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Abstract. We introduce TopREML as a method to predict runoff signatures in ungauged basins. The

approach is based on the use of linear mixed models with spatially correlated random effects. The

nested nature of streamflow networks is taken into account by using water balance considerations

to constrain the covariance structure of runoff and to account for the stronger spatial correlation

between flow-connected basins. The restricted maximum likelihood (REML) framework generates5

the best linear unbiased predictor (BLUP) of both the predicted variable and the associated predic-

tion uncertainty, even when incorporating observable covariates into the model. The method was

successfully tested in cross validation analyses on mean streamflow and runoff frequency in Nepal

(sparsely gauged) and Austria (densely gauged), where it matched the performance of comparable

methods in the prediction of the considered runoff signature, while significantly outperforming them10

in the prediction of the associated modeling uncertainty. TopREML’s ability to combine determinis-

tic and stochastic information to generate BLUPs of the prediction variable and its uncertainty makes

it a particularly versatile method that can readily be applied in both densely gauged basins, where

it takes advantage of spatial covariance information, and data-scarce regions, where it can rely on

covariates, which are increasingly observable via remote sensing technology.15

1 Introduction

Regionalizing runoff and streamflow for the purposes of making Predictions in Ungauged Basins

(PUB) continues to be one of the major contemporary challenges in hydrology. At global, regional

and local scales only a small fraction of catchments are monitored for streamflow (Blöschl et al.,

2013), and this fraction is at risk of decreasing given the ongoing challenge of maintaining exist-20

ing gauging stations (Stokstad, 1999). Reliable information about local streamflows is essential for
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the management of water resources, especially in the context of changing climate, ecosystem and

demography; and flow prediction uncertainties are bound to propagate and lead to significantly sub-

optimal design and management decisions (e.g., Sivapalan et al., 2014; ?). Techniques are needed

to maximize the use of available data in data scarce regions to accurately predict streamflow, while25

providing a reliable estimate of the related modeling uncertainty.

1.1 Linear Models

There are a number of approaches to predicting runoff in ungauged catchments, including process-

based modeling (e.g., Müller et al., 2014), graphical methods based on the construction of isolines

(e.g., Bishop and Church, 1992), and statistical approaches. Statistical approaches are often imple-30

mented via linear regression, wherein the runoff signature of interest is considered to be an unob-

servable random variable correlated with observable features of both gauged and ungauged basins

(e.g. rainfall, topography). Such linear models are well understood and widely implemented, not

only for PUB (see review in Blöschl et al., 2013, p.83) but also across a wide variety of fields in the

physical and social sciences (e.g., Myers, 1990).35

Spatial correlation is generally problematic for linear model predictions, including the multiple

regression approaches commonly used for regionalization. For example if these models predict a

hydrologic outcome y using a matrix X of observed features then the linear model has the form:

y =Xτ + η (1)

Here τ is an a priori unknown set of weights that represent the influence of each external trend on40

the hydrological outcome being modeled. The residuals, η, are the observed variation of y that cannot

be explained by a linear relation with X . If the residuals are independent and identically distributed

(iid), the best linear unbiased predictions (BLUP) of both y and its uncertainty (i.e. Var (y)) can

readily be obtained using ordinary least squares (OLS) regression. Unfortunately, residuals are rarely

iid in hydrological applications due to the spatial organization of hydrological processes around the45

topology of river channel networks. This organization has the potential to introduce non-random

spatial correlations with a structure imposed by the river network. To recover a suitable model in

which residuals remain independent requires that the model structure be altered to explicitly account

for the spatial and topological correlation in the residuals.

1.2 Spatial Correlation Models50

There are several techniques available to address spatially correlated data. Within PUB, kriging

(Cressie, 1993) based geostatistical methods have been widely used (e.g, Huang and Yang, 1998;

Gottschalk et al., 2006; Sauquet, 2006; Sauquet et al., 2000; Skøien et al., 2006). In a geostatistical

framework, a parametric function is used to model the relationship between distance and covariance

in observations. The ensuing semi-variogram is assumed to be homogenous in space, and predictions55
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at a point are computed as a weighted sum of the available observations. The weights are chosen to

minimize the variance while meeting a given constraint on the expected value of the prediction. In

ordinary kriging for PUB applications, that constraint is simply the average of the streamflow signa-

ture as observed in gauged catchments. Ordinary kriging can also be extended as ‘universal kriging’

to include a linear combination of observable features (Olea, 1974). Kriging approaches are widely60

used to predict spatially-distributed point-scale processes like soil properties (e.g., Goovaerts, 1999)

and climatic features (e.g., Goovaerts, 2000). Although ordinary kriging has also been used to in-

terpolate runoff (e.g., Huang and Yang, 1998), the theoretical justification for this approach is less

robust than for point-scale processes. Runoff is organized around a topological network of stream-

channels, and the covariance structure implied for prediction should reflect the higher correlation65

between streamflow at watersheds that are ‘flow connected’ (i.e. share one or more subcatchments),

compared to unconnected but spatially proximate catchments. Currently, two broad classes of geo-

statistical methods accommodate this network-aligned correlation structure.

The first suite of methods posits the existence of an underlying point-scale process, which is as-

sumed to have a spatial autocorrelation structure that allows kriging to be applied. Because the runoff70

point-scale process is only observed as a spatially integrated measure made at specific gauged loca-

tions along an organized network of streams, the spatial autocorrelation structure of the point-scale

process cannot itself be observed. Block-kriging approaches (Gottschalk et al., 2006; Sauquet, 2006;

Sauquet et al., 2000) infer the semi-variogram of the (unobserved) point-scale so as to best repro-

duce the observed spatial correlation of the area-integrated runoff at the gauges – a procedure known75

as regularization. The topology of the network is implicitly accounted for by the fact that nested

catchments have overlapping areas, which affects the relation between observed (area integrated)

and modeled (point scale) covariances. Yet, complex catchment shapes complicate the regulariza-

tion of semi-variograms, meaning that the estimation of the point-scale process becomes analytically

intractable and requires a trial-and-error approach in most practical applications (e.g., Top-kriging80

(Skøien et al., 2006)). Top-kriging is an extension of the block-kriging approach that accommodates

non-stationary variables and short observation records. Top-kriging provides an improved prediction

method for hydrological variables when compared to ordinary kriging or linear regression techniques

(Laaha et al., 2014; Viglione et al., 2013; Castiglioni et al., 2011) and was recently extended to ac-

count for deterministic trends (Laaha et al., 2013). Top-kriging represents an important advance for85

PUB, but it does have a few drawbacks: (i) The regularization process is unintuitive, and requires

extensive trial-and-error to determine both the form of a suitable point-scale variogram, and its pa-

rameters; (ii) This trial-and-error process is likely to be computationally expensive; (iii) Like all

kriging techniques, the estimation of the variogram is challenging when accounting for observable

features: the presence of an unknown trend coefficient and variogram leads to an under-determined90

problem, making consistent estimates for both challenging. Cressie (1993) (p. 166) showed that the

presence of a trend tends to impose a spatially inhomogeneous, negative bias on the estimated semi-
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variogram. The bias increases quadratically with distance, meaning that estimates of the long-range

variance (the sill) are strongly impacted by the presence of the trend, leading to an underestimation

of the prediction uncertainty. This bias, however, only marginally affects the prediction itself.95

Geomorphological considerations of the topology of a river network generally focus on the chan-

nels, and lead to an intuitive conceptualization that topological interpolation should focus on runoff

correlations along flow paths. The second type of approach embraces this topological structure. It

does not consider a point-scale runoff generation process, but instead models the hillslope-scale

runoff delivery process to the channel network as a unidimensional directed tree (Cressie et al.,100

2006; Ver Hoef et al., 2006). Runoff correlation is expected to decrease with the distance along the

stream following a known parametric function. However, unlike Euclidian distances, the stream-wise

distance does not have the necessary properties to provide a solvable kriging system. This issue is

addressed in Cressie et al. (2006) and Ver Hoef and Peterson (2010), where streamflow is modeled

as a random process represented by a Brownian motion that starts at the trunk of the tree (i.e. the105

river mouth) moves upstream, bifurcates and evolves independently on each branch. The resulting

model only allows spatial dependence with points that are upstream on the river network and pro-

vides a positive definite covariance matrix that is estimated through restricted maximum likelihood

(REML). Models of this nature have been successfully tested on stream chemistry data (Ver Hoef

et al., 2006) and further developed to also allow spatial autocorrelation among random variables on110

stream segments that do not share flow, with potential applications to the modeling of the concen-

tration of upstream moving species (e.g., fishes or insects)(Ver Hoef and Peterson, 2010). While

these methods do not account for the streamflow generation process, they avoid the conceptual and

prediction uncertainty challenges confronted by kriging techniques.

1.3 The TopREML Approach115

Inspired by both types of approaches, here we present a method based on the use of linear mixed

models to generate a BLUP for hydrological variables on a flow network. Rather than using a kriging

estimator, we adopt a Restricted Maximum Likelihood (REML) framework (Gilmour et al., 2004;

Patterson and Thompson, 1971; Lark et al., 2006) to estimate variance parameters. This reduces the

bias on the semivariogram by allowing the variance to be estimated independently from the trend120

coefficients (Cressie, 1993; Lark et al., 2006). This use of a REML framework to estimate a linear

mixed effect model on a topological support is termed TopREML. The approach is based on the

following conceptual assumptions:

Flow generation and propagation: Similar to Top-Kriging, runoff is assumed to be generated

at a point scale on the landscape, from where it is routed to a channel and measured at a gauge125

(Figure 1 (i)). Runoff observations made at any individual gauge (Figure 1 (ii)) can be broken up

into a local contribution, derived from a never-previously-gauged catchment area, and an upstream

contribution that was previously observed at upstream gauge(s) along the channel (Figure 1 (iii)).
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TopREML disaggregates all flow contributions into a cascade of local components, as observed at

each successive gauge, and uses these characteristics to constrain the covariance structure of runoff130

and to account for the stronger spatial correlations between flow-connected basins.

Treatment of time: For the local effects to form a suitable basis for spatial interpolation, vari-

ations associated with temporal correlation (e.g. travel time effects) need to be removed. This is

achieved by considering time-averaged streamflow data, with the proviso that the time averaging

window is much greater than the characteristic catchment and channel response timescales. This135

treatment of time has several specific consequences. First, TopREML is only suitable for the re-

gionalization of time-averaged and statistically stationary runoff properties (i.e. runoff signatures).

Stationarity is necessary to ensure that the water balance assumption used to separate local from

upstream runoff contributions is valid. However, as a consequence, TopREML cannot be used to

interpolate transient signatures, such as those associated with real-time forecasting. Nor can it be140

used to describe runoff properties that are correlated over time scales larger than the time averaging

window. Because of the stationarity assumption applied, all correlation arguments described in this

manuscript refer to the spatial, and not temporal, correlation of the runoff signatures.

Network topology: Network topology in TopREML also follows a conceptual model that is sim-

ilar to the model posited by Top-kriging. Topology is conceptualized by area connectivity. That145

is, flow-connected gauges are characterized by overlapping drainage areas. Unlike Top-kriging,

TopREML does not require information about a spatially random point process, but solely relies on

information measured at the gauges. It uses the inter-centroidal Euclidian distance between drainage

areas of the local flow contributions at each gauge – the isolated drainage areas (IDA) – as a dis-

tance metric to compute streamflow correlation. The underlying assumption is that runoff signatures150

of local flow generation regions that are close to each other (in Euclidian space) are more likely

to be identical. Although TopREML doesn’t require that the characteristics of a point-scale runoff

generation process are known in order to support interpolation (a necessary requirement for Top-

kriging), the existence of such a point process is consistent with the treatment of spatial correlation

in TopREML. To illustrate this consistency, a stylized example relating point-scale runoff genera-155

tion to the existence of a covariance-structure that relates flow-connected gauges is outlined as an

Appendix (Appendix A).

1.4 Paper Outline

We first derive the TopREML estimator and its variance for mass conserving (i.e. linearly aggre-

gated) variables, with extensions to some non-conservative variables (Section 2). We then apply the160

approach in two case studies to evaluate its ability to predict mean runoff and runoff frequency by

comparison to other available interpolation techniques: Sections 3.1 and 4.1 present leave-one-out

cross-validations in Nepal (sparse gauges, significant trends) and Austria (dense gauge network, no

observed trends). In both cases, TopREML performed similarly to the best alternative geostatistical
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method. We then use numerical simulations to illustrate the effect of the two distinguishing features165

of TopREML: its ability to properly predict runoff using highly nested networks of stream gauges

and its ability to properly estimate the prediction variance when accounting for observable features

(Sections 3.2 and 4.2). Finally, we discuss the limits and delineate the context in which TopREML –

and geostatistical methods in general – can successfully be applied to predict streamflow signatures

in ungauged basins (Section 5).170

2 Theory

2.1 Accounting for spatially correlated residuals

Linear models can be used to make predictions about hydrological variables along a network, pro-

vided that the models explicitly address the effects of network structure. A mixed linear model

approach provides a suitable framework for this accounting. In this framework, the effects of ob-175

servable features on the hydrological outcome are assumed to be independent of the network, and

retain their influence independently, as so-called ‘fixed effects’. The role of spatial structure is as-

sumed to lead to correlation specifically in the residuals η. The residuals are split into two parts: (i)

one containing ‘random effects’ u that exhibit spatial correlation along the flow network and (ii) a

remaining, spatially independent, white noise term ε, which does not have any spatial structure. With180

these assumptions, the mixed linear model is written as:

y = X︸︷︷︸
Trends:

Explanatory
variables
(Nxk)

τ︸︷︷︸
Coefficients
(kx1)

+ IN︸︷︷︸
Identity
Matrix

(NxN)

u︸︷︷︸
Correlated

random
effects
(Nx1)

+ ε︸︷︷︸
Residuals,

uncorrelated
errors

(Nx1)

(2)

To proceed, we assume that u and ε (and therefore y) are normally distributed with zero mean

and are independent from each other. The variance associated with ε is denoted σ2, the variance of

u is assumed to be proportional to σ2 according to some ratio, ξ, and finally, u is assumed to have185

a spatial dependence captured by a correlation structure G, which is related to the spatial layout of

gauges along the river network and a distance parameter φ (the correlation range). Thus, the random

effects can be specified as:

 u

ε

∼N
 0

0

 ,σ2

 ξG(φ) 0

0 IN

 (3)

To solve this mixed model, five unknowns must be found: σ2 , ξ, φ, the fixed (τ ) and random (u)190

effects. Once τ and u are known, the empirical best linear unbiased prediction (E-BLUP) of y can

be made at ungauged locations (Lark et al., 2006). The solution strategy adopted here is to prescribe

a parametric form for G(φ), allowing the covariance structure along the network to be specified,
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and the likelihood function for the model to be written in terms of all five unknowns. Identifying

the parameter values that optimize this model thus simultaneously solves for the correlation struc-195

ture, covariance parameters, fixed and random effects. To proceed with the specification of G(φ),

however, the form of the covariance structure that arises along the network needs to be addressed.

2.2 Covariance structure of mass conserving variables

In the linear mixed model framework, the propagation of hydrological variables through the flow

network introduces topological effects into the covariance structure of that variable. Firstly, lin-200

early propagated variables, such as annual specific runoff, are discussed. Nonlinearly-propagating

variables can in some cases be transformed to allow the linear solutions to be used (as outlined in

Section 2.5). Consider a set of streamflow gauges monitoring a watershed as illustrated in Figure 1

(ii). Because of the nested nature of the river network, the catchment area related to any upstream

gauge is entirely included within the area drained by all downstream gauges. To account for the205

network structure, the catchment at any location along a stream can be subdivided into the isolated

drainage areas (IDA) that are monitored for the first time by an upstream gauge. This is illustrated

in Figure 1 (iii), and leads to a subdivision into non-overlapping areas, each associated with the

most upstream gauge that monitors them. In making this subdivision, it is implicitly assumed that

the timescales at which a hydrological variable is propagated in the channel are negligible compared210

with the timescales on which hillslope effects operate (a generally valid assumption for small to

moderately sized watersheds (see D’Odorico and Rigon, 2003)). IDA’s can be associated with both

gauged locations and ungauged locations. In what follows, indices i, j, k, and m are used to refer to

gauged sites, while index n refers to ungauged sites where a prediction is to be made.

With these assumptions, observations of yi made at gauge i can be expressed as a linear combina-215

tion of contributions from the upstream IDAs:

yi =

k∈UPi∑
k=i

aky
′
k (4)

where y′k is the contribution of the IDA related to gauge k (that is, yi is equivalent to y′i only if there

are no gauges upstream of gauge i); UP is the set of isolated drainage areas monitored by gauges

that are located upstream of i; ak =Ak/
∑UP
m=iAm ≤ 1 is the surface area of the drainage area k220

normalized by the total watershed area upstream of gauge i. The covariance between observations

of y made at different gauges can then be expressed as

Cov (yi,yj) = E [yiyj ]−E [yi]E [yj ]

=

k∈UPi∑
k=i

m∈UPj∑
m=j

akamE [y′ky
′
m]−

(
k∈UPi∑
k=i

akE [y
′
k]

)m∈UPj∑
m=j

amE [y′m]


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With E [y′ky
′
m] = Cov (y′ky

′
m)+E [y′k]E [y

′
m], we have225

Cov (yi,yj) =
k∈UPi∑
k=i

m∈UPj∑
m=j

akamCov (y′k,y
′
m) (5)

where Cov (y′k,y
′
m) is the covariance between the contributions of sub-catchments k andm. By sum-

ming over UP in Equation 5 (rather then the complete set of available gauges), the model assumes

no correlation between runoff observed at flow-unconnected gauges.

Here we assume that the area-averaged process y′ is drawn from a second order stationary ran-230

dom process, and that the covariance between y′k and y′m will depend only on the relative position

of sub-catchments m and k, given some specified correlation function ρ(·) of the distance ckm be-

tween the centroids of the two sub catchments (Cressie, 1993). We assume that this function is well

approximated by an exponential function ρ(ckm,φ) = exp(−c/φ). A justification for this assump-

tion, which reproduces the streamflow variances observed in our case studies well (Figure 8), is235

derived for strongly idealized conditions in Appendix A. Finally, because the observations made at

the gauges represent an area-averaged process, the averaging generates a nugget variance σ2 that is

homogenous across observations. The nugget consists of the variance of processes that are spatially

correlated over scales smaller than the sub-catchments (see Appendix A) and of measurement errors

at the gauges.240

With this background, the covariance matrix of y can be expressed as

Cov (yi,yj) = ξσ2
k∈UPi∑
k=i

m∈UPj∑
m=j

akamρ(ckm,φ)+σ2 = σ2 · (ξU [A �R]UT + IN ) (6)

where σ2 = Var (y′k,y
′
k),Ui,j = 1{j ∈ UPi},A= aaT , andRi,j = ρ(ci,j ,φ). [·�·] denotes the element-

by-element matrix multiplication. The matrix G describing the correlation between the random ef-

fects in Equation 3 is finally245

G(φ) = U [A �R(φ)]UT (7)

The topology of the network is described by the matrix U , which ensures that only those catchments

that are on the same sub-network (upstream or downstream) of the considered gauge are utilized in

the determination of the covariance of y. This spatial constraint comes at the expense of neglecting

potential correlations with neighboring catchments that are not flow-connected, and the effects of250

this tradeoff are investigated in the Monte Carlo experiment described in Section 3.2. The effect of

spatial proximity is addressed by use of the Euclidian distance between catchment centroids (matrix

R), and the effect of scale is accounted for by weighting by the catchment area of the IDAs (matrix

A).
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2.3 REML estimation255

The restricted maximum likelihood approach partitions the likelihood of y ∼N
(
Xτ,σ2(ξG+ IN )

)
into two parts, one of which is independent of τ (Corbeil and Searle, 1976). This allows the determi-

nation of fixed effects and the variance parameters of the model (here σ2, φ and ξ) to be undertaken

separately. The variance parameters are then estimated by maximizing the restricted log likelihood

expression (Gilmour et al., 1995)

λR(σ
2,φ,ξ) =−1

2

(
logdet

(
XTH−1X

)
+ logdet(H))+ ν logσ2 +

1

σ2
yTPy

)
where det(·) is the matrix determinant operator, ν =N−k,H = IN+ξG, andP = IN−WK−1WT ,

W = [X : IN ] and R is the correlation matrix in Equation 7, and K is the block matrix:

K =

 XTX XT

X IN + ξ−1G−1


The REML estimators σ̂2 and φ̂ that maximize λR can be obtained through numerical optimization.

2.4 E-BLUP and prediction variance at ungauged catchments

Once the variance components φ̂ and ξ̂ are estimated, the fixed effect coefficients τ̂ and the random

effects ũ can be obtained by solving the linear system (Henderson, 1975):

K(φ̂, ξ̂)

 τ̂

ũ

=

 Xy

y

 (8)260

The empirical best linear unbiased prediction of ỹn at an ungauged site n can be computed by

summing the fixed and random effect predictions (Lark et al., 2006)

ỹn = xTn τ̂ + ũn = xnτ̂ + gTnG
−1ũ (9)

where xn is the vector of fixed covariates at ungauged site n, gn a correlation vector between site

n and each gauge; given φ̂, gn can be readily obtained from the relative position of site n and the265

gauges in the river network.

The variance of the TopREML prediction error can be expressed as

Var (ỹn− yn) = Var
(
xTn (τ̂ − τ)+ gTnG

−1(ũ−u)
)

= xTnVar (τ̂ − τ)xn+ gTnG
−1Var (ũ−u)G−1gn+2xTnCov (ũ−u, τ̂ − τ)G−1gn

(10)

The covariance matrix of the error on τ and u in Equation 10 can be expressed as a function of the270

inverted model matrix K (Lark et al., 2006):

Cov

 τ̂ − τ
ũ−u

= σ2K−1 (11)
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This provides:

Var (ỹn− yn)− = σ2
(
xTnK

−1
11 xn+ gTnG

−1K−122 G
−1gn+2xTnK

−1
12 G

−1gn
)

(12)

Where K−111 , K−122 , K−112 are k× k, N ×N and k×N partitions of the inverted K matrix. If ε is275

an error that is truly iid and does not affect the true value of yn (e.g., measurement errors), then

Equation 12 corresponds to the mean square error of the TopREML prediction of yn. If, by contrast,

ε represents random variations of the true value of yn that are correlated over short distances (and

so do not appear correlated in our data), then ε should be included in Equation 10 and the prediction

variance becomes280

Var (ỹn− yn)+ = Var (ỹn− yn)−+σ2, (13)

because ε and u are independent. In reality ε is likely composed of both spatially correlated and iid

error components and the true variance will be somewhere between these two bounds (Lark et al.,

2006).

2.5 Application to non-conservative variables285

Unlike mean specific runoff, numerous streamflow signatures (e.g., runoff frequency or descriptors

of the recession behavior) are non-conservative and cannot be expressed as linear combinations of

their values in upstream sub-catchments. In such conditions the derivations in section 2.2 cannot be

applied and the correlation structure in Equation 7 will lead to biased REML predictions. The effect

of the network structure on streamflow can nonetheless be accounted if the non-linearities can be290

neglected or eliminated through algebraic transformations.

For instance, runoff frequency λ is defined as the probability, on daily timescales, that a gauge

will record a positive increment in streamflow (Botter et al., 2007; Müller et al., 2014). Provided

all sub basins are large enough to significantly contribute to streamflow, a runoff pulse at any of

the upstream sub-basins causes a streamflow increase at the gauge. Therefore runoff frequency does295

not scale linearly through the river network. It can nonetheless be shown (see Appendix B) that if

runoff pulses occur independently for each sub-basin, the logarithm of the complement to runoff

probability (i.e. ln(1−λ)) propagates linearly throughout the network enabling the application of

TopREML to predict runoff probability at ungauged catchments.

A similar reasoning can be applied to predict recession parameters. For example, the exponential300

function Q(t) =Q0exp(−krt) is a widely used approach to model base flow recession, where Q(t)

is the discharge at time t, Q0 the peak discharge, and kr the recession constant which can be con-

sidered to represent the inverse of the average response time in storage (Wittenberg and Sivapalan,

1999). Because expected values scale linearly, the average response time at a gauge can be modeled

as a linear combination of the mean response times of the upstream IDAs. Therefore, although reces-305

sion constants themselves do not propagate linearly, their value in ungauged basins can be estimated

by taking the inverse of TopREML predictions of average response times.
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2.6 Implementation

The computational implementation of TopREML in R (R Core Team, 2008) is described in Ap-

pendix C and an operational script is provided as a supplement to this manuscript. To run the script,310

two vector datasets (e.g., ESRI Shapefiles) are needed as inputs – one containing the catchments

where runoff is available and another containing the basins where predictions are to be made. Catch-

ment polygons and explanatory and predicted variables must be provided as attributes of the vector

polygons. The way in which the catchment polygons are nested provides the topology of the stream

network. TopREML uses the BFGS algorithm (Wright and Nocedal, 1999) to maximize the restricted315

log likelihood, though stochastic algorithms are required if a non-differentiable (e.g., spherical) co-

variance function is selected. The selection of initial values for σ2, φ and ξ is a key user input

that may affect the performance of optimization algorithms by causing them to converge to a lo-

cal extrema. We found that initial values of [σ2
0 ,φ0, ξ0] = [σ2

LM ,E [ckm] ,1] worked well in our case

studies, with σ2
LM the variance of the OLS residuals of the linear model and E [ckm] the average320

distance between IDA centroids.

3 Methods

3.1 Case studies

Observed streamflow data are used to evaluate the ability of TopREML to predict streamflow sig-

natures in ungauged basins. The assessment is based on leave-one-out cross validations, where the325

tested model is applied to predict runoff at one basin based on observations from all the other basins.

After predicting runoff at all available basins in that manner, the model is evaluated based on its

mean absolute prediction error. Streamflow variables from 57 catchments in Upper Austria (Skøien

et al., 2014) and 52 catchments in Nepal (Department of Hydrology and Meteorology, 2011) are

used in two separate leave-one-out analyses. The location of the gauges is shown in Figure 3, and330

Table 2 provides a summary of relevant catchment characteristics. Further details on the datasets are

provided in Skøien et al. (2014) for Austria and Müller et al. (2014) in Nepal. The two regions differ

significantly with respect to gauge density (high in Austria and low in Nepal) and in the nature of

the runoff signature and observable features. The Nepalese datasets provides specific runoff and wet

season runoff frequency, as well as gauge elevation and bias-adjusted annual rainfall derived from335

the Tropical Rainfall Measurement Mission 3B42v7 dataset (Müller and Thompson, 2013). Gauge

elevation and annual rainfall are used as observable features for specific runoff (Chalise et al., 2003).

The Austrian dataset was directly taken from the rtop package (Skøien et al., 2014), where mean

summer runoff observations are provided to demonstrate Top-kriging. The Austrian dataset did not

contain additional observable features and previous studies have found spatial proximity to be a sig-340

nificantly better predictor of runoff than catchment attributes in Austria (Merz and Blöschl, 2005).
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The predictive ability of TopREML was evaluated on (a) specific annual runoff in Nepal, (b) wet

season runoff frequency in Nepal and (c) average summer streamflow in Austria. The performance

of TopREML (TR) was compared to five other widely used regionalization methods: sample mean

(LM0), linear regression (LM ), universal kriging (UK) and Top-kriging (TK). As shown in Table345

1, these methods cover a wide spectrum of incrementally specific assumptions and comparing them

provides an assessment of the value added by increased model complexity for regionalization of

these streamflow parameters. Code to implement all four methods is readily available in R, with

dedicated packages available for Top-kriging – rtop – and universal kriging – gstat (Pebesma, 2004).

3.2 Numerical Simulations350

3.2.1 Network Effects

Conventional geostatistical methods predict runoff by weighing observations from surrounding basins

based on their geographic distance. TopREML also incorporates the topology of the stream network

by including or excluding basins based on their flow-connectedness. This adds topological infor-

mation to the determination of the covariance structure of runoff, at the expense of discarding in-355

formation that could be derived from correlations between spatially proximate regions that are not

connected to the gauge of interest by a flow path. Assessing the net benefits of accounting for net-

work effects requires being able to control the topology of the network, and thus requires numerical

simulations. A series of Monte Carlo experiments as described in Figure 4 were run to simulate

network complexity by varying the number of flow-connected basins that are within (Ninner) and360

beyond (Nouter) the predefined spatial auto-correlation range of the randomly generated runoff. A

non-topological geostatistical method like universal kriging would include all basins within and ex-

clude all basins beyond the spatial auto-correlation range. We expect TopREML to outperform uni-

versal kriging when the number of flow-connected basins beyond the autocorrelation range increases

and the number of connected basins within the autocorrelation range decreases.365

3.2.2 Variance Estimation and Observable Features.

A key advantage of the Reduced Maximum Likelihood framework is its ability to avoid the down-

ward bias in the covariance function that affects kriging-based methods (including Top-kriging)

when external trend coefficients are simultaneously estimated. This bias particularly affects the pre-

diction of the variance. Again, empirical cross validation analysis does not allow an assessment of370

this bias, because the observation datasets used contained only one observation per location. Numer-

ical simulations, however, allow many realizations of the underlying stochastic process to be made

at each location, and thus allow the prediction variance to be compared with the numerical variance.

We evaluate TopREML’s ability to predict variances (and therefore evaluate prediction uncertain-

ties) at ungauged locations using the Monte Carlo procedure on the synthetic catchments described375
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in Figure 4. We construct the observed prediction uncertainty by taking the standard deviation of

the prediction errors across all 1000 Monte Carlo runs and compare it to the square root of the me-

dian predicted variance. The external trend is omitted from the model specification (i.e. it is not

observed) in a first experiment, and explicitly included in the model in the second experiment. We

compare TopREML and Top-kriging based on their ability to model prediction variance. We expect380

TopREML to provide a better estimate of the variance than Top-kriging when accounting for observ-

able features. Because the trend is spatially correlated, omitting it in the model specification adds

a significant spatially correlated component to the error and Equation 13 should be used to predict

the variance. Conversely, including a trend in the model will cause the remaining error to mostly

consists of (spatially uncorrelated) residuals so in this case Equation 12 is used.385

4 Results

4.1 Case Studies

Basin-level predictions of the considered signatures are presented in Figure 5 for the three cross

validation analyses described in Section 3.1. Figure 5 also provides box plots summarizing the dis-

tribution of the ensuing cross validation errors. In the three analyses, the prediction errors related to390

TopREML were comparable to the best alternate method: a linear model for annual specific runoff

(Nepal) and Top-kriging for runoff frequency (Nepal)) and summer runoff (Austria).

Figure 5 (a) presents results for annual specific runoff in Nepal and shows that observable features

play a significant role in the prediction of runoff. The linear model showed a highly significant ef-

fect of annual precipitation (τ̂ (LM)
yearlyPrecip = 0.99, t-stat: 9.1) a moderately significant effect of altitude395

(τ̂ (LM)
meanElev = 0.39, t-stat: 2.5) and an overall fit of R2 = 0.63. The positive sign of the altitude coef-

ficient can be attributed to the effects of glacial melt on runoff, which are more significant at higher

altitudes, while the average effect of evapotranspiration explains the negative and noisy intercept of

-313 mm/y. While including rainfall and altitude in the model decreased the median absolute error

by 43% (LM to LM0), further increasing the complexity of the model by allowing for spatial (UK)400

and topological effects (TK and TR) did not improve the predictive performance: residuals from the

linear regression appeared to be correlated at a range shorter than the distance between the gauges

in Nepal. Indeed, fitting the empirical semivariograms with exponential functions revealed spatial

correlation ranges that were on the order of the mean distance between IDA centroids for annual

streamflow (21.6 km), and significantly below that distance (7.0 km) for the regression residuals.405

Nonetheless, the lack of parsimony of TopREML did not appear to affect its predictive performance,

which almost perfectly reproduced the performance of the linear model – the most parsimonious

method.

In contrast, the analysis revealed significant spatial effects for both runoff frequency in Nepal,

which has a much larger spatial correlation range than annual streamflow (426 km – presumably410
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set by meteorology and the correlation range of storm events (Müller and Thompson, 2013)), and

summer average streamflow in Austria, which has a range of 19.1km but is sampled by a much

higher density of streamflow gauges than in Nepal. Allowing for spatial correlation in the residuals

(UK) decreased the median absolute error by 11% compared to the linear model (LM ) for runoff

frequency in Nepal and 31% for summer runoff in Austria. Accounting for topological effects further415

reduced errors by 33% (runoff frequency) and 40% (summer runoff) for both TopREML and Top-

kriging methods.

4.2 Numerical Simulation

Results from the Monte Carlo analysis are presented in Figure 6, showing the outcomes of the two

numerical experiments described in section 3.2.420

Figure 6 (a) and (b) shows the effect of network complexity on the performance of TopREML

relative to the baseline performance of universal kriging. This effect is measured as the difference in

the relative errors of the two methods as a function of Nouter, the ratio of basins beyond the spatial

correlation range of runoff that are flow-connected, and Ninner, the ratio of basins within range that

are not flow-connected. The effect is expected to increase with Nouter and decrease with Ninner,425

reaching zero when 100% of observed basins lie within the spatial correlation range and 0% of the

basins beyond the range are flow-connected. In that case (not shown in the figure), TopREML and

universal kriging perform similarly and the mean difference in the relative error of the two methods

is zero. Figure 6 (a) shows that the relative performance of TopREML improves with the num-

ber of flow-connected catchments that are located beyond the spatial correlation range, and which430

are therefore not properly accounted for by universal kriging. Conversely, Figure 6 (b) shows that

the relative performance of TopREML decreases with decreasing network effects within the spatial

correlation range. A linear regression of the relative performance of TopREML against Nouter and

Ninner showed that both trends are significant and in the expected direction. However, the positive

coefficient associated to Nouter (9.1, t-stat: 11.9) is larger in absolute value and more statistically435

significant than the negative coefficient associated to Ninner (-2.6, t-stat: -2.6), which suggests that

the benefits of including distant flow-connected basins outweigh the costs of discarding nearby (but

unconnected) IDAs.

In Figure 6 (c), the Monte Carlo analysis showed that model uncertainty is well predicted by

TopREML and strongly underestimated by Top-kriging, both with and without considering an exter-440

nal trend. Including a trend in the model reduces the prediction variance of TopREML – this effect

is expected because the variance explained by the trend is no longer included in the modeling error

ε. The decrease in the prediction variance is well modeled by TopREML, which predicts the observe

model uncertainty almost exactly.
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5 Discussion445

5.1 Performance of TopREML

Cross validation outcomes suggest that TopREML is an attractive operational tool for predicting

streamflow in ungauged basins. The method performs as well as the best alternative approach in the

prediction of the considered runoff signatures in Nepal and Austria, and significantly outperforms

Top-kriging in the prediction of modeling uncertainties in the numerical analysis.Two distinguishing450

features of TopREML are responsible for these encouraging results. First, TopREML incorporates

the topology of the stream network by restricting correlations to runoff observed at flow-connected

catchments. This allows TopREML to explicitly model the higher correlation in streamflow antici-

pated along channels, but comes at the expense of discarding correlations with neighboring, but not

flow-connected catchments. Such correlations can, for instance, be driven by large scale weather pat-455

terns. This tradeoff was investigated in a Monte Carlo analysis showing that modeling performance

increases more rapidly when including distant flow-connected basins (slope in Figure 6 (a)), than

it decreases when discarding nearby unconnected basins (slope in Figure 6 (b)). Further, empirical

correlograms of Austrian summer runoff (Figure 2) reveal significantly lower and shorter-ranged

spatial correlations when basins are not flow-connected. Both results suggest that the benefit of ac-460

counting for network effects on correlations outweighs the cost of losing some information on the

correlation between unconnected basins. Second, the Restricted Maximum Likelihood framework

provides an unbiased estimation of variance parameters, even when accounting for observable fea-

tures. This allows TopREML to accurately predict modeling uncertainties even for highly trended

and autocorrelated runoff signatures, as visible in the Monte Carlo analysis presented on Figure 6465

(c). By contrast, the expected downward bias in the kriging estimation of partial sills (Cressie, 1993)

is clearly visible in the underestimation of prediction uncertainties by the Top-kriging method.

TopREML also has considerably lower computational requirements than Top-Kriging, both in

terms of input data and optimization complexity. Unlike Top-kriging, where watershed polygons are

necessary inputs for the regularization procedure, vectors are not fundamentally indispensable for470

TopREML. Indeed, TopREML does not rely on a distributed point process but assumes homogenous

IDAs. It follows that its only fundamental data requirement is a table (i.e. a data.frame) of IDAs

displaying the observed regionalization variable and the area, centroid coordinates and network po-

sition (i.e. own ID and downstream ID) of the IDA. When considering runtime, both methods rely

on numerical optimization, but Top-Kriging uses it to back-calculate the point semi-variogram in475

its regularization procedure. This may substantially increase the dimensionality of the optimization

task, depending on the grid resolution chosen for the discretization of the catchment areas, which

in turn has a highly significant effect on prediction performances (Skøien et al., 2006). By con-

trast, the dimensionality of the optimization in TopREML is driven by the number of catchments,

not an arbitrary grid. More importantly, TopREML admits a well- defined objective function, the480
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restricted likelihood, that is differentiable if the selected variogram function is differentiable. This

allows gradient optimization methods to be used, which are much less computationally intensive

than the stochastic algorithm required by Top-kriging. The resampling analysis shown in Appendix

C suggests that TopREML reduces the computation runtime by an order of magnitude, relative to

the implementation of Top-kriging in the rtop package, for comparable prediction performances.485

Despite these encouraging results, TopREML is subject to stringent linearity assumptions on the

nature of the regionalized runoff signature. The predicted variable should aggregate linearly both on

hillslope surfaces and at channel junctions that are subject to mass conservation. This limitation also

affects block-kriging aproaches, as pointed out by Skøien et al. (2006), who suggest that Top-kriging

can still be applied, in an approximate way on non-conservative variables. Here we assert that hy-490

drologic arguments can be used to convert some non-conservative variables into linearly aggregating

processes using simple algebraic transformations. This theoretically more robust approach was here

successfully tested in a cross-validation analysis of runoff frequency in Nepal.

5.2 Model selection

The regionalization methods assessed in the cross validation analysis range from simple linear re-495

gressions with strong independence assumptions, to complex geostatistical methods that allow for

both spatial and topological correlations. Results indicate that while complex methods perform best

in general, there seems to be a threshold, beyond which increasing the complexity of the statistical

method does not significantly improve the prediction performance: while a linear model is better

than a simple average for the prediction of annual streamflow in Nepal (Figure 5 (a)), accounting for500

spatial (UK) and topological (TR) correlation does not further improve predictions. In that situation,

parsimony prescribes selecting the least complex of the best performing methods.

Under these conditions, the selection of the optimal method is driven by the interplay between the

layout of the gauges and the spatial correlation range of the considered runoff signature. A dense net-

work of flow gauges is necessary for geostatistical methods to properly estimate the semivariogram505

and improve on predictions from linear regressions – the case studies suggest that the mean distance

between the gauges must be on the order of half the spatial correlation range of the runoff signature.

Sparser gauge densities do not allow geostatistical methods to capture spatial correlations and their

prediction is effectively driven by the deterministic components of the model, i.e. the intercept and

(when available) observable features.510

An interesting tradeoff arises if observable features are themselves spatially correlated and ex-

plain a significant part of the spatial correlation of the predicted variable. Including these observable

features in the model reduces the correlation scale of the residuals, possibly crossing the threshold

below which geostatistics are not the most parsimonious approach. In Nepal, controlling for rainfall

reduced the spatial correlation range of annual streamflow from 21.6 km to 7 km – well below the515

mean distance between the gauges (13.9 km). In that case there is a tradeoff between relying on
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observable features or variance information to make a prediction, and parsimony and stationarity

considerations come into play when selecting the regionalization model. For instance, while parsi-

mony generally prescribes the use of observable features, a climate may be less stationary – and

therefore a less reliable external trend – than embedded geology or geomorphology.520

In general, geostatistical approaches improve on the prediction of ungauged basins if the distance

between the stream gauges is significantly smaller than the spatial correlation scale of runoff. Fa-

vorable areas are characterized by high drainage densities or localized rainfall, in addition to a high

density of streamflow gauges. All three variables are highly heterogeneously distributed at a global

scale, as seen on Figure 7. The multiplicity of local settings likely explains the large diversity of ex-525

isting regionalization methods and suggests that the selection of the optimal regionalization approach

has to be made locally.

Lastly, the decreasing returns to improvements in the complexity of the model also suggest that

the performance of statistical methods for PUB is ultimately bounded by the spatial heterogeneity of

runoff generating processes. Statistical methods resolve parts of that heterogeneity using the spatial530

distribution of observable features (linear regressions) and/or based on the analysis of the variance

of a sample of the predicted variable (geostatistics). Yet very important parts of the hydrological

activity related to storage and flow path characteristics take place underground: they cannot be ob-

served and included in the statistical models (Gupta et al., 2013). This residual spatial heterogeneity

can utlimately only be resolved through a better understanding of the particular catchment processes535

governing runoff in the considered region. Approaches coupling statistical regionalization with pro-

cess based models that assimilate both a conceptual understanding of catchment scale processes and

the random nature of runoff (e.g., Botter et al. (2007); Schaefli et al. (2013); Müller et al. (2014)) are

particularly promising.

6 Conclusions540

We introduced TopREML as a method to predict runoff signatures in ungauged basins. The approach

takes into account the spatially correlated nature of runoff and the nested character of streamflow

networks. Unlike kriging approaches, the restricted maximum likelihood (REML) estimators provide

the best linear unbiased predictor (BLUP) of both the predicted variable and the associated prediction

uncertainty, even when incorporating observable features in the model.545

The method was successfully tested in cross validation analyses on mass conserving (mean stream-

flow) and non-conservative (runoff frequency) runoff signatures in Nepal (sparsely gauged) and Aus-

tria (densely gauged), where it matched the performance of the best alternative method: Top-kriging

in Austria and linear regression in Nepal. TopREML outperformed Top-kriging in the prediction of

uncertainty in Monte Carlo simulations and its performance is robust to the inclusion of observable550

features.
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TopREML’s ability to combine deterministic (observable features) and stochastic (covariance)

information to generate a BLUP makes it a particularly versatile method that can readily be applied

in densely gauged basins, where it takes advantage of spatial covariance information, as well as

data-scarce regions, where it can rely on covariates with spatial distributions that are increasingly555

observable thanks to remote sensing technology. This flexibility, along with its ability to provide a

reliable estimate of the prediction uncertainty, offer considerable scope to use this computationally

inexpensive method for practical PUB applications.

Appendix A: Covariance of a spatially averaged process

The aim of this analysis is to explore the likely forms of a correlation structure between spatially560

aggregated processes, given that the underlying point-scale processes are also spatially correlated. In

order to maintain tractability, the analysis will consider a strongly idealized case. While we anticipate

deviations from the results in non-ideal situations, we nontheless interpret this idealized analysis as

offering insight that constrains the choice of correlation function in the TopREML analysis.

Assuming that the underlying point-scale process Y is conservative, the aggregated process y′k
related to the subcatchment Sk of gauge k can be expressed as:

y′k =
1

Ak

∫
Sk

Y (x)dx

where Ak is the area of Sk.565

To proceed, we make the assumption that the area of the drainage areas Sk are approximately

equal. While this is a strong constraint, under situations where gauges are placed near confluences

and where subcatchments for a given stream ratio are adequately monitored by the gauge network,

Horton Scaling ensures that the drainage areas are of a similar order of magnitude. Thus, we will

take (Ak =A∀k). The subcatchments are further assumed to have similar shapes and (by definition)570

do not overlap.

Following Cressie (1993) (p. 68), the covariance between two aggregated random variables y′k
and y′m is expressed as a function of the covariogram CP (·) of the underlying point-scale process:

Cov (y′k,y
′
m) =

1

A2

∫
Sk

∫
Sm

CP (| x2−x1 |)dx1dx2 =
∞∫
0

ν(D)CP (D)dD (A1)

where Sk and Sm are the surfaces of subcatchments k and m, and ν(D) is the probability density575

function of the distance between randomly chosen points within Sk and Sm – two identical and

non-overlapping shapes. Analytical expressions for ν(D) can be derived for simple geometries (e.g.

Mathai, 1999), although complex algebraic expressions typically result. For analytical tractability
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we adopt a simplified expression:

ν(D) =

a0exp(−aDD+ acc) if c−D1 ≤D ≤ c+D2

0 otherwise
(A2)580

which approximates distance frequency function of adjacent elliptical subcatchments, as shown in

Figure 8. In equation A2 the parameters a0, aD > ac, D1 and D2 are positive functions of A, and c

is the distance between the centroids of the subcatchments.

We also assume that the underlying point-scale process is second-order stationary and follows an

exponential correlation function:585

CP (D) = σ2
pexp(−apD) (A3)

where σ2
p and ap are respectively the point variance and spatial range of the process.

Inserting Equations A2 and A3 into Equation A1 allows the covariance of the two spatially ag-

gregated random variables to also be expressed as an exponential function of the distance c between

their supports

CA(c) = ξσ2exp(−φc)

where ξσ2 =
σ2
pa0

ap+aD
[exp(apD2 + aDD2)− exp(−apD1− aDD1)]> 0 and φ= ap+aD−ac > 0.

This exponential form was adopted in the covariance derivation in the main text.

We note that within this analysis, the spatial aggregation of the point-scale process creates a nugget590

variance arising from spatial correlation scales smaller than the subcatchments. The nugget variance

can be derived (for this idealized case) by considering the average covariance of points within the

catchments:

Cov (y′k,y
′
k) =

1

A2

∫
Sk

∫
Sk

CP (| x2−x1 |)dx1dx2 =
∞∫
0

ν0(D)CP (D)dD (A4)

where ν0(D) now represents the pdf of the distance between two randomly selected points within595

Sk:

ν(D) =

a0exp(−aDD) if 0≤D ≤D0

0 otherwise
(A5)

where D0 is the maximum distance between two points within Sk. Again, inserting Equations A5

and A3 into Equation A4, we get the nugget variance resulting from spatial aggregation:

CA,0 =
σ2
pa0

ap+ aD
[1− exp(−apD0− aDD0)]
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Therefore, under the aforementioned assumptions, catchment scale variance parameters σ2 and ξ in

Equation 6 can be expressed in terms of point scale parameters:

σ2 =
σ2
pa0

ap+ aD
[1− exp(−apD0− aDD0)]600

ξ =
exp(apD2 + aDD2)− exp(−apD1− aDD1)

1− exp(−apD0− aDD0)

Appendix B: Propagation of runoff frequency in a stream network

We describe runoff occurrence as a binary random variable taking the value of 1 if an increase

in daily streamflow occurs and 0 otherwise. If runoff events are uncorrelated in time, the random

variable follows a Bernouilli distribution with frequency λ. At a given gauge on a given day, the605

random variable takes a value of 0 if all of the upstream gauges take a value of 0.

In a simple situation with two upstream sub-basins described by the random variables X and Y ,

the frequency PZ of the random variable Z =max(X,Y ) can be described as:

1−PZ = P!X,!Y = P!XP!Y |!X = P!X(1−PY |!X) = (1−PX)(1−PY |!X)

where !X stands for the event X = 0. Applying the law of total probabilities to substitute PY |!X
gives:

1−PZ = (1−PX)

(
1−

PY −PXPY |X
1−PX

)
The covariance of X and Y can be derived as:

Cov (X,Y ) = E [XY ]−E [X]E [Y ] = PXPY |X −PXPY

with E [XY ] = 0·P!X,!Y +0·P!X,Y +0·PX,!Y +1·PX,Y = PXPY |X . Finally, substituting PXPY |X
for the covariance expression, yields:

1−PZ = (1−PX)

(
1− PY − [Cov (X,Y )+PXPY ]

1−PX

)
= (1−PX)(1−PY )+Cov (X,Y )

Extending the above derivation to multiple sub-basins and neglecting the covariance term leads

to a linear relation between runoff frequencies at gauge i and at upstream gauges in the following

form:

ln(1−λi)≈
k∈UPi∑
k=i

ln(1−λk)

Thus, if runoff pulses occur independently for each sub-basin, TopREML can be applied to ln(1−610

λ) (setting ak = 1), to estimate runoff frequency at ungauged sites.
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Appendix C: Computational Performance of TopREML

An algorithmic chart of TopREML, as implemented in the provided script, is presented in Figure

9. IDAs and the topology of the stream network are extracted from the nested catchment using

differential overlay. TopREML uses the BFGS algorithm (Wright and Nocedal, 1999) to maximize615

the restricted likelihood, with the option of using a stochastic optimization algorithm (Simulated

Annealing, (Belisle, 1992)) if a non-differentiable (e.g., spherical) covariance function is selected.

A resampling analysis was performed on Austrian dataset to evaluate the runtime and predictive

performance of each method as a function of the topological complexity of the considered region (as

proxied by the size of the considered sample of gauges) and the considered semi-variogram model.620

We randomly selected one validation gauge, and resampled the remaining gauges randomly (no rep-

etition) to obtain the chosen sample size. The resampled gauges were used to estimate summer flow

at the validation gauges using TopREML and Top-kriging, and successively assuming an exponen-

tial (differentiable) and a spherical (non-differentiable) variogram. In each case, relative error and

runtime were recorded. This process was repeated 200 times for each sample size. Results (shown625

in Figure 10) indicate that the gradient-based optimization algorithm used by TopREML for the dif-

ferentiable (i.e. exponential) variogram reduces the computation runtime by an order of magnitude,

relative to the implementation of Top-Kriging in the rtop package. This computational advantage

vanishes if a non-differentiable (i.e. spherical) variogram must be used, which requires stochastic

optimization. The results also indicate that the relative computational performance of TopREML630

improves with the number of gauges, while its predictive performance remains constant and approx-

imately equivalent to Top-kriging.
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Figure 1. Conceptual flow propagation model. (i) Runoff is generated continuously by a spatially distributed

point process and drained to the stream network. (ii) When monitored by stream gauges, runoff is spatially

integrated over the corresponding catchment and temporally averaged at the chosen observation frequency

(e.g., daily streamflow). (iii) The model conceptualizes the catchments as isolated drainage areas (A’, B’, and

C’) representing the local runoff contribution to each gauge. The flow actually measured at each gauge is the

sum of the upstream isolated drainage areas.
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Figure 2. Empirical correlograms of the mean specific summer flow recorded at the 57 gauges of the Austrian

dataset. Distance has a different effect on the correlation between flow-connected (black circles) and flow-

unconnected (white triangles) gauges. Both correlograms are well fitted by an exponential function but the

spatial correlation range doubles when gauges are flow connected. Both empirical correlograms are constructed

using 5km bins.
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Figure 3. Location of the gauges and related catchments included in the cross validation analyses in Upper

Austria (a) and Nepal (b). Coloring is semi-transparent to emphasize overlapping catchment areas. Dark colors

represent upstream catchments, which runoff is monitored by many gauges. downstream. Light colors represent

downstream catchments with only few downstream gauges to monitor runoff.

Table 1. Taxonomy of the compared regionalization approaches.

Explanatory Spatial Network Unbiased

Variables Covariance Topology Variance

Sample mean

Linear regression X

Universal kriging X X

Top-kriging X X X

TopREML X X X X

Table 2. Catchment characteristics of the case studies.

N Q λ A c Dpt Py zg

Nepal 52 1660 0.42 2121 13.9 10 1683 320

(1062, 2228) (0.40, 0.46) (513, 5267) (9.2, 25.2) (1482, 1909) (507, 750)

Austria 57 0.68 68 4.5 8

(0.42,1.43) (44, 136) (3.9, 6.3)

N is the number of catchments;Q the specific runoff [mm/y] in Nepal and the mean summer streamflow [m3/s] in Austria; λ is the rainy

season runoff frequency (d−1) in Nepal;A the catchment area in km2; c the distance in km between the centroids of isolated drainage areas;

Dpt the depth of the stream network graph (i.e. the maximum number of flow-connected gauges); Py the annual rainfall inmm given by

TRMM over Nepal and adjusted according to (Müller and Thompson, 2013); zg is the gauge elevation in meters above sea level. Median values

are provided with 25th and 75th quantiles in parenthesis.
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Figure 4. Monte Carlo generation procedure: (i) a spatially correlated gaussian field with an exponential co-

variance function (mean=30 , partial sill=8, nugget=2, range=3) is generated along a 7×7 irregular grid. The

central pixel (in black) represents the downstream-most catchment, where runoff is to be predicted. Among

the remaining pixels, 24 inner isolated drainage areas (IDA) are within a radius of one spatial correlation range

(dashed circle) of the central pixel, and 24 outer pixels are beyond that radius. (ii) A predefined number of inner

and outer pixels are randomly selected as part of the set of catchments that are flow-connected to the central

pixel. In the figure, all 24 inner pixels and 12 outer pixels are selected and form the flow catchment outlined

with a thick black line. (iii) A tree graph is randomly generated (grey arrows) with its trunk at the prediction

pixel and branches passing through all the flow connected pixels. The random field generated in step one is

aggregated along the tree by summing the value of all lower order branches at each confluence. (iv) A new

spatially correlated field (mean=1, partial sill=0.15, nugget=0, range=0.5) is generated at each pixel – that is

the observed trend. The trend is multiplied by a predefined trend coefficient (τ=10) and added to the aggregated

runoff at each pixel – that is the observed runoff. (v) Based on the observed runoff and (if applicable) trend at

the 48 non-central pixels, TopREML and the compared baseline method (Top-kriging or universal kriging) are

used to predict runoff at the central pixel. Prediction errors are recorded and the procedure repeated 1000 times

to get the mean and variance of the errors.
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Figure 5. Results of the comparative cross validation analyses of (a) specific runoff and (b) wet season runoff

frequency in Nepal, and (c) mean summer streamflow in Austria. First row: Box plots with the quartiles and

95% confidence intervals around the median of leave-one-out (LOO) absolute prediction errors. Compared

models are TopREML (TR), Top-kriging (TK), universal kriging (UK), linear regression models (LM) and the

sample mean (LM0). Note that without observable trends ((b) and (c)), LM and LM0 are equivalent. Second

row: Catchment level performance of TopREML. Signatures predicted by TopREML for each catchment in the

leave-one-out crossvalidation analysis are plotted against the corresponding observed signature. Diagonal lines

(x=y) representing perfect fit are also displayed for indicative purposes.
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Figure 6. Results of the Monte Carlo experiments. Subfigures (a) and (b) display the effect of network com-

plexity on the performance of TopREML relative to universal kriging. Network complexity is given as the ratio

of basins beyond (Nouter) and within (Ninner) the spatial correlation range that are flow-connected – minimum

network complexity is modeled when no basins beyond and all basins within the range are flow-connected.

Relative performance is computed at each Monte Carlo run as the difference in relative prediction errors be-

tween universal kriging and TopREML (i.e. RE[UK]−RE[TR] on subfigures (a) and (b)). The graphs display

the expectation and standard deviation of that difference over the 1000 Monte Carlo runs. Subfigure (c) presents

the observed (grey boxes) and predicted (black error bars) standard deviation on the prediction errors for Top-

kriging (TK) and TopREML (TR). Note that the slight downward biases that appear on the graph remain below

1% of the expected value of the predicted outcome.
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Figure 7. Global distribution of factors affecting model selection. (a) Spatial repartition of the 8540 stream

gauges indexed by the Global Runoff Data Center (Global Runoff Data Center, 2014). (b) Dominant rainfall

type: orographic rainfall are assumed to occur in mountains, as defined by the United Nations Environment

Programme (WCM, 2000), and have a typical range of of 1-10km (Anders et al., 2006). Convective rainfall

are assumed dominant in region with a high frequency of lighting strikes (≥ 10/km2yr−1) as recorded by the

TRMM satellite (LIS, 2011) and have a typical scale of 10-100km (Bosch et al., 1999; Smith et al., 2005).

Frontal precipitations are assumed dominant in the remaining regions and have a typical scale in excess of

100km (Bosch et al., 1999; Xu et al., 2014). (c) Drainage density is estimated based on the DEM-based Hydro1k

dataset (Hyd, 2004), using 154 large basins (Wot, 2003) as units of analysis. Drainage densities are displayed

in three classes: low (0.01− 0.025km−1), medium (0.025− 0.027km−1) and high (> 0.027km−1).
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Figure 8. The pdfs assumed in Equations A5 and A2 represent well the case of adjacent ellipsoidal watersheds

illustrated in subfigure (a). Subfigure (b) displays the histogram of distance between two random points within

a watershed, overlaid by a plot of Equation A5 with a0 = 3 and aD = 1/3. Subfigure (c) displays the histogram

of distance between one random point on each watershed, overlaid by a plot of Equation A2 with ac = 1/3.
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Figure 9. Algorithmic chart of the provided TopREML implementation. Dashed frames and arrows represent

vector data and operations and the bold arrow represents the step requiring numerical optimization. The com-

plexity of the computational tasks represented by the remaining plain arrows is driven by matrix inversion,

which is of polynomial complexity. In the figure, X is a matrix of observed covariates and y a vector of out-

comes measured at the available gauges, as defined in Eqn. 1; x is a vector of identical covariates observed

at the prediction location. A, U and cij are matrices of relative catchment areas, network topology and inter-

centroidal distances of the available gauges, as defined in Eqn 6; a, Uout, and coutij are equivalent matrices for

the prediction location. σ2, φ and ξ are estimated variance parameters as defined in Eqn 3; τ , u and G are the

estimated fixed and random effects (Eqn 10) and variance-covariance matrix (Eqn 7); g is the estimated covari-

ance at the prediction location (used in Eqn 11) . Finally, yout and Var (yout − y) are the predicted outcome

and the related prediction variance.
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Figure 10. Leave-one-out cross-validation results for Austrian summer flow when resampling a subset of the

training gauges. Computational performances are represented as the ratio of runtimes for TopREML against

Top-Kriging. Prediction performances are represented as the ratio of relative errors. TopREML performances

when using gradient based and stochastic optimization algorithms are represented as circles and triangles re-

spectively. Points represent the median value and error bars represent 90% confidence intervals over 200 repe-

titions.
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