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Key Points: 24	
  

• Identifying model parameters at coarse time scales impacts the predictability of extreme 25	
  

hydrologic events 26	
  

• Model parameter sensitivity varies as a function of time scale and region 27	
  

• Drought and flood monitoring systems must account for model parameter uncertainty.  28	
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Abstract 30	
  

Land surface modeling, in conjunction with numerical weather forecasting and satellite remote 31	
  

sensing, is playing an increasing role in global monitoring and prediction of extreme hydrologic 32	
  

events (i.e., floods and droughts). However, uncertainties in the meteorological forcings, model 33	
  

structure, and parameter identifiability limit the reliability of model predictions. This study 34	
  

focuses on the latter by assessing two potential weaknesses that emerge due to limitations in our 35	
  

global runoff observations: (1) the limits of identifying model parameters at coarser time scales 36	
  

than those at which the extreme events occur, and (2) the negative impacts of not properly 37	
  

accounting for model parameter equifinality in the predictions of extreme events. To address 38	
  

these challenges, petascale parallel computing is used to perform the first global-scale, 10,000 39	
  

member ensemble-based evaluation of plausible model parameters using the VIC (Variable 40	
  

Infiltration Capacity) land surface model, aiming to characterize the impact of parameter 41	
  

identifiability on the uncertainty in flood and drought predictions. Additionally, VIC’s global-42	
  

scale parametric sensitivities are assessed at the annual, monthly, and daily timescales to 43	
  

determine whether coarse-timescale observations can properly constrain extreme events. Global 44	
  

and climate type results indicate that parameter uncertainty remains an important concern for 45	
  

predicting extreme events even after applying monthly and annual constraints to the ensemble, 46	
  

suggesting a need for improved prior distributions of the model parameters as well as improved 47	
  

observations. This study contributes a comprehensive evaluation of land surface modeling for 48	
  

global flood and drought monitoring and suggests paths forward to overcome the challenges 49	
  

posed by parameter uncertainty. 50	
  

51	
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1. Introduction  52	
  

Droughts and floods can have devastating consequences on ecosystems, food supply, and 53	
  

economies (Easterling et al., 2000). Providing real-time information and predictions to decision 54	
  

makers can be a valuable tool to mitigate their effects. This is an especially challenging task over 55	
  

data sparse regions, where unreliable monitoring networks and generally low institutional 56	
  

capacity limits the spread of timely information (Sheffield et al., 2013). State-of-the-art land 57	
  

surface models, in conjunction with numerical weather forecasting and satellite remote sensing, 58	
  

pose a plausible solution to supplement local observation networks. Given the accessibility of 59	
  

these data sources, multiple systems have arisen over the past decade that aim to provide 60	
  

continental and global monitoring and predictions of the hydrologic cycle (Sheffield et al., 61	
  

2013;Vogt et al., 2011;Svoboda et al., 2002;Verdin et al., 2005).  62	
  

The land surface model component of a monitoring system is useful to understand the 63	
  

impact of flood and drought on the energy, carbon, and hydrologic cycles. This is possible with 64	
  

the current generation of LSMs that include the main physical, biological, and chemical 65	
  

processes at the land surface (Niu et al., 2011). The increasing complexity and sophistication of 66	
  

land surface models can provide a more complete assessment of the state of the land surface but 67	
  

also requires an increase in the number of process parameterizations and model parameters. In 68	
  

the past, parameter estimation in land surface models consisted of using look-up tables to assign 69	
  

model parameters based on similarity between sites as a function of soil and vegetation. 70	
  

However, sensitivity analysis of macroscale land surface models suggests that this is overly 71	
  

simplistic and can lead to significant uncertainty (Rosero et al., 2010;Hou et al., 2012).  72	
  

Parameter calibration, a common practice in hydrology, can help reduce model bias, 73	
  

understand model deficiencies, and increase the model’s reliability (Harding et al., 2014;Cibin et 74	
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al., 2010;Döll et al., 2003;Sheffield et al., 2013). However, optimizing model performance to a 75	
  

limited set of observations does not ensure the model is getting the right answer for the right 76	
  

reasons (Kirchner, 2006). Instead, there tend to be multiple parameter sets that satisfy the 77	
  

observations; in hydrology this is known as model parameter equifinality (Beven, 2006). 78	
  

Although the performance might be similar for a given calibration metric, the results can vary 79	
  

significantly when comparing other metrics, time scales, or variables (Gupta et al., 2008;Herman 80	
  

et al., 2013;Wagener and Gupta, 2005;Reusser and Zehe, 2011;Reusser et al., 2009;Clark and 81	
  

Vrugt, 2006).  82	
  

The model equifinality hypothesis is especially relevant in global land surface modeling 83	
  

where the sparsity of observations in space and time and the increasing number of model 84	
  

parameters leads to heavily underconstrained parameter estimation.  In this study, we use an 85	
  

ensemble of behavioral parameter sets to capture the spread in simulated energy and water cycles. 86	
  

This improves model evaluation by enabling a comprehensive assessment of the model 87	
  

parameter and model structure deficiencies (Pappenberger and Beven, 2006). A growing number 88	
  

of hydrologic monitoring systems already include the impact of uncertainty in meteorological 89	
  

forcing (Cloke and Pappenberger, 2009); this should be extended to include model parameter 90	
  

uncertainty.   91	
  

Given the significant number of model parameters in existing global land surface models, 92	
  

carefully designed sensitivity analysis can help minimize the number of uncertain parameters 93	
  

that must be explored for effective model evaluations while reducing computational demands.  94	
  

Up to now, there have only been a limited number of sensitivity analyses of macroscale land 95	
  

surface models. These studies have shown that parameter sensitivity varies with climate, soil, 96	
  

and vegetation properties (Liang and Guo, 2003;Rosero et al., 2010). In the hydrologic cycle, 97	
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evidence suggests that the runoff partitioning (i.e., between baseflow and surface runoff) plays a 98	
  

dominant role in daily flow estimates over a number of climates (Demaria et al., 2007). The 99	
  

baseflow generation model parameters can also play an important role in the seasonality of the 100	
  

land surface fluxes (Hou et al., 2012). However, questions remain regarding the applicability of 101	
  

these studies globally, suggesting the need for similar analyses over all global land area.  102	
  

In this study, we accomplish this goal by performing a comprehensive sensitivity analysis 103	
  

of the global VIC (Variable Infiltration Capacity, Liang et al. (1996)) macroscale land surface 104	
  

model. A Latin Hypercube Sample of 10,000 parameter sets is used to run the model from 1948-105	
  

2010 per 1.0 degree land grid cell over the globe. The GRDC (Global Runoff Data Centre) 106	
  

monthly climatology of gridded runoff observations (Fekete et al., 2002) is used to isolate the 107	
  

behavioral parameter sets. The constrained ensemble is then used to understand: first, the 108	
  

consequence of identifying model parameters at coarser time scales than those at which the 109	
  

extreme events occur, second, the impact of not properly accounting for model parameter 110	
  

equifinality in the estimates of extreme events, and third, the model parameters that control the 111	
  

hydrologic processes at the annual, monthly, and daily timescales. Finally, the results are used to 112	
  

propose paths to provide reliable uncertainty estimates and suggest processes and parameters that 113	
  

require improved observations and parameterizations.  114	
  

2. Data 115	
  

2.1 Meteorology: Princeton Global Forcing Dataset 116	
  

The meteorological forcing dataset consists of 3-hourly, 1.0-degree resolution fields of near-117	
  

surface meteorology for global land areas for 1948-2010 (PGF; Sheffield et al. (2006)). The 118	
  

dataset merges data from the NCEP-NCAR reanalysis (National Center for Environmental 119	
  

Prediction and National Center for Atmospheric Research; Kalnay et al. (1996)) with the GPCP 120	
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(Global Precipitation Climatology Project; Adler et al. (2003)) and TMPA (TRMM Multi-121	
  

Satellite Precipitation Analysis; Huffman et al. (2007)) observation-based datasets of 122	
  

precipitation, temperature from CRU (Climatic Research Unit; New et al. (2000); Harris et al. 123	
  

(2013)), and radiation from SRB (Surface Radiation Budget; Stackhouse et al. (2004)). For the 124	
  

simulations, we use precipitation, temperature, pressure, downward shortwave and longwave 125	
  

radiation, specific humidity, and wind speed.  126	
  

2.2 Land Data 127	
  

The default model soil and vegetation parameters are the same as those described in Sheffield 128	
  

and Wood (2007). The global soil texture comes from the 5-min FAO–UNESCO (Food and 129	
  

Agricultural Organization–United Nations Educational, Scientific, and Cultural Organization) 130	
  

digital soil map of the world and the World Inventory of Soil Emission Potentials (WISE) pedon 131	
  

database (Batjes, 1995). Land cover information is given by the University of Maryland land 132	
  

cover type dataset (Defries et al., 2000). The parameters for each land cover type are assigned 133	
  

using the sources described in Nijssen et al. (2001). The monthly climatology of leaf area index 134	
  

is based on Myneni et al. (1997). The baseline parameters for the land surface model come from 135	
  

these datasets. 136	
  

2.3 Gridded Runoff Observations: GRDC Climatology 137	
  

The observations of global gridded runoff come from the GRDC global runoff climatology 138	
  

(Fekete et al., 2002). The dataset provides the interstation observations at 663 stream gauges. To 139	
  

minimize river routing uncertainty, stream gauges are only used when the interstation area 140	
  

between two gauges is below 1 million squared kilometers and less than 10% of the grid cells 141	
  

have a travel time to the gauge above 10 days (assuming a fixed flow velocity of 1 m/s). The 142	
  

gridded estimates are obtained by spatially disaggregating the observed interstation area runoff 143	
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using the VIC model ensemble. Following the work of Fekete et al. (2002), we assume that the 144	
  

simulations of the land surface model provide the true spatial heterogeneity at the monthly scale. 145	
  

The observed monthly climatology is then used to bias-correct each cell’s ensemble mean of 146	
  

simulated monthly flow. Uncertainty in the observed monthly flow is assumed to be negligible 147	
  

relative to the impact of parameter uncertainty. Further details on the model ensemble will be 148	
  

given in section 3.2. 149	
  

2.4 Köppen-Geiger Climate 150	
  

 The Köppen-Geiger climate classification is used to assess how model parameter 151	
  

sensitivity varies across climates. This dataset divides the world into five different climates based 152	
  

on five vegetation groups. The second and third categories consider precipitation and air 153	
  

temperature. The most recent version of this dataset was updated in 2006 using the CRU 154	
  

(Climatic Research Unit) and GPCC (Global Precipitation Climatology Centre) datasets. These  155	
  

updates make the dataset suitable for the second half of the 20th century (Kottek et al., 2006). In 156	
  

this study only the 5 general climate groups are used: Tropical, Arid, Temperate, Continental, 157	
  

and Polar.  158	
  

3. Methodology 159	
  

3.1 VIC: Land Surface Hydrologic Model 160	
  

The macroscale VIC land surface hydrologic model (Liang et al., 1996) simulates the land 161	
  

surface hydrologic and energy cycles. The model’s sub-grid heterogeneity is parameterized using 162	
  

the variable infiltration capacity curve and tiling of land cover classes. Baseflow is modeled as a 163	
  

nonlinear recession from the lowest soil layer (Dumenil and Todini, 1992) and 164	
  

evapotranspiration is calculated using Penman-Monteith (Monteith, 1964). The subsurface is 165	
  

discretized into multiple soil layers; gravity drainage models the movement of moisture between 166	
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the soil layers. The model captures cold land processes through snow pack storage, frozen soils, 167	
  

and sub-grid distribution of snow based on elevation banding. For further details see Sheffield 168	
  

and Wood (2007). 169	
  

3.2 Model Parameter Uncertainty: Latin Hypercube Sample 170	
  

Samples of the model parameter space are obtained using a Latin Hypercube Sample of size 171	
  

10,000. LHS is used due to its strength to properly sample the parameters by dividing the 172	
  

parameter space into regions of equal probability (McKay et al., 1979). Since this study focuses 173	
  

on the hydrologic cycle, we focus on sampling parameters that contribute to runoff generation. 174	
  

Seven of the nine chosen parameters come from Troy et al. (2008). A multiplier of the tabular 175	
  

minimum stomatal resistance values is added due to its potential impact on the partitioning of 176	
  

runoff and evaporation. Table 1 shows each parameter’s name, description, units, and range. 177	
  

Each parameter is drawn from a uniform distribution; parameters that cover 2 or more orders of 178	
  

magnitude are sampled in log10 space. For each LHS parameter set, the model is run at a 3-hour 179	
  

time step between January, 1948 and December, 2010 with a 10 year spin up period. Parameter 180	
  

values are assumed to be uncorrelated in space. The 10,000 ensemble members are run for all 1.0 181	
  

degree land grid cells over the globe excluding Greenland and Antarctica (15836 grid cells in 182	
  

total).  183	
  

 To assess how well the model can reproduce observed runoff, a set of annual and 184	
  

monthly thresholds are used to obtain each grid cell’s behavioral parameter sets. The 10,000 185	
  

LHS ensemble is constrained using the 1.0-degree observed gridded runoff. The relative error of 186	
  

the simulated annual runoff is used as a first constraint. For each grid cell, all parameter sets that 187	
  

lead to a relative error in annual mean runoff above 10% are discarded. This threshold is set 188	
  

relatively high due to measurement uncertainties in the observation dataset and the spatial 189	
  



	
  

10	
  
	
  

disaggregation method described in section 2.3. The second constraint attempts to find all 190	
  

ensemble members that also follow the observations’ seasonality. The simulated and observed 191	
  

monthly runoff climatologies are normalized (to remove remaining annual biases) and the 192	
  

Pearson correlation between the observations and simulations is computed. The correlation 193	
  

threshold is set to 0.75. This threshold is set relatively low due to incomplete accounting of the 194	
  

effects of river routing in the observations and simulations. Ensemble members satisfying both 195	
  

the annual and monthly constraints are deemed behavioral, and the posterior distributions of 196	
  

behavioral parameter values are used to assess parameter sensitivity. 197	
  

3.2 Model Parameter Sensitivity 198	
  

Quantifying the role of each model parameter at different time scales can help discern the 199	
  

parameters (and processes) that can be constrained using coarse time scale observations (e.g., 200	
  

annual and monthly flows). It can also inform us about which parameters play an important role 201	
  

at finer time scales (e.g., daily flows) and are minimally impacted by coarse timescale constraints.  202	
  

3.2.1 Parameter Space Reduction: Annual and Monthly Flows 203	
  

Beyond quantifying how many parameter sets of the 10,000 member ensemble satisfy the 204	
  

monthly and annual constraints, we aim to understand how the reduction in bias and increase in 205	
  

monthly skill is related to a location’s climate. To accomplish this goal, the annual flows are 206	
  

analyzed by determining the change in runoff ensemble mean after applying the constraints. 207	
  

Furthermore, since the monthly constraint attempts to improve the simulation’s unbiased 208	
  

seasonality, it effectively aims to capture the temporal smoothness of the observed climatology. 209	
  

This effect is quantified by analyzing the change in the 1-month lag autocorrelation.  210	
  

Our computation of parameter sensitivities after applying the annual and monthly 211	
  

constraints – summarized in Figure 1 – follows the work of Fenwick et al. (2014). For each grid 212	
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cell, the area between each parameter’s prior cumulative distribution function and the posterior 213	
  

cumulative distribution function is computed as: 214	
  

𝐷!"# = 𝐹 𝑥 − 𝐺(𝑥)   𝑑𝑥
!!

!!
	
  

Where xl and xu are the lower and upper bounds of the parameter in question, which are 215	
  

normalized to [0,1] to improve interpretability of the result. The integrals are computed 216	
  

numerically using the trapezoid rule with Δ𝑥 = 0.01. The calculated area serves as a robust 217	
  

sensitivity metric indicating the change in the distribution of each parameter caused by applying 218	
  

the performance constraints. Because the prior parameter distributions in this study are uniform, 219	
  

the maximum value of this metric is 0.5 (i.e., if only a single ensemble member satisfies the 220	
  

performance constraints and remains in the posterior distribution). This “CDF Distance” 221	
  

sensitivity method bridges the classical Regional Sensitivity Analysis framework (Spear and 222	
  

Hornberger, 1980) and the Delta Moment-Independent Measure (Plischke et al., 223	
  

2013;Borgonovo, 2007). Regional Sensitivity Analysis employs the maximum difference 224	
  

between cumulative distributions as a sensitivity measure. The Delta Moment-Independent 225	
  

Measure (Plischke et al., 2013;Borgonovo, 2007) uses the area between prior and posterior PDFs 226	
  

rather than CDFs.  We compute two CDF distances: first, between the original uniform 227	
  

distribution and the posterior after applying the annual constraint (below 10% absolute error), 228	
  

and second, between the posterior after the annual constraint and the posterior after applying the 229	
  

additional monthly constraint (r > 0.75). The advantages of the CDF Distance method for this 230	
  

study are (1) it does not require special statistical sampling and will work for the given data, and 231	
  

(2) it ties parameter sensitivity to a model performance threshold to identify parameters 232	
  

responsible for a particular outcome rather than overall changes in the output. 233	
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3.2.2 Parameter Uncertainty: Daily Flows 234	
  

Reducing the annual and monthly model parameter uncertainty using the GRDC monthly 235	
  

climatology does not ensure a similar reduction in the uncertainty of daily flows. This is 236	
  

especially relevant to drought and flood monitoring systems that attempt to capture the sub-237	
  

monthly hydrologic extremes over data sparse regions. If the most sensitive parameters at the 238	
  

daily scale are also the most sensitive parameters at the annual and monthly time scales, then 239	
  

there should be a substantial decrease in uncertainty. However, if the parameter sensitivity at 240	
  

different time scales is orthogonal, then the reduction in uncertainty at the daily scale will be 241	
  

negligible. To address this question, for each grid cell, the daily flow duration curves of the full 242	
  

ensemble (10,000 members) and behavioral parameter sets are calculated. The changes in the 243	
  

spread at different sections (low, median, and high flows) of the flow duration curve are 244	
  

analyzed.  245	
  

Given that uncertainty will persist in the daily flows after applying the constraints, the 246	
  

question remains about which parameters control the remaining ensemble spread and need to be 247	
  

more heavily constrained. This is done by analyzing the spread in daily flow extremes on both 248	
  

sides of the distribution (1st and 99th percentiles) for the strictest annual and monthly constraints  249	
  

(relative error below 10% and monthly correlation above 0.75). For each percentile, the 250	
  

Spearman rank correlation between all behavioral parameters and their associated flow is 251	
  

computed. The Spearman correlation was chosen here because (1) observations of daily flows 252	
  

are not available, so behavioral parameters cannot be identified as with the CDF distance 253	
  

measure described in Section 3.2.1, and (2) in general the relationship between parameter values 254	
  

and daily extreme flows will be nonlinear.  The Spearman correlation provides a metric 255	
  

describing how a given parameter controls the spread in daily flows, which may have been 256	
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underconstrained by the annual and monthly performance requirements imposed in the previous 257	
  

step. This is done for each of the 9 parameters.  258	
  

4. Results 259	
  

4.1 VIC Latin Hypercube Sample & Behavioral Parameter Space Reduction  260	
  

For each land 1.0 degree grid cell (15,836) the VIC (Variable Infiltration Capacity) land surface 261	
  

model is run between 1948 and 2010 at a 3-hour temporal resolution for 10,000 parameter sets 262	
  

obtained from a Latin Hypercube Sample. This was possible due to the Blue Waters 263	
  

supercomputer (http://www.ncsa.illinois.edu/enabling/bluewaters); the simulations required more 264	
  

than 2 million computing hours (> 200 years) and resulted in an output of over 1.5 petabytes. 265	
  

The data was then summarized into daily, monthly, and yearly datasets. Each grid cell’s 10,000 266	
  

LHS ensemble VIC simulations are constrained using the observed gridded runoff fields 267	
  

described in section 2.3. 268	
  

Figure 2 shows global maps of the fraction of parameter sets that fulfill each error 269	
  

criterion. In the northern hemisphere, a considerable number of grid cells have a large fraction of 270	
  

ensemble members that are below 10 and 20 percent relative error, suggesting a small annual 271	
  

bias in the input meteorological forcing and a diminished sensitivity to the parameters that 272	
  

impact the annual mean runoff. In many places, there is a sharp decrease in performance when 273	
  

constraining the ensemble with the normalized monthly climatology. This can most likely be 274	
  

attributed to the role that the parameter space plays in controlling runoff partitioning and the 275	
  

challenges when attempting to spatially disaggregate point runoff observations. However, the 276	
  

most prominent feature is the lack of runoff observations (grey areas) and behavioral parameter 277	
  

sets (pink areas) over arid regions and countries with limited adaptation capacity throughout the 278	
  

globe.  279	
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Figure 3 further summarizes these results as a function of climate classification. Although 280	
  

most of the regions with observations meet the annual constraints (10 and 20 percent relative 281	
  

error), there are distinct differences between climates. Tropical and dry climates see the smallest 282	
  

proportion of behavioral parameter sets while continental, polar, and temperate regions 283	
  

experience the largest. The number of behavioral parameter sets decreases even further for all 284	
  

climate types when applying the monthly constraint (Pearson correlation between the simulated 285	
  

and observed normalized monthly climatology). In the case of arid regions, the number of 286	
  

acceptable parameter sets is significantly smaller, especially for the North American mountain 287	
  

west, the Sahel, and most of Australia.  288	
  

Figure 3 also shows how the change in behavioral parameter sets affects the climate 289	
  

averaged runoff ensemble mean and 1-month lag autocorrelation. The first annual constraint (20 290	
  

percent relative error) leads to a decrease in annual runoff (increase in evaporation) in tropical, 291	
  

dry, temperate, and continental climates; there is an increase in annual runoff in polar climates. 292	
  

The changes in annual flows are negligible when applying the monthly constraints (explained by 293	
  

the normalization of the monthly runoff). The 1-month lag correlation is used as a smoothness 294	
  

metric to assess the impact of the chosen constraints on the simulated seasonality; a higher 295	
  

autocorrelation indicates smoother monthly flows. In all cases, the constraints increase 296	
  

smoothness. As expected, the largest changes occur when using the Pearson correlation as a 297	
  

constraint (increase in accuracy of seasonality of monthly runoff).  298	
  

In the context of drought and flood monitoring, these results may have key implications. 299	
  

These include: 1) the large fraction of landmass without observations limits our ability to 300	
  

constrain the model parameter space over the globe; 2) a limited number of behavioral parameter 301	
  

sets over arid and regions with limited adaptation capacity - focus areas for monitoring systems - 302	
  



	
  

15	
  
	
  

suggests considerable limitations in monitoring systems as well as the potential for significant 303	
  

model structural errors; 3) regions with a high fraction of behavioral parameter sets will be 304	
  

susceptible to the impact of model parameter equifinality.  305	
  

4.2 Model Parameter Sensitivity 306	
  

4.2.1 Parameter Space Reduction: Annual and Monthly Flows 307	
  

We formalize the sensitivity analysis by examining the cumulative distribution function 308	
  

(CDF) distance between each parameter’s prior and posterior distributions. Figure 4 shows the 309	
  

global maps of the CDF distance metric for each parameter after applying the annual and 310	
  

monthly constraints. The color scale of Figure 4 ranges from 0.0, where the prior and posterior 311	
  

distributions match exactly, to 0.5, the maximum possible value of the CDF distance metric 312	
  

when the posterior distribution contains only a single ensemble member. In general, B, Dsmax, 313	
  

Exp, and CRsmin are the most sensitive parameters to the annual constraint (left panel). However, 314	
  

the sensitivity of CRsmin dominates the other parameters. Since CRsmin constrains the maximum 315	
  

transpiration rate in the model, these results suggest that the partitioning of evaporation and 316	
  

runoff dominates the model performance at the annual scale. Similarly, Figure 5 shows the mean 317	
  

CDF distance metric within each climate classification, with the interquartile range denoted by 318	
  

error bars. For the annual constraint, the sensitivities of B, Dsmax, and Exp are highest in regions 319	
  

with less defined seasonal cycles (e.g. Tropical). As will be discussed in the next section, this can 320	
  

likely be attributed to these parameters playing a distinct role in runoff seasonality.  321	
  

When applying the monthly constraint, the sensitivity of most parameters changes. In 322	
  

Figures 4 and 5, the negligible sensitivity of CRsmin suggests that although it plays a fundamental 323	
  

role in ensuring the annual runoff ratio, it does not play an important role in the seasonality; the 324	
  

same applies to Exp. Instead, the most sensitive parameters are B and Dsmax since they control the 325	
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partitioning of runoff into baseflow and surface runoff. As shown in Figure 5, this is especially 326	
  

true over regions with a characteristic seasonal cycle (e.g., continental climates). Regions that 327	
  

lack a distinct seasonality (e.g., tropical climates) are only sensitive to these parameters at annual 328	
  

time scales. When there exists a strong seasonality in runoff, these parameters can impact the 329	
  

seasonality at the monthly timescale. However, a weaker seasonality leads these parameters to 330	
  

act at an annual scale by controlling the soil water storage and therefore the partitioning of 331	
  

annual evaporation and runoff.  332	
  

The contrast of the annual and monthly results brings to light the role that time scales can 333	
  

have on the sensitivity of model parameters (and, by extension, processes). The results suggest 334	
  

that the annual scale constraint does not play a large role in the partitioning of monthly baseflow 335	
  

and surface runoff. As will be discussed in the following section, these timescale dependent 336	
  

changes in parameter sensitivity can have large implications on the ability to simulate daily flows 337	
  

without daily observations to further constrain the ensemble.  338	
  

4.2.2 Parameter Uncertainty: Daily Flows 339	
  

The annual and monthly performance constraints allow us to explore the role of the remaining 340	
  

parameter uncertainty on daily runoff estimates. The runoff percentiles are calculated for each 341	
  

ensemble member of each grid cell. Figure 6 shows the climate-averaged spread of the flow 342	
  

duration curves of the 10,000 ensemble members and the most heavily constrained ensemble 343	
  

(annual and monthly). The change in spread provides insight into how constraining (or tuning) at 344	
  

coarser time scales can reduce uncertainty at the daily scale.  345	
  

 As expected from Figure 3, the annual and monthly constraints lead to a reduction in the 346	
  

daily mean runoff for all climates (except polar). However, the constraints’ ability to tighten the 347	
  

ensemble spread varies significantly among climates. The most substantial decrease occurs over 348	
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continental and polar climates even though these regions experience the lowest decrease in the 349	
  

number of parameter sets (see Figure 3). This decrease is most likely connected to the results 350	
  

from the monthly sensitivity analysis (see section 4.2.1): over regions that have a distinct 351	
  

seasonal cycle, the monthly climatology is able to heavily constrain the B and Dsmax parameters; 352	
  

this then helps constrain runoff at daily time scales. This also explains the small decrease in 353	
  

spread over tropical climates seen in Figure 6; since the monthly constraints are not able to 354	
  

constrain the B and Dsmax parameters, their uncertainty drives the runoff at daily time scales. 355	
  

While predictions in tropical climates are not well constrained with this approach, the results are 356	
  

encouraging for monitoring the hydrologic cycle with properly-constrained land surface models 357	
  

in continental and polar climates.  358	
  

 Figure 6 also illustrates differences in the tightening of the flow duration curve spread at 359	
  

different percentiles. For example, in continental climates the percentiles close to the center 360	
  

experience a substantial decrease in spread; the change in the ensemble spread of the tails 361	
  

(hydrologic extremes) is less significant. This result holds to a varying degree for all climates. 362	
  

The most likely physical explanation is that the annual and monthly constraints focus on the 363	
  

percentiles that produce most of the runoff; this leads to a minimal impact on low flows and a 364	
  

reduced impact on high flows. The non-negligible role that high flows play in runoff production 365	
  

helps explain the larger decrease in spread when compared to low flows.  366	
  

Given that considerable uncertainty remains in the daily flows after applying the annual 367	
  

and monthly constraints, we aim to understand what parameters (and, by extension, processes) 368	
  

control the spread. Figure 7 shows the global Spearman correlations between the daily flow 369	
  

extremes (1st and 99th percentile, in the left and right panels, respectively) and the behavioral 370	
  

parameters. Red indicates a negative correlation, blue indicates a positive correlation, and white 371	
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indicates no observed correlation. The results in Figure 7 suggest that B, Dsmax, Exp, and CRsmin 372	
  

control the daily flow extremes, evidenced by a mix of strong positive and negative correlations. 373	
  

The negative correlation between the B parameter and low flows occurs because a decrease in B 374	
  

leads to an increase in infiltration. This results in a dampened response and an increase in 375	
  

available storage for low flow periods; the opposite is true for high flows. The negative 376	
  

correlation between low flows and Dsmax occurs because a decrease in Dsmax delays the release of 377	
  

water from storage allowing for a thicker recession curve and higher low flows. Finally, the 378	
  

positive correlation between CRsmin and high flows is because an increase in CRsmin leads to a 379	
  

decrease in evaporation; an increase in storage leads to an increase in baseflow and surface 380	
  

runoff (increase in soil saturation). By controlling how quickly the hydraulic conductivity 381	
  

decreases as a function of soil moisture, Exp controls water movement between soil layers during 382	
  

dry down periods. This parameter is negatively correlated with low flows since it controls the 383	
  

supply to the lowest soil layer where baseflow is created. 384	
  

5. Discussion  385	
  

5.1 Global Flood and Drought Monitoring: Ensemble Simulations 386	
  

The results from this study are relevant to drought and flood monitoring systems that rely on land 387	
  

surface models to monitor and predict hydrologic extremes at daily time scales (Sheffield et al., 388	
  

2013;Xia et al., 2012). When the land surface model parameters are not tuned, significant 389	
  

uncertainties exist in the estimated runoff. This is especially true over data sparse regions where 390	
  

the prior estimates of the model parameters are inadequate. Furthermore, when the parameters 391	
  

are tuned, a scale mismatch (space and time) between the observations and the intended 392	
  

application leads to limited improvement. As shown in section 4.2.2, although using annual and 393	
  

monthly observations does constrain the daily estimates near the median, considerable 394	
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uncertainties remain in the simulated hydrologic extremes (low and high flows) over all Köppen-395	
  

Geiger climates.  396	
  

One obvious path forward is to use daily streamflow observations to further constrain the 397	
  

land surface model. This solution is practical over dense stream gauge networks but presents 398	
  

considerable challenges over data sparse regions and ungauged basins. A plausible solution is to 399	
  

use a more sophisticated technique to spatially disaggregate streamflow observations (e.g., Pan 400	
  

and Wood (2013)) to obtain daily gridded runoff fields. However, these methods will continue to 401	
  

struggle over sparse networks (e.g. Congo basin), areas that are heavily managed (e.g., southeast 402	
  

USA), and basins that experience substantial reinfiltration and stream evaporation (e.g., 403	
  

Colorado basin). Another option would be to use satellite based altimetry measurements (e.g., 404	
  

SWOT; Durand et al. (2014)). These observations could be combined with the spatially 405	
  

disaggregated runoff fields to provide the observed daily estimates of gridded runoff.  406	
  

In any case, even if high quality daily runoff observations existed over the globe, a non-407	
  

negligible spread will remain after applying the constraints due to the effects of model parameter 408	
  

equifinality. For this reason, we suggest that flood and drought monitoring systems that aim to 409	
  

capture hydrologic extremes move towards model parameter ensemble frameworks to provide 410	
  

not only predictions but also uncertainty estimates. To make this feasible for operational use, 411	
  

further work will need to determine how to cluster the behavioral parameter sets to below 100 412	
  

per grid cell to minimize the increase in computation and storage requirements. 413	
  

5.2 Model Parameters: Improve Prior Distributions 414	
  

A common practice when tuning land surface model parameters at continental scales (e.g. Troy 415	
  

et al. (2008)) is to use the same prior distribution for each model parameter at each modeled grid 416	
  

cell or catchment; this uniform distribution is usually set to cover the entire span of physically 417	
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plausible parameter values. This approach is one of the main drivers of the large spread in flow 418	
  

duration curves shown in Figure 6. Given the need to rely on monthly and annual observations to 419	
  

constrain the model parameter uncertainty, local prior distributions should be informed by spatial 420	
  

land surface characteristics to constrain the initial ensemble spread and the flow duration curves. 421	
  

Spatially distributed information could also be used to refine the distribution family and shape of 422	
  

the priors in addition to their ranges. 423	
  

  One option would be to use the uncertainty estimates available in remote sensing and in-424	
  

situ datasets to define the local prior distributions. An example of this framework would be to 425	
  

use the gridded soil survey geographic (gSSURGO) continental soil’s product (Soil Survey Staff, 426	
  

2014) that provides detailed three-dimensional texture and hydraulic soil properties (and 427	
  

uncertainties) over the contiguous United States (CONUS). This would be simple to test for soil 428	
  

parameters that are used in land surface models and are generally reported in soil datasets (i.e., 429	
  

porosity). However, for parameters that are model specific (e.g., Dsmax and B in the VIC model), 430	
  

derived functional relationships will need to relate the model parameters to the observed 431	
  

parameters to assemble reliable prior distributions. However, as long as the uncertainties in the 432	
  

functional relationship (e.g., linear regression) inform the derived local prior distribution, the 433	
  

benefits should outweigh additional uncertainties.  434	
  

A similar option would be to estimate model parameter prior distributions using local 435	
  

information (parameter covariates). The procedure used in this study (Latin Hypercube Sample) 436	
  

could be used over catchments with rich databases to constrain the uniform parameter values 437	
  

using available high spatial and temporal resolution observed data. The resulting behavioral 438	
  

parameter sets could then be related to the local information using machine learning algorithms 439	
  

(e.g., random forests; Liaw and Wiener (2002)) to provide catchment specific prior distributions. 440	
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In theory, available or upcoming high-resolution global datasets could then provide the 441	
  

covariates to estimate a parameter’s prior distribution at each catchment or grid cell. These 442	
  

datasets could include HydroSHEDS DEM (Lehner et al., 2008), MODIS derived products (e.g., 443	
  

NDVI, albedo, and land cover type), TMPA satellite precipitation (Huffman et al., 2007), and the 444	
  

upcoming GlobalSoilMap (Arrouays et al., 2014), among others. Although the challenges in 445	
  

parameter regionalization (Hrachowitz et al., 2013) in catchment hydrology will also most likely 446	
  

apply to macroscale land surface models, we view it as a path that should be explored. 447	
  

5.3 Model Structure: Next Generation Land Surface Modeling 448	
  

Ultimately, more sophisticated parameter estimation techniques cannot fix model structure 449	
  

deficiencies.  As the results of section 4.2.1 indicate, if the observed flow is not contained in the 450	
  

constrained ensemble then the problem can be traced to model structure deficiencies (assuming 451	
  

error free observations and input meteorology). This problem is apparent over arid regions (see 452	
  

Figure 3), arguably one of the main regions of focus for drought and flood monitoring systems. 453	
  

A lack of irrigation, reservoirs, river evaporation and reinfiltration, and groundwater in this 454	
  

version of VIC are most likely the drivers of model deficiency. Furthermore, parameterizations 455	
  

that play an important role in watershed dynamics and are highly sensitive to their parameter 456	
  

values (e.g., B in the variable infiltration curve) should be replaced with updated schemes that 457	
  

can effectively use available local high-resolution information (e.g., topography, soils, geology, 458	
  

and land cover) to more accurately represent the local physical processes while reducing reliance 459	
  

on parameter estimation. 460	
  

The improved macroscale parameterizations to address these process deficiencies should 461	
  

capitalize on the increase in computation resources and available high resolution land data and 462	
  

meteorological data to more explicitly model the fine scale hydrologic processes. (Wood et al., 463	
  



	
  

22	
  
	
  

2011;Bierkens et al., 2014). This effort could provide solutions to improve the prediction of 464	
  

hydrologic extremes over the globe by including: 1) detailed hydrodynamic modeling to account 465	
  

for flash floods, irrigation, reservoirs, and urban flooding; 2) integrated river modeling to enable 466	
  

river evaporation and reinfiltration; 3) improved runoff generation processes. Although the 467	
  

addition of these processes will likely lead to additional parameter complexity and uncertainty, it 468	
  

is seen as a necessary next step to improve the reliability and utility of global drought and flood 469	
  

monitoring systems. 470	
  

6. Conclusions 471	
  

The Variable Infiltration Capacity model (VIC) has been run globally at a 1.0 degree spatial 472	
  

resolution between 1948 and 2010 using 10,000 parameter sets from a Latin Hypercube Sample 473	
  

to assess the role of parameter uncertainty in flood and drought monitoring. The 10,000 member 474	
  

ensemble is constrained using a spatially disaggregated version of the GRDC runoff climatology 475	
  

at annual and monthly time scales. A multi-time scale sensitivity analysis is then used to 476	
  

determine the role of each of the model’s parameters and the overall model performance. The 477	
  

results vary according to Köppen-Geiger climate. While in arid and tropical regions few 478	
  

parameter sets fulfill the constraints, polar and continental climates maintain a large number of 479	
  

behavioral parameter sets. The annual constraints focus on reducing the annual bias by changing 480	
  

the annual evaporation; the monthly constraints alter the monthly autocorrelation of flow by 481	
  

partitioning the runoff into baseflow and surface runoff. The parameters that control the monthly 482	
  

runoff autocorrelation also play an important role at the daily time scale. For this reason, regions 483	
  

that have a distinct seasonality (continental and polar) see the largest decrease in the spread of 484	
  

their representative daily flow duration curves. These results illustrate the challenges in using 485	
  

current land surface models for global drought and flood monitoring. However, they also 486	
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indicate a path forward which involves adopting ensemble frameworks to account for model 487	
  

parameter uncertainty, designing and implementing improved observation networks to better 488	
  

constrain land surface models, providing improved local prior distributions via emerging high 489	
  

resolution land data, and improving model structure to better account for the processes that 490	
  

dominate the hydrology over regions prone to droughts and floods.  491	
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Table 1. Range of VIC parameters used in the 10,000 Latin Hypercube Sample. Each parameter 675	
  
is drawn from a uniform distribution; parameters that cover 2 or more orders of magnitude are 676	
  
sampled in log10 space. 677	
  

Parameter Units Range Description 

B - 0.001-1.0 Variable Infiltration Curve parameter 

Ds - 0.001-1.0 Fraction of Dsmax where non-linear flow begins 

Dsmax mm/d 0.1-50.0 Maximum baseflow velocity 

Ws - 0.2-1.0 Fraction of Wsmax where non-linear flow begins 

Layer 2 m 0.1-3.0 Depth of Layer 2 

Layer 3 m 0.1-3.0 Depth of Layer 3 

Exp - 0.1-30.0 Characterizing the variation in Ksat with soil moisture  

CRsmin  - 0.1-10.0 Multiplier of tabular minimum stomatal resistance values 

Ksat mm/d 100-10000 Saturated Hydraulic Conductivity 
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 684	
  

Figure 1. Steps used to build and constrain the 10,000 Latin Hypercube VIC ensemble. The CDF 685	
  
distance is calculated for each VIC parameter after applying the annual error constraint and again 686	
  
after applying the monthly correlation constraint. 687	
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 690	
  

Figure 2. Fraction of parameter sets from the 10,000 Latin Hypercube VIC ensemble that fulfill a 691	
  
set of criteria. The comparison is between the annual and monthly climatology of simulated 692	
  
runoff and the GRDC database. The grey areas are regions that are not covered by the GRDC 693	
  
database.  694	
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  700	
  

Figure 3. The grid cells with runoff observations are combined using the Köppen-Geiger climate 701	
  
classification to assess performance of the VIC ensemble as a function of climate type. The 702	
  
constraints define the fraction of parameters that meet the error criteria (top), the change in 703	
  
annual mean flow (center), and the change in 1-month lag correlation (bottom). The error bars 704	
  
quantify the variability within the climate type (25th and 75th percentile). 705	
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Figure 4. Global maps of the sensitivity of each VIC parameter used in the 10,000 Latin 715	
  
Hypercube Sample simulations. The CDF distance is calculated for each VIC parameter after 716	
  
applying the annual error constraint (left) and again after applying the monthly correlation 717	
  
constraint (right). 718	
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Figure 5. Climate average sensitivity of each VIC parameter used in the 10,000 Latin Hypercube 730	
  
Sample simulations. The CDF distance is calculated for each VIC parameter after applying the 731	
  
annual error constraint and again after applying the monthly correlation constraint. The error bars 732	
  
quantify the variability within the climate type (25th and 75th percentile). 733	
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  743	
  

Figure 6. Climate averaged ensemble spread in the daily flow duration curve. The spread in flow 744	
  
duration curve is calculated for all 10,000 ensemble members. The blue shading shows the 745	
  
spread of the entire ensemble while the red shading shows the spread for parameter sets that have 746	
  
an annual mean runoff within 10% of the observed runoff and normalized monthly runoff 747	
  
correlation above or equal to 0.75. 748	
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Figure 7. Global maps of the spearman correlation between the simulated extreme daily flows 754	
  
(1st and 99th percentile) and the corresponding VIC parameter. The correlations are calculated 755	
  
using the ensemble members that fulfill the strongest error criteria (relative error below 10% and 756	
  
monthly correlation above 0.75).  757	
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