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Abstract 9 

To date, many studies have performed numerical estimations of biomass production and 10 

agricultural water demand to understand the present and future supply–demand relationship. 11 

A crop calendar (CC), which define the date or month when farmers sow and harvest crops, is 12 

an essential input for the numerical estimations. This study aims to present a new global data 13 

set, the SAtellite-derived CRop calendar for Agricultural simulations (SACRA), and discuss 14 

advantages and disadvantages compared to existing census-based and model-derived 15 

products. We estimate global CC at a spatial resolution of 5 arc-min using satellite-sensed 16 

NDVI data, which corresponds to vegetation vitality and senescence on the land surface. 17 

Using the time series of NDVI averaged from three consecutive years (2004–2006), 18 

sowing/harvesting dates are estimated for six crops (temperate-wheat, snow-wheat, maize, 19 

rice, soybean and cotton). We assume time series of NDVI represent the phenology of one 20 

dominant crop and estimate CCs of the dominant crop in each grid. The dominant crops are 21 

determined using harvested area based on census-based data. The cultivation period of 22 

SACRA is identified from the time series of NDVI, therefore, SACRA considers current 23 

effects of human decisions and natural disasters. The difference between the estimated sowing 24 

dates and other existing products are less than two months (< 62 days) in most of areas. A 25 

major disadvantages of our method is that the mixture of several crops in a grid is not 26 

considered in SACRA. The assumption of one dominant crop in each grid is a major source of 27 

discrepancy in crop calendars between SACRA and other products. The disadvantages of our 28 

approach may be reduced with future improvements based on finer satellite sensors and crop 29 
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type classification studies to consider several dominant crops in each grid. The comparison of 1 

the CC also demonstrates that identification of wheat type (sowing in spring or autumn) be a 2 

major source of error in global CC estimations. 3 

 4 

1 Introduction 5 

Recent population growth has increased biomass demand significantly, and humans have 6 

expanded cropland globally. Agriculture occupies more than 70% of world water usage and 7 

has a large impact on the water cycle (Rost et al., 2008). Consequently, simulations of 8 

biomass production and agricultural water demand are necessary to understand the present 9 

and future supply–demand relationship. To date, many studies have estimated biomass 10 

accumulation (Fischer et al., 2000; Tan and Shibasaki, 2003; Stehfest et al., 2007) and 11 

agriculture water demand (Döll et al., 2002; Hanasaki et al., 2008; Rockström et al., 2009; 12 

Siebert and Döll, 2009; Pokrel et al., 2011). Those studies estimated biomass production and 13 

agricultural water demand with numerical models using meteorological forcing data and land 14 

surface parameters. A crop calendar (CC) is an essential input to estimate biomass production 15 

and agricultural water demand accurately with those numerical models. CCs define the date or 16 

month when farmers sow and harvest crops. There are three major approaches to develop CC 17 

data sets: census-based; model-based; and Earth observation-based. 18 

The first approach, the census-based method, estimates CCs by collecting and integrating 19 

agricultural census data provided by international and national organizations such as the Food 20 

and Agriculture Organization (FAO) and the United States Department of Agriculture 21 

(USDA). The census-based CC products are represented by MIRCA2000 (Portmann et al., 22 

2010; Monthly Irrigated and Rain-fed Crop Areas around the year 2000) and Sacks et al. 23 

(2010). The census-based products have the advantage of high reliability in regions that have 24 

sufficient census data. However, they also have the disadvantage of low reliability in regions 25 

that have no census data. Additionally, the spatial resolution of census-based products is 26 

limited because of the sampling scheme (Portmann et al., 2010). Because only one CC is 27 

defined per administrative unit for each crop, differences in CCs for the same administrative 28 

unit are not considered.  29 

Model-based approaches generate CCs using crop growth models. These models simulate 30 

crop growth based on meteorological forcing data such as temperature, solar radiation, and 31 

soil moisture. In particular, accumulated temperature is widely used to indicate phenological 32 
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progress. Hanasaki et al. (2008) estimated global CCs for several crops using the soil and 1 

water integrated model (SWIM; Krysnova et al., 2000). Waha et al. (2012) simulated the 2 

sowing dates of major annual crops based on climatic conditions and crop-specific 3 

temperature requirements. The crop growth models have the advantage of accurate crop-4 

growth simulation in cases of well-calibrated parameters. However, proper calibration is 5 

difficult in areas where observation data are insufficient. Additionally, the crop growth model, 6 

being based on environmental processes, is of limited accuracy with respect to the 7 

identification of sowing dates, because the sowing date is heavily affected by human 8 

decisions. 9 

Finally, Earth observation-based studies estimate the CC using time series from satellite 10 

observations. Time series of vegetation indices (VIs) correspond well to vegetation vitality 11 

and senescence on the land surface. In this context, satellite-derived VIs have been widely 12 

used to classify crop type and to monitor crop growth at the regional scale (Mingwei et al., 13 

2008; Sakamoto et al., 2005; Sakamoto et al., 2010; Wardlow and Egbert, 2008; Wardlow et 14 

al, 2007). An advantage of satellite-derived data is its spatial resolution (less than 1 km). 15 

However, few studies have estimated global CCs with satellite-derived data. Yorozu et al. 16 

(2005) estimated a global CC using the normalized difference vegetation index (NDVI), but 17 

they did not compare their results to other global CC data sets. 18 

In this paper, we present a new global data set, the SAtellite-derived CRop calendar for 19 

Agricultural simulations (SACRA). Using satellite-sensed NDVI data, we estimate the global 20 

CC at a spatial resolution of 5 arc-min (~ 9.2 km at the equator). This study aims to develop a 21 

high-resolution and highly-accurate CC product by combining satellite-derived NDVI with a 22 

census-based product. We also aim to discuss the advantages and disadvantages of our 23 

satellite-derived CC, compared to existing census-based and model-derived products. 24 

2 Materials and Methods 25 

 This section describes the methods applied to produce the SACRA according to a defined 26 

data processing scheme (Fig. 1). The SACRA is produced from four different data sets: time 27 

series of NDVI; land cover data; reanalysis temperature data; and census-based agricultural 28 

data (Table 1). This study estimates the CC for six crops (temperate-wheat, snow-wheat, rice, 29 

maize, soybean, and cotton) that are widely cultivated around the world (Table 2a). We treat 30 

temperate-wheat and snow-wheat separately because our method is unsuitable for estimating 31 
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sowing date in grid areas where the surface is covered by snow during the cultivating period 1 

(e.g., Russia and North China; see Subsection 2.3 for details). 2 

 The following subsections describe identification of the dominant crop and census-based 3 

CC (Subsection 2.1), vegetation indices (Subsection 2.2), estimation of global crop calendar 4 

(first estimation; Subsection 2.3) and the SACRA data sets (Subsection 2.4).   5 

2.1 Dominant crop and census-based sowing/harvesting data 6 

 Firstly, we identify the dominant crop at a spatial resolution of 5 arc-min using 7 

MIRCA2000.  The grid of the SACRA is set to that of MIRCA2000. Portmann et al. (2010) 8 

compiled irrigated and rain-fed areas of 26 crop types at a spatial resolution of 5 arc-min (cf. 9 

Table 4 in Portmann et al., 2010). In other words, we can obtain 52 classes of crop areas at 10 

each grid (i.e., both irrigated and rain-fed areas of 26 crop types). Their crop calendars in 11 

major and second cultivation seasons are also defined in MIRCA2000. Since our method 12 

cannot consider the mixture of several crops in a grid (see Subsection 2.2.2 for details), we 13 

consider only one dominant crop in each grid. We define the dominant crop in the major 14 

cultivation season as that which has the maximal harvested area in the grid, out of 52 possible 15 

crops (considering rain-fed and irrigated areas separately; cf. Appendix I in Portmann, 2011). 16 

If more than two crops have identical harvested areas, the early order of the crops is chosen to 17 

be the dominant crop (e.g., for irrigated wheat in India Uttar Pradesh with two identical areas 18 

with different cropping periods; cf. Table I-211 of Appendix I in Portmann, 2011). The 19 

dominant crop in the second cultivation season is determined from those crops whose 20 

cultivation periods do not overlap more than three months with that of the dominant crop in 21 

the major cultivation season. 22 

 Secondly, we obtain the sowing and harvesting months of the dominant crop in both major 23 

and second cultivation seasons, using MIRCA2000. At each grid, we use the sowing and 24 

harvesting months. The census-based sowing and harvesting months are used to calibrate crop 25 

calendar parameters in Subsection 2.3. 26 

 Finally, we classify temperate-wheat and snow-wheat (originally classified as “wheat” in 27 

MIRCA2000) using reanalysis temperature data (Table 2). Again, our method is unsuitable 28 

for the estimation of sowing date for grids where the surface is covered by snow during 29 

cultivation. If the minimum monthly-averaged temperature during the cultivating period is 30 

below 5.0 °C, the wheat is categorized as snow-wheat. In this categorisation, we use 31 
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MIRCA2000-derived cultivating periods (from sowing month to harvesting month) and 1 

reanalysis temperature (Hirabayashi et al., 2008). Hirabayashi et al. (2008) compiled 3-hourly 2 

surface temperature data by statistical methods, the parameters of which had been obtained 3 

from available surface observations. Here, we simply use the reanalysed temperature of the 4 

nearest 30 arc-min grid from MIRCA2000’s 5 arc-min grids. 5 

 The resulting global distribution of dominant crops in SACRA in the major cultivation 6 

season is shown in Fig. 2a. The minimum monthly-averaged temperature during the 7 

cultivation period of the dominant crop is shown in Fig. 2b. Regions showing the minimum 8 

monthly-averaged temperatures below 5.0 °C in Fig. 2b are categorized as snow-wheat 9 

(purple) or other crops (grey) in Fig. 2a. The categories of temperate-wheat and snow-wheat 10 

classify whether or not surface is covered by snow during cultivation. Note that the 11 

classification of temperate-wheat and snow-wheat is independent of the classification of 12 

spring-wheat and winter-wheat. The classification of spring-wheat and winter-wheat depends 13 

on the sowing season (spring or autumn). 14 

2.2 Vegetation index 15 

2.2.1 VEGETATION/SPOT NDVI data 16 

 Vegetation indices are simple, graphic indicators to assess whether the targeting area 17 

contains live, green vegetation or not. In this study, we use NDVI defined by the following: 18 

 
NIR VIS

NDVI
NIR VIS





                         (1) 19 

where VIS and NIR indicate the spectral reflectance in the visible and near-infrared bands. The 20 

formula is based on the fact that chlorophyll absorbs VIS, whereas the mesophyll leaf 21 

structure scatters NIR (Pettorelli et al., 2005). NDVI correlates with the accumulation and 22 

decomposition of leaf cell tissue. Therefore, we are able to detect crop growth with the time 23 

series of NDVI over the cropland. The time series of satellite-sensed NDVI at a double-24 

cropping pixel in China is shown in Fig. 3a. As shown in Fig. 3a, peak dates can be clearly 25 

identified from the time series of NDVI. In this study, we use a 10-day composite NDVI 26 

provided by VEGETATION/SPOT (Maisongrande et al., 2004). To reduce the effect of 27 

clouds, the best index slope extraction (BISE) method (Viovy et al., 1992) is applied to the 28 

time series of NDVI (Fig. 3a). To estimate the CC with the smooth time series of NDVI, we 29 

use averaged NDVI over three years (2004−2006). Hereafter, this averaged NDVI is indicated 30 
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by SPOT-NDVI in this manuscript. The time series of NDVI has inter-annual variability as 1 

shown in Fig. 3b.  2 

2.2.2 Aggregation of NDVI 3 

  Two NDVI data sets (NDVI-Pure and NDVI-Crop; 5 arc-min resolution) are aggregated 4 

from original SPOT-NDVI (1-km resolution) using two land-cover data sets: Global Land 5 

Cover Characterization, version 2.0 (GLCC; Loveland et al., 2000) and Ecoclimap, version 6 

2.0 (Faroux et al., 2013). The GLCC and Ecoclimap data are provided by the U.S. Geological 7 

Survey and Meteo France, respectively. Schematic imagery of the aggregated NDVI-Pure and 8 

NDVI-Crop data is shown in Fig. 4.  The NDVI-Pure and NDVI-Crop data are aggregated by 9 

averaging 1-km NDVI pixels where both GLCC and Ecoclimap agree on the cropland (i.e., at 10 

a higher level confidence; Fig. 4a). However, it is possible for there to be no pixel where both 11 

GLCC and Ecoclimap agree on the cropland. In this case, only the NDVI-Crop is aggregated 12 

by averaging the pixels where the GLCC and Ecoclimap disagree, but where one of them 13 

agrees on cropland (i.e., a lower level confidence; Fig. 4b). The NDVI-Pure is undefined in 14 

the latter case. The NDVI-Pure, containing only higher confidence grids, is used to identify 15 

the two CC parameters (Subsection 2.3). The NDVI-Crop is used to produce the global CC in 16 

Subsection 2.4. The two aggregations (spatial and temporal) aim to obtain a smoother time 17 

series of the NDVI by removing the phenology of non-dominant and voluntary crops. 18 

2.2.3 Normalization of NDVI 19 

 Absolute peak values of NDVI differ depending on climate conditions and density of 20 

crops. Therefore, we normalize NDVI data to consider variety over a wide range of 21 

environmental conditions at the global scale. First, we identify cropping intensity using the 22 

time series of the NDVI. We define the peak of the NDVI (NDVIpk) and the date of the peak 23 

(tpk) if the time series of the NDVI satisfy Equations (2) and (3):  24 

( ) ( ) ( 1, 2 , ... , 6 )p k p k p k p kN D V I i N D V I t i t t t    　 　 　 　 　　    (2) 25 

( ) ( ) ( 1, 2 , ... , 4 )p k p k p k p kN D V I i N D V I t i t t t    　 　 　 　 　　    (3) 26 

where the boundary is cyclic (i.e.,  NDVI0 = NDVI36, and NDVI1 = NDVI37) since we have 36 27 

NDVI data per year from 10-day composite data of the SPOT-NDVI. We assume an 28 

increase/decrease in the NDVI before/after the peak of the NDVI, as shown in Eqs. (2) and 29 

(3).  The cropping intensity is equal to the number of peaks of the NDVI, up to three times per 30 
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year. Second, we detect the lowest NDVI between peaks (NDVIbtm). Finally, NDVI data is 1 

normalized using the following equations:  2 

( )
( ) ba s

p k b a s

N D V I t N D V I
n N D V I t

N D V I N D V I





                   (4) 3 

m a x ( , )b a s b tm sn o wN D V I N D V I N D V I           (5)  4 

where nNDVI represents normalized NDVI. Subscripts btm, bas, and snow denote bottom, 5 

base and snow, respectively. The NDVIsnow is a parameter to avoid remnant irregular NDVI 6 

mainly caused by snow cover reflection. The NDVIsnow is set at 0.20, which corresponds to 40 7 

% of the snow cover over the land surface (Dye and Tucker, 2003). Fig. 3c shows a schematic 8 

image of the normalization of NDVI at the double-cropping pixel in China. As shown in Fig. 9 

3c, the NDVIbas can be different for each peak. We do not need to avoid the negative nNDVI 10 

in this normalization process. The normalization is applied for both the NDVI-Pure and the 11 

NDVI-Crop.  12 

 The detected cropping intensity with the NDVI-Crop is compared with a climate-based 13 

estimation (Zabel et al., 2014). Zabel et al. (2014) estimated potential cropping intensity (i.e., 14 

maximal cropping intensity) suitability for current climate conditions (1981−2010) for 16 15 

crop types (Table 2b). Detected and estimated cropping intensities are shown in Figs. 5a and 16 

5b. Since Zabel et al. (2014) estimated cropping intensities for 16 crops, we illustrate the 17 

cropping intensity of the dominant crop in the major cultivation season in SACRA. The 18 

location of six administrative units are emphasized with boxes (A−F) in Figs. 5a and 5b, 19 

where our estimations are different from those of Zabel et al. (2014). 20 

 Table 3 shows a comparison of estimated cropping intensity in this study and that of Zabel 21 

et al. (2014) for the six administrative units (six boxes A−F in Figs. 5a and 5b). For the 22 

comparison, simplified cropping intensity for irrigated (IRC) and rain-fed (RFC) crop classes 23 

from MIRCA2000 are also described. Here, simplified cropping intensities are defined as 24 

“annual harvested area” divided by “maximum monthly cropped area”, which are defined for 25 

both irrigated and rain-fed classes of 26 crop types in MIRCA2000. The averaged cropping 26 

intensities over the administrative units are shown in the table. We illustrate the time series of 27 

the NDVI-Crop in the six administrative units in Fig. 6 to investigate the difference in 28 

cropping intensity. The time series of the NDVI-Crop, averaged over the administrative units, 29 
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are shown in Fig. 6 for 2004, 2005, 2006, and averaged from 2004 to 2006 (red, blue, 1 

magenta, and green lines in Fig. 6).  2 

 In Brazil Rio Grande do Sul (box A), and U. S. Mississippi (box F), the average cropping 3 

intensity in this study is smaller than in Zabel et al. (2014). On the other hand, our estimations 4 

are close to the simplified cropping intensity by MIRCA2000. Zabel et al. (2014) estimated 5 

potential cropping intensity, which provides a reason for the overestimation of cropping 6 

intensity compared to our study. A mixture of bimodal and nearly constant NDVI-Crop (black 7 

lines) is shown in Brazil Rio Grande do Sul (Fig. 6A). The nearly constant NDVI is 8 

characteristic of a tropical forest. The NDVI-Crop data may not represent the phenology of 9 

the cropland in some grids because of uncertainty of the land cover data and insufficient 10 

spatial resolution (see Subsection 3.3 for further discussion).  11 

 In China Henan (box B), India Uttar Pradesh (box D), and Kenya (box E), the average 12 

cropping intensity in this study is larger than in Zabel et al. (2014) and MIRCA2000, with the 13 

only exception being irrigated crop in MIRCA2000 in India Uttar Pradesh. In India Uttar 14 

Pradesh, harvested area of irrigated crops is larger than that of rain-fed crops (cf. Table I-211 15 

in Portmann 2011), suggesting our estimation of cropping intensity correspond to the irrigated 16 

crop. We see clear trimodal and bimodal NDVI-Crop (green lines) in In China Henan, and 17 

Kenya (Fig. 6B and 6E). Again, Fig. 5b shows the average cropping intensity for the 18 

dominant crop in the major cultivation season, according to Zabel et al. (2014). Generally, 19 

farmers do not conduct multiple cropping with only wheat. Zabel et al. (2014) reported 20 

multiple-cropping intensities for other crops in two administrative units. The other possibility 21 

is that overestimations of cropping intensity derive from mixture of phenology from different 22 

crops or vegetation in France (box C). On the other hand, Zabel et al. (2014) and 23 

MIRCA2000 may underestimate cropping intensity in Kenya, where a clear bimodal NDVI-24 

Crop (green line) is detected in Fig. 6E. It is also possible the bimodal NDVI-Crop can be 25 

derived from mixture of phenology from different crops. 26 

2.3 First estimation of global crop calendar 27 

 This study estimates sowing and harvesting dates (tsw and thv) using two CC parameters 28 

(nNDVIsw and nNDVIhv) and a time series of nNDVI data. The sowing and harvesting dates 29 

are determined by the following: 30 
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( )

( )
p k swsw

pk hvh v

t t a n d n N D V I t n N D V It
t w h en

t t a n d n N D V I t n N D V It

   
        

　 　

　 　
     (6)  1 

where subscripts sw, and hv denote sowing, and harvest, respectively. Figs. 7a and 7b show 2 

schematics of identification of sowing and harvesting dates for temperate crops (temperate-3 

wheat, rice, maize, soybean, and cotton) and snow-wheat. In the multiple cropping grids, 4 

sowing and harvesting dates are also determined for each cropping season (except for sowing 5 

date of snow-wheat). Our method is unsuitable for the estimation of sowing dates of snow-6 

wheat because we assume an increase in NDVI from sowing date to peak in Eq. (6). 7 

However, NDVI decreases if the surface is covered by snow (Fig. 7b). Therefore, in this 8 

process, we determine both sowing and harvesting dates for temperate crops, and only 9 

harvesting date for snow-wheat. The two CC parameters, used for the determination of 10 

sowing and harvest dates, are defined for each crop type with the exception of the nNDVIsw of 11 

snow-wheat. We calibrated the two CC parameters (nNDVIsw and nNDVIhv) for each crop type 12 

as described in the following paragraph.  13 

 To remove the noise of the time series of NDVI data as much as possible, we use limited 14 

grids (hereafter, calibration grids) to estimate the two CC parameters. The calibration grids 15 

satisfy the following conditions: 1) single cropping defined by cropping intensity; 2) 16 

dominant crop occupying more than 25 % of the total cropland area (using land-cover fraction 17 

data from 26 crop types in MIRCA2000); 3) up to five grids from the same administrative 18 

unit of MIRCA2000; 4) NDVIpk is larger than NDVIsnow; and 5) containing NDVI-Pure (i.e., 19 

using only higher-level confident grids). Once the parameters nNDVIpl and nNDVIhv are 20 

determined, sowing and harvesting dates can be determined using Eq. (6). The values of the 21 

two CC parameters nNDVIpl and nNDVIhv are calibrated for each crop to minimize the errors 22 

over calibration grids between determined sowing/harvesting dates and MIRCA2000 (see 23 

Appendix A for details).  Table 4 shows the number of calibration grids, the calibrated two 24 

CC parameters and averaged errors in sowing/harvesting dates for six crop types.  25 

2.4 SACRA data sets 26 

 The global sowing and harvesting dates are determined by Eq. (6) using time series of the 27 

nNDVI-Crop) and two CC parameters (first estimation in Fig 1; except for sowing date of 28 

snow-wheat). Our method detects the cultivation season using time series of the satellite-29 

sensed NDVI. However, our algorithm carries the possibility of overestimating or 30 
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underestimating cultivation periods. The cultivation period (from sowing date to harvesting 1 

date) in our scheme is largely affected by the shape of the NDVI (i.e., kurtosis of the NDVI 2 

curve). Therefore, our method can result unrealistic cultivation periods in some grids (e.g., 3 

less than 60 days) if NDVI-Crop does not represent the phenology of the dominant crops due 4 

to mixture of phenology from other crops and vegetation. We adjust the length of the 5 

cultivation period to be equal to MIRCA2000 to avoid the unrealistic cultivation periods. For 6 

the temperate crops, sowing and harvesting dates are moved (advanced or postponed) to 7 

adjust the cultivation period to MIRCA2000. In this treatment, the ratio of tpk−tsw to thv−tpk is 8 

preserved as the ratio of tpk−tsw-adj to thv-adj−tpk, (Fig. 8a), where tsw (or thv) and tsw-adj (or thv-adj) 9 

denote sowing (or harvesting) dates for the first estimation and after the adjustment, 10 

respectively. For snow-wheat, the harvesting date is fixed (i.e., thv=thv-adj). The sowing date is 11 

determined by the cultivation period of MIRCA2000 and the harvesting date of the first 12 

estimation (Fig. 8b). Here, we use the cultivation period in MIRCA2000 from the 15th of the 13 

sowing month to the 15th of the harvesting month. For multiple-cropping grids, the 14 

corresponding cultivation season in MIRCA2000 (i.e., major or second cultivation seasons) 15 

from each cropping is determined by the following: 16 

  
( ),1 ( ),1 st

( ) ,1 st ( ) ,1

sw m a jo r st p k sw seco n d

sw sec o n d p k sw m a jo r st

M o n t M o nm a jo r se a so n
w h e n

M o n t M o nse c o n d se a so n

   
       

　

　
  (7) 17 

where Monsw,1st denotes the 1st of the sowing month in MIRCA2000. Subscripts major and 18 

second denote major and second cultivation seasons, respectively. Here, we consider the 19 

cyclic boundary of the calendar. We apply the cultivation period of the major cultivation 20 

season in grids where no dominant crop in the second cultivation season is defined. The 21 

adjusted sowing and harvesting dates are referred to as SACRA and discussed in the next 22 

section. 23 

3 Results and discussion 24 

  This section provides validation and discussion regarding the produced SACRA data set. 25 

However, true validation is hard to achieve in global studies. Therefore, we compare the 26 

estimated CC with other CC data produced using other estimations, either census-based or 27 

model-based. 28 
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3.1 Comparison with census-based and model-based approaches 1 

 We compare the SACRA with two CC data sets: MIRCA 2000, and Waha et al. (2012; 2 

hereafter W12). We selected MIRCA2000 and W12 arbitrarily as representing census-based 3 

and model-based CC data, respectively. Waha et al. (2012) simulated the sowing dates of 4 

major annual crops from 1900 to 2003 at a spatial resolution of 0.5 degrees. We use the 5 

averaged sowing dates (2000−2003) of four crops (wheat, rice, maize and soybean) from W12 6 

for comparison. Waha et al. (2012) assigned 1st January as the sowing date, as it is as good as 7 

any other day for sowing in a favourable all-year climate. Therefore, averaged sowing dates 8 

are computed, excluding grids assigning 1st January for sowing date. Note that the sowing 9 

date of cotton is not estimated in W12. The averaged sowing date over years is computed by 10 

the following: 11 

      ,
, , 2yea r sw

yea r sw year sw

D O Y
F D O Y

D a ys o f th e yea r
   

　 　 　
   (8)  12 

     1
, , ,a rg c o s( ) s in ( )a v e sw y e a r sw ye a r swD O Y F a v e ra g e i a v e ra g e     (9) 13 

where, DOY, η, arg, and i denote day of year, angle of the DOY (rad), argument, and 14 

imaginary unit, respectively, and subscript ave denotes average. F and F-1 define functions to 15 

compute η from DOY, and DOY from η, respectively. Eqs. (8) and (9) are used to compute 16 

the averaged sowing date considering the cyclic boundary of the calendar. 17 

 The spatial distributions of the sowing dates for the dominant crops in the major cultivation 18 

season for SACRA, MIRCA2000 and W12 are shown in Fig. 9. The sowing dates are 19 

illustrated in grids where the dominant crop of SACRA in the major cultivation season is 20 

temperate-wheat, snow-wheat, maize, rice, soybean or cotton. If multiple sowing exists in the 21 

SACRA dates for the major cultivation season, we illustrate the sowing dates derived from 22 

the largest NDVIpk among the sowing dates. For MIRCA2000, we illustrate the 15th of the 23 

sowing month. Although three different sets of data are produced from the different 24 

approaches (Earth observation-based, census-based, and model-based), they have similar 25 

spatial patterns (Figs. 9a-1, 9b-1, and 9c-1). Their sowing dates generally represent spring in 26 

their grids. Figs. 9a-2, 9b-2, and 9c-2 show the sowing dates in South Asia, selected 27 

arbitrarily to highlight the higher spatial variability in SACRA. Since SACRA uses high-28 

resolution satellite data, it reflects a variety of sowing dates in the same administrative unit, as 29 

shown in Fig. 9a-2 (e.g., Thailand, Vietnam, and Laos). W12 also resulted in a variety of 30 
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sowing dates for Vietnam (9c-2) due to the estimation being based on climatic data. The 1 

detection of variability in the CC within an administrative unit is an advantage of Earth-2 

observation-based and model-based approaches compared to census-based methods. On the 3 

other hand, SACRA carries the disadvantage of undetection of a crop calendar in grids where 4 

the NDVI-Crop is not defined (boxes in Figs. 9a-2, 9b-2, and 9c-2). 5 

 While SACRA can detect the variability of the CC within administrative units, it is 6 

difficult to demonstrate whether the variability is correct around the globe without knowledge 7 

of the local CC information. Therefore, the following subsection discusses the differences in 8 

the CCs among the three products, with sowing dates. We compare the sowing dates of the 9 

three products averaged over administrative units defined in MIRCA2000.  10 

3.2 Comparison of averaged CC over MIRCA2000 administrative units  11 

 To investigate the characteristics of the three approaches, we compare the averaged sowing 12 

dates over administrative units. The averaged sowing dates of the dominant crop in the major 13 

cultivation season are computed by three products (SACRA, MIRCA2000, and W12) using 14 

Eqs. (8) and (9), averaging not over years but over administrative units. We assign the 15th of 15 

the sowing month for MIRCA2000. The sowing dates of temperate- and snow-wheat in 16 

SACRA are compared with the sowing dates of “wheat” in MIRCA2000 and W12. Here, only 17 

single cropping grids are used to compute the averaged sowing date for SACRA. We suppose 18 

that NDVIbas represents condition with few vegetation in winter (or dry) season. In the 19 

multiple cropping grids, the NDVIbas in summer (or wet) season can be higher than other 20 

seasons due to mixture of phenology from other crops and vegetation (e.g., NDVIbas in June is 21 

higher than that in December in Fig. 3c). Therefore, accuracy of CCs in multiple cropping 22 

grids may be lower than that is single cropping grids. 23 

 The differences in the sowing dates of the dominant crop are shown in Fig. 10. The 24 

administrative units are illustrated if their dominant crop in the major cultivation season is 25 

temperate-wheat, snow-wheat, maize, rice, soybean or cotton. The difference for each specific 26 

crop type is shown in Fig. A3. The difference between the two data sets is less than two 27 

months (< 62 days; yellow- or green-coloured units) in most of the administrative units in 28 

Figs. 10a and 10b. Fig. A3 shows that wheat contains the largest number of units with a large 29 

difference in sowing dates (> 93 days; red- or blue-coloured units). We observe a later 30 

signalling trend in sowing dates in SACRA than in W12 (Fig. 10b; green- or blue-coloured 31 
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units). The direction of the later signalling trend is dominant in wheat, maize, rice and 1 

soybean (Figs. A3-a2, A3-b2, A3-c2, and A3-d2).  2 

 Table 5 compares the sowing dates of the three products in 16 administrative units that fall 3 

into the category of disagreement (more than 150 days) between SACRA and MIRCA2000 or 4 

SACRA and W12. We present the cultivation seasons (from sowing to harvesting dates) in 16 5 

administrative units in Fig. A4 to understand the discrepancies in the CCs of the three 6 

products. To interpret the disagreements in Table 5 and Fig. A4, we use Fig. 11, which shows 7 

the time series of the NDVI-Crop, average NDVI-Crop, average NDVI-Forest, and average 8 

temperature data. Here, average means the average over administrative units. NDVI-Forest is 9 

produced by following NDVI-Crop production, but with forest pixels using GLCC and 10 

Ecoclimap land cover data. Namely, NDVI-Forest is aggregated by averaging the pixels 11 

where the GLCC or Ecoclimap agree on forest. 12 

 We observe disagreements in 12 administrative units where the dominant crops in the 13 

major cultivation season are temperate- or snow-wheat, shown in Table 5. Cultivated wheat in 14 

the world can be classified into two types depending on the sowing season. The FAO (2002) 15 

notes the following: 1) the first type of wheat is planted in the autumn to germinate and 16 

develop into young plants that remain in the vegetative phase during the winter and resume 17 

growth in the early spring; 2) the second type of wheat is usually planted in the spring and 18 

matures in late summer but can be sown in autumn in countries that experience mild winters, 19 

such as in South Asia, North Africa, the Middle East and at lower latitudes. 20 

  In Azerbaijan (code 8), and Kazakhstan (code 225), large differences (> 150 days) are 21 

observed between SACRA and W12, while the differences between SACRA and 22 

MIRCA2000 are < 50 days. In Australia Queensland (code 36), China Gansu (code 102), 23 

China Ningxia (code 117), and India Himachal Pradesh (code 192), a large difference is 24 

observed between SACRA and MIRCA2000. In the above six administrative units, the 25 

assumed wheat type may be incorrectly identified in MIRCA2000 and W12. On the other 26 

hand, SACRA’s sowing dates differ from both MIRCA2000 and W12 for Beijing (code 99), 27 

Hebei (code 107), Henan (code 109), Shaanxi (code 119), Shandong (code 120), and Shanxi 28 

(code 122) in China. In these six administrative units, SACRA has possibly detected incorrect 29 

signals of NDVI (e.g., signals of forest or other crops). As shown in Fig. A3, wheat is related 30 

to the largest number of units with disagreements in sowing dates. Disagreements in sowing 31 
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dates are also observed between MIRCA2000 and W12. The identification of wheat type 1 

(sowing in spring or autumn) may be a major source of error in global CC estimations. 2 

In Bhutan (code 49), India Sikkim (code 207), and Uruguay (code 394), clear unimodal 3 

NDVI-Crops are not observed in Fig. 11. The accuracy of SACRA is affected by the accuracy 4 

of the land cover data sets. It is known that the 1-km land cover data sets contain uncertainties 5 

(Herold et al., 2008; Nakaegawa, 2011). For example, forests may be classified as croplands 6 

in the 1-km land cover data sets. Also, NDVI and land cover data sets at 1-km resolution may 7 

be insufficient to detect the phenology of the dominant crop in the administrative units. 8 

 In China Yunnan (code 126), we observe disagreements between SACRA and MIRCA. In 9 

China Yunnan, we observe that some of the grids have bimodal NDVI-Crop (black lines) in 10 

Fig. 11. It is possible that NDVI-Crop represents a mixed phenology of non-dominant and 11 

voluntary crops. Our approach is unable to consider a mixture of phenology. This may explain 12 

the disagreement between SACRA’s sowing dates and those of other products. 13 

A major discrepancy in crop calendars between SACRA and other products can be due to 14 

the selection of one dominant crop in each administrative unit. It is possible that SACRA 15 

detects the CC of similar maximal harvested area or another sub-crop in MIRCA2000 (e.g., 16 

for irrigated wheat in India Uttar Pradesh with two identical areas with different cropping 17 

periods; cf. Table I-211 of Appendix I in Portmann, 2011). The disadvantages of our 18 

approach may be reduced with future improvements based on finer satellite sensors to avoid 19 

mixture of phenology from other crops and vegetation, and crop type classification studies to 20 

consider several dominant crops in each grid. 21 

Taking into account the extreme disagreement between SACRA and MIRCA2000/W12 in 22 

some regions (Table 5 and Fig. 10), it becomes important to determine which CC is more 23 

reliable. However, it is difficult to decide which data set is more accurate in global studies. 24 

For example, the identification of the wheat type (sowing in spring or autumn) is difficult, as 25 

shown in disagreements among the three products in 12 administrative units (Table 5). Also, 26 

it is possible that both are correct, e.g., if they referred to different time periods. MIRCA2000 27 

possibly used the conditions of nearby administrative units because of a lack of more detailed 28 

reference information. Therefore, it is difficult to determine the absolute accuracy of the 29 

products through comparison. However, combined application of several products is useful to 30 

take the uncertainty of the CC into account. Since SACRA, MIRCA and W12 detect the CC 31 

from different approaches, a comparison of their results is useful for cross-validation. 32 
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3.3 Advantages and disadvantages of SACRA 1 

This subsection discusses the advantages and disadvantages of SACRA compared to two 2 

other approaches: census-based and model-based methods. Additionally, this subsection also 3 

discusses possible improvements of SACRA. Table 6 summarizes the advantages and 4 

disadvantages of the census-based methods, model-based methods, and SACRA.  5 

An advantage of SACRA is its fine spatial resolution compared to the other two data sets. 6 

Therefore, different CCs in the same administrative unit are considered in SACRA (Fig. 9a-7 

2). The model-based method can also result in a variety of CCs. However, it is difficult to 8 

demonstrate that the variability is correct around the globe without knowledge of local CC 9 

information. 10 

The spatial resolution of SACRA is equal to the maximum resolution of the satellite-11 

sensed NDVI and the crop classification map. At present, NDVI from the moderate-resolution 12 

imaging spectroradiometer (MODIS) is available at a spatial resolution of 250 m (e.g., Zhang 13 

et al., 2006). However, present studies provide global crop classification maps at a spatial 14 

resolution of 5 arc-min (e.g., Monfreda et al., 2008; Portmann et al., 2010). Present land cover 15 

data sets, such as GLCC and Ecoclimap, only contain a small number of coarse agricultural 16 

classes. At the regional scale, many studies have been performed to classify crops using 17 

satellite-sensed data (e.g., Mingwei et al., 2008; Wardlow and Egbert, 2008; Wardlow et al., 18 

2007). In this study, we use the crop classification map from MIRCA2000 at a spatial 19 

resolution of 5 arc-min. SACRA can be recalculated with higher resolution remote sensing 20 

data (e.g., from future Sentinel-2 data; Drusch et al., 2012) if higher resolution land cover 21 

maps become available. The higher resolution CC products can contribute to 22 

hydrological/agricultural studies which aim to conduct simulations at spatial resolution of 1 23 

km (e.g., Wood et al., 2011; Kotsuki et al., 2015).   24 

A second advantage of SACRA is its easy detection of cultivation using time series of 25 

NDVI. Because agriculture is controlled by human decisions, it is difficult to estimate from 26 

the census-based and model-based methods whether or not farmers actually perform 27 

cultivation. Additionally, agriculture is affected by disasters, such as droughts, inundations, 28 

heat waves, and cool summer damages. The satellite-sensed NDVI can be used to detect 29 

whether the managed land is currently being cultivated or is temporarily in disuse. It is also 30 

possible to identify cropping intensity with time series of NDVI (Fig. 5).  31 
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However, SACRA has the disadvantage that it is inapplicable to future simulations such as 1 

impact assessments of climate change because SACRA is produced using past observational 2 

data. Future changes in agricultural water demand and biomass production are major issues in 3 

assessment studies of climate change (Hanjra and Qureshi, 2010). An advantage of SACRA 4 

compared to MIRCA2000 is that SACRA provides not only sowing/harvesting dates but also 5 

the peak date from the time series of NDVI. The peak date can be used to calibrate the 6 

parameters of crop growth models that simulate the growing stage during cultivation (e.g., 7 

Horie 1987). SACRA can contribute to future assessment studies indirectly by being utilized 8 

to calibrate their model parameters. 9 

It should be noted that our method is unsuitable for detecting the sowing dates of snow-10 

wheat. Furthermore, our algorithm carries the possibility of overestimating or underestimating 11 

cultivation periods in the first estimation. Therefore, we adjusted the length of the cultivation 12 

period of SACRA to MIRCA2000. For the temperate crops, sowing and harvesting dates are 13 

moved (advanced/postponed) to adjust to the cultivation period. For snow-wheat, sowing date 14 

is defined with respect to the cultivation period of MIRCA2000 and the harvesting date of the 15 

first estimation. The adjustment indicates that the cultivation period of SACRA completely 16 

relies on that of MIRCA2000. However, the cultivation period can be different in the same 17 

administrative unit because of temperature. We plan to utilize both census-based and model-18 

based cultivation period for the adjustment. Also, utilization of snow-cover products from 19 

satellite (e.g., MODIS snow cover product; Hall et al., 2002) or land surface analysis (e.g., 20 

global land data assimilation system; Rodel et al., 2004) would help to adjust the sowing date 21 

of snow-wheat appropriately. 22 

Our method has the disadvantage that the mixture of several crops in a grid is not 23 

considered. Therefore, we assume that the NDVI-Crop represents the phenology of the 24 

dominant crop at each grid. Because of this assumption, our approach contains the following 25 

disadvantages: 1) The census-based and model-based approaches can contain CCs for more 26 

than one crop for every unit (e.g., MIRCA2000 and W12), while SACRA only contains the 27 

CC for the dominant crop in a given unit; 2) Census-based data can deliver a CC for either 28 

irrigated or rain-fed crops, while SACRA cannot separate them. In fact, CCs for irrigated and 29 

rain-fed cropland may be different; 3) Our approach cannot consider the mixture of phenology 30 

from several crops and voluntary crops. It should be also noted that the length of the 31 

cultivation period in SACRA is adjusted to MIRCA2000 to avoid the unrealistic cultivation 32 
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periods. A major discrepancy in crop calendars between SACRA and other products can be 1 

due to the selection of one dominant crop in each administrative unit. The disadvantages of 2 

our approach may be reduced with future improvements based on finer satellite sensors and 3 

crop type classification studies to consider several dominant crops in each administrative unit. 4 

The idea behind CC estimation in SACRA is very simple, and therefore easily applicable 5 

to the global cropland and additional satellite observations. Due to data scarcity, we resort to 6 

averaged data from three consecutive years (2004–2006). The data product generated from 7 

this study therefore is of limited use for the direct parameterization of global growth models. 8 

However, taking into account the current development in Earth observation (e.g., the 9 

development of the European Space Agency’s Sentinel series), data scarcity will soon be less 10 

of an issue. The proposed method represents a simple and thus easily applied approach that 11 

can potentially make use of large amounts of temporally, highly-resolved, global, optical, 12 

Earth observation data and may provide interesting input parameters for global land surface 13 

models. For example, the estimation of an annual crop calendar is a major part of our scope. 14 

Finally, the accuracy of SACRA depends on the accuracy of the NDVI and land cover data 15 

sets. The wavelengths required for the calculation of the NDVI are relatively easy to measure 16 

from satellite sensors. Therefore, the accuracy of the NDVI largely depends on the temporal 17 

resolution of adequate observations (e.g., the revisiting time of the applied systems and 18 

weather at satellite observation, such as cloud cover). Usage of several satellite sensors (e.g., 19 

MODIS) would help to reduce the uncertainty of the NDVI. With respect to the accuracy of 20 

land cover data, we combine two land cover data sets to reduce the uncertainty of the land 21 

cover data. The land cover data sets, however, contain uncertainties (Herold et al., 2008; 22 

Nakaegawa, 2011). The land cover data sets could be improved by developing new 23 

algorithms, increasing the amount of supervised data, and utilizing multi-spectrum 24 

information. Further improvements of the land cover data sets would contribute to 25 

improvement of SACRA. 26 

4 Summary 27 

 This study aimed at producing a new crop calendar, SACRA, using satellite-sensed NDVI. 28 

This paper describes the methods to produce SACRA from the following four data sets: time 29 

series of NDVI, land cover data sets, reanalysis temperature, and census monthly agricultural 30 

data. The resulting SACRA data set included three products at a spatial resolution of 5 arc-31 

min: (1) the spatial distribution of the dominant crop in major and second cultivation seasons; 32 
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(2) time series of NDVI of the cropland; (3) sowing, peak, and harvesting dates of the 1 

dominant crop. The advantages and disadvantages of SACRA compared to other global crop 2 

calendars are summarized as follows. 3 

 First, an advantage of SACRA is its finer spatial resolution compared to other existing 4 

global crop calendars.  However, a disadvantage is that the mixture of several crops in a grid 5 

is not considered in SACRA. Second, the cultivation period of SACRA is identified from the 6 

time series of NDVI, which corresponds to vegetation vitality. Therefore, SACRA considers 7 

current effects of human decisions and natural disasters. Satellite-sensed NDVI data enable 8 

detection of whether the managed land is currently cultivated or temporarily in disuse. 9 

Finally, SACRA is inapplicable to future simulations because it is based on Earth observation 10 

data. However, SACRA can potentially be used to calibrate the parameters of crop growth 11 

models. An advantage of SACRA compared to census-based crop calendars is that SACRA 12 

provides not only sowing/harvesting dates but also a peak date from the time series of NDVI 13 

data. 14 

Many improvements to SACRA are possible. For example, estimation of annual crop 15 

calendars is a major part of our scope. We plan to make SACRA data sets available on our 16 

web page free of charge. We encourage researchers to utilize our data and provide feedback 17 

on errors or possible improvements. 18 

Appendix A:  Calibration of crop calendar parameters 19 

 This appendix describes the scheme used to calibrate two crop calendar parameters 20 

(nNDVIsw and nNDVIhv) from NDVI-Pure in Subsection 2.3. Once two parameters are given, 21 

the sowing/harvesting dates are uniquely determined with Eq. (6).  We calibrated the two CC 22 

parameters so as to minimize the error between the determined and MIRCA2000 sowing 23 

(harvesting) dates among calibration grids. Here, the error for the sowing (harvesting) date is 24 

calculated by: 25 
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 (A1) 26 

where, ERR, t, and Mon denote error at the grid (day), sowing (or harvesting) dates (day of 27 

year) determined by nNDVIsw (or nNDVIhv), and sowing (or harvesting) month defined in 28 

MIRCA2000. Mon1st(End) denotes 1st (or end) dates of the month (day of year). Subscripts sw, 29 

and hv denote sowing and harvesting dates, respectively. By changing nNDVIsw and nNDVIhv 30 
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from 0.01 to 1.0 with a 0.01 increment, we minimized the averaged ERRsw and ERRhv among 1 

calibration grids for each crop (Fig. A1). Note that nNDVIsw of snow-wheat is not calibrated 2 

in this study since our method is unsuitable for estimation of sowing dates of snow-wheat 3 

(Subsection 2.3). The global distribution of calibration grids for six crops is shown in Fig. A2. 4 

Appendix B:  Comparison of sowing dates 5 

 This appendix aims to illustrate the differences in sowing dates of the three data sets: 6 

SACRA, MIRCA2000 (Portmann et al., 2010), and Waha et al. (2012), to supplement 7 

discussions in Subsection 3.2. Fig. A3 is similar to Fig. 9, but shows the differences in sowing 8 

dates for five specific crops (wheat, maize, rice, soybean, and cotton). Fig. A4 shows the 9 

cultivation seasons of the three products in 16 administrative units in Table 5. Since Waha et 10 

al. (2012) estimated only the sowing dates, we apply the cultivation period of MIRCA2000 at 11 

each administrative unit for purposes of illustration. The cultivation period of SACRA was 12 

also adjusted by that of MIRCA2000 (see Subsection 2.4 for details). Therefore, the three 13 

products have the same cultivation period in each administrative unit in Fig. A4. 14 
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Table 1. Characteristics and sources of the four global input data sets. 1 

 2 

3 

Data Source Detailed description 

NDVI (30 seconds) VEGETATION/SPOT Maisongrande et al. (2004) 

Land cover (30 seconds) GLCC version 2.0 Loveland et al. (2000) 

 Ecoclimap version 2.0 Faroux et al. (2013) 

Census-based crop classification (5 arc-

min) and crop calendar (5 arc-min) 

MIRCA2000 Portmann et al. (2010) 

Temperature (0.5 degree) H08 Hirabayashi et al. (2008) 
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Table 2. List of crops. Checkmarks denote crops used for (a) estimation of crop calendar and 1 

(b) comparison of cropping intensity. 2 

 3 

4 

ID Crop name (a) Calendar (b) Intensity  ID Crop Name (a) Calendar (b) Intensity

1 Temperate-wheat    10 Millet   

2 Snow-wheat    11 Oil palm   

3 Maize    12 Potato   

4 Rice    13 Rapeseed   

5 Soybean    14 Rye   

6 Cotton    15 Sorghum   

7 Barley    16 Sugarcane   

8 Cassava    17 Sunflower   

9 Groundnuts        
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Table 3. Comparison of estimated cropping intensity in this study, Zabel et al. (2014), and 1 

MIRCA2000 simplified cropping intensity for irrigated (IRC) and rain-fed (RFC) crop 2 

classes in six administrative units (six boxes A−F in Figs. 5a and 5b). Averaged cropping 3 

intensities over the administrative units are shown as “Cropping intensity”. “Code” and 4 

“Crop” represents assigned code of the administrative unit in SACRA, and dominant crop 5 

in major cultivation season in this study. The simplified cropping intensities are annual 6 

harvested area divided by maximum monthly cropped area, which are defined for both 7 

irrigated and rain-fed classes of 26 crop types. 8 

 9 

10 

Code 
Box in 

Fig. 5 

Name of administrative 

unit 
Crop

Cropping intensity (yr-1) 

This 

study 

Zabel et 

al. 

MIRCA 

IRC 

MIRCA 

RFC 

073 A Brazil Rio Grande do Sul MAZ 1.2 3.0 1.0 1.0 

109 B China Henan SWH 2.2 1.0 1.0 1.0 

157 C France SWH 1.3 1.0 1.0 1.0 

211 D India Uttar Pradesh TWH 2.0 1.0 2.0 1.1 

227 E Kenya MAZ 1.8 1.3 1.0 1.0 

364 F U. S. Mississippi SOY 0.8 2.1 1.0 1.0 

TWH: Temperate-wheat, SWH: Snow-wheat, MAZ: Maize, and SOY: Soybean.  
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Table 4. Number of calibration grids, calibrated two crop calendar parameters (nNDVIsw and 1 

nNDVIhv), and averaged errors (nNDVI) in sowing/harvesting dates between determined 2 

and MIRCA2000 among calibration grids of the six crop types. 3 

 unit Temp. wheat Snow-wheat Maize Rice Soybean Cotton 

Num. of grid N 70 50 60 50 39 16 

nNDVIsw − 0.23 − 0.15 0.39 0.16 0.33 

nNDVIhv − 0.31 0.65 0.75 0.72 0.36 0.35 

Error (sow) day 15.5 − 9.7 12.5 13.0 19.4 

Error (harvest) day 19.9 23.4 8.2 3.2 12.8 11.5 

 4 

5 
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Table 5. Administrative units with large absolute differences in sowing date (> 150 days) 1 

between SACRA and MIRCA2000 or SACRA and Waha et al. (2012). SCR, MRC, and 2 

W12 in the table represent SACRA, MIRCA2000, and Waha et al. (2012), respectively. 3 

“Code” and “Crop” represent the assigned code of the administrative unit in SACRA, and 4 

the dominant crop in the major cultivation season in this study. The table compares 5 

sowing dates averaged over the administrative units. Only single cropping grids are used 6 

to compute the averaged sowing date for SACRA. 7 
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 1 

2 

Code 
Name of 

administrative unit 
Crop 

Sowing date (DOY) Difference (days) 

SCR MRC W12 SCR−MRC SCR-W12 

8 Azerbaijan TWH 104.1 105 305.7 -0.9 163.4 

36 AUS Queensland TWH 1.7 166 341.6 -164.3 25 

49 Bhutan RIC 213.1 166 60.8 47.1 152.3 

99 China Beijing SWH 89.1 288 289.7 166.1 164.3 

102 China Gansu SWH 86.9 288 103 163.9 -16.1 

107 China Hebei SWH 84.5 288 316.4 161.5 133 

109 China Henan SWH 94.2 288 305.1 171.2 154 

117 China Ningxia SWH 76.3 288 48.6 153.3 27.7 

119 China Shaanxi SWH 103.6 288 292.8 180.6 175.7 

120 China Shandong SWH 83.7 288 300.8 160.7 148 

122 China Shanxi SWH 87.8 288 336.9 164.8 115.9 

126 China Yunnan MAZ 162 319 105.8 -157 56.2 

192 IND Himachal Pradesh SWH 157.3 319 135.2 -161.7 22 

207 IND Sikkim MAZ 195.5 166 31 29.5 164.5 

225 Kazakhstan SWH 286.6 258 105.1 28.6 181.5 

394 Uruguay RIC 175.2 349 294.8 -173.8 -119.6 

TWH: Temperate-wheat, SWH: Snow-wheat, MAZ: Maize, RIC: Rice, COT: Cotton 

AUS: Australia, IND: India 

Blue colours:  SCR is similar to MRC (< 90 days), but different from W12 (> 100 days) 

Green colours:  SCR is similar to W12 (< 90 days), but different from MRC (> 100 days) 

Red colours:  SCR is different from both MRC and W12 (> 100 days) 
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Table 6. Advantages and disadvantages of three types of global crop calendars: census-based, 1 

model-based, and Earth observation-based. 2 

 3 

4 

 Census-based  Model-based Earth observation-based 

Main inputs Census data Forcing data Satellite-sensed NDVI 

Resolution Country/state scale Equal to forcing data 5 arc-min 

Different CC in a same 

admin. unit 
impossible possible possible 

Detection of cultivation hard hard easy 

Mixture of several crops 

in a grid 
possible possible impossible 

Application to future 

simulations 
impossible possible impossible 
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 1 

Fig. 1. Data processing scheme for the production of the global satellite-derived crop calendar 2 

(SACRA). The bold numbers inside the boxes indicate the subsections in this paper 3 

where the different processing steps are described. The numbers outside the boxes 4 

indicate the spatial resolution of the respective data sets. The top four boxes indicate 5 

input data (Table 1), and the other boxes indicate the results from our data processes. 6 

7 
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 1 

Fig. 2. Global distribution of (a) dominant crops in SACRA, and (b) minimum monthly-2 

averaged temperature (°C) during the cultivation period of the dominant crops. Both 3 

panels represent the dominant crop in the major cultivation season. 4 

5 
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 1 

Fig. 3. Time series of NDVI at a double-cropping pixel in China (E116.76º, N32.60º). Panel 2 

(a) represents the original NDVI and NDVI with the BISE correction. Panel (b) 3 

represents the NDVI with the BISE correction from 2004 to 2006. Panel (c) represents 4 

NDVI average over 2004−2006, and normalized NDVI (nNDVI).  5 

6 
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 1 

Fig. 4. Schematic image of the aggregation of NDVI-Pure and NDVI-Crop from 1-km-2 

resolution original NDVI. Small-sized squares with thin lines represent pixels of original 3 

SPOT-NDVI (1-km-resolution). Large-sized squares with bold lines represent grids of 4 

SACRA and MIRCA2000 (5 arc-min-resolution). Pixels with diagonal lines (from upper-5 

left to bottom-right and bottom-left to upper-right) show where GLCC and Ecoclimap 6 

agree on the cropland.   7 

8 
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 1 

Fig. 5. Global distribution of (a) detected cropping intensity in the current study, and (b) 2 

climate-based estimation of cropping intensity suitability (i.e., maximal cropping 3 

intensity; Zabel et al., 2014).  The cropping intensity of the dominant crop is illustrated in 4 

Fig. 5(b).  5 

6 
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 1 

Fig. 6. Time series of NDVI for six administrative units in Table 3; Brazil Rio Grande do Sul 2 

(code 73), China Henan (code 109), France (code 157), India Uttar Pradesh (code 211), 3 

Kenya (code 227), and U. S. Mississippi (code 364). Black lines show time series of 4 

NDVI-Crop averaged over 2004–2006 in the administrative units (i.e., NDVI of all grids 5 

in the administrative units). Green lines show the average of black lines (i.e., averaged 6 

over the administrative units). Red, blue, and magenta represent NDVI-Crop in 2004, 7 

2005, and 2006, respectively, averaged over the administrative units. 8 

9 
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 1 

Fig. 7. Scheme of identification of sowing and harvesting dates in this study. Sowing and 2 

harvesting dates (tsw and thv) are identified together with a vegetation index time series 3 

(black lines) and two crop calendar (CC) parameters: nNDVIsw and nNDVIhv. Figures (a) 4 

and (b) indicate temperate crops (temperate-wheat, maize, rice, soybean, and cotton) and 5 

snow-wheat, respectively. The two CC parameters are defined for the six crop types 6 

(Table 2a). 7 

8 
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 1 

Fig. 8. Scheme used to adjust the cultivation period of SACRA to that of MIRCA2000. tsw 2 

(thv) and tsw-adj (thv-adj) denote sowing (harvesting dates) for the first estimation and 3 

subsequent to the adjustment, respectively. For temperate crops, sowing and harvesting 4 

dates are moved (advanced or postponed) to adjust the cultivation period to MIRCA2000. 5 

In this treatment, the ratio of tpk−tsw to thv−tpk is preserved as the ratio of tpk−tsw-adj to thv-6 

adj−tpk. For snow-wheat, the harvesting date has not changed (i.e., thv=thv-adj). Sowing date 7 

is determined by the cultivation period of MIRCA2000 and the harvesting date of the first 8 

estimation. 9 

10 
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 1 

Fig. 9. Sowing dates (unit: day of year) of dominant crops in the major cultivation season for 2 

(a) SACRA, (b) MIRCA2000, and (c) Waha et al. (2012). Left panels (a-1, b-1, and c-1) 3 

and right panels (a-2, b-2, and c-2) show global and South Asian maps, respectively. 4 

Sowing dates are illustrated in grids where the dominant crop is temperate-wheat, snow-5 

wheat, maize, rice, soybean or cotton. The major seasons at multiple cropping grids are 6 

determined by Eq. (7) for SACRA. Panels of SACRA contain sowing dates of major 7 

cultivation season for both single and multiple cropping grids. Boxes in right panels 8 

represent the area where SACRA did not detect the crop calendar in some grids while 9 

MIRCA2000 and Waha et al. (2012) defined. 10 

 11 

12 
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 1 

Fig. 10. Differences in sowing dates of the dominant crop in the major cultivation season (a: 2 

SACRA–MIRCA2000; b: SACRA–Waha et al., 2012). The administrative units are 3 

illustrated if their dominant crop in the major cultivation season is temperate-wheat, 4 

snow-wheat, maize, rice, soybean or cotton. The differences for each specific crop type 5 

are shown in Fig. A3.  Only single cropping grids are used to compute the averaged 6 

sowing date for SACRA 7 

8 



 41

 1 

Fig. 11. Time series of the NDVI-Crop (black lines), average NDVI-Crop (green lines), 2 

average NDVI-Forest (blue lines), and average temperature (orange lines; °C) in the 18 3 

administrative units in Table 5; Azerbaijan (code 8), Australia Queensland (code 36), 4 

Bhutan (code 49), China Beijing (code 99), China Gansu (code 102), China Hebei (code 5 

107), China Henan (code 109), China Ningxia (code 117), China Shaanxi (code 119), 6 

China Shandong (code 120), China Shanxi (code 122), China Yunnan (code 126), India 7 

Himachal Pradesh (code 192), India Sikkim (code 207), Kazakhstan (code 225), and 8 

Uruguay (code 394). The average denotes average over the administrative units. 9 

 10 
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 1 

Fig. A1. Average error of sowing/harvesting dates (blue/orange lines; unit days) among 2 

calibration grids for six crops (a: temperate-wheat, b: snow-wheat, c: maize, d: rice, e: 3 

soybean, and f: cotton). Dots in the figures represent minimized errors and 4 

nNDVIsw/nNDVIhv (i.e., the calibrated two parameters in Table 4). 5 

6 
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 1 

Fig. A2. Global distribution of calibration grids for the six crops. The calibration grids are 2 

illustrated larger than the real grid size (5 arc-min) for emphasis. 3 

4 
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 1 

Fig. A3. Same as Fig. 9 but for five specific crops (wheat, maize, rice, soybean, and cotton).  2 

The sowing date of cotton was not estimated by Waha et al. (2012).  Only single cropping 3 

grids are used to compute the averaged sowing date for SACRA. 4 

5 
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 1 

Fig. A4. Cultivation seasons (from sowing to harvesting dates) in 16 administrative units in 2 

Table 5. Magenta, blue, and green denote SACRA, Waha et al. (2012) and MIRCA2000, 3 

respectively. For Waha et al. (2012), we apply the cultivation period of MIRCA2000 for 4 

purposes of illustration at each administrative unit. The beginning and end of the labels 5 

represent averaged sowing and harvesting dates, respectively, over the administrative 6 

unit. Only single cropping grids are used to compute the averaged sowing date for 7 

SACRA. 8 


