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Key Points: 24	  

• Identifying model parameters at coarse time scales impacts the predictability of extreme 25	  

hydrologic events 26	  

• Model parameter sensitivity varies as a function of time scale and region 27	  

• Drought and flood monitoring systems must account for model parameter uncertainty.  28	  
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Abstract 30	  

Land surface modeling, in conjunction with numerical weather forecasting and satellite remote 31	  

sensing, is playing an increasing role in global monitoring and prediction of extreme hydrologic 32	  

events (i.e., floods and droughts). However, uncertainties in the meteorological forcings, model 33	  

structure, and parameter identifiability limit the reliability of model predictions. This study 34	  

focuses on the latter by assessing two potential weaknesses that emerge due to limitations in our 35	  

global runoff observations: (1) the limits of identifying model parameters at coarser time scales 36	  

than those at which the extreme events occur, and (2) the negative impacts of not properly 37	  

accounting for model parameter equifinality in the predictions of extreme events. To address 38	  

these challenges, petascale parallel computing is used to perform the first global-scale, 10,000 39	  

member ensemble-based evaluation of plausible model parameters using the VIC (Variable 40	  

Infiltration Capacity) land surface model, aiming to characterize the impact of parameter 41	  

identifiability on the uncertainty in flood and drought predictions. Additionally, VIC’s global-42	  

scale parametric sensitivities are assessed at the annual, monthly, and daily timescales to 43	  

determine whether coarse-timescale observations can properly constrain extreme events. Global 44	  

and climate type results indicate that parameter uncertainty remains an important concern for 45	  

predicting extreme events even after applying monthly and annual constraints to the ensemble, 46	  

suggesting a need for improved prior distributions of the model parameters as well as improved 47	  

observations. This study contributes a comprehensive evaluation of land surface modeling for 48	  

global flood and drought monitoring and suggests paths forward to overcome the challenges 49	  

posed by parameter uncertainty. 50	  

51	  
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1. Introduction  52	  

Droughts and floods can have devastating consequences on ecosystems, food supply, and 53	  

economies (Easterling et al., 2000). Providing real-time information and predictions to decision 54	  

makers can be a valuable tool to mitigate their effects. This is an especially challenging task over 55	  

data sparse regions, where unreliable monitoring networks and generally low institutional 56	  

capacity limits the spread of timely information (Sheffield et al., 2013). State-of-the-art land 57	  

surface models, in conjunction with numerical weather forecasting and satellite remote sensing, 58	  

pose a plausible solution to supplement local observation networks. Given the accessibility of 59	  

these data sources, multiple systems have arisen over the past decade that aim to provide 60	  

continental and global monitoring and predictions of the hydrologic cycle (Sheffield et al., 61	  

2013;Vogt et al., 2011;Svoboda et al., 2002;Verdin et al., 2005).  62	  

The land surface model component of a monitoring system is useful to understand the 63	  

impact of flood and drought on the energy, carbon, and hydrologic cycles. This is possible with 64	  

the current generation of LSMs that include the main physical, biological, and chemical 65	  

processes at the land surface (Niu et al., 2011). The increasing complexity and sophistication of 66	  

land surface models can provide a more complete assessment of the state of the land surface but 67	  

also requires an increase in the number of process parameterizations and model parameters. In 68	  

the past, parameter estimation in land surface models consisted of using look-up tables to assign 69	  

model parameters based on similarity between sites as a function of soil and vegetation. 70	  

However, sensitivity analysis of macroscale land surface models suggests that this is overly 71	  

simplistic and can lead to significant uncertainty (Rosero et al., 2010;Hou et al., 2012).  72	  

Parameter calibration, a common practice in hydrology, can help reduce model bias, 73	  

understand model deficiencies, and increase the model’s reliability (Harding et al., 2014;Cibin et 74	  
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al., 2010;Döll et al., 2003;Sheffield et al., 2013). However, optimizing model performance to a 75	  

limited set of observations does not ensure the model is getting the right answer for the right 76	  

reasons (Kirchner, 2006). Instead, there tend to be multiple parameter sets that satisfy the 77	  

observations; in hydrology this is known as model parameter equifinality (Beven, 2006). 78	  

Although the performance might be similar for a given calibration metric, the results can vary 79	  

significantly when comparing other metrics, time scales, or variables (Gupta et al., 2008;Herman 80	  

et al., 2013;Wagener and Gupta, 2005;Reusser and Zehe, 2011;Reusser et al., 2009;Clark and 81	  

Vrugt, 2006).  82	  

The model equifinality hypothesis is especially relevant in global land surface modeling 83	  

where the sparsity of observations in space and time and the increasing number of model 84	  

parameters leads to heavily underconstrained parameter estimation.  In this study, we use an 85	  

ensemble of behavioral parameter sets to capture the spread in simulated energy and water cycles. 86	  

This improves model evaluation by enabling a comprehensive assessment of the model 87	  

parameter and model structure deficiencies (Pappenberger and Beven, 2006). A growing number 88	  

of hydrologic monitoring systems already include the impact of uncertainty in meteorological 89	  

forcing (Cloke and Pappenberger, 2009); this should be extended to include model parameter 90	  

uncertainty.   91	  

Given the significant number of model parameters in existing global land surface models, 92	  

carefully designed sensitivity analysis can help minimize the number of uncertain parameters 93	  

that must be explored for effective model evaluations while reducing computational demands.  94	  

Up to now, there have only been a limited number of sensitivity analyses of macroscale land 95	  

surface models. These studies have shown that parameter sensitivity varies with climate, soil, 96	  

and vegetation properties (Liang and Guo, 2003;Rosero et al., 2010). In the hydrologic cycle, 97	  
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evidence suggests that the runoff partitioning (i.e., between baseflow and surface runoff) plays a 98	  

dominant role in daily flow estimates over a number of climates (Demaria et al., 2007). The 99	  

baseflow generation model parameters can also play an important role in the seasonality of the 100	  

land surface fluxes (Hou et al., 2012). However, questions remain regarding the applicability of 101	  

these studies globally, suggesting the need for similar analyses over all global land area.  102	  

In this study, we accomplish this goal by performing a comprehensive sensitivity analysis 103	  

of the global VIC (Variable Infiltration Capacity, Liang et al. (1996)) macroscale land surface 104	  

model. A Latin Hypercube Sample of 10,000 parameter sets is used to run the model from 1948-105	  

2010 per 1.0 degree land grid cell over the globe. The GRDC (Global Runoff Data Centre) 106	  

monthly climatology of gridded runoff observations (Fekete et al., 2002) is used to isolate the 107	  

behavioral parameter sets. The constrained ensemble is then used to understand: first, the 108	  

consequence of identifying model parameters at coarser time scales than those at which the 109	  

extreme events occur, second, the impact of not properly accounting for model parameter 110	  

equifinality in the estimates of extreme events, and third, the model parameters that control the 111	  

hydrologic processes at the annual, monthly, and daily timescales. Finally, the results are used to 112	  

propose paths to provide reliable uncertainty estimates and suggest processes and parameters that 113	  

require improved observations and parameterizations.  114	  

2. Data 115	  

2.1 Meteorology: Princeton Global Forcing Dataset 116	  

The meteorological forcing dataset consists of 3-hourly, 1.0-degree resolution fields of near-117	  

surface meteorology for global land areas for 1948-2010 (PGF; Sheffield et al. (2006)). The 118	  

dataset merges data from the NCEP-NCAR reanalysis (National Center for Environmental 119	  

Prediction and National Center for Atmospheric Research; Kalnay et al. (1996)) with the GPCP 120	  
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(Global Precipitation Climatology Project; Adler et al. (2003)) and TMPA (TRMM Multi-121	  

Satellite Precipitation Analysis; Huffman et al. (2007)) observation-based datasets of 122	  

precipitation, temperature from CRU (Climatic Research Unit; New et al. (2000); Harris et al. 123	  

(2013)), and radiation from SRB (Surface Radiation Budget; Stackhouse et al. (2004)). For the 124	  

simulations, we use precipitation, temperature, pressure, downward shortwave and longwave 125	  

radiation, specific humidity, and wind speed.  126	  

2.2 Land Data 127	  

The default model soil and vegetation parameters are the same as those described in Sheffield 128	  

and Wood (2007). The global soil texture comes from the 5-min FAO–UNESCO (Food and 129	  

Agricultural Organization–United Nations Educational, Scientific, and Cultural Organization) 130	  

digital soil map of the world and the World Inventory of Soil Emission Potentials (WISE) pedon 131	  

database (Batjes, 1995). Land cover information is given by the University of Maryland land 132	  

cover type dataset (Defries et al., 2000). The parameters for each land cover type are assigned 133	  

using the sources described in Nijssen et al. (2001). The monthly climatology of leaf area index 134	  

is based on Myneni et al. (1997). The baseline parameters for the land surface model come from 135	  

these datasets. 136	  

2.3 Gridded Runoff Observations: GRDC Climatology 137	  

The observations of global gridded runoff come from the GRDC global runoff climatology 138	  

(Fekete et al., 2002). The dataset provides the interstation observations at 663 stream gauges. To 139	  

minimize river routing uncertainty, stream gauges are only used when the interstation area 140	  

between two gauges is below 1 million squared kilometers and less than 10% of the grid cells 141	  

have a travel time to the gauge above 10 days (assuming a fixed flow velocity of 1 m/s). The 142	  

gridded estimates are obtained by spatially disaggregating the observed interstation area runoff 143	  
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using the VIC model ensemble. Following the work of Fekete et al. (2002), we assume that the 144	  

simulations of the land surface model provide the true spatial heterogeneity at the monthly scale. 145	  

The observed monthly climatology is then used to bias-correct each cell’s ensemble mean of 146	  

simulated monthly flow. Uncertainty in the observed monthly flow is assumed to be negligible 147	  

relative to the impact of parameter uncertainty. Further details on the model ensemble will be 148	  

given in section 3.2. 149	  

2.4 Köppen-Geiger Climate 150	  

 The Köppen-Geiger climate classification is used to assess how model parameter 151	  

sensitivity varies across climates. This dataset divides the world into five different climates based 152	  

on five vegetation groups. The second and third categories consider precipitation and air 153	  

temperature. The most recent version of this dataset was updated in 2006 using the CRU 154	  

(Climatic Research Unit) and GPCC (Global Precipitation Climatology Centre) datasets. These  155	  

updates make the dataset suitable for the second half of the 20th century (Kottek et al., 2006). In 156	  

this study only the 5 general climate groups are used: Tropical, Arid, Temperate, Continental, 157	  

and Polar.  158	  

3. Methodology 159	  

3.1 VIC: Land Surface Hydrologic Model 160	  

The macroscale VIC land surface hydrologic model (Liang et al., 1996) simulates the land 161	  

surface hydrologic and energy cycles. The model’s sub-grid heterogeneity is parameterized using 162	  

the variable infiltration capacity curve and tiling of land cover classes. Baseflow is modeled as a 163	  

nonlinear recession from the lowest soil layer (Dumenil and Todini, 1992) and 164	  

evapotranspiration is calculated using Penman-Monteith (Monteith, 1964). The subsurface is 165	  

discretized into multiple soil layers; gravity drainage models the movement of moisture between 166	  
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the soil layers. The model captures cold land processes through snow pack storage, frozen soils, 167	  

and sub-grid distribution of snow based on elevation banding. For further details see Sheffield 168	  

and Wood (2007). 169	  

3.2 Model Parameter Uncertainty: Latin Hypercube Sample 170	  

Samples of the model parameter space are obtained using a Latin Hypercube Sample of size 171	  

10,000. LHS is used due to its strength to properly sample the parameters by dividing the 172	  

parameter space into regions of equal probability (McKay et al., 1979). Since this study focuses 173	  

on the hydrologic cycle, we focus on sampling parameters that contribute to runoff generation. 174	  

Seven of the nine chosen parameters come from Troy et al. (2008). A multiplier of the tabular 175	  

minimum stomatal resistance values is added due to its potential impact on the partitioning of 176	  

runoff and evaporation. Table 1 shows each parameter’s name, description, units, and range. 177	  

Each parameter is drawn from a uniform distribution; parameters that cover 2 or more orders of 178	  

magnitude are sampled in log10 space. For each LHS parameter set, the model is run at a 3-hour 179	  

time step between January, 1948 and December, 2010 with a 10 year spin up period. Parameter 180	  

values are assumed to be uncorrelated in space. The 10,000 ensemble members are run for all 1.0 181	  

degree land grid cells over the globe excluding Greenland and Antarctica (15836 grid cells in 182	  

total).  183	  

 To assess how well the model can reproduce observed runoff, a set of annual and 184	  

monthly thresholds are used to obtain each grid cell’s behavioral parameter sets. The 10,000 185	  

LHS ensemble is constrained using the 1.0-degree observed gridded runoff. The relative error of 186	  

the simulated annual runoff is used as a first constraint. For each grid cell, all parameter sets that 187	  

lead to a relative error in annual mean runoff above 10% are discarded. This threshold is set 188	  

relatively high due to measurement uncertainties in the observation dataset and the spatial 189	  
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disaggregation method described in section 2.3. The second constraint attempts to find all 190	  

ensemble members that also follow the observations’ seasonality. The simulated and observed 191	  

monthly runoff climatologies are normalized (to remove remaining annual biases) and the 192	  

Pearson correlation between the observations and simulations is computed. The correlation 193	  

threshold is set to 0.75. This threshold is set relatively low due to incomplete accounting of the 194	  

effects of river routing in the observations and simulations. Ensemble members satisfying both 195	  

the annual and monthly constraints are deemed behavioral, and the posterior distributions of 196	  

behavioral parameter values are used to assess parameter sensitivity. 197	  

3.2 Model Parameter Sensitivity 198	  

Quantifying the role of each model parameter at different time scales can help discern the 199	  

parameters (and processes) that can be constrained using coarse time scale observations (e.g., 200	  

annual and monthly flows). It can also inform us about which parameters play an important role 201	  

at finer time scales (e.g., daily flows) and are minimally impacted by coarse timescale constraints.  202	  

3.2.1 Parameter Space Reduction: Annual and Monthly Flows 203	  

Beyond quantifying how many parameter sets of the 10,000 member ensemble satisfy the 204	  

monthly and annual constraints, we aim to understand how the reduction in bias and increase in 205	  

monthly skill is related to a location’s climate. To accomplish this goal, the annual flows are 206	  

analyzed by determining the change in runoff ensemble mean after applying the constraints. 207	  

Furthermore, since the monthly constraint attempts to improve the simulation’s unbiased 208	  

seasonality, it effectively aims to capture the temporal smoothness of the observed climatology. 209	  

This effect is quantified by analyzing the change in the 1-month lag autocorrelation.  210	  

Our computation of parameter sensitivities after applying the annual and monthly 211	  

constraints – summarized in Figure 1 – follows the work of Fenwick et al. (2014). For each grid 212	  
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cell, the area between each parameter’s prior cumulative distribution function and the posterior 213	  

cumulative distribution function is computed as: 214	  

𝐷!"# = 𝐹 𝑥 − 𝐺(𝑥)   𝑑𝑥
!!

!!
	  

Where xl and xu are the lower and upper bounds of the parameter in question, which are 215	  

normalized to [0,1] to improve interpretability of the result. The integrals are computed 216	  

numerically using the trapezoid rule with Δ𝑥 = 0.01. The calculated area serves as a robust 217	  

sensitivity metric indicating the change in the distribution of each parameter caused by applying 218	  

the performance constraints. Because the prior parameter distributions in this study are uniform, 219	  

the maximum value of this metric is 0.5 (i.e., if only a single ensemble member satisfies the 220	  

performance constraints and remains in the posterior distribution). This “CDF Distance” 221	  

sensitivity method bridges the classical Regional Sensitivity Analysis framework (Spear and 222	  

Hornberger, 1980) and the Delta Moment-Independent Measure (Plischke et al., 223	  

2013;Borgonovo, 2007). Regional Sensitivity Analysis employs the maximum difference 224	  

between cumulative distributions as a sensitivity measure. The Delta Moment-Independent 225	  

Measure (Plischke et al., 2013;Borgonovo, 2007) uses the area between prior and posterior PDFs 226	  

rather than CDFs.  We compute two CDF distances: first, between the original uniform 227	  

distribution and the posterior after applying the annual constraint (below 10% absolute error), 228	  

and second, between the posterior after the annual constraint and the posterior after applying the 229	  

additional monthly constraint (r > 0.75). The advantages of the CDF Distance method for this 230	  

study are (1) it does not require special statistical sampling and will work for the given data, and 231	  

(2) it ties parameter sensitivity to a model performance threshold to identify parameters 232	  

responsible for a particular outcome rather than overall changes in the output. 233	  
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3.2.2 Parameter Uncertainty: Daily Flows 234	  

Reducing the annual and monthly model parameter uncertainty using the GRDC monthly 235	  

climatology does not ensure a similar reduction in the uncertainty of daily flows. This is 236	  

especially relevant to drought and flood monitoring systems that attempt to capture the sub-237	  

monthly hydrologic extremes over data sparse regions. If the most sensitive parameters at the 238	  

daily scale are also the most sensitive parameters at the annual and monthly time scales, then 239	  

there should be a substantial decrease in uncertainty. However, if the parameter sensitivity at 240	  

different time scales is orthogonal, then the reduction in uncertainty at the daily scale will be 241	  

negligible. To address this question, for each grid cell, the daily flow duration curves of the full 242	  

ensemble (10,000 members) and behavioral parameter sets are calculated. The changes in the 243	  

spread at different sections (low, median, and high flows) of the flow duration curve are 244	  

analyzed.  245	  

Given that uncertainty will persist in the daily flows after applying the constraints, the 246	  

question remains about which parameters control the remaining ensemble spread and need to be 247	  

more heavily constrained. This is done by analyzing the spread in daily flow extremes on both 248	  

sides of the distribution (1st and 99th percentiles) for the strictest annual and monthly constraints  249	  

(relative error below 10% and monthly correlation above 0.75). For each percentile, the 250	  

Spearman rank correlation between all behavioral parameters and their associated flow is 251	  

computed. The Spearman correlation was chosen here because (1) observations of daily flows 252	  

are not available, so behavioral parameters cannot be identified as with the CDF distance 253	  

measure described in Section 3.2.1, and (2) in general the relationship between parameter values 254	  

and daily extreme flows will be nonlinear.  The Spearman correlation provides a metric 255	  

describing how a given parameter controls the spread in daily flows, which may have been 256	  
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underconstrained by the annual and monthly performance requirements imposed in the previous 257	  

step. This is done for each of the 9 parameters.  258	  

4. Results 259	  

4.1 VIC Latin Hypercube Sample & Behavioral Parameter Space Reduction  260	  

For each land 1.0 degree grid cell (15,836) the VIC (Variable Infiltration Capacity) land surface 261	  

model is run between 1948 and 2010 at a 3-hour temporal resolution for 10,000 parameter sets 262	  

obtained from a Latin Hypercube Sample. This was possible due to the Blue Waters 263	  

supercomputer (http://www.ncsa.illinois.edu/enabling/bluewaters); the simulations required more 264	  

than 2 million computing hours (> 200 years) and resulted in an output of over 1.5 petabytes. 265	  

The data was then summarized into daily, monthly, and yearly datasets. Each grid cell’s 10,000 266	  

LHS ensemble VIC simulations are constrained using the observed gridded runoff fields 267	  

described in section 2.3. 268	  

Figure 2 shows global maps of the fraction of parameter sets that fulfill each error 269	  

criterion. In the northern hemisphere, a considerable number of grid cells have a large fraction of 270	  

ensemble members that are below 10 and 20 percent relative error, suggesting a small annual 271	  

bias in the input meteorological forcing and a diminished sensitivity to the parameters that 272	  

impact the annual mean runoff. In many places, there is a sharp decrease in performance when 273	  

constraining the ensemble with the normalized monthly climatology. This can most likely be 274	  

attributed to the role that the parameter space plays in controlling runoff partitioning and the 275	  

challenges when attempting to spatially disaggregate point runoff observations. However, the 276	  

most prominent feature is the lack of runoff observations (grey areas) and behavioral parameter 277	  

sets (pink areas) over arid regions and countries with limited adaptation capacity throughout the 278	  

globe.  279	  
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Figure 3 further summarizes these results as a function of climate classification. Although 280	  

most of the regions with observations meet the annual constraints (10 and 20 percent relative 281	  

error), there are distinct differences between climates. Tropical and dry climates see the smallest 282	  

proportion of behavioral parameter sets while continental, polar, and temperate regions 283	  

experience the largest. The number of behavioral parameter sets decreases even further for all 284	  

climate types when applying the monthly constraint (Pearson correlation between the simulated 285	  

and observed normalized monthly climatology). In the case of arid regions, the number of 286	  

acceptable parameter sets is significantly smaller, especially for the North American mountain 287	  

west, the Sahel, and most of Australia.  288	  

Figure 3 also shows how the change in behavioral parameter sets affects the climate 289	  

averaged runoff ensemble mean and 1-month lag autocorrelation. The first annual constraint (20 290	  

percent relative error) leads to a decrease in annual runoff (increase in evaporation) in tropical, 291	  

dry, temperate, and continental climates; there is an increase in annual runoff in polar climates. 292	  

The changes in annual flows are negligible when applying the monthly constraints (explained by 293	  

the normalization of the monthly runoff). The 1-month lag correlation is used as a smoothness 294	  

metric to assess the impact of the chosen constraints on the simulated seasonality; a higher 295	  

autocorrelation indicates smoother monthly flows. In all cases, the constraints increase 296	  

smoothness. As expected, the largest changes occur when using the Pearson correlation as a 297	  

constraint (increase in accuracy of seasonality of monthly runoff).  298	  

In the context of drought and flood monitoring, these results may have key implications. 299	  

These include: 1) the large fraction of landmass without observations limits our ability to 300	  

constrain the model parameter space over the globe; 2) a limited number of behavioral parameter 301	  

sets over arid and regions with limited adaptation capacity - focus areas for monitoring systems - 302	  
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suggests considerable limitations in monitoring systems as well as the potential for significant 303	  

model structural errors; 3) regions with a high fraction of behavioral parameter sets will be 304	  

susceptible to the impact of model parameter equifinality.  305	  

4.2 Model Parameter Sensitivity 306	  

4.2.1 Parameter Space Reduction: Annual and Monthly Flows 307	  

We formalize the sensitivity analysis by examining the cumulative distribution function 308	  

(CDF) distance between each parameter’s prior and posterior distributions. Figure 4 shows the 309	  

global maps of the CDF distance metric for each parameter after applying the annual and 310	  

monthly constraints. The color scale of Figure 4 ranges from 0.0, where the prior and posterior 311	  

distributions match exactly, to 0.5, the maximum possible value of the CDF distance metric 312	  

when the posterior distribution contains only a single ensemble member. In general, B, Dsmax, 313	  

Exp, and CRsmin are the most sensitive parameters to the annual constraint (left panel). However, 314	  

the sensitivity of CRsmin dominates the other parameters. Since CRsmin constrains the maximum 315	  

transpiration rate in the model, these results suggest that the partitioning of evaporation and 316	  

runoff dominates the model performance at the annual scale. Similarly, Figure 5 shows the mean 317	  

CDF distance metric within each climate classification, with the interquartile range denoted by 318	  

error bars. For the annual constraint, the sensitivities of B, Dsmax, and Exp are highest in regions 319	  

with less defined seasonal cycles (e.g. Tropical). As will be discussed in the next section, this can 320	  

likely be attributed to these parameters playing a distinct role in runoff seasonality.  321	  

When applying the monthly constraint, the sensitivity of most parameters changes. In 322	  

Figures 4 and 5, the negligible sensitivity of CRsmin suggests that although it plays a fundamental 323	  

role in ensuring the annual runoff ratio, it does not play an important role in the seasonality; the 324	  

same applies to Exp. Instead, the most sensitive parameters are B and Dsmax since they control the 325	  
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partitioning of runoff into baseflow and surface runoff. As shown in Figure 5, this is especially 326	  

true over regions with a characteristic seasonal cycle (e.g., continental climates). Regions that 327	  

lack a distinct seasonality (e.g., tropical climates) are only sensitive to these parameters at annual 328	  

time scales. When there exists a strong seasonality in runoff, these parameters can impact the 329	  

seasonality at the monthly timescale. However, a weaker seasonality leads these parameters to 330	  

act at an annual scale by controlling the soil water storage and therefore the partitioning of 331	  

annual evaporation and runoff.  332	  

The contrast of the annual and monthly results brings to light the role that time scales can 333	  

have on the sensitivity of model parameters (and, by extension, processes). The results suggest 334	  

that the annual scale constraint does not play a large role in the partitioning of monthly baseflow 335	  

and surface runoff. As will be discussed in the following section, these timescale dependent 336	  

changes in parameter sensitivity can have large implications on the ability to simulate daily flows 337	  

without daily observations to further constrain the ensemble.  338	  

4.2.2 Parameter Uncertainty: Daily Flows 339	  

The annual and monthly performance constraints allow us to explore the role of the remaining 340	  

parameter uncertainty on daily runoff estimates. The runoff percentiles are calculated for each 341	  

ensemble member of each grid cell. Figure 6 shows the climate-averaged spread of the flow 342	  

duration curves of the 10,000 ensemble members and the most heavily constrained ensemble 343	  

(annual and monthly). The change in spread provides insight into how constraining (or tuning) at 344	  

coarser time scales can reduce uncertainty at the daily scale.  345	  

 As expected from Figure 3, the annual and monthly constraints lead to a reduction in the 346	  

daily mean runoff for all climates (except polar). However, the constraints’ ability to tighten the 347	  

ensemble spread varies significantly among climates. The most substantial decrease occurs over 348	  
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continental and polar climates even though these regions experience the lowest decrease in the 349	  

number of parameter sets (see Figure 3). This decrease is most likely connected to the results 350	  

from the monthly sensitivity analysis (see section 4.2.1): over regions that have a distinct 351	  

seasonal cycle, the monthly climatology is able to heavily constrain the B and Dsmax parameters; 352	  

this then helps constrain runoff at daily time scales. This also explains the small decrease in 353	  

spread over tropical climates seen in Figure 6; since the monthly constraints are not able to 354	  

constrain the B and Dsmax parameters, their uncertainty drives the runoff at daily time scales. 355	  

While predictions in tropical climates are not well constrained with this approach, the results are 356	  

encouraging for monitoring the hydrologic cycle with properly-constrained land surface models 357	  

in continental and polar climates.  358	  

 Figure 6 also illustrates differences in the tightening of the flow duration curve spread at 359	  

different percentiles. For example, in continental climates the percentiles close to the center 360	  

experience a substantial decrease in spread; the change in the ensemble spread of the tails 361	  

(hydrologic extremes) is less significant. This result holds to a varying degree for all climates. 362	  

The most likely physical explanation is that the annual and monthly constraints focus on the 363	  

percentiles that produce most of the runoff; this leads to a minimal impact on low flows and a 364	  

reduced impact on high flows. The non-negligible role that high flows play in runoff production 365	  

helps explain the larger decrease in spread when compared to low flows.  366	  

Given that considerable uncertainty remains in the daily flows after applying the annual 367	  

and monthly constraints, we aim to understand what parameters (and, by extension, processes) 368	  

control the spread. Figure 7 shows the global Spearman correlations between the daily flow 369	  

extremes (1st and 99th percentile, in the left and right panels, respectively) and the behavioral 370	  

parameters. Red indicates a negative correlation, blue indicates a positive correlation, and white 371	  
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indicates no observed correlation. The results in Figure 7 suggest that B, Dsmax, Exp, and CRsmin 372	  

control the daily flow extremes, evidenced by a mix of strong positive and negative correlations. 373	  

The negative correlation between the B parameter and low flows occurs because a decrease in B 374	  

leads to an increase in infiltration. This results in a dampened response and an increase in 375	  

available storage for low flow periods; the opposite is true for high flows. The negative 376	  

correlation between low flows and Dsmax occurs because a decrease in Dsmax delays the release of 377	  

water from storage allowing for a thicker recession curve and higher low flows. Finally, the 378	  

positive correlation between CRsmin and high flows is because an increase in CRsmin leads to a 379	  

decrease in evaporation; an increase in storage leads to an increase in baseflow and surface 380	  

runoff (increase in soil saturation). By controlling how quickly the hydraulic conductivity 381	  

decreases as a function of soil moisture, Exp controls water movement between soil layers during 382	  

dry down periods. This parameter is negatively correlated with low flows since it controls the 383	  

supply to the lowest soil layer where baseflow is created. 384	  

5. Discussion  385	  

5.1 Global Flood and Drought Monitoring: Ensemble Simulations 386	  

The results from this study are relevant to drought and flood monitoring systems that rely on land 387	  

surface models to monitor and predict hydrologic extremes at daily time scales (Sheffield et al., 388	  

2013;Xia et al., 2012). When the land surface model parameters are not tuned, significant 389	  

uncertainties exist in the estimated runoff. This is especially true over data sparse regions where 390	  

the prior estimates of the model parameters are inadequate. Furthermore, when the parameters 391	  

are tuned, a scale mismatch (space and time) between the observations and the intended 392	  

application leads to limited improvement. As shown in section 4.2.2, although using annual and 393	  

monthly observations does constrain the daily estimates near the median, considerable 394	  
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uncertainties remain in the simulated hydrologic extremes (low and high flows) over all Köppen-395	  

Geiger climates.  396	  

One obvious path forward is to use daily streamflow observations to further constrain the 397	  

land surface model. This solution is practical over dense stream gauge networks but presents 398	  

considerable challenges over data sparse regions and ungauged basins. A plausible solution is to 399	  

use a more sophisticated technique to spatially disaggregate streamflow observations (e.g., Pan 400	  

and Wood (2013)) to obtain daily gridded runoff fields. However, these methods will continue to 401	  

struggle over sparse networks (e.g. Congo basin), areas that are heavily managed (e.g., southeast 402	  

USA), and basins that experience substantial reinfiltration and stream evaporation (e.g., 403	  

Colorado basin). Another option would be to use satellite based altimetry measurements (e.g., 404	  

SWOT; Durand et al. (2014)). These observations could be combined with the spatially 405	  

disaggregated runoff fields to provide the observed daily estimates of gridded runoff.  406	  

In any case, even if high quality daily runoff observations existed over the globe, a non-407	  

negligible spread will remain after applying the constraints due to the effects of model parameter 408	  

equifinality. For this reason, we suggest that flood and drought monitoring systems that aim to 409	  

capture hydrologic extremes move towards model parameter ensemble frameworks to provide 410	  

not only predictions but also uncertainty estimates. To make this feasible for operational use, 411	  

further work will need to determine how to cluster the behavioral parameter sets to below 100 412	  

per grid cell to minimize the increase in computation and storage requirements. 413	  

5.2 Model Parameters: Improve Prior Distributions 414	  

A common practice when tuning land surface model parameters at continental scales (e.g. Troy 415	  

et al. (2008)) is to use the same prior distribution for each model parameter at each modeled grid 416	  

cell or catchment; this uniform distribution is usually set to cover the entire span of physically 417	  
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plausible parameter values. This approach is one of the main drivers of the large spread in flow 418	  

duration curves shown in Figure 6. Given the need to rely on monthly and annual observations to 419	  

constrain the model parameter uncertainty, local prior distributions should be informed by spatial 420	  

land surface characteristics to constrain the initial ensemble spread and the flow duration curves. 421	  

Spatially distributed information could also be used to refine the distribution family and shape of 422	  

the priors in addition to their ranges. 423	  

  One option would be to use the uncertainty estimates available in remote sensing and in-424	  

situ datasets to define the local prior distributions. An example of this framework would be to 425	  

use the gridded soil survey geographic (gSSURGO) continental soil’s product (Soil Survey Staff, 426	  

2014) that provides detailed three-dimensional texture and hydraulic soil properties (and 427	  

uncertainties) over the contiguous United States (CONUS). This would be simple to test for soil 428	  

parameters that are used in land surface models and are generally reported in soil datasets (i.e., 429	  

porosity). However, for parameters that are model specific (e.g., Dsmax and B in the VIC model), 430	  

derived functional relationships will need to relate the model parameters to the observed 431	  

parameters to assemble reliable prior distributions. However, as long as the uncertainties in the 432	  

functional relationship (e.g., linear regression) inform the derived local prior distribution, the 433	  

benefits should outweigh additional uncertainties.  434	  

A similar option would be to estimate model parameter prior distributions using local 435	  

information (parameter covariates). The procedure used in this study (Latin Hypercube Sample) 436	  

could be used over catchments with rich databases to constrain the uniform parameter values 437	  

using available high spatial and temporal resolution observed data. The resulting behavioral 438	  

parameter sets could then be related to the local information using machine learning algorithms 439	  

(e.g., random forests; Liaw and Wiener (2002)) to provide catchment specific prior distributions. 440	  



	  

21	  
	  

In theory, available or upcoming high-resolution global datasets could then provide the 441	  

covariates to estimate a parameter’s prior distribution at each catchment or grid cell. These 442	  

datasets could include HydroSHEDS DEM (Lehner et al., 2008), MODIS derived products (e.g., 443	  

NDVI, albedo, and land cover type), TMPA satellite precipitation (Huffman et al., 2007), and the 444	  

upcoming GlobalSoilMap (Arrouays et al., 2014), among others. Although the challenges in 445	  

parameter regionalization (Hrachowitz et al., 2013) in catchment hydrology will also most likely 446	  

apply to macroscale land surface models, we view it as a path that should be explored. 447	  

5.3 Model Structure: Next Generation Land Surface Modeling 448	  

Ultimately, more sophisticated parameter estimation techniques cannot fix model structure 449	  

deficiencies.  As the results of section 4.2.1 indicate, if the observed flow is not contained in the 450	  

constrained ensemble then the problem can be traced to model structure deficiencies (assuming 451	  

error free observations and input meteorology). This problem is apparent over arid regions (see 452	  

Figure 3), arguably one of the main regions of focus for drought and flood monitoring systems. 453	  

A lack of irrigation, reservoirs, river evaporation and reinfiltration, and groundwater in this 454	  

version of VIC are most likely the drivers of model deficiency. Furthermore, parameterizations 455	  

that play an important role in watershed dynamics and are highly sensitive to their parameter 456	  

values (e.g., B in the variable infiltration curve) should be replaced with updated schemes that 457	  

can effectively use available local high-resolution information (e.g., topography, soils, geology, 458	  

and land cover) to more accurately represent the local physical processes while reducing reliance 459	  

on parameter estimation. 460	  

The improved macroscale parameterizations to address these process deficiencies should 461	  

capitalize on the increase in computation resources and available high resolution land data and 462	  

meteorological data to more explicitly model the fine scale hydrologic processes. (Wood et al., 463	  
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2011;Bierkens et al., 2014). This effort could provide solutions to improve the prediction of 464	  

hydrologic extremes over the globe by including: 1) detailed hydrodynamic modeling to account 465	  

for flash floods, irrigation, reservoirs, and urban flooding; 2) integrated river modeling to enable 466	  

river evaporation and reinfiltration; 3) improved runoff generation processes. Although the 467	  

addition of these processes will likely lead to additional parameter complexity and uncertainty, it 468	  

is seen as a necessary next step to improve the reliability and utility of global drought and flood 469	  

monitoring systems. 470	  

6. Conclusions 471	  

The Variable Infiltration Capacity model (VIC) has been run globally at a 1.0 degree spatial 472	  

resolution between 1948 and 2010 using 10,000 parameter sets from a Latin Hypercube Sample 473	  

to assess the role of parameter uncertainty in flood and drought monitoring. The 10,000 member 474	  

ensemble is constrained using a spatially disaggregated version of the GRDC runoff climatology 475	  

at annual and monthly time scales. A multi-time scale sensitivity analysis is then used to 476	  

determine the role of each of the model’s parameters and the overall model performance. The 477	  

results vary according to Köppen-Geiger climate. While in arid and tropical regions few 478	  

parameter sets fulfill the constraints, polar and continental climates maintain a large number of 479	  

behavioral parameter sets. The annual constraints focus on reducing the annual bias by changing 480	  

the annual evaporation; the monthly constraints alter the monthly autocorrelation of flow by 481	  

partitioning the runoff into baseflow and surface runoff. The parameters that control the monthly 482	  

runoff autocorrelation also play an important role at the daily time scale. For this reason, regions 483	  

that have a distinct seasonality (continental and polar) see the largest decrease in the spread of 484	  

their representative daily flow duration curves. These results illustrate the challenges in using 485	  

current land surface models for global drought and flood monitoring. However, they also 486	  
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indicate a path forward which involves adopting ensemble frameworks to account for model 487	  

parameter uncertainty, designing and implementing improved observation networks to better 488	  

constrain land surface models, providing improved local prior distributions via emerging high 489	  

resolution land data, and improving model structure to better account for the processes that 490	  

dominate the hydrology over regions prone to droughts and floods.  491	  

7. Acknowledgements 492	  

This study was supported by funding from NOAA grant NA11OAR4310175 (Improving land 493	  
evaporative processes and land-atmosphere interactions in the NCEP Global Forecast System 494	  
(GFS) and Climate Forecast System (CFS), and NSF grant 1144217 (Petascale Design and 495	  
Management of Satellite Assets to Advance Space Based Earth Science). 496	  

 497	  

 498	  

 499	  

8. References 500	  

Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P., Janowiak, J., Rudolf, B., Schneider, 501	  
U., Curtis, S., Bolvin, D. T., Gruber, A., Susskind, J., and Arkin, P. A.: The Version 2 Global 502	  
Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present), 503	  
Journal of Hydrometeorology, 4, 1147-1167, 2003. 504	  

Arrouays, D., McKenzie, N., Hempel, J., Richer de Forges, A. R., and McBratney, A. B.: 505	  
GlobalSoilMap: Basis of the global spatial soil information system, CRC Press, London, UK, 506	  
494 pp., 2014. 507	  

Batjes, N. H.: A Homogenized Soil Data File for Global Environmental Research: A Subset of 508	  
FAO, ISRIC, and NRCS profiles (Version 1.0), Working Paper and Prepring 95/10b, 509	  
International Soil Reference and Information Center, Wageningen, 1995. 510	  

Beven, K.: A manifesto for the equifinality thesis, Journal of Hydrology, 320, 18-36, 2006. 511	  

Bierkens, M. F. P., Bell, V., Burek, P., Chaney, N. W., Condon, L., Cédric, D., de Roo, A., Döll, 512	  
P., Drost, N., Famiglietti, J. S., Flörke, M., Gochis, D., Houser, P., Hut, R. W., Keune, J., Kollet, 513	  
S., Maxwell, R., Reager, J. T., Samaniego, L., Sudicky, E., Sutanudjaja, E. H., van de Giesen, N., 514	  



	  

24	  
	  

Winsemius, H. C., and Wood, E. F.: Hyper-resolution global hydrological modeling: what's next, 515	  
Hydrological Processes, 29, 310-320, 2014. 516	  

Borgonovo, E.: A new uncertainty importance measure, Reliability Engineering & System Safety, 517	  
92, 771-784, 10.1016/j.ress.2006.04.015, 2007. 518	  

Cibin, R., Sudheer, K. P., and Chaubey, I.: Sensitivity and identifiability of stream flow 519	  
generation parameters of the SWAT model, Hydrological Processes, 24, 1133-1148, 2010. 520	  

Clark, M., and Vrugt, J.: Unraveling uncertainties in hydrologic model calibration: Addressing 521	  
the problem of compensatory parameters, Geophysical Research Letters, 33, 522	  
10.1029/2005GL025604, 2006. 523	  

Cloke, H., and Pappenberger, F.: Ensemble flood forecasting: A review, Journal of Hydrology, 524	  
375, 613-626, 2009. 525	  

Defries, R. S., Hansen, M. C., Townshend, J. R. G., Janetos, A. C., and Lovelands, T. R.: A new 526	  
global 1-km dataset of percentage tree cover derived from remote sensing, Global Change 527	  
Biology, 6, 247-254, 2000. 528	  

Demaria, E. M., Nijssen, B., and Wagener, T.: Monte Carlo sensitivity analysis of land surface 529	  
parameters using the Variable Infiltration Capacity model, Journal of Geophysical Research: 530	  
Atmospheres (1984-2012), 112, 10.1029/2006JD007534, 2007. 531	  

Döll, P., Kaspar, F., and Lehner, B.: A global hydrological model for deriving water availability 532	  
indicators: model tuning and validation, Journal of Hydrology, 270, 105-134, 2003. 533	  

Dumenil, L., and Todini, E.: A rainfall-runoff scheme for use in the Hamburg climate model in: 534	  
Advances in theoretical hydrology, A tribute to James Dooge, edited by: O'kane, P., European 535	  
Geophysical Society Series on Hydrological Sciences, Elsevier, Amsterdam, 1992. 536	  

Durand, M., Neal, J., Rodriguez, E., Andreadis, K. M., Smith, L. C., and Yoon, Y.: Estimating 537	  
reach-averaged dicharge for the River Severn from measurements of river water surface 538	  
elevation and slope, Journal of Hydrology, 511, 92-104, 2014. 539	  

Easterling, D. R., Meehl, G. A., Parmesan, C., Changnon, S. A., Karl, T. R., and Mearns, L. O.: 540	  
Climate Extremes: Observations, Modeling, and Impacts, Science, 289, 2068-2074, 2000. 541	  

Fekete, B. M., Vörösmarty, C. J., and Grabs, W.: High-resolution fields of global runoff 542	  
combining observed river discharge and simulated water balances, Global Biogeochemical 543	  
Cycles, 16, 10.1029/1999GB001254, 2002. 544	  



	  

25	  
	  

Fenwick, D., Scheidt, C., and Caers, J.: Quantifying Assymetric Parameter Interactions in 545	  
Sensitivity Analysis: Application to Reservoir Modeling, Mathematical Geosciences, 46, 493-546	  
511, 10.1007/s11004-014-9530-5, 2014. 547	  

Gupta, H., Wagener, T., and Liu, Y.: Reconciling theory with observations: elements of a 548	  
diagnostic approach to model evaluation, Hydrological Processes, 22, 3802-3813, 2008. 549	  

Harding, R. J., Weedon, G. P., Van Lanen, H. A. J., and Clark, D. B.: The future for global water 550	  
assessment, Journal of Hydrology, In Press, 2014. 551	  

Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H.: Updated high-resolution grids of monthly 552	  
climatic observations - the CRU TS3.10 Dataset, International Journal of Climatology, 34, 623-553	  
642, 2013. 554	  

Herman, J., Kollat, J. B., Reed, P. M., and Wagener, T.: From maps to movies: High resolution 555	  
time-varying sensitivity analysis for spatially distributed watershed models, Hydrol. Earth Syst. 556	  
Sci., 17, 5109-5125, 2013. 557	  

Hou, Z., Huang, M., Leung, L. R., Lin, G., and Ricciuto, D. M.: Sensitivity of surface flux 558	  
simulations to hydrologic parameters based on an uncertainty quantification framework applied 559	  
to the Community Land Model, Journal of Geophysical Research, 117, 10.1029/2012JD017521, 560	  
2012. 561	  

Hrachowitz, M., Savenjie, H. H. G., Blöschl, G., McDonnel, J. J., Sivapalan, M., Pomeroy, J. W., 562	  
Arheimer, B., Blume, T., Clark, M. P., Ehret, U., Fenicia, F., Freer, J., Gelfan, A., Gupta, H. V., 563	  
Hughes, D. A., Hut, R. W., Montanari, A., Pande, S., Tetzlaff, D., Troch, P. A., Uhlenbrook, S., 564	  
Wagener, T., Winsemius, H. C., Woods, R. A., Zehe, E., and Cudennec, C.: A decade of 565	  
Predictions in Ungauged Basins (PUB) - a review, Hydrological Sciences Journal, 58, 1198-1255, 566	  
2013. 567	  

Huffman, G. J., Adler, R. F., Bolvin, D. T., Gu, G., Nelkin, E. J., Bowman, K. P., Hong, Y., 568	  
Stocker, E. F., and Wolff, D. B.: The TRMM Multisatellite Precipitation Analysis (TMPA): 569	  
Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales, Journal of 570	  
Hydrometeorology, 8, 38-55, 2007. 571	  

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., 572	  
White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. 573	  
C., Ropelewski, C., Wang, J., Leetma, A., Reynolds, R., Jeane, R., and Joseph, D.: The 574	  
NCEP/NCAR 40-Year Reanalysis Project, Bulletin of the American Meteorological Society, 77, 575	  
437-471, 1996. 576	  

Kirchner, J. W.: Getting the right answers for the right reasons: Linking measurements, analyses, 577	  
and models to advance the science of hydrology, Water Resources Research, 42, W03S04, 578	  
10.1029/2005WR004362, 2006. 579	  



	  

26	  
	  

Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F.: World Map of the Köppen-Geiger 580	  
climate classification updated, Meteorologische Zeitschrift, 15, 259-263, 2006. 581	  

Lehner, B., Verdin, K., and Jarvis, A.: New global hydrography derived from spaceborne 582	  
elevation data, EOS, transactions, AGU, 89, 93-94, 2008. 583	  

Liang, X., Wood, E. F., and Lettenmaier, D. P.: Surface soil moisture parameterization of the 584	  
VIC-2L Evaluation and modification, Global and Planetary Change, 13 195-206 1996. 585	  

Liang, X., and Guo, J.: Intercomparison of land-surface parameterization schemes: sensitivity of 586	  
surface energy and water fluxes to model parameters, Journal of Hydrology, 279, 182-209, 2003. 587	  

Liaw, A., and Wiener, M.: Classification and Regression by randomForest, R News, 2, 18-22, 588	  
2002. 589	  

McKay, M. D., Beckman, R. J., and Conover, W. J.: A comparison of three methods for 590	  
selecting values of input variables in the analysis of output from a computer code, Technometrics, 591	  
21, 239-245, 1979. 592	  

Monteith, J. L.: Evaporation and environment. The state and movement of water in living 593	  
organisms, Symposium of the society of experimental biology, 19, 205-234, 1964. 594	  

Myneni, R. B., Nemani, R. R., and Running, S. W.: Estimation of Global Leaf Area Index and 595	  
Absorbed Par Using Radiative Transfer Models, IEEE Transactions on Geoscience and Remote 596	  
Sensing, 35, 1380-1393 1997. 597	  

New, M., Hulme, M., and Jones, P.: Representing Twentieth-Century Space-Time Climate 598	  
Variability. Part II: Development of 1901-96 Monthly Grids of Terrestrial Surface Climate, 599	  
Journal of Climate, 13, 2217-2238, 2000. 600	  

Nijssen, B., O'Donnell, G. M., Lettenmaier, D. P., Lohmann, D., and Wood, E. F.: Predicting the 601	  
Discharge of Global Rivers, Journal of Climate, 14 3307-3323, 2001. 602	  

Niu, G.-Y., Yang, Z.-L., Mitchel, K. E., Chen, F., Ek, M., Barlage, M., Kumar, A., Manning, K., 603	  
Niyogi, D., Rosero, E., Tewari, M., and Xia, Y.: The community Noah land surface model with 604	  
multiparameterization options (NOAH-MP): 1. Model description and evaluation with local-605	  
scale measurements, Journal of Geophysical Research, 116, 10.1029/2010JD015139, 2011. 606	  

Pan, M., and Wood, E. F.: Inverse streamflow routing, Hydrol. Earth Syst. Sci., 17, 4577-4588, 607	  
2013. 608	  

Pappenberger, F., and Beven, K. J.: Ignorance is bliss: Or seven reasons not to use uncertainty 609	  
analysis, Water Resources Research, 42, 10.1029/2005WR004820, 2006. 610	  



	  

27	  
	  

Plischke, E., Borgnovo, E., and Smith, C. L.: Global sensitivity measures from given data, 611	  
European Journal of Operational Research, 226, 536-550, 10.1016/j.ejor.2012.11.047, 2013. 612	  

Reusser, D., Blume, T., Schaefli, B., and Zehe, E.: Analyzing the temporal dynamics of model 613	  
performance for hydrologic models, Hydrol. Earth Syst. Sci., 13, 999-1018, 2009. 614	  

Reusser, D., and Zehe, E.: Inferring model structural deficits by analyzing temporal dynamics of 615	  
model performance and parameter sensitivity, Water Resources Research, 47, W07550, 616	  
10.1029/2010WR009946, 2011. 617	  

Rosero, E., Yang, Z., Wagener, T., Gulden, L. E., Yatheendradas, S., and Niu, G.: Quantifying 618	  
parameter sensitivity, interaction, and transferability in hydrologically enhanced versions of the 619	  
Noah land surface model over transition zones during the warm season, Journal of Geophysical 620	  
Research: Atmospheres (1984-2012), 115, D03106, 10.1029/2009JD012035, 2010. 621	  

Sheffield, J., Goteti, G., and Wood, E. F.: Development of a 50-Year High-Resolution Global 622	  
Dataset of Meteorological Forcings for Land Surface Modeling, Journal of Climate, 19, 3088-623	  
3111, 2006. 624	  

Sheffield, J., and Wood, E. F.: Characteristics of global and regional drought, 1950-2000: 625	  
Analysis of soil moisture data from off-line simulation of the terretrial hydrologic cycle, Journal 626	  
of Geophysical Research, 112, 10.1029/2006JD008288, 2007. 627	  

Sheffield, J., Wood, E. F., Chaney, N., Sadri, S., Guan, K., Yuan, X., Olang, L., Amani, A., and 628	  
Ali, A.: A Drought Monitoring and Forecasting System for Sub-Saharn African Water Resources 629	  
and Food Security, Bull. Amer. Meteor. Soc., 95, 861-882, 2013. 630	  

Soil Survey Staff: Soil Survey Staff. Gridded Soil Survey Geographic (gSSURGO) Database for 631	  
the Conterminous United States. United States Department of Agriculture, Natural Resources 632	  
Conservation Service. Available online at http://datagateway.nrcs.usda.gov/. 8, 15, 2014 (FY2014 633	  
official release). 2014. 634	  

Spear, R., and Hornberger, G. M.: Eutrophication in peel inlet-II. Identification of critical 635	  
uncertainties via generalized sensitivity analysis, Water Research, 14, 43-49, 10.1016/0043-636	  
1354(80)90040-8, 1980. 637	  

Stackhouse, P. W., Gupta, S. K., Cox, S. J., Mikowitz, J. C., Zhang, T., and M.Chiacchio: 12-638	  
year surface radiation budget dataset, GEWEX News, 14, 10-12, 2004. 639	  

Svoboda, M., LeComte, D., Hayes, M., Heim, R., Gleason, K., Angel, J., Rippey, B., Tinker, R., 640	  
Palecki, M., Stooksbury, D., Miskus, D., and Stephens, S.: The Drought Monitor, BAMS, 83, 641	  
1181-1190, 2002. 642	  



	  

28	  
	  

Troy, T. J., Wood, E. F., and Sheffield, J.: An efficient calibration method for continental-scale 643	  
land surface modeling, Water Resources Research, 44, 10.1029/2007WR006513, 2008. 644	  

Verdin, J., Funk, C., Senay, G., and Chourlarton, R.: Climate science and famine early warning, 645	  
Phil. Trans. R. Soc. B., 360, 2155-2168, 2005. 646	  

Vogt, J. V., Barbosa, P., Hofer, B., Magni, D., Jager, A. D., Singleton, A., Horion, S., Sepulcre, 647	  
G., Micale, F., and Sokolova, E.: Developing a European drought observatory for monitoring, 648	  
assessing and forecasting droughts across the European continent, AGU Fall Meeting Abstracts, 649	  
San Francisco, CA, 2011, 2011. 650	  

Wagener, T., and Gupta, H. V.: Model Identification for hydrological forecasting under 651	  
uncertainty, Stochastic Environmental Research and Risk Assessment, 19, 378-387, 2005. 652	  

Wood, E. F., Roundy, J. K., Troy, T. J., van Beek, L. P. H., Bierkens, M. F. P., Blyth, E., de Roo, 653	  
A., Döll, P., Ek, M., Famiglietti, J., Gochis, D., van de Giesen, N., Houser, P., Jaffe, P. R., Kollet, 654	  
S., Lehner, B., Lettenmaier, D. P., Peters-Lidard, C., Sivapalan, M., Sheffield, J., Wade, A., and 655	  
Whitehead, P.: Hyperresolution global land surface modeling: Meeting a grand challenge for 656	  
monitoring Earth's terrestrial water, Water Resources Research, 47, 10.1029/2010WR010090, 657	  
2011. 658	  

Xia, Y., Mitchel, K. E., Ek, M., Cosgrove, B., Sheffield, J., Luo, L., Alonge, C., Wei, H., Meng, 659	  
J., Livneh, B., Duan, J., and Lohmann, D.: Continental-scale water and energy flux analysis and 660	  
validation for North American Land Data Assimilation System project phase 2 (NLDAS-2): 2. 661	  
Validation of model-simulated streamflow, Journal of Geophysical Research, 117, 662	  
10.1029/2011JD016051, 2012. 663	  

 664	  

 665	  

 666	  

 667	  

 668	  

 669	  

 670	  

 671	  

 672	  

 673	  

 674	  



	  

29	  
	  

Table 1. Range of VIC parameters used in the 10,000 Latin Hypercube Sample. Each parameter 675	  
is drawn from a uniform distribution; parameters that cover 2 or more orders of magnitude are 676	  
sampled in log10 space. 677	  

Parameter Units Range Description 

B - 0.001-1.0 Variable Infiltration Curve parameter 

Ds - 0.001-1.0 Fraction of Dsmax where non-linear flow begins 

Dsmax mm/d 0.1-50.0 Maximum baseflow velocity 

Ws - 0.2-1.0 Fraction of Wsmax where non-linear flow begins 

Layer 2 m 0.1-3.0 Depth of Layer 2 

Layer 3 m 0.1-3.0 Depth of Layer 3 

Exp - 0.1-30.0 Characterizing the variation in Ksat with soil moisture  

CRsmin  - 0.1-10.0 Multiplier of tabular minimum stomatal resistance values 

Ksat mm/d 100-10000 Saturated Hydraulic Conductivity 
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Figure 1. Steps used to build and constrain the 10,000 Latin Hypercube VIC ensemble. The CDF 685	  
distance is calculated for each VIC parameter after applying the annual error constraint and again 686	  
after applying the monthly correlation constraint. 687	  

 688	  

 689	  

For each land 
surface grid cell

Feasible
Parameter Sets

VIC Model Behavioral
Parameter Sets

Q

Constraint 1: Mean
Annual Error < 10%

Behavioral
Parameter Sets

Obs Sim

Constraint 2: 
Monthly r > 0.75

Qsim

Qobs

CDF Distance 2

CDF Distance 1

Parameter

Parameter

Prior
Posterior



	  

31	  
	  

 690	  

Figure 2. Fraction of parameter sets from the 10,000 Latin Hypercube VIC ensemble that fulfill a 691	  
set of criteria. The comparison is between the annual and monthly climatology of simulated 692	  
runoff and the GRDC database. The grey areas are regions that are not covered by the GRDC 693	  
database.  694	  
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Figure 3. The grid cells with runoff observations are combined using the Köppen-Geiger climate 701	  
classification to assess performance of the VIC ensemble as a function of climate type. The 702	  
constraints define the fraction of parameters that meet the error criteria (top), the change in 703	  
annual mean flow (center), and the change in 1-month lag correlation (bottom). The error bars 704	  
quantify the variability within the climate type (25th and 75th percentile). 705	  
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Figure 4. Global maps of the sensitivity of each VIC parameter used in the 10,000 Latin 715	  
Hypercube Sample simulations. The CDF distance is calculated for each VIC parameter after 716	  
applying the annual error constraint (left) and again after applying the monthly correlation 717	  
constraint (right). 718	  
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Figure 5. Climate average sensitivity of each VIC parameter used in the 10,000 Latin Hypercube 730	  
Sample simulations. The CDF distance is calculated for each VIC parameter after applying the 731	  
annual error constraint and again after applying the monthly correlation constraint. The error bars 732	  
quantify the variability within the climate type (25th and 75th percentile). 733	  
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Figure 6. Climate averaged ensemble spread in the daily flow duration curve. The spread in flow 744	  
duration curve is calculated for all 10,000 ensemble members. The blue shading shows the 745	  
spread of the entire ensemble while the red shading shows the spread for parameter sets that have 746	  
an annual mean runoff within 10% of the observed runoff and normalized monthly runoff 747	  
correlation above or equal to 0.75. 748	  
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Figure 7. Global maps of the spearman correlation between the simulated extreme daily flows 754	  
(1st and 99th percentile) and the corresponding VIC parameter. The correlations are calculated 755	  
using the ensemble members that fulfill the strongest error criteria (relative error below 10% and 756	  
monthly correlation above 0.75).  757	  
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