is set relatively low due to incomplete accounting of the effects of river rout-
ing in the observations and simulations. Ensemble members satisfying both the annual
and monthly constraints are deemed behavioral, and the posterior distributions of be-
havioral parameter values are used to assess parameter sensitivity.25

3.3 Model parameter sensitivity

Quantifying the role of each model parameter at different time scales can help dis-
cern the parameters (and processes) that can be constrained using coarse time scale
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observations (e.g., annual and monthly flows). It can also inform us about which pa-
rameters play an important role at finer time scales (e.g., daily flows) and are minimally
impacted by coarse timescale constraints.

3.3.1 Parameter space reduction: annual and monthly flows

Beyond quantifying how many parameter sets of the 10 000 member ensemble satisfy5

the monthly and annual constraints, we aim to understand how the reduction in bias
and increase in monthly skill is related to a location’s climate. To accomplish this goal,
the annual flows are analyzed by determining the change in runoff ensemble mean
after applying the constraints. Furthermore, since the monthly constraint attempts to
improve the simulation’s unbiased seasonality, it effectively aims to capture the tempo-10

ral smoothness of the observed climatology. This effect is quantified by analyzing the
change in the 1 month lag autocorrelation.

Our computation of parameter sensitivities after applying the annual and monthly
constraints follows the work of Fenwick et al. (2014). For each grid cell, the area be-
tween each parameter’s prior cumulative distribution function and the posterior cumula-15

tive distribution function is computed. The calculated area serves as a robust sensitivity
metric indicating the change in the distribution of each parameter caused by applying
the performance constraints. Because the prior parameter distributions in this study are
uniform, the maximum value of this metric is 0.5 (i.e., if only a single ensemble mem-
ber satisfies the performance constraints and remains in the posterior distribution). This20

“CDF Distance” sensitivity method bridges the classical Regional Sensitivity Analysis
framework (Spear and Hornberger, 1980) and the Delta Moment-Independent Mea-
sure (Borgonovo, 2007; Plischke et al., 2013). Regional Sensitivity Analysis employs
the maximum difference between cumulative distributions as a sensitivity measure. The
Delta Moment-Independent Measure (Borgonovo, 2007; Plischke et al., 2013) uses the25

area between prior and posterior PDFs rather than CDFs. We compute two CDF dis-
tances: first, between the original uniform distribution and the posterior after applying
the annual constraint (below 10 % absolute error), and second, between the posterior
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after the annual constraint and the posterior after applying the additional monthly con-
straint (r > 0.75). The advantages of the CDF Distance method for this study are (1) it
does not require special statistical sampling and will work for the given data, and (2)
it ties parameter sensitivity to a model performance threshold to identify parameters
responsible for a particular outcome rather than overall changes in the output.5

3.3.2 Parameter uncertainty: daily flows

Reducing the annual and monthly model parameter uncertainty using the GRDC
monthly climatology does not ensure a similar reduction in the uncertainty of daily
flows. This is especially relevant to drought and flood monitoring systems that attempt
to capture the sub-monthly hydrologic extremes over data sparse regions. If the most10

sensitive parameters at the daily scale are also the most sensitive parameters at the
annual and monthly time scales, then there should be a substantial decrease in un-
certainty. However, if the parameter sensitivity at different time scales is orthogonal,
then the reduction in uncertainty at the daily scale will be negligible. To address this
question, for each grid cell, the daily flow duration curves of the full ensemble (10 00015

members) and behavioral parameter sets are calculated. The changes in the spread at
different sections (low, median, and high flows) of the flow duration curve are analyzed.

Given that uncertainty will persist in the daily flows after applying the constraints, the
question remains about which parameters control the remaining ensemble spread and
need to be more heavily constrained. This is done by analyzing the spread in daily flow20

extremes on both sides of the distribution (1st and 99th percentiles) for the strictest an-
nual and monthly constraints (relative error below 10 % and monthly correlation above
0.75). For each percentile, the Spearman rank correlation between all behavioral pa-
rameters and their associated flow is computed. The Spearman correlation was chosen
here because (1) observations of daily flows are not available, so behavioral parame-25

ters cannot be identified as with the CDF distance measure described in Sect. 3.2.1,
and (2) in general the relationship between parameter values and daily extreme flows
will be nonlinear. The Spearman correlation provides a metric describing how a given
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parameter controls the spread in daily flows, which may have been underconstrained
by the annual and monthly performance requirements imposed in the previous step.
This is done for each of the 9 parameters.

4 Results

4.1 VIC Latin Hypercube Sample and behavioral parameter space reduction5

For each land 1.0 ◦ grid cell (15 836) the VIC (Variable Infiltration Capacity) land surface
model is run between 1948 and 2010 at a 3 h temporal resolution for 10 000 parameter
sets obtained from a Latin Hypercube Sample. This was possible due to the Blue Wa-
ters supercomputer (http://www.ncsa.illinois.edu/enabling/bluewaters); the simulations
required more than 2 million computing hours (> 200 years) and resulted in an output10

of over 1.5 petabytes. The data was then summarized into daily, monthly, and yearly
datasets. Each grid cell’s 10 000 LHS ensemble VIC simulations are constrained using
the observed gridded runoff fields described in Sect. 2.3.

Figure 1 shows global maps of the fraction of parameter sets that fulfill each error
criterion. In the Northern Hemisphere, a considerable number of grid cells have a large15

fraction of ensemble members that are below 10 and 20 % relative error, suggesting
a small annual bias in the input meteorological forcing and a diminished sensitivity to
the parameters that impact the annual mean runoff. In many places, there is a sharp
decrease in performance when constraining the ensemble with the normalized monthly
climatology. This can most likely be attributed to the role that the parameter space20

plays in controlling runoff partitioning and the challenges when attempting to spatially
disaggregate point runoff observations. However, the most prominent feature is the
lack of runoff observations (grey areas) and behavioral parameter sets (pink areas)
over arid regions and countries with limited adaptation capacity throughout the globe.

Figure 2 further summarizes these results as a function of climate classification.25

Although most of the regions with observations meet the annual constraints (10 and
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20 % relative error), there are distinct differences between climates. Tropical and dry
climates see the largest decrease in behavioral parameter sets while continental, polar,
and temperate regions experience the least. The number of behavioral parameter sets
decreases even further when applying the monthly constraint (Pearson correlation be-
tween the simulated and observed normalized monthly climatology). In this case, the5

number of acceptable parameter sets over arid regions is significantly smaller than
other climates. This is especially true over the North American mountain west, the
Sahel, and most of Australia.

Figure 2 also shows how the change in behavioral parameter sets affects the cli-
mate averaged runoff ensemble mean and 1 month lag autocorrelation. The first an-10

nual constraint (20 % relative error) leads to a decrease in annual runoff (increase in
evaporation) in tropical, dry, temperate, and continental climates; there is an increase
in annual runoff in polar climates. The changes in annual flows are negligible when ap-
plying the monthly constraints (explained by the normalization of the monthly runoff).
The 1 month lag correlation is used as a smoothness metric to assess the impact of15

the chosen constraints on the simulated seasonality; a higher autocorrelation indicates
smoother monthly flows. In all cases, the constraints increase smoothness. As ex-
pected, the largest changes occur when using the Pearson correlation as a constraint
(increase in accuracy of seasonality of monthly runoff).

In the context of drought and flood monitoring, these results may have key implica-20

tions. These include: (1) the large fraction of landmass without observations limits our
ability to constrain the model parameter space over the globe, (2) a limited number
of behavioral parameter sets over arid and regions with limited adaptation capacity –
focus areas for monitoring systems – suggests considerable limitations in monitoring
systems, (3) regions with a high fraction of behavioral parameter sets will be suscepti-25

ble to the impact of model parameter equifinality.
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4.2 Model parameter sensitivity

4.2.1 Parameter space reduction: annual and monthly flows

We formalize the sensitivity analysis by examining the cumulative distribution function
(CDF) distance between each parameter’s prior and posterior distributions. Figure 3
shows the global maps of the CDF distance metric for each parameter after applying5

the annual and monthly constraints. The color scale of Fig. 3 ranges from 0.0, where
the prior and posterior distributions match exactly, to 0.5, the maximum possible value
of the CDF distance metric when the posterior distribution contains only a single en-
semble member. In general, B, Dsmax, Exp, and CRsmin are the most sensitive param-
eters to the annual constraint (left panel). However, the sensitivity of CRsmin dominates10

the other parameters. Since CRsmin constrains the maximum transpiration rate in the
model, these results suggest that the partitioning of evaporation and runoff dominates
the model performance at the annual scale. Similarly, Fig. 4 shows the mean CDF dis-
tance metric within each climate classification, with the interquartile range denoted by
error bars. For the annual constraint, the sensitivities of B, Dsmax, and Exp are highest15

in regions with less defined seasonal cycles (e.g. Tropical). As will be discussed in the
next section, this can likely be attributed to these parameters playing a distinct role in
runoff seasonality.

When applying the monthly constraint, the sensitivity of most parameters changes.
In Figs. 3 and 4, the negligible sensitivity of CRsmin suggests that although it plays a fun-20

damental role in ensuring the annual runoff ratio, it does not play an important role in
the seasonality; the same applies to Exp. Instead, the most sensitive parameters are B
and Dsmax since they control the partitioning of runoff into baseflow and surface runoff.
As shown in Fig. 4, this is especially true over regions with a characteristic seasonal
cycle (e.g. Continental climates). The monthly constraint acts to smooth out the runoff25

climatology (an increase in Dsmax and a decrease in B), similar to the result observed in
Fig. 2. Regions that lack a distinct seasonality (e.g. Tropical climates) are only sensitive
to these parameters at annual time scales. When there exists a strong seasonality in
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runoff, these parameters can impact the seasonality at the monthly timescale. However,
a weaker seasonality leads these parameters to act at an annual scale by controlling
the soil water storage and therefore the partitioning of annual evaporation and runoff.

The contrast of the annual and monthly results brings to light the role that time scales
can have on the sensitivity of model parameters (and, by extension, processes). The5

results suggest that the annual scale constraint does not play a large role in the par-
titioning of monthly baseflow and surface runoff. As will be discussed in the following
section, these timescale dependent changes in parameter sensitivity can have large
implications on the ability to simulate daily flows without daily observations to further
constrain the ensemble.10

4.2.2 Parameter uncertainty: daily flows

The annual and monthly performance constraints allow us to explore the role of the
remaining parameter uncertainty on daily runoff estimates. The runoff percentiles are
calculated for each ensemble member of each grid cell. Figure 5 shows the climate-
averaged spread of the flow duration curves of the 10 000 ensemble members and15

the most heavily constrained ensemble (annual and monthly). The change in spread
provides insight into how constraining (or tuning) at coarser time scales can reduce
uncertainty at the daily scale.

As expected from Fig. 2, the annual and monthly constraints lead to a reduction in
the daily mean runoff for all climates (except polar). However, the constraints’ ability to20

tighten the ensemble spread varies significantly between climates. The most substan-
tial decrease occurs over continental and polar climates even though these regions
experience the lowest decrease in the number of parameter sets (see Fig. 2). This
decrease is most likely connected to the results from the monthly sensitivity analysis
(see Sect. 4.2.1): over regions that have a distinct seasonal cycle, the monthly climatol-25

ogy is able to heavily constrain the B and Dsmax parameters; this then helps constrain
runoff at daily time scales. This also explains the small decrease in spread over tropical
climates seen in Fig. 5; since the monthly constraints are not able to constrain the B
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and Dsmax parameters, their uncertainty drives the runoff at daily time scales. These
results are encouraging for monitoring the hydrologic cycle with properly-constrained
land surface models over continental and polar climates and discouraging over tropical
climates.

Figure 5 also illustrates differences in the tightening of the flow duration curve spread5

at different percentiles. For example, in continental climates the percentiles close to
the center experience a substantial decrease in spread; the change in the ensem-
ble spread of the tails (hydrologic extremes) is less significant. This result holds to
a varying degree for all climates. The most likely physical explanation is that the an-
nual and monthly constraints focus on the percentiles that produce most of the runoff;10

this leads to a minimal impact on low flows and a reduced impact on high flows. The
non-negligible role that high flows play in runoff production helps explain the larger
decrease in spread when compared to low flows.

Given that considerable uncertainty remains in the daily flows after applying the an-
nual and monthly constraints, we aim to understand what parameters (and, by exten-15

sion, processes) control the spread. Figure 6 shows the global Spearman correlations
between the daily flow extremes (1st and 99th percentile, in the left and right panels,
respectively) and the behavioral parameters. Red indicates a negative correlation, blue
indicates a positive correlation, and white indicates no observed correlation. The re-
sults in Fig. 6 suggest that B, Dsmax, Exp, and CRsmin control the daily flow extremes,20

evidenced by a mix of strong positive and negative correlations. The negative corre-
lation between the B parameter and low flows occurs because a decrease in B leads
to an increase in infiltration. This results in a dampened response and an increase in
available storage for low flow periods; the opposite is true for high flows. The negative
correlation between low flows and Dsmax occurs because a decrease in Dsmax delays25

the release of water from storage allowing for a thicker recession curve and higher low
flows. Finally, the positive correlation between CRsmin and high flows is because an in-
crease in CRsmin leads to a decrease in evaporation; an increase in storage leads to
an increase in baseflow and surface runoff (increase in soil saturation). By controlling
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how quickly the hydraulic conductivity decreases as a function of soil moisture, Exp
controls water movement between soil layers during dry down periods. This parameter
is negatively correlated with low flows since it controls the supply to the lowest soil layer
where baseflow is created.

5 Discussion5

5.1 Global flood and drought monitoring: ensemble simulations

The results from this study are relevant to drought and flood monitoring systems that
rely on land surface models to monitor and predict hydrologic extremes at daily time
scales (Sheffield et al., 2013; Xia et al., 2012). When the land surface model param-
eters are not tuned, significant uncertainties exist in the estimated runoff. This is es-10

pecially true over data sparse regions where the prior estimates of the model parame-
ters are inadequate. Furthermore, when the parameters are tuned, a scale mismatch
(space and time) between the observations and the intended application leads to lim-
ited improvement. Although using annual and monthly observations does constrain the
daily estimates near the median, considerable uncertainties remain in the simulated15

hydrologic extremes (low and high flows) over all Köppen–Geiger climates.
One obvious path forward is to use daily streamflow observations to further constrain

the land surface model. This solution is practical over dense stream gauge networks
but presents considerable challenges over data sparse regions and ungauged basins.
A plausible solution is to use a more sophisticated technique to spatially disaggregate20

runoff (e.g. Pan and Wood, 2013) to obtain daily gridded runoff. However, these meth-
ods will continue to struggle over sparse networks (e.g. Congo basin), areas that are
heavily managed (e.g. southeast USA), and basins that experience substantial reinfil-
tration and stream evaporation (e.g. Colorado basin). Another option would be to use
satellite based altimetry measurements (e.g. SWOT; Durand et al., 2014). These ob-25
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servations could be combined with the spatially disaggregated runoff fields to provide
the observed daily estimates of gridded runoff.

In any case, even if high quality daily runoff observations existed over the globe,
a non-negligible spread will remain after applying the constraints due to the effects of
model parameter equifinality. For this reason, we suggest that flood and drought moni-5

toring systems that aim to capture hydrologic extremes move towards model parameter
ensemble frameworks to provide not only predictions but also uncertainty estimates. To
make this feasible for operational use, further work will need to determine how to clus-
ter the behavioral parameter sets to below 100 per grid cell to minimize the increase in
computation and storage requirements.10

5.2 Model parameters: improve prior distributions

A common practice when tuning land surface model parameters at continental scales
(e.g. Troy et al., 2008) is to use the same prior distribution for each model parameter at
each modeled grid cell or catchment; this uniform distribution is usually set to cover the
entire span of physically plausible parameter values. This approach is one of the main15

drivers of the large spread in flow duration curves shown in Fig. 5. Given the need to
rely on monthly and annual observations to constrain the model parameter uncertainty,
better-informed local prior distributions should be used to constrain the initial ensemble
spread to provide more constrained flow duration curves.

One option would be to use the uncertainty estimates available in remote sensing20

and in-situ datasets to define the local prior distributions. An example of this framework
would be to use the gridded soil survey geographic (gSSURGO) continental soil’s prod-
uct (Soil Survey Staff, 2014) that provides detailed three-dimensional texture and hy-
draulic soil properties (and uncertainties) over the contiguous United States (CONUS).
This would be simple to test for soil parameters that are used in land surface mod-25

els and are generally reported in soil datasets (i.e., porosity). However, for parameters
that are model specific (e.g., Dsmax and B in the VIC model), derived functional re-
lationships will need to relate the model parameters to the observed parameters to
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assemble reliable prior distributions. However, as long as the uncertainties in the func-
tional relationship (e.g. linear regression) inform the derived local prior distribution, the
benefits should outweigh additional uncertainties.

A similar option would be to estimate model parameter prior distributions using local
information (parameter covariates). The procedure used in this study (Latin Hyper-5

cube Sample) could be used over catchments with rich databases to constrain the uni-
form parameter values using available high spatial and temporal resolution observed
data. The resulting behavioral parameter sets could then be related to the local in-
formation using machine learning algorithms (e.g. random forests) to provide catch-
ment specific prior distributions. In theory, available or upcoming high-resolution global10

datasets could then provide the covariates to estimate a parameter’s prior distribu-
tion at each catchment or grid cell. These datasets could include HydroSHEDS DEM
(Lehner et al., 2008), MODIS derived products (e.g. NDVI, albedo, and land cover type),
TMPA satellite precipitation (Huffman et al., 2007), and the upcoming GlobalSoilMap
(Arrouays et al., 2014), among others. Although the challenges in parameter regional-15

ization (Hrachowitz et al., 2013) in catchment hydrology will also most likely apply to
macroscale land surface models, we view it as a path that should be explored.

5.3 Model structure: next generation land surface modeling

Ultimately, more sophisticated parameter estimation techniques cannot fix model struc-
ture deficiencies. As the results of this study indicate, if the observed flow is not con-20

tained in the constrained ensemble then the problem can be traced to model structure
deficiencies (assuming error free observations and input meteorology). This problem
is apparent over arid regions (see Fig. 2), arguably one of the main regions of focus
for drought and flood monitoring systems. A lack of irrigation, reservoirs, river evap-
oration and reinfiltration, and groundwater in this version of VIC are most likely the25

drivers of model deficiency. Furthermore, parameterizations that play an important role
in watershed dynamics and are highly sensitive to their parameter values (e.g. B in
the variable infiltration curve) should be replaced with updated schemes that can ef-
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fectively use available local high-resolution information (e.g. topography, soils, geology,
and land cover) to more accurately represent the local physical processes while reduc-
ing reliance on parameter estimation.

The improved macroscale parameterizations to address these process deficiencies
should capitalize on the increase in computation resources and available high resolu-5

tion land data and meteorological data to more explicitly model the fine scale hydro-
logic processes. (Bierkens et al., 2014; Wood et al., 2011). This effort could provide
solutions to improve the prediction of hydrologic extremes over the globe by including:
(1) detailed hydrodynamic modeling to account for flash floods, irrigation, reservoirs,
and urban flooding, (2) integrated river modeling to enable river evaporation and re-10

infiltration, (3) improved runoff generation processes. Although the addition of these
processes will likely lead to additional parameter complexity and uncertainty, it is seen
as a necessary next step to improve the reliability and utility of global drought and flood
monitoring systems.

6 Conclusions15

The Variable Infiltration Capacity model (VIC) has been run globally at a 1.0 ◦ spatial
resolution between 1948 and 2010 using 10 000 parameter sets from a Latin Hyper-
cube Sample to assess the role of parameter uncertainty in flood and drought mon-
itoring. The 10 000 member ensemble is constrained using a spatially disaggregated
version of the GRDC runoff climatology at annual and monthly time scales. A multi-time20

scale sensitivity analysis is then used to determine the role of each of the model’s pa-
rameters and the overall model performance. The results vary according to Köppen–
Geiger climate. While in arid and tropical regions few parameter sets fulfill the con-
straints, polar and continental climates maintain a large number of behavioral param-
eter sets. The annual constraints focus on reducing the annual bias by changing the25

annual evaporation; the monthly constraints alter the monthly autocorrelation of flow
by partitioning the runoff into baseflow and surface runoff. The parameters that control
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the monthly runoff autocorrelation also play an important role at the daily time scale.
For this reason, regions that have a distinct seasonality (continental and polar) see the
largest decrease in the spread of their representative daily flow duration curves. These
results illustrate the challenges in using current land surface models for global drought
and flood monitoring. However, they also indicate a path forward which involves adopt-5

ing ensemble frameworks to account for model parameter uncertainty, designing and
implementing improved observation networks to better constrain land surface models,
providing improved local prior distributions via emerging high resolution land data, and
improving model structure to better account for the processes that dominate the hy-
drology over regions prone to droughts and floods.10
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Table 1. Range of VIC parameters used in the 10 000 Latin Hypercube Sample. Each parame-
ter is drawn from a uniform distribution; parameters that cover 2 or more orders of magnitude
are sampled in log10 space.

Parameter Units Range Description

B – 0.001–1.0 Variable Infiltration Curve parameter
Ds – 0.001–1.0 Fraction of Dsmax where non-linear flow begins
Dsmax mmd−1 0.1–50.0 Maximum baseflow velocity
Ws – 0.2–1.0 Fraction of Wsmax where non-linear flow begins
Layer 2 m 0.1–3.0 Depth of Layer 2
Layer 3 m 0.1–3.0 Depth of Layer 3
Exp – 0.1–30.0 Characterizing the variation in Ksat with soil moisture
CRsmin – 0.1–10.0 Multiplier of tabular minimum stomatal resistance values
Ksat mmd−1 100–10 000 Saturated Hydraulic Conductivity
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Annual Error < 20% Annual Error < 10%

Annual Error < 10%, Monthly r > 0.5

VIC Parameter Ensemble
Fraction of parameter sets meeting error criteria

No parameter sets meet criteria > 0% 2% 4% 6% 8% > 10%

Fraction of Parameter Sets

Annual Error < 10%, Monthly r > 0.75

(a) (b)

(c) (d)

Figure 1. Fraction of parameter sets from the 10 000 Latin Hypercube VIC ensembles that fulfill
a set of criteria. The comparison is between the annual and monthly climatology of simulated
runoff and the GRDC database. The grey areas are regions that are not covered by the GRDC
database.

1723

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/1697/2015/hessd-12-1697-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/1697/2015/hessd-12-1697-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
12, 1697–1728, 2015

Flood and drought
hydrologic

monitoring: the role
of model parameter

uncertainty

N. W. Chaney et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 2. The grid cells with runoff observations are combined using the Köppen–Geiger cli-
mate classification to assess performance of the VIC ensemble as a function of climate type.
The constraints define the fraction of parameters that meet the error criteria (top), the change
in annual mean flow (center), and the change in 1 month lag correlation (bottom). The error
bars quantify the variability within the climate type (25th and 75th percentile).
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Figure 3. Global maps of the sensitivity of each VIC parameter used in the 10 000 Latin Hyper-
cube Sample simulations. The CDF distance is calculated for each VIC parameter after apply-
ing the annual error constraint (left) and again after applying the monthly correlation constraint
(right).
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Figure 4. Climate average sensitivity of each VIC parameter used in the 10 000 Latin Hyper-
cube Sample simulations. The CDF distance is calculated for each VIC parameter after apply-
ing the annual error constraint and again after applying the monthly correlation constraint. The
error bars quantify the variability within the climate type (25th and 75th percentile).
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Figure 5. Climate averaged ensemble spread in the daily flow duration curve. The spread in
flow duration curve is calculated for all 10 000 ensembles. The blue shading shows the spread
of all ensembles while the red shading shows the spread for parameter sets that have an annual
mean runoff within 10 % of the observed runoff and normalized monthly runoff correlation above
or equal to 0.75.
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Figure 6. Global maps of the spearman correlation between the simulated extreme daily flows
(1st and 99th percentile) and the corresponding VIC parameter. The correlations are calculated
using the ensemble members that fulfill the strongest error criteria (relative error below 10 %
and monthly correlation above 0.75).

1728

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/1697/2015/hessd-12-1697-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/1697/2015/hessd-12-1697-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

	Introduction
	Data
	Meteorology: Princeton global forcing dataset
	Land data
	Gridded runoff observations: GRDC climatology
	Köppen--Geiger climate

	Methodology
	VIC: land surface hydrologic model
	Model parameter uncertainty: Latin Hypercube Sample
	Model parameter sensitivity
	Parameter space reduction: annual and monthly flows
	Parameter uncertainty: daily flows


	Results
	VIC Latin Hypercube Sample and behavioral parameter space reduction
	Model parameter sensitivity
	Parameter space reduction: annual and monthly flows
	Parameter uncertainty: daily flows


	Discussion
	Global flood and drought monitoring: ensemble simulations
	Model parameters: improve prior distributions
	Model structure: next generation land surface modeling

	Conclusions

