# Reply to reviewer n.1: M. Mergili

"Evaluating performances of simplified physically based models for landslide susceptibility"

G. Formetta, G. Capparelli, P. Versace.

I have seen with pleasure that the authors have responded to my suggestions in an appropriate way, so that I can now recommend the manuscript for publication.

We thank the reviewer for the useful comments that improved the quality of our paper. We are pleased it was satisfied and we replied below, point by point, to the minor suggestions.

#### **Minor suggestions**

## 1Q. Grammar and style still have to be polished

1A. We thank the reviewer for the suggestion. A native English speaker revised the last version of the paper. The corrections we made are presented in the back tracking version of the revised paper.

# 2A. With regard to the methodology, I recommend to replace "objective" with "reproducible"

2Q. We revised according the reviewer suggestion except when is connected to "objective function".

# 3Q.Legend of Fig. 7: be careful, FS=1.0 and FS=2.0 are not assigned to any class

3A. We revised the legend according the reviewer suggestion. Below you can find the revised figure:



Formatted: Font:(Default) Arial, Bold

# Reply to reviewer n.2: unknown

"Evaluating performances of simplified physically based models for landslide susceptibility" G. Formetta, G. Capparelli, P. Versace.

Dear authors,

In general the manuscript is not well arranged and reflecting the body of the manuscript. Also, the introduction section is not provides sufficient background for the readers. The manuscript in my opinion it is necessary to provide additional information and clarify some aspects in order to be accepted for publication in another journal. I think manuscript cannot be accepted for publication because have so many scientific mistakes. In the following list, there are some general suggestions need to be considered by the authors.

We thank the reviewer for the useful comments and suggestions and we replied point by point to each of the questions he asked.

# **Specific Comments:**

1Q Abstract: I think Abstract section has not been well written. Authors must bring obtained results and conclusion of research in end of this section. I did not see any validation method in this paper and also the condition factors in landslide occurs has been missed.

1A. We thank the reviewer for the comment. We modified the abstract in order to underline: i) the reasons why was useful to apply the methodology in the study area, ii) the fact that we validated our models using a detailed landslide inventory map of the area, and iii) the main conclusions of our application. New sentence:

"The area is extensively subject to rainfall-induced shallow landslides mainly because of its complex geology and climatology. The analysis was carried out considering all the combinations of the eight optimized indices and the three models. Parameter calibration, verification, and model performance assessment were performed by a comparison with a detailed landslide inventory map for the area. The results showed that the index distance to perfect classification in the receiver operating characteristic plane (D2PC) coupled with model M3 is the best modeling solution for our test case."

2Q Introduction: This section also is general. Considering high frequency of landslides, there is a big demand to prepare quality landslide susceptibility maps over the world. Different kinds of techniques are available including LSM. I miss in your paper some summarization of approaches used for landslide susceptibility. Please provide some comparison of methods and try to evaluate the advantages and disadvantages of your method in Introduction section.

2A. We thank the reviewer for the suggestion. In the introduction we added the following sentences to introduce how other landslide susceptibility methods works and to compare strength and limitations of different approaches. The new sentences are:

"Bivariate statistical methods ignore the interdependence of instability factors whereas multivariate analysis is able to statistically consider their interactions. Other data-driven methods for landslide susceptibility analysis include the use of neural networks (Pradhan, 2011; Conforti et al., 2014), support vector machines (Pradhan, 2013 and citations therein), and Bayesian networks (Lee et al., 2002)

"One of the main advantages of data-driven methods for landslide susceptibility is that they can be easily applied in wide areas while deterministic models are in general applied in local analyses. The latter are more computationally expensive and require detailed input data and parameters, which often involve high uncertainty. On the other hand, datadriven methods assume that landslides are caused by the same combination of instability factors overall the study area, whereas deterministic models enable different triggering mechanisms to be understood and investigated" 3Q. Please provide additional information about other studies that use Object Modeling System in landslide analysis. A paragraph concerning the different approach used in the present study would be useful. Actually the end of introduction section belong to the purpose of study. Authors must mention here aims of study clearly. I did not see this note and this important note was missing. Please highlight your contribution and novelty in this section.

3A. We thank the reviewer for the suggestions. We actually split this question in two parts:

- "Please provide additional information about other studies that use Object Modeling System in landslide analysis. A paragraph concerning the different approach used in the present study would be useful". To answer to this question we specified the different approaches used in OMS for landslide modeling. To this purpose we added the following questions with the aim of clarify to the reader that no previous work were finalized to landslide early warning and not to landslide susceptibility assessment. The new sentence is:

"The OMS framework has been previously used as the core for landslides modeling (Formetta et al., 2016; Formetta et al., 2015). These studies deal with real time early warning systems for landslide risks and involve 3D physically based hydrological modeling of very small catchments (up to around 20 km<sup>2</sup>). In contrast, the current application focuses on wider areas landslide susceptibility assessments using completely different physically based models which are presented in the next section."

Moreover in the text we tried to specify the differences respect to other studies in the following sentence:

"The methodology presented in this paper for landslide susceptibility analysis (LSA) represents one model configuration within the more general NewAge-JGrass system. It includes two new models specifically developed for this paper: mathematical components for landslide susceptibility mapping and procedures for landslides susceptibility model verification and selection."

- "Actually the end of introduction section belong to the purpose of study. Authors must mention here aims of study clearly. I did not see this note and this important note was missing. Please highlight your contribution and novelty in this section"

- We thank the reviewer for the suggestion. We modified the old sentence in which we explained the novelty of the paper, which was:

Old sentence: "For a generic landslide susceptibility component it is possible to estimate the model parameters that optimize a given GOF metric. To perform this step the user can choose between a set of GOF indices and a set of automatic calibration algorithms. Comparing the results obtained for different models and for different GOF metrics the user can select the most performing combination for his or her own case study."

In the revised paper we specified in bullet form both the novelties of the paper and the reasons for which the procedure that we propose will be useful for the end-user:

New sentence: "Unlike previous applications, our methodology aims to objectively: i) select a set of the most appropriate OFs in order to determine the best model parameters; ii) compare the performance of a model using the parameter sets selected in the previous step in order to identify the OFs that provides particular and not redundant information; iii) perform a model parameter sensitivity analysis in order to understand the relative importance of each parameter and its influence on the model performance. The methodology enables the user to: i) identify the most appropriate OFs for estimating the model parameters and ii) compare different models in order to select the best one that estimates the landslide susceptibility of the study area."

# 4Q. MODELING FRAMEWORK:

# Is it not better bring this section in under Material and methods section?

4A. we agree with the reviewer comment. We modified the title of the section 2 in Material and Methods, which now include the following subsections: modeling framework, landslide susceptibility models, automatic calibration and model verification procedure, and site description.

# **5Q. Site Description**

Please provide more information about the morphometric, tectonic settings of the research area. Also provide additional information about the types of landslides encountered in the study area. This information would enable the reader clearly understand the instability problems of the research area.

5A: We thank the reviewer for the suggestion. We tried to specify the morphology and tectonic setting of the are in the following sentence:

"The test site was located in Calabria, Italy, along the Salerno-Reggio Calabria highway between Cosenza and Altilia municipalities, in the southern part of the Crati basin (Figure 2). The mean annual precipitation is about of 1200 mm, distributed over approximately 100 rainy days, with a mean annual temperature of 16 °C. Rainfall peaks occur from October to March, when mass wasting and severe water erosion processes are triggered (Capparelli et al., 2012, Conforti et al., 2011, lovine et al., 2010).

In the study area the topographic elevation has an average value of around 450 m a.s.l., with a maximum value of 730 m a.s.l. Slopes, computed from the 10 meters resolution digital elevation model, range from 0° to 55°, while the average is about 26°.

The Crati Basin is a Pleistocene-Holocene extensional basin filled by clastic marine and fluvial deposits (Vezzani, 1968; Colella et al., 1987; Fabbricatore et al., 2014). The stratigraphic succession of the Crati Basin can be simply divided into two sedimentary units as suggested by Lanzafame and Tortorici (1986). The first unit is a Lower Pliocene succession of conglomerates and sandstones passing upward into a silty clay (Lanzafame and Tortorici, 1986) second unit. This is a series of clayey deposits grading upward into sandstones and conglomerates which refer to Emilian and Sicilian, respectively (Lanzafame and Tortorici, 1986), as also suggested by data provided by Young and Colella (1988). "

Moreover in the revised part of the paper we added more information about the tectonic setting of the analyzed area and about the soil type classification that, as specified by the reviewer, was missing:

New sentence: "In the study area the second unit outcrops. A topsoil of about 1.5 - 2.0 m lies on sandy-gravelly and sandy deposits, which are generally well-stratified. Soils range from Alfisols (i.e. highly mature soils) to Inceptisols

and Entisols (i.e. poorly developed soils). Due to the combination of such climatic, geo-structural, and geomorphological features the test site is one of the most landslide prone areas in Calabria (Conforti et al., 2014; Carrara and Merenda, 1976; lovine et al., 2006,)."

# 6Q. Models performances correlations assessment

Authors fail to adequately provide a critical discussion as to the limitations of their study. The entire mention section is dedicated to highlighting the strengths of the method over previous approaches. However, it is absolutely vital that you clearly present and address the limitations of the proposed method, of which I feel there are several notable points. Given the context of the paper and the suggestion that this method could be used by decision-makers it is vital that you are clear and explicit about its potential uses as well as its limitations - such information is crucial to ensure decision-makers are adequately informed.

6A: We thank the reviewer for the comments. In the revised paper we have specified the limitations of the methodology and the modeling approach. In particular we added the following sentences in the section Results and Discussion:

Subsection: "Models calibration and verification"

"Finally, is important to consider the limitation of the models used for the current applications. The models M1 and M2 are not able to mimic the transient nature of the precipitation and infiltration processes and only M3 is able to account for the combined effect of storm duration and intensity in the triggering mechanism. Moreover, in this study we neglected effects such as spatial rainfall variability, roads, and other engineering works."

Subsection " Models sensitivity assessment":

"Finally, it is important to consider that the methodology used for evaluating the parameter sensitivity is based on changing the parameters one-at-time. Although this procedure facilitates an inter-comparison of the results (because the parameter sensitivity is computed with reference to the optimal parameter set), it is does not take into account simultaneous variations or interactions between parameters." 7QI did not see Results and Discussion section in your manuscript? In this authors must bring obtained results of study here clearly without any generalization. This section is essential section in scientific papers.

7A: We thank the reviewer for the suggestion. In the revised paper the section 3 is extended and named Results and Discussion because in this section we presented and commented (adding the useful reviewer's requests) our results. Respect to the previous version of the paper we: i) added more discussions on the results and ii) provided in a more explicit form some of the limitations of our study (see 6A)

# 8Q. Conclusion: This section was not well written because I did not see concluded notes about this research here. Authors must rewrite this section.

8A. We thank the reviewer for the suggestions. We rearranged the entire section and we added two main sentences. The first sentence aims to stress the objectives of the methodology presented in the paper:

"The first step identifies the more appropriate OFs for the model parameter optimization. The second step verifies the information content of each optimized OF, checking whether it is analogous to other metrics or peculiar to the optimized OF. Finally the last step quantifies the relative influence of each model parameter on the model performance."

The second sentence aims to better clarify in bullet form the conclusions provided by the application:

"The procedure was applied in a test case on the Salerno-Reggio Calabria highway and led to the following conclusions: 1) the OFs AI, D2PC, SI, and TSS coupled with the models M2 and M3 provided the best performances among the eights metrics used in the calibration; 2) the four selected OFs provided quite similar model performances in terms of MP vectors, i.e. one of them would be sufficient for the model application; 3) M3 showed the best performance by optimizing the D2PC index. In fact M3 responded to parameter variations with changes in model performances."

| 1  | Evaluating Performances of Simplified Physically Based                                  |                                                                              |
|----|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 2  | Models for Landslide Susceptibility.                                                    |                                                                              |
| 3  |                                                                                         |                                                                              |
| 4  | Giuseppe Formetta, Giovanna Capparelli and Pasquale Versace                             |                                                                              |
| 5  |                                                                                         |                                                                              |
| 6  | University of Calabria Dipartimento di Ingegneria Informatica, Modellistica,            |                                                                              |
| 7  | Elettronica e Sistemistica Ponte Pietro Bucci, cubo 41/b, 87036 Rende, Italy            |                                                                              |
| 8  | (giuseppe.formetta@unical.it, giovanna.capparelli@unical.it,                            |                                                                              |
| 9  | pasquale.versace@unical.it)                                                             |                                                                              |
| 10 |                                                                                         |                                                                              |
| 11 | Abstract: Rainfall induced shallow landslides can lead to loss of life and significant  | Oiusanna Farmatta 10/01/2016 2/50 DM                                         |
| 12 | damage, to private and public properties, and transportation systems, etc. Predicting,  | Giuseppe Formetta 10/21/2016 2:50 PM<br>Deleted: causeead to loss of life[1] |
| 13 | Jocations that might be susceptible to shallow landslides is a complex task and         |                                                                              |
| 14 | involves many disciplines: hydrology, geotechnical science, geology, hydrogeology,      |                                                                              |
| 15 | geomorphology, and statistics. Two main approaches are commonly used: statistical       |                                                                              |
| 16 | or physically based models. Reliable model applications involve automatic parameter     |                                                                              |
| 17 | calibration, objective quantification of the quality of susceptibility maps, and model  |                                                                              |
| 18 | sensitivity analyses, This paper presents a methodology to systemically and             |                                                                              |
| 19 | objectively calibrate, verify and compare different models and model performance,       |                                                                              |
| 20 | indicators in order to jdentify and select the models whose behaviors are the most      |                                                                              |
| 21 | reliable for particular case studies,                                                   |                                                                              |
| 22 | The procedure was implemented in a package of models for landslide susceptibility       |                                                                              |
| 23 | analysis and integrated in the NewAge-JGrass hydrological model. The package            |                                                                              |
| 24 | includes three simplified physically-based models for landslide susceptibility analysis | Giuseppe Formetta 10/21/2016 2:55 PM                                         |
| 25 | (M1, M2, and M3) and a component for model verification. It computes eight              | Deleted:ased models for[2]                                                   |
| 26 | goodness of fit indices by comparing pixel-by-pixel model results and measurement,      |                                                                              |
| 27 | data. The integration of the package in NewAge-JGrass uses other components             | //                                                                           |
| 28 | such as geographic information system tools to manage input-output processes, and       |                                                                              |
| 29 | automatic calibration algorithms to estimate model parameters.                          |                                                                              |
| 30 | The system was applied for a case study in Calabria (Italy) along the Salerno-Reggio    |                                                                              |
| 31 | Calabria highway, between Cosenza and Altilia, The area is extensively subject to       | Ciusappa Formatta 10/21/2016 2:50 PM                                         |
| 32 | rainfall-induced shallow landslides mainly because of its complex geology and           | Giuseppe Formetta 10/21/2016 2:58 PM<br>Deleted: municipality                |
|    |                                                                                         |                                                                              |

climatology. The analysis was carried out considering all the combinations of the
eight optimized indices and the three models. Parameter calibration, verification, and
model performance assessment were performed by a comparison with a detailed
landslide inventory map for the area. The results showed that the index distance to
perfect classification in the receiver operating characteristic plane (D2PC) coupled
with model M3 is the best modeling solution for our test case.

73

75

74 Keywords: Landslide modelling; Object Modeling System; Models calibration.

#### 76 1 INTRODUCTION

77

78 Landslides are one of the main dangerous geo-hazards worldwide and constitute a serious menace for public safety Jeading to human and economic losses (Park 79 2011). Geo-environmental factors such as geology, land-use, vegetation, climate, 80 and increasing populations may increase the occurrence of landslides (Sidle and 81 Ochiai 2006). Landslide susceptibility assessments, i.e. the likelihood of a landslide 82 occurring in an area on the basis of local terrain conditions (Brabb, 1984), is not only 83 crucial for an accurate landslide hazard quantification but also a fundamental tool for 84 the environmental preservation and responsible urban planning (Cascini et al., 85 86 2005). 87 Many methods for landslide susceptibility mapping have been developed and can be grouped in two main branches: gualitative and guantitative methods (Glade and 88

89 Crozier, 2005, Corominas et al., 2014 and references therein).

90 Qualitative methods, based on field campaigns and expert knowledge and 91 experience, are subjective but necessary to validate quantitative method, results. 92 Quantitative methods include statistical and physically based methods. Statistical methods (e.g. Naranjo et al., 1994; Chung et al. 1995; Guzzetti et al., 1999; Catani 93 94 et al., 2005) use different approaches such as bivariate statistics, multivariate 95 analysis, discriminant analysis, random forest to link instability factors (such as geology, soil, slope, curvature, and aspect) with past and present landslides. 96 Bivariate statistical methods ignore the interdependence of instability factors 97 98 whereas multivariate analysis is able to statistically consider their interactions. Other data-driven methods for landslide susceptibility analysis include the use of neural 99

Giuseppe Formetta 10/6/2016 5:05 PM **Deleted:** provided ...as carried out .... [3]

Giuseppe Formetta 10/21/2016 3:00 PM **Deleted:** major ...ain worldwide .....[4]

Giuseppe Formetta 10/21/2016 3:10 PM **Deleted:** on the basis of ...xpert [...[6]]

| 130 | networks (Pradhan, 2011; Conforti et al., 2014), support vector machines (Pradhan,           |                                                                           |
|-----|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| 131 | 2013 and citations therein), and Bayesian networks (Lee et al., 2002), Deterministic         | Giuseppe Formetta 10/1/2016 1:15 PM                                       |
| 132 | models (e.g. Montgomery and Dietrich, 1994; Lu and Godt, 2008; Borga et al., 2002;           | Deleted:                                                                  |
| 133 | Simoni et al., 2008; Capparelli and Versace, 2011; Lu and Godt, 2013) synthesize             |                                                                           |
| 134 | the interaction between hydrology, geomorphology, and soil mechanics in order to             |                                                                           |
| 135 | physically understand and predict the location and timing that trigger landslides,           | //                                                                        |
| 136 | These models generally include a hydrological and a slope stability component. The ,         |                                                                           |
| 137 | hydrological component simulates infiltration and groundwater flow processes with            |                                                                           |
| 138 | different degrees of simplification, from steady state (e.g. Montgomery and Dietrich,        |                                                                           |
| 139 | 1994) to transient analyses (Simoni et al., 2008). The soil-stability component              |                                                                           |
| 140 | simulates the slope safety factor (FS) defined as the ratio of stabilizing to                |                                                                           |
| 141 | destabilizing forces. One of the main advantages of data-driven methods for                  |                                                                           |
| 142 | landslide susceptibility is that they can be easily applied in wide areas while              |                                                                           |
| 143 | deterministic models are in general applied in local analyses. The latter are more           |                                                                           |
| 144 | computationally expensive and require detailed input data and parameters, which              |                                                                           |
| 145 | often involve high uncertainty. On the other hand, data-driven methods assume that           |                                                                           |
| 146 | landslides are caused by the same combination of instability factors overall the study       |                                                                           |
| 147 | area, whereas deterministic models enable different triggering mechanisms to be              |                                                                           |
| 148 | understood and investigated.                                                                 |                                                                           |
| 149 | The results of a landslide susceptibility analysis strongly depend on the model              |                                                                           |
| 150 | hypothesis, parameter, values, and parameter, estimation method. Questions                   | Giuseppe Formetta 10/21/2016 3:18 PM<br>Deleted: Rsults of a landslide[8] |
| 151 | regarding the performance evaluation of the landslide susceptibility model, the              |                                                                           |
| 152 | choice of the best accurate model, and the selection of the best performing method           |                                                                           |
| 153 | for parameter estimation are still open, <u>Thus, is needed a procedure that facilitates</u> | ///                                                                       |
| 154 | reproducible comparisons between different models and evaluation criteria aimed at           | //                                                                        |
| 155 | the selection of the most accurate models,                                                   |                                                                           |
| 156 | Much effort, has been devoted to the crucial problem of evaluating landslide                 |                                                                           |
| 157 | susceptibility model performances (e.g Dietrich et al., 2001, Frattini et al., 2010, and     | Giuseppe Formetta 10/21/2016 3:21 PM<br>Deleted: Manyuch effortswere [9]  |
| 158 | Guzzetti et al. 2006). Accurate discussions about the most common quantitative               |                                                                           |
| 159 | measures of goodness of fit (GOF) between measured and modeled data are                      |                                                                           |
| 160 | discussed in Bennet et al., (2013), Jolliffe and Stephenson, (2012), Beguería (2006),        |                                                                           |
| 161 | Brenning (2005) and references therein. We have summarized them in Appendix 1.               |                                                                           |
| 162 | Usually one of these indices is selected and used as an objective function (OF) in           | Giuseppe Formetta 10/3/2016 7:33 PM                                       |
|     |                                                                                              | Formatted[10]                                                             |

| 201 | combination with a calibration algorithm in order to obtain the optimal set of model        |                     | Ciuconno Formatt                      |
|-----|---------------------------------------------------------------------------------------------|---------------------|---------------------------------------|
| 202 | parameters, However, in most cases the selection of the OF is not justified or              | $\square$           | Giuseppe Formett                      |
| 203 | compared with other options,                                                                |                     |                                       |
| 204 | The wrong classifications in landslide susceptibility analysis not only risk a loss of life |                     | 0                                     |
| 205 | but also have economic consequences. For example locations classified as stable             | 7                   | Giuseppe Formett<br>Deleted: Wong     |
| 206 | increase their economical value because no construction restrictions will be applied,       |                     |                                       |
| 207 | while the reverse is true for locations classified as unstable.                             |                     |                                       |
| 208 | In this work we propose an objective methodology for environmental model, analysis          |                     | 0:                                    |
| 209 | which selects the best performing model based on a quantitative comparison and              |                     | Giuseppe Formett<br>Deleted: sanal    |
| 210 | assessment of model prediction skills. In this paper the methodology is applied to $/$      |                     |                                       |
| 211 | assess the performances of simplified landslide susceptibility models. As the               |                     |                                       |
| 212 | procedure is model independent, it can be used to assess the ability of any type of         |                     |                                       |
| 213 | environmental model to simulate natural phenomena.                                          |                     |                                       |
| 214 | Unlike previous applications, our methodology aims to objectively: i) select a set of       |                     |                                       |
| 215 | the most appropriate OFs in order to determine the best model parameters; ii)               |                     |                                       |
| 216 | compare the performance of a model using the parameter sets selected in the                 |                     |                                       |
| 217 | previous step in order to identify the OFs that provides particular and not redundant       |                     |                                       |
| 218 | information; iii) perform a model parameter sensitivity analysis in order to understand     |                     |                                       |
| 219 | the relative importance of each parameter and its influence on the model                    |                     |                                       |
| 220 | performance. The methodology enables the user to: i) identify the most appropriate          |                     |                                       |
| 221 | OFs for estimating the model parameters and ii) compare different models in order to        | 1                   | Giuseppe Formett                      |
| 222 | select the best one that estimates the landslide susceptibility of the study area.          |                     | Formatted: Norma                      |
| 223 | The procedure is implemented in the open source and GIS based hydrological-                 |                     | Giuseppe Formett<br>Deleted: thath    |
| 224 | model, denoted as NewAge-JGrass (Formetta et al., 2014) which uses the Object               | /                   | Giuseppe Formett<br>Formatted: Font:( |
| 225 | Modeling System (OMS, David et al., 2013) modeling framework. OMS is a Java                 |                     | Giuseppe Formett                      |
| 226 | based modeling framework whch promotes the idea of programming by components.               |                     | Deleted: that<br>Giuseppe Formett     |
| 227 | It provides the model developers with many features such as: multithreading, implicit       |                     | Formatted: Font:(                     |
| 228 | parallelism, models interconnection, and <u>a GIS based system.</u>                         |                     | Giuseppe Formett<br>Deleted: and      |
| 229 | The NewAge-JGrass system, Fig. 1, contains models, automatic calibration                    |                     | Giuseppe Formett                      |
| 230 | algorithms for model parameter, estimation, and methods for estimating the                  |                     | Formatted: Font:(<br>Giuseppe Formett |
| 231 | goodness of the models prediction. The open source GIS uDig                                 | $\langle   \rangle$ | Deleted: facilitate                   |
| 232 | (http://udig.refractions.net/) and the uDig-Spatial Toolbox (Abera et al., (2014),          |                     | Giuseppe Formett<br>Formatted         |
| 233 | https://code.google.com/p/jgrasstools/wiki/JGrassTools4udig) are used as <u>a</u>           |                     | Giuseppe Formett                      |

Giuseppe Formetta 10/3/2016 7:33 PM
Formatted

Giuseppe Formetta 10/21/2016 3:26 PM Deleted: W...ong classifications ir .... [12]

iuseppe Formetta 10/21/2016 3:28 PM eleted: s...analysis that allows t(...[13])

a 10/3/2016 8:38 PM al a 10/21/2016 3:37 PM ich uses the Obj .... [14] a 10/3/2016 8:39 PM (Default) Arial a 10/21/2016 3:37 PM a 10/3/2016 8:39 PM Default) Arial a 10/21/2016 3:37 PM a 10/3/2016 8:39 PM (Default) Arial a 10/21/2016 3:38 PM es a 10/3/2016 8:39 PM ... [15] a 10/21/2016 3:38 PM

Deleted: e... ...ewAge-JGrass sy .... [16]

| 263 | visualization and input/out data management system. The OMS framework has been                 |
|-----|------------------------------------------------------------------------------------------------|
| 264 | previously used as the core for landslides modeling (Formetta et al., 2016; Formetta           |
| 265 | et al., 2015). These studies deal with real time early warning systems for landslide           |
| 266 | risks and involve 3D physically based hydrological modeling of very small                      |
| 267 | catchments (up to around 20 km <sup>2</sup> ). In contrast, the current application focuses on |
| 268 | wider areas landslide susceptibility assessments using completely different                    |
| 269 | physically based models which are presented in the next section.                               |
| 270 | The methodology presented in this paper for landslide susceptibility analysis (LSA)            |
| 271 | represents one model configuration within the more general NewAge-JGrass                       |
| 272 | system. It includes two new models specifically developed for this paper:                      |
| 273 | mathematical components for landslide susceptibility mapping and procedures for                |
| 274 | landslides susceptibility model verification and selection. The LSA configuration also         |
| 275 | uses two models that have already been implemented in NewAge-JGrass: the                       |
| 276 | geomorphological model set-up and the automatic calibration algorithms for model               |
| 277 | parameter estimation. All the models used in the LSA configuration are presented in            |
| 278 | Fig. 1, encircled with a dashed red line.                                                      |
| 279 | The methodology is presented in section 2. It was setup considering three different.           |
| 280 | landslide susceptibility models, eight GOF metrics, and one automatic calibration              |
| 281 | algorithm. The flexibility of the system <u>enables more models, and</u> GOF metrics to be     |
| 282 | added, and different calibration algorithms can be used. Thus deferent LSA /                   |
| 283 | configurations can be created depending on: the landslide susceptibility model, the            |
| 284 | calibration algorithm, and the GOFs selected by the user. Finally, Section 3 presents          |
| 285 | a case study of landslide susceptibility mapping along the A3 Salerno-Reggio                   |
| 286 | Calabria highway in Calabria, which illustrates the capability of the system.                  |

# 287 288

289

290 2.1 Modelling Framework

2

MATERIALS, AND METHODS

291

The landslide susceptibility analysis (LSA) is implemented in the context of NewAge-JGrass (Formetta et al., 2014), an open source large-scale hydrological modeling system. It models the whole hydrological cycle: water balance, energy balance, snow melting, etc. (Figure 1). The system implements hydrological models, automatic

Formatted: Superscript Giuseppe Formetta 10/21/2016 3:40 PM Deleted: into Giuseppe Formetta 10/21/2016 3:40 PM Deleted: Moreover Giuseppe Formetta 10/2/2016 9:36 AM Deleted: For a generic landslide susceptibility component it is possible to estimate the model parameters that optimize a given GOF metric. To perform this step the user can choose between a set of GOF indices and a set of automatic calibration algorithms. Comparing the results obtained for different models and for deferent GOF metrics the user can select the most performing combination for his or her own case study Giuseppe Formetta 10/21/2016 3:42 PM Formatted: Default Giuseppe Formetta 10/21/2016 3:41 PM Deleted: , accurately Deleted: Giuseppe Formetta 10/21/2016 3:41 PM Deleted: allows Giuseppe Formetta 10/21/2016 3:41 PM Deleted: to add Giuseppe Formetta 10/21/2016 3:42 PM Deleted: to use Giuseppe Formetta 10/21/2016 3:42 PM Deleted: realized Giuseppe Formetta 10/3/2016 8:39 PM Deleted: ... [17] Giuseppe Formetta 10/3/2016 8:39 PM Formatted: Font: (Default) Arial Giuseppe Formetta 10/3/2016 8:39 PM Formatted: Font:(Default) Arial Giuseppe Formetta 10/21/2016 3:42 PM Deleted: s Giuseppe Formetta 10/3/2016 8:39 PM Formatted: Font: (Default) Arial Giuseppe Formetta 10/21/2016 3:43 PM Deleted: that Formatted: Font: (Default) Arial Giuseppe Formetta 10/2/2016 9:45 AM Formatted: Font:Bold Giuseppe Formetta 10/2/2016 9:45 AM Formatted: Font:Bold Giuseppe Formetta 10/2/2016 9:43 AM Deleted: ... MODELING Giuseppe Formetta 10/2/2016 9:45 AM

Giuseppe Formetta 10/1/2016 4:05 PM

Deleted: FRAMEWORK

321 calibration algorithms for model parameter optimization, and evaluation, and a GIS for input output visualization, (Formetta et al., 2011, Formetta et al., 2014). NewAge-322 JGrass is a component-based model, Each hydrological process is described by a 323 model (energy balance, evapotranspiration, run off production in figure 1), Each 324 model implements one or more components (considering for example the model 325 evapotranspiration in Figure 1, the user can select between three different 326 327 components: Penman-Monteith, Priestly-Taylor, and Fao). In addition, each component can be linked to the others and executed at runtime, this building a 328 329 model configuration. Figure 1 offers a complete picture of the system and the 330 integration of the new LSA configuration encircled with dashed red lines. More precisely the LSA in the current configuration includes two new models: a landslides 331 susceptibility model and a verification and selection model. The first includes three 332 333 components proposed in Montgomery and Dietrich, 1994, Park et al., 2013, and Rosso et al., 2006, the latter includes the "three step verification procedure" (3SVP), 334 335 presented in Section 2. The LSA configuration also includes another two models 336 previously implemented in the NewAge-JGrass system: i) the Horton Machine for 337 geomorphological model setup which computes input maps such as slope and total contributing area and which displays the model's results, and ii) the particle swarm 338 339 for automatic calibration. Subsection 2.1 presents the landslide susceptibility model 340 and 2.2 presents the model selection procedure (3SVP).

# 341 342

343

#### 2.2. Landslide susceptibility models

The landslide susceptibility models implemented in NewAge-JGrass and presented in a preliminary application in Formetta et al., 2015 <u>consist of the Montgomery and</u> Dietrich (1994) model (M1), the Park et al. (2013) model (M2) and the Rosso et al. (2006) model (M3). The three models derive, from simplifications of the infinite slope equation (Grahm J., 1984, Rosso et al., 2006, Formetta et al., 2014) for the factor of safety:

351 
$$FS = \frac{C \cdot (1+e)}{\left[G_s + e \cdot S_r + w \cdot e \cdot (1-S_r)\right] \cdot \gamma_w \cdot H \cdot \sin \alpha \cdot \cos \alpha} + \frac{\left[G_s + e \cdot S_r - w \cdot (1+e \cdot S_r)\right]}{\left[G_s + e \cdot S_r + w \cdot e \cdot (1-S_r)\right]} \cdot \frac{\tan \varphi'}{\tan \alpha}$$
(1)

| Giuseppe Formetta 10/21/2016 3:43 PM |
|--------------------------------------|
| Deleted: :                           |
| Giuseppe Formetta 10/21/2016 3:43 PM |
| Deleted: e                           |
| Giuseppe Formetta 10/21/2016 3:43 PM |
| Deleted: ;                           |
| Giuseppe Formetta 10/21/2016 3:43 PM |
| Deleted: e                           |
| Giuseppe Formetta 10/3/2016 8:43 PM  |
| Deleted: (                           |
| Giuseppe Formetta 10/3/2016 8:43 PM  |
| Deleted: )                           |
| Giuseppe Formetta 10/21/2016 3:44 PM |
| Deleted: f                           |
| Giuseppe Formetta 10/21/2016 3:44 PM |
| Deleted: ;                           |
| Giuseppe Formetta 10/21/2016 3:45 PM |
| Deleted: actual                      |
| Giuseppe Formetta 10/21/2016 3:45 PM |
| Deleted: model for model             |
| Giuseppe Formetta 10/21/2016 3:45 PM |
| Deleted: T                           |
| Giuseppe Formetta 10/21/2016 3:46 PM |
| Deleted: s                           |
| Giuseppe Formetta 10/21/2016 3:46 PM |
| Deleted: accurately                  |
| Giuseppe Formetta 10/21/2016 3:46 PM |
| Deleted: s                           |
| Giuseppe Formetta 10/21/2016 3:46 PM |
| Deleted: Moreover                    |
| Giuseppe Formetta 10/21/2016 3:47 PM |
| Deleted: beforehand                  |
| Giuseppe Formetta 10/21/2016 3:47 PM |
| Deleted: that                        |
| Giuseppe Formetta 10/21/2016 3:47 PM |
| Deleted: ,                           |
| Giuseppe Formetta 10/21/2016 3:47 PM |
| Deleted: visualize                   |
| Giuseppe Formetta 10/21/2016 3:47 PM |
| Deleted: P                           |
| Giuseppe Formetta 10/21/2016 3:47 PM |
| Deleted: S                           |
| Giuseppe Formetta 10/21/2016 3:48 PM |
| Deleted: subsection                  |
| Giuseppe Formetta 10/2/2016 9:43 AM  |
| Deleted: 1                           |
| Giuseppe Formetta 10/21/2016 3:48 PM |
| Deleted: are:                        |
| Giuseppe Formetta 10/21/2016 3:49 PM |

Deleted: s

352

where FS [-] is the factor of safety,  $C=C'+C_{root}$  is the sum of  $C_{root}$ , the root strength [kN/m2] and C' the effective soil cohesion [kN/m2],  $\varphi'$ [-] is the internal soil friction angle, H is the soil depth [m],  $\alpha$ [-] is the slope angle,  $\gamma_{w}$ [kN/m3] is the specific weight of water, and w=h/H [-] where h [m] is the water table height above the failure surface [m], Gs [-] is the specific gravity of soil, e [-] is the average void ratio and Sr [-] is the average degree of saturation.

The model M1 assumes <u>a hydrological steady-state</u>, flow occurring in the direction parallel to the slope and neglect cohesion, degree of soil saturation and void ratio. It computes w as:

388  $w = \frac{h}{H} = \min\left(\frac{Q}{T} \cdot \frac{TCA}{b \cdot \sin \alpha}, 1.0\right)$  (2)

#### 389

where T  $[L^2/T]$  is the soil transmissivity defined as the product of the soil depth and the saturated hydraulic conductivity, b [L] is the length of the contour line. Substituting eq. (2) in (1) the model is solved for Q/T assuming FS=1 and stable and unstable sites are defined using threshold values on log(Q/T) (Montgomery and Dietrich, 1994).

395 Unlike M1, the model M2 considers: i) the effect of the degree of soil saturation (Sr [396 ]) and void ratio (e [-]) above the groundwater table and ii) the stabilizing contribution,
397 of the soil cohesion. The model output is a map of safety factors (FS) for each pixel
398 of the analyzed area.

The component (M3) considers both the effects of rainfall intensity and duration on the landslide triggering process. The term w depends on rainfall duration and is obtained by coupling the conservation of mass of soil water with the Darcy's law (Rosso et al., 2006) providing:

ſ

$$404 \qquad w = \begin{cases} \frac{Q}{T} \cdot \frac{TCA}{b \cdot \sin \alpha} \cdot \left[ 1 - \exp\left(\frac{e+1}{e \cdot (1-S_r)} \cdot \frac{t}{T} \cdot \frac{TCA}{b \cdot \sin \alpha} \cdot H\right) \right] & \text{if } \frac{t}{T} \cdot \frac{TCA}{b \cdot \sin \alpha} \cdot H \le -\frac{e \cdot (1-S_r)}{1+e} \cdot \ln\left(1 - \frac{T \cdot b \cdot \sin \alpha}{TCA \cdot Q}\right) \\ 1 & \text{if } \frac{t}{T} \cdot \frac{TCA}{b \cdot \sin \alpha} \cdot H \ge -\frac{e \cdot (1-S_r)}{1+e} \cdot \ln\left(1 - \frac{T \cdot b \cdot \sin \alpha}{TCA \cdot Q}\right) \end{cases}$$
(3)





Giuseppe Formetta 10/21/2016 3:51 PM Deleted: it

These models are suitable for shallow translational landslides controlled by
groundwater flow convergence. Shallow landslides usually have a very low ratio
between the maximum depth (D) and the length (L) of scar (D/L<0.1, Casadei et al.,</li>
2003), involve a small volume of the colluvial soil mantle and present a generally
translational failure mechanism (Milledge et al., 2014).
Each component has a user interface which specifies the input and output. Model

417 inputs are computed in the GIS uDig integrated in the NewAge-JGrass system by
418 using the Horton Machine package for terrain analysis (Abera et al., 2014). Model
419 output maps are directly imported in the GIS and <u>are</u> available for <u>the</u> user's
420 visualization.

The models that we implemented present <u>an</u> increasing degree of complexity <u>in</u> <u>terms of</u> the theoretical assumptions for modeling landslide susceptibility. Moving from M1 to M2, <u>the</u> soil cohesion and soil properties were considered, and moving from M2 to M3 rainfall of finite duration was used.

425

427

#### 426 **2.3** Automatic calibration and model verification procedure

In order to assess the models' performance we developed a model that computes 428 the most <u>common</u> indices for assessing the quality of a landslide susceptibility map. 429 430 These indices are based on a pixel-by-pixel comparison between the observed 431 landslide map (OL) and predicted landslides (PL). They are binary maps with positive pixels corresponding to "unstable" ones, and negative pixels that correspond 432 433 to "stable" ones. Therefore, four types of outcomes are possible for each cell. A pixel is a true-positive (tp) if it is mapped as "unstable" both in OL and in PL, which is a 434 435 correct alarm with well predicted landslide. A pixel is a true-negative (tn) if it is 436 mapped as "stable" both in OL in PL, which corresponds to a well predicted stable area. A pixel is a false-positive (fp) if it is mapped as "unstable" in PL, but is "stable" 437 in OL; that is a false alarm. A pixel is a false-negative (fn) if it is mapped as "stable" 438 439 in PL, but is "unstable" in OL, that is a missed alarm. The concept of the Receiver Operator Characteristic (ROC, Goodenough et al., 1974) graph is based on the 440 values assumed by tp, fp, tn. ROCs are used to assess the performance of models 441 which provides results assigned to one of two classes. The ROC graph is widely 442 used in many scientific fields such as medicine (Goodenough et al., 1974), 443

Giuseppe Formetta 10/21/2016 3:51 PM Deleted: o

Giuseppe Formetta 10/21/2016 3:52 PM **Deleted:** on

Giuseppe Formetta 10/2/2016 9:43 AM Deleted: 2

Giuseppe Formetta 10/21/2016 3:53 PM **Deleted:** used

Giuseppe Formetta 10/21/2016 3:54 PM **Deleted:** that

| Giuseppe Formetta 10/21/2016 3:54 PM |
|--------------------------------------|
| Deleted: that                        |
| Giuseppe Formetta 10/21/2016 3:55 PM |
| Deleted: t                           |
| Giuseppe Formetta 10/21/2016 3:55 PM |
| Deleted: The                         |
| Giuseppe Formetta 10/21/2016 3:55 PM |
| Deleted: is a methodology            |
| Giuseppe Formetta 10/21/2016 3:55 PM |
| Deleted: to                          |
| Giuseppe Formetta 10/21/2016 3:55 PM |
| Deleted: that                        |

|    | biometrics (Pepe, 2003) and machine learning (Provost and Fawcett, 2001). The              | 455 |
|----|--------------------------------------------------------------------------------------------|-----|
|    | ROC graph is a Cartesian plane with the FPR on the x-axis and TPR on the y-axis.           | 456 |
|    | FPR is the ratio between false positives and the sum of false positives and true           | 457 |
|    | negatives, and TPR is the ratio between true positives and the sum of true positives       | 458 |
|    | and false negatives. They are defined in Table 1 and commented on Appendix 1.              | 459 |
| Gi | The performance of a perfect model corresponds to the point P(0,1) on the ROC              | 460 |
| Gi | plane, Points that fall on the bisector (black solid line, on the plots) are associated    | 461 |
| Gi | with models that are considered as random: they predict stable or unstable cells with      | 462 |
| Gi | the same rate.                                                                             | 463 |
| De | Eight GOF indices for the quantification of model performances were implemented in         | 464 |
| Gi | the system. Table (1) shows their definition, range, and optimal values. A more            | 465 |
| Gi | comprehensive description of the indices is provided in Appendix 1.                        | 466 |
| De | Automatic calibration algorithms implemented in NewAge-JGrass as OMS                       | 467 |
| Gi | components can be used in order to tune the model parameters in order to                   | 468 |
| De | reproduce, the actual landslides. This is possible because each model is an OMS            | 469 |
| Gi | component and can be linked to the calibration algorithms as it is, without rewriting      | 470 |
|    | or modifying its code. Three calibration algorithms are embedded in the system core:       | 471 |
|    | Luca (Hay et al., 2006), a step-wise algorithm based on shuffled complex evolution         | 472 |
|    | (Duan et al., 1992), Particle Swarm Optimization (PSO), a genetic model presented          | 473 |
| Gi | in (Kennedy and Eberhart, 1995), and DREAM (Vrugt et al., 2008) an acronym for             | 474 |
| De | Differential Evolution Adaptive Metropolis. In the actual configuration we used a          | 475 |
|    | Particle Swarm Optimization (PSO) algorithm to estimate optimal values of the              | 476 |
| Gi | model parameters                                                                           | 477 |
| De | During the calibration procedure, the selected algorithm compares the model output         | 478 |
|    | in terms of a binary map (stable or unstable pixel) with the actual landslide, thus        | 479 |
|    | optimizing a selected objective function (OF). The model parameter set for which the       | 480 |
|    | OF assumes its best value is the optimization procedure output. The eight GOF              | 481 |
| Gi | indices presented in Table 1 were used in turn as $OFs$ and, consequently, eight           | 482 |
| De | optimal parameters sets were provided as the calibration output (one for each              | 483 |
| Gi | optimised OF). This means that a GOF index selected in Table 1 becomes an OF               | 484 |
| De | when it is used as <u>an</u> objective function of the automatic calibration algorithm.    | 485 |
| Gi | In order to quantitatively analyze the model performances we implemented a three           | 486 |
| Gi | steps verification procedure (3SVP). Firstly, we evaluated the performances of <u>each</u> | 487 |
|    |                                                                                            |     |

Giuseppe Formetta 10/21/2016 3:57 PM Deleted: t Giuseppe Formetta 10/21/2016 3:57 PM Deleted: in Giuseppe Formetta 10/21/2016 3:57 PM Deleted: ; Giuseppe Formetta 10/21/2016 3:57 PM **Deleted:** p Giuseppe Formetta 10/21/2016 3:58 PM Deleted: are Giuseppe Formetta 10/21/2016 3:58 PM Deleted: accurate Giuseppe Formetta 10/21/2016 3:59 PM Deleted: for Giuseppe Formetta 10/21/2016 3:59 PM Deleted: ing iuseppe Formetta 10/21/2016 3:59 PM Deleted: of Giuseppe Formetta 10/21/2016 4:00 PM Deleted: optimal values.

Giuseppe Formetta 10/21/2016 4:01 PM Deleted: t

Giuseppe Formetta 10/21/2016 4:01 PM Deleted: To better clarify: Giuseppe Formetta 10/21/2016 4:01 PM Deleted: t Giuseppe Formetta 10/21/2016 4:02 PM Deleted: every

| 502 | $\ensuremath{OF}$ index for each model. We presented the results in the ROC plane in order to |    | Giuseppe Formetta 10/21/201                               | 6 4:02 PM |
|-----|-----------------------------------------------------------------------------------------------|----|-----------------------------------------------------------|-----------|
| 503 | assess what the OF index(es) was (where), whose optimization provided, the best               |    | Deleted: singleF index for                                |           |
| 504 | model performances. Secondly, we verified wheatear each OF metric had, its own                | /  |                                                           |           |
| 505 | information content or wheatear it provided, information analogous to other metrics           | // |                                                           |           |
| 506 | (and <u>thus not essential</u> ).                                                             |    |                                                           |           |
| 507 | Lastly, for each model, the sensitivity of each optimal parameter set was tested by           |    |                                                           | C 4:02 DM |
| 508 | perturbing optimal parameters and by evaluating their effects on the $GOF_{\mathtt{v}}$       |    | Giuseppe Formetta 10/21/201<br>Deleted: isas tested by pe |           |
| 509 |                                                                                               |    |                                                           |           |
| 510 | 2.4 Site Description                                                                          |    |                                                           |           |
| 511 |                                                                                               |    | Giuseppe Formetta 10/2/2016<br>Moved (insertion) [1]      | 9:44 AM   |
| 512 | The test site was located in Calabria, Italy, along the Salerno-Reggio Calabria               |    | Giuseppe Formetta 10/2/2016<br>Deleted: 3.1               | 9:44 AM   |
| 513 | highway between Cosenza and Altilia municipalities, in the southern part of the Crati         |    | Giuseppe Formetta 10/2/2016                               | 9:45 AM   |
| 514 | basin (Figure 2). The mean annual precipitation is about of 1200 mm, distributed              |    | Formatted: Font:Bold Giuseppe Formetta 10/21/201          | 6 4:02 DM |
| 515 | over approximately 100 rainy days, with a mean annual temperature of 16 °C.                   | /  | Deleted: portionart of the C                              |           |
| 516 | Rainfall peaks occur from October to March, when mass wasting and severe water                |    |                                                           |           |
| 517 | erosion processes are triggered (Capparelli et al., 2012, Conforti et al., 2011, lovine       |    |                                                           |           |
| 518 | <u>et al., 2010).</u>                                                                         |    |                                                           |           |
| 519 | In the study area the topographic elevation has an average value of around 450 m              |    |                                                           |           |
| 520 | a.s.l., with a maximum value of 730 m a.s.l. Slopes, computed from the 10 meters              |    |                                                           |           |
| 521 | resolution digital elevation model, range from 0° to 55°, while the average is about          |    |                                                           |           |
| 522 | <u>26°.</u>                                                                                   |    | Giuseppe Formetta 10/21/201<br>Deleted: its               | 6 4:05 PM |
| 523 | The Crati Basin is a Pleistocene-Holocene extensional basin filled by clastic marine          |    |                                                           |           |
| 524 | and fluvial deposits (Vezzani, 1968; Colella et al., 1987; Fabbricatore et al., 2014).        |    |                                                           |           |
| 525 | The stratigraphic succession of the Crati Basin can be simply divided into two                | /  | Giuseppe Formetta 10/3/2016<br>Deleted: ,Colella et al.,  | 8:53 PM   |
| 526 | sedimentary units as suggested by Lanzafame and Tortorici. (1986). The first unit is a        | /  |                                                           |           |
| 527 | Lower Pliocene succession of conglomerates and sandstones passing upward into a               |    |                                                           |           |
| 528 | silty clay, (Lanzafame and Tortorici, 1986) second unit. This is a series of clayey           | // |                                                           |           |
| 529 | deposits grading upward into sandstones and conglomerates which refer to Emilian              |    |                                                           |           |
| 530 | and Sicilian, respectively (Lanzafame and Tortorici, 1986), as also suggested by              |    |                                                           |           |
| 531 | data provided by Young and Colella (1988).                                                    |    |                                                           |           |
| 532 | In the study area the second unit outcrops. A topsoil of about 1.5 - 2.0 m lies on            |    |                                                           |           |
| 533 | sandy-gravelly and sandy deposits, which are generally well-stratified. Soils range           |    |                                                           |           |
| 534 | from Alfisols (i.e. highly mature soils) to Inceptisols and Entisols (i.e. poorly             |    |                                                           |           |
|     |                                                                                               |    |                                                           |           |

|     |                                                                                         | Giuseppe Formetta 10/21/2016 4:08 PM                                                                             |
|-----|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| 567 | developed soils). Due to the combination of such climatic, geo-structural, and          | Deleted: fiiure 2,D. Digital ele [22]                                                                            |
| 568 | geomorphological features the test site is one of the most landslide prone areas in     | Giuseppe Formetta 10/2/2016 9:51 AM                                                                              |
| 569 | Calabria (Conforti et al., 2014; Carrara and Merenda, 1976; Iovine et al., 2006,).      | Giuseppe Formetta 10/2/2016 9:59 AM                                                                              |
| 570 | Mass movements were analyzed from 2006 to 2013 by integrating aerial                    | Deleted: MODELING FRAMEWORK<br>APPLICATION                                                                       |
| 571 | photography interpretation acquired in 2006, 1:5000 scale topographic maps              | Giuseppe Formetta 10/21/2016 4:10 PM                                                                             |
| 572 | analysis, and an extensive field survey.                                                | Deleted: isas applied foro tr [23]<br>Giuseppe Formetta 10/2/2016 9:44 AM                                        |
| 573 | All the data were digitized and stored in a GIS database (Conforti et al., 2014) and    | Moved up [1]: 3.1 Site Description                                                                               |
| 574 | the result was the map of occurred landslides, presented in Figure 2.D. Digital         | The test site was located in Calabria, Italy, along the Salerno-Reggio Calabria                                  |
| 575 | elevation model, slope and total contributing area (TCA) maps are presented in          | highway between Cosenza and Altilia<br>municipalities, in the southern portion of                                |
| 576 | Figures 2, A, B, and C respectively. In order to perform model calibration and          | the Crati basin (Figure 2). The mean<br>annual precipitation is about of 1200 mm,                                |
| 577 | verification, the dataset of occurred landslides was divided in two parts one used for  | distributed on about 100 rainy days, and<br>mean annual temperature of 16 °C.                                    |
| 578 | calibration (located at bottom of Figure 2,D) and one for validation (located in the    | Rainfall peaks occur in the period<br>October–March, during which mass                                           |
| 579 | upper part of Figure 2,D). The landslide inventory map refers only to the initiation    | wasting and severe water erosion<br>processes are triggered (Capparelli et al.,                                  |
| 580 | area of the landslides. This leads to a fair comparison with the landslide models that  | 2012, Conforti et al., 2011, Iovine et al., 2010).                                                               |
| 581 | provide only the triggering point and does not include a runout model for landslides    | In the study area the topographic elevation has an average value of around 450 m                                 |
| 582 | propagation,                                                                            | a.s.l., with a maximum value of 730 m<br>a.s.l. Slope, computed from 10 meters                                   |
| 583 | Y                                                                                       | resolution digital elevation model, range from 0° to 55°, while its average is about                             |
| 584 | 3 <u>RESULTS AND DISCUSSION</u>                                                         | 26°<br>The Crati Basin is a Pleistocene-Holocene                                                                 |
| 585 |                                                                                         | extensional basin filled by clastic marine<br>and fluvial deposits (Vezzani, 1968,                               |
| 586 | The LSA presented in the paper <u>was</u> applied <u>to</u> the Salerno-Reggio Calabria | Colella et al., 1987, Fabbricatore et al.,<br>2014). The stratigraphic succession of the                         |
| 587 | highway, between Cosenza and Altilia (southern Italy). Subsection 3.1, describes the    | Crati Basin can be simply divided into two<br>sedimentary units as suggested by                                  |
| 588 | model parameters calibration and the model verification procedure; 3.2 presents the     | Lanzafame and Tortorici, 1986. The first<br>unit is a Lower Pliocene succession of                               |
| 589 | model performance correlation assessment; 3.3 presents the robustness analysis of       | conglomerates and sandstones passing<br>upward into silty clays (Lanzafame and                                   |
| 590 | the GOF indices used; and lastly, 3.4 presents the computation of the susceptibility    | Tortorici, 1986) second unit. This is a succession of clayey deposits grading                                    |
| 591 | map                                                                                     | upward into sandstones and conglomerates referred to Emilian and                                                 |
| 592 |                                                                                         | Sicilian, respectively (Lanzafame and<br>Tortorici, 1986), as also suggested by data                             |
| 593 |                                                                                         | provided by Young and Colella (1988).<br>Mass movements were analyzed from                                       |
| 594 |                                                                                         | 2006 to 2013 by integrating aerial                                                                               |
| 595 |                                                                                         | photography interpretation acquired in 2006, 1:5000 scale topographic maps analysis, and extensive field survey. |
| 596 |                                                                                         | All the data were digitized and stored in<br>GIS database (Conforti et al., 2014) and                            |
| 597 |                                                                                         | the result was the map of occurred<br>landslide presented in figure 2,D. Digital                                 |
| 598 |                                                                                         | elevation model, slope and total<br>contributing area (TCA) maps are[24]                                         |
| 599 | 3.1, Model calibration and verification                                                 | Giuseppe Formetta 10/2/2016 9:44 AM                                                                              |
|     |                                                                                         | Deleted: 2Models[25]                                                                                             |

868

| 000 |                                                                                               |   |
|-----|-----------------------------------------------------------------------------------------------|---|
| 869 | The three models presented in Section 2 were used to predict the landslide                    |   |
| 870 | susceptibility for the study area. Models, parameters were optimized using each GOF           |   |
| 871 | index presented in Table 1 in order to fit landslides of the calibration group. Table 2       |   |
| 872 | presents the list of parameters that will be optimized, specifying their initial range of     |   |
| 873 | variation, and the parameters kept constant during the simulation and their value.            |   |
| 874 | The component PSO provides eigth, best parameter, sets, one for each optimized                |   |
| 875 | GOF indices. Values for each model (M1, M2 and M3) are presented in Table 3.                  |   |
| 876 | Optimal parameter sets differ slightly among the models and among the optimized               |   |
| 877 | GOF indices for a given model. In addition a compensation effect between the                  |   |
| 878 | parameter values is evident. <u>High values of</u> friction angle are related to low cohesion |   |
| 879 | values; high values of critical rainfall are related to high values of soil resistance        |   |
| 880 | parameters. For the model M1, the transmissivity value (74 m2/d) optimizing ACC is            |   |
| 881 | much lower than the transmissivity values obtained by optimizing the other indices,           |   |
| 882 | (around 140 m2/d). Similar behavior <u>was</u> observed for the optimal rainfall value        |   |
| 883 | which is 148 [mm/d] optimizing ACC, and around 70 [mm/d] optimizing the other                 |   |
| 884 | indices. For the model M2, the optimal transmissivity and rainfall values optimizing          |   |
| 885 | CSI (10 [m2/d] and 95 [mm/d]), are much lower than the values obtained by                     |   |
| 886 | optimizing the other indices (around 50 [m2/d] and 250 [mm/d] in average). For the            |   |
| 887 | model M3, on the other hand, optimal parameters present the same order of                     |   |
| 888 | magnitude for all the optimized indices. This suggests that the variability of the            |   |
| 889 | optimal parameter values for models M1 and M2 could be due to compensate the                  |   |
| 890 | effects of important physical processes neglected by those models.                            |   |
| 891 | Executing the models using the eight optimal parameters set, true positive rates and          |   |
| 892 | false positive rates are computed by comparing the model output and actual                    |   |
| 893 | landslides for both the calibration and verification datasets. The results are                |   |
| 894 | presented in Table 4, for all three models M1, M2 and M3. These points were                   |   |
| 895 | reported in the ROC plane to visualize the effects of the optimized objective function /      | / |
| 896 | on model performances in a unique graph. This procedure was repeated for the                  |   |
| 897 | three models. ROC planes, considering all the GOF indices and all three models, are           |   |
| 898 | included in Appendix 2 both for the calibration and verification period. For models M2        |   |
| 899 | and M3, it is clear that ACC, HSS, and CSI performed the worst. This is also true for         |   |
|     | •                                                                                             |   |

Giuseppe Formetta 10/21/2016 4:13 PM Deleted: s...ction 2 were applied ....[26]

Giuseppe Formetta 10/21/2016 4:13 PM Deleted: 8...best parameters...se .... [27]

Giuseppe Formetta 10/21/2016 4:20 PM Deleted: -...ositive -...ates and fa .... [28]

| 940                                                                              | model M1, although, unlike M2 and M3, there is no clear separation between the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Giusen                                         | pe Formetta 10/21/2016 4:23 PM                                                                                                                                |
|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 941                                                                              | performances provided by ACC, HSS, and CSI and the remaining indices.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                | d: even ifIthough, differer [29]                                                                                                                              |
| 942                                                                              | Among the results provided in Table 4, we focused on the GOF indices, whose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ciucon                                         | no Formatta 10/21/2016 4:24 DM                                                                                                                                |
| 943                                                                              | optimization satisfies the condition: FPR<0.4 and TPR>0.7. This choice was made in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                | pe Formetta 10/21/2016 4:24 PM<br><b>d:</b> our attention onlyn th [30]                                                                                       |
| 944                                                                              | order to focus comments on the results exclusively for the GOF indices which                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                |                                                                                                                                                               |
| 945                                                                              | provide acceptable model results and in order to heighten the readability of graphs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                                                                                                                                               |
| 946                                                                              | Figure 3 presents three ROC planes, one for each model, with the optimized GOF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                |                                                                                                                                                               |
| 947                                                                              | indices that provide, FPR<0.4 and TPR>0.7. The results presented in Figure 3 and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ciucon                                         | no Formatta 10/21/2016 4:26 DM                                                                                                                                |
| 948                                                                              | Table 4 show that: i) the optimization of AI, D2PC, SI and TSS achieves the best                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                | pe Formetta 10/21/2016 4:26 PM<br><b>d:</b> sFPR<0.4 and TPR>0[31]                                                                                            |
| 949                                                                              | model performance in the ROC plane, which is verified for all three models; ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |                                                                                                                                                               |
| 950                                                                              | performances increase as model complexity increases: moving from M1 to M3 points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                |                                                                                                                                                               |
| 951                                                                              | in the ROC plane approaches the perfect point (TPR=1, FPR=0); iii) by increasing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                |                                                                                                                                                               |
| 952                                                                              | the model complexity, good model results are achieved, not only in the calibration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                |                                                                                                                                                               |
| 953                                                                              | but also in the validation dataset. In fact, moving from M1 to M2 soil cohesion and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                |                                                                                                                                                               |
| 954                                                                              | soil properties were considered, and moving from M2 to M3 rainfall of a finite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                |                                                                                                                                                               |
| 955                                                                              | duration was used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                |                                                                                                                                                               |
|                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |                                                                                                                                                               |
| 956                                                                              | The first step of the 3SVP procedure highlights that the optimization of AI, D2PC, SI,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ciucon                                         | no Formatta 10/21/2016 4:20 DM                                                                                                                                |
| 956<br>957                                                                       | The first step of the 3SVP procedure <u>highlights</u> that the optimization of AI, D2PC, SI, and TSS provides the best performances <u>irrespectively</u> of the model used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                | pe Formetta 10/21/2016 4:28 PM<br>d: remarkshat the optim( [32])                                                                                              |
|                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |                                                                                                                                                               |
| 957                                                                              | and TSS provides the best performances irrespectively of the model used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                |                                                                                                                                                               |
| 957<br>958                                                                       | and TSS provides the best performances <u>irrespectively</u> of the model used.<br>Finally, it is important to consider the limitations of the models used for the current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |                                                                                                                                                               |
| 957<br>958<br>959                                                                | and TSS provides the best performances irrespectively of the model used.<br>Finally, it is important to consider the limitations of the models used for the current applications. Models M1 and M2 are not able to mimic the transient nature of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                |                                                                                                                                                               |
| 957<br>958<br>959<br>960                                                         | and TSS provides the best performances irrespectively of the model used.<br>Finally, it is important to consider the limitations of the models used for the current applications. Models M1 and M2 are not able to mimic the transient nature of precipitation and infiltration processes, and only M3 is able to account for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                |                                                                                                                                                               |
| 957<br>958<br>959<br>960<br>961                                                  | and TSS provides the best performances irrespectively of the model used.<br>Finally, it is important to consider the limitations of the models used for the current applications. Models M1 and M2 are not able to mimic the transient nature of precipitation and infiltration processes, and only M3 is able to account for the combined effect of storm duration and intensity in the triggering mechanism. In                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                |                                                                                                                                                               |
| 957<br>958<br>959<br>960<br>961<br>962                                           | and TSS provides the best performances irrespectively of the model used.<br>Finally, it is important to consider the limitations of the models used for the current<br>applications. Models M1 and M2 are not able to mimic the transient nature of<br>precipitation and infiltration processes, and only M3 is able to account for the<br>combined effect of storm duration and intensity in the triggering mechanism. In<br>addition, in this study we neglected effects such as spatial rainfall variability, roads,                                                                                                                                                                                                                                                                                                                             |                                                |                                                                                                                                                               |
| 957<br>958<br>959<br>960<br>961<br>962<br>963                                    | and TSS provides the best performances irrespectively of the model used.<br>Finally, it is important to consider the limitations of the models used for the current<br>applications. Models M1 and M2 are not able to mimic the transient nature of<br>precipitation and infiltration processes, and only M3 is able to account for the<br>combined effect of storm duration and intensity in the triggering mechanism. In<br>addition, in this study we neglected effects such as spatial rainfall variability, roads,                                                                                                                                                                                                                                                                                                                             | Delete                                         | <b>d:</b> remarkshat the optimi[32]                                                                                                                           |
| 957<br>958<br>959<br>960<br>961<br>962<br>963<br>964                             | and TSS provides the best performances irrespectively of the model used.<br>Finally, it is important to consider the limitations of the models used for the current<br>applications. Models M1 and M2 are not able to mimic the transient nature of<br>precipitation and infiltration processes, and only M3 is able to account for the<br>combined effect of storm duration and intensity in the triggering mechanism. In<br>addition, in this study we neglected effects such as spatial rainfall variability, roads,<br>and other engineering works.                                                                                                                                                                                                                                                                                             | Delete                                         |                                                                                                                                                               |
| 957<br>958<br>959<br>960<br>961<br>962<br>963<br>964<br>965                      | and TSS provides the best performances irrespectively of the model used.<br>Finally, it is important to consider the limitations of the models used for the current<br>applications. Models M1 and M2 are not able to mimic the transient nature of<br>precipitation and infiltration processes, and only M3 is able to account for the<br>combined effect of storm duration and intensity in the triggering mechanism. In<br>addition, in this study we neglected effects such as spatial rainfall variability, roads,<br>and other engineering works.                                                                                                                                                                                                                                                                                             | Giusep<br>Delete                               | d: remarkshat the optimi[32]<br>pe Formetta 10/2/2016 9:52 AM<br>d: 3Correlations asses                                                                       |
| 957<br>958<br>959<br>960<br>961<br>962<br>963<br>964<br>965<br>966               | <ul> <li>and TSS provides the best performances irrespectively of the model used.</li> <li>Finally, it is important to consider the limitations of the models used for the current applications. Models M1 and M2 are not able to mimic the transient nature of precipitation and infiltration processes, and only M3 is able to account for the combined effect of storm duration and intensity in the triggering mechanism. In addition, in this study we neglected effects such as spatial rainfall variability, roads, and other engineering works.</li> <li><b>3.2</b> Correlations assessment of the models performances.</li> </ul>                                                                                                                                                                                                          | Giusep<br>Delete<br>Giusep                     | d: remarkshat the optimi [32]                                                                                                                                 |
| 957<br>958<br>959<br>960<br>961<br>962<br>963<br>964<br>965<br>966<br>967        | <ul> <li>and TSS provides the best performances irrespectively of the model used.</li> <li>Finally, it is important to consider the limitations of the models used for the current applications. Models M1 and M2 are not able to mimic the transient nature of precipitation and infiltration processes, and only M3 is able to account for the combined effect of storm duration and intensity in the triggering mechanism. In addition, in this study we neglected effects such as spatial rainfall variability, roads, and other engineering works.</li> <li><b>3.2, Correlations assessment of the models performances</b>.</li> </ul>                                                                                                                                                                                                         | Giusep<br>Delete<br>Giusep                     | d: remarkshat the optimi[32]<br>pe Formetta 10/2/2016 9:52 AM<br>d: 3Correlations asses(                                                                      |
| 957<br>958<br>959<br>960<br>961<br>963<br>963<br>964<br>965<br>966<br>966        | <ul> <li>and TSS provides the best performances irrespectively of the model used.</li> <li>Finally, it is important to consider the limitations of the models used for the current applications. Models M1 and M2 are not able to mimic the transient nature of precipitation and infiltration processes, and only M3 is able to account for the combined effect of storm duration and intensity in the triggering mechanism. In addition, in this study we neglected effects such as spatial rainfall variability, roads, and other engineering works.</li> <li><b>3.2, Correlations assessment of the models performances</b>.</li> <li>The second, step jn the procedure js to verify the information content of each optimized OF, checking whether jt is the same as other metrics or jt is particular.</li> </ul>                             | Giusep<br>Delete<br>Giusep<br>Delete           | d: remarkshat the optimi[32]<br>pe Formetta 10/2/2016 9:52 AM<br>d: 3Correlations asses([33])<br>pe Formetta 10/3/2016 8:58 PM<br>d: ostep ofn the proce[34]) |
| 957<br>958<br>960<br>961<br>962<br>963<br>964<br>965<br>966<br>967<br>968<br>969 | <ul> <li>and TSS provides the best performances irrespectively of the model used.</li> <li>Finally, it is important to consider the limitations of the models used for the current applications. Models M1 and M2 are not able to mimic the transient nature of precipitation and infiltration processes, and only M3 is able to account for the combined effect of storm duration and intensity in the triggering mechanism. In addition, in this study we neglected effects such as spatial rainfall variability, roads, and other engineering works.</li> <li><b>3.2</b>, Correlations assessment of the models performances.</li> <li>The second, step in the procedure is to verify the information content of each optimized OF, checking whether it is the same as other metrics or it is particular feature of the optimized OF.</li> </ul> | Giusep<br>Delete<br>Giusep<br>Delete<br>Giusep | d: remarkshat the optimi                                                                                                                                      |

| 1013 | D2PC <sub>CSI</sub> , ESI <sub>CSI</sub> , both for calibration and for verification dataset. <u>Let us</u> denote this |
|------|-------------------------------------------------------------------------------------------------------------------------|
| 1014 | vector with the name <i>MP<sub>csi</sub></i> : the model performance, ( <i>MP</i> ) vector computed using the           |
| 1015 | parameter, set that optimizes CSI. <i>MP<sub>csi</sub></i> has 16 elements, 8 for the calibration and 8                 |
| 1016 | for the validation dataset. Repeating the same procedure for all eight GOF indices it                                   |
| 1017 | gives: MPACC, MPESI, MPSI, MPD2PC, MPTSS, MPAI, MPHS. Figure 4 presents the                                             |
| 1018 | correlation plots (Murdoch and Chow, 1996) between all <i>MP</i> vectors, for each model                                |
| 1019 | M1, M2 or M3. The matrix is symmetric with an ellipse at the intersection of row i and                                  |
| 1020 | column j. The color is the absolute value of the correlation coefficient between the                                    |
| 1021 | MP <sub>i</sub> and MP <sub>j</sub> vectors. The eccentricity of the ellipse, is scaled according to the                |
| 1022 | correlation value: the more prominent it is, the less correlated are the vectors, if the                                |
| 1023 | ellipse leans towards the right, the correlation is positive, if it leans to the left, it is                            |
| 1024 | negative.                                                                                                               |
| 1025 | All indices present a positive correlation with each other, irrespectively of the model                                 |

used. <u>In addition</u>, strong correlation <u>shur</u> cach other, <u>incespectively</u> of the model 1026 used. <u>In addition</u>, strong correlations between the *MP* vectors of AI, D2PC, SI, and 1027 TSS are evident in Figure 4. This confirms that an optimization of AI, D2PC, SI, and 1028 TSS provides similar model performances, <u>irrespectively</u> of the model used. On the 1029 other hand, the remaining GOF indices give quite different information from the 1030 previous four indices, <u>however their performance was worse in the first step of the</u> 1031 <u>analysis</u>. Thus in the case study, using one of the four best GOFs is <u>sufficient</u> for the 1032 parameter estimation. Giuseppe Formetta 10/21/2016 4:31 PM **Deleted:** Let's ...et us denote this ... [36]

Giuseppe Formetta 10/21/2016 4:34 PM **Deleted:** among ...ith each other, .... [37]

#### 1034 **3.3 Models sensitivity assessment**

1033

1035

In this step we focused on models M2 and M3 and performed a parameter sensitivity
 analysis. Let us consider model M2 and the optimal parameter set computed by
 optimizing the Critical Success Index (CSI). Also, considering the cohesion model
 parameter, the procedure evolves according to the following steps:

- The starting parameter values are the optimal values derived from the optimization of the CSI index;
- All the parameters except the analyzed parameter (cohesion) were kept
   constant and equal to the optimal parameter set;
- 1000 random values of the analyzed parameter (cohesion) were <u>selected</u>
   from a uniform distribution with <u>the</u> lower and upper bound defined in Table 1.

Giuseppe Formetta 10/2/2016 9:52 AM Deleted: 4

Giuseppe Formetta 10/21/2016 4:37 PM Deleted: the ...odels M2 and M3 (... [38]

Giuseppe Formetta 10/21/2016 4:38 PM Deleted: picked up

| 1080 | With this procedure 1000 model parameter sets were defined and used to                     |                           |
|------|--------------------------------------------------------------------------------------------|---------------------------|
| 1081 | execute the model.                                                                         |                           |
| 1082 | 1000 values of the selected GOF index (CSI), computed by comparing model                   |                           |
| 1083 | outputs with the measured data, were used to compute a boxplot of the                      |                           |
| 1084 | parameter C and optimized index CSI.                                                       |                           |
| 1085 | The procedure was repeated for each parameter and for each optimized index.                |                           |
| 1086 | Results are presented in Figures 5 and 6 for models M2 and M3 respectively.                |                           |
| 1087 | Each column in the figures represents one optimized index and has a number of              |                           |
| 1088 | boxplots equal to the number of model parameters (5 for M2 and 6 for M3). Each             |                           |
| 1089 | boxplot represents the range of variation of the optimized index due to a particular       |                           |
| 1090 | change in the model parameters. The narrower the boxplot for a given optimized             |                           |
| 1091 | index, the less sensitive the model is to that parameter. For both M2 and M3, the          |                           |
| 1092 | parameter set obtained by optimizing AI and SI shows the <u>least</u> sensitive behavior / |                           |
| 1093 | for almost all the parameters. In this case a model parameter perturbation has little      |                           |
| 1094 | impact on the model's performances. However, the models with parameters                    | $\mathbb{V}_{\mathbb{V}}$ |
| 1095 | obtained by optimizing ACC, TSS, and D2PC are the most sensitive to the                    |                           |
| 1096 | parameter, variations and this is reflected in much more evident changes, in, model        |                           |
| 1097 | performances. Finally, it is important to consider that the methodology used for           |                           |
| 1098 | evaluating the parameter sensitivity is based on changing the parameters one-at-           |                           |
| 1099 | time. Although this procedure facilitates an inter-comparison of the results (because      |                           |
| 1100 | the parameter sensitivity is computed with reference to the optimal parameter set), it     |                           |
| 1101 | is does not take into account simultaneous variations or interactions between              |                           |
| 1102 | parameters.                                                                                |                           |
| 1103 |                                                                                            |                           |

# 1104

1105

#### 3.4 Models selections and susceptibility maps

The selection of the <u>most</u> appropriate model for computing landslide susceptibility maps is based on what we learn from the previous steps. In the first step we learn that i) <u>the</u> optimization of AI, D2PC, SI and TSS outperforms the remaining indices and ii) models M2 and M3 provide more accurate results <u>than</u> M1. The second step suggests that overall <u>the</u> model results obtained by optimizing AI, D2PC, SI and TSS are similar each other. Lastly, the third step shows that <u>the</u> model performance derived from the optimization of AI and SI <u>is</u> Jess sensitive to input variations <u>than</u>

| Giuseppe Formetta 10/21/2016 4:39 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Deleted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Deleted: were<br>Giuseppe Formetta 10/21/2016 4:39 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Deleted: of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Giuseppe Formetta 10/21/2016 4:39 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Deleted: 's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Giuseppe Formetta 10/21/2016 4:40 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Deleted: certain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Giuseppe Formetta 10/21/2016 4:40 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Deleted: change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Giuseppe Formetta 10/21/2016 4:40 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Deleted: is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Giuseppe Formetta 10/21/2016 4:40 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Deleted: less                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Giuseppe Formetta 10/21/2016 4:41 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Deleted: does not influence much the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Giuseppe Formetta 10/21/2016 4:42 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Deleted: On the contrary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Giuseppe Formetta 10/21/2016 4:42 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Deleted: h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Giuseppe Formetta 10/21/2016 4:42 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Deleted: re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Giuseppe Formetta 10/21/2016 4:42 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Deleted: s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Giuseppe Formetta 10/21/2016 4:43 PM Deleted: ing                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Giuseppe Formetta 10/21/2016 4:43 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Deleted: of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Giuseppe Formetta 10/2/2016 9:52 AM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Deleted: 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Giuseppe Formetta 10/21/2016 4:44 PM<br>Deleted: more                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Giuseppe Formetta 10/21/2016 4:44 PM<br>Deleted: more                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Giuseppe Formetta 10/21/2016 4:44 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Giuseppe Formetta 10/21/2016 4:44 PM<br>Deleted: more<br>Giuseppe Formetta 10/21/2016 4:46 PM                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Giuseppe Formetta 10/21/2016 4:44 PM<br>Deleted: more<br>Giuseppe Formetta 10/21/2016 4:46 PM<br>Deleted: s                                                                                                                                                                                                                                                                                                                                                                                                           |
| Giuseppe Formetta 10/21/2016 4:44 PM<br>Deleted: more<br>Giuseppe Formetta 10/21/2016 4:46 PM<br>Deleted: s<br>Giuseppe Formetta 10/21/2016 4:46 PM                                                                                                                                                                                                                                                                                                                                                                   |
| Giuseppe Formetta 10/21/2016 4:44 PM<br>Deleted: more<br>Giuseppe Formetta 10/21/2016 4:46 PM<br>Deleted: s<br>Giuseppe Formetta 10/21/2016 4:46 PM<br>Deleted: compared                                                                                                                                                                                                                                                                                                                                              |
| Giuseppe Formetta 10/21/2016 4:44 PM<br>Deleted: more<br>Giuseppe Formetta 10/21/2016 4:46 PM<br>Deleted: s<br>Giuseppe Formetta 10/21/2016 4:46 PM<br>Deleted: compared<br>Giuseppe Formetta 10/21/2016 4:46 PM<br>Deleted: to<br>Giuseppe Formetta 10/21/2016 4:46 PM                                                                                                                                                                                                                                               |
| Giuseppe Formetta 10/21/2016 4:44 PM<br>Deleted: more<br>Giuseppe Formetta 10/21/2016 4:46 PM<br>Deleted: s<br>Giuseppe Formetta 10/21/2016 4:46 PM<br>Deleted: compared<br>Giuseppe Formetta 10/21/2016 4:46 PM<br>Deleted: to<br>Giuseppe Formetta 10/21/2016 4:46 PM<br>Deleted: s                                                                                                                                                                                                                                 |
| Giuseppe Formetta 10/21/2016 4:44 PM<br>Deleted: more<br>Giuseppe Formetta 10/21/2016 4:46 PM<br>Deleted: s<br>Giuseppe Formetta 10/21/2016 4:46 PM<br>Deleted: compared<br>Giuseppe Formetta 10/21/2016 4:46 PM<br>Deleted: to<br>Giuseppe Formetta 10/21/2016 4:46 PM<br>Deleted: s<br>Giuseppe Formetta 10/21/2016 4:47 PM                                                                                                                                                                                         |
| Giuseppe Formetta 10/21/2016 4:44 PM<br>Deleted: more<br>Giuseppe Formetta 10/21/2016 4:46 PM<br>Deleted: s<br>Giuseppe Formetta 10/21/2016 4:46 PM<br>Deleted: compared<br>Giuseppe Formetta 10/21/2016 4:46 PM<br>Deleted: to<br>Giuseppe Formetta 10/21/2016 4:46 PM<br>Deleted: s<br>Giuseppe Formetta 10/21/2016 4:47 PM<br>Deleted: s                                                                                                                                                                           |
| Giuseppe Formetta 10/21/2016 4:44 PM<br>Deleted: more<br>Giuseppe Formetta 10/21/2016 4:46 PM<br>Deleted: s<br>Giuseppe Formetta 10/21/2016 4:46 PM<br>Deleted: compared<br>Giuseppe Formetta 10/21/2016 4:46 PM<br>Deleted: to<br>Giuseppe Formetta 10/21/2016 4:46 PM<br>Deleted: s<br>Giuseppe Formetta 10/21/2016 4:47 PM<br>Deleted: s<br>Giuseppe Formetta 10/21/2016 4:47 PM                                                                                                                                   |
| Giuseppe Formetta 10/21/2016 4:44 PM<br>Deleted: more<br>Giuseppe Formetta 10/21/2016 4:46 PM<br>Deleted: s<br>Giuseppe Formetta 10/21/2016 4:46 PM<br>Deleted: compared<br>Giuseppe Formetta 10/21/2016 4:46 PM<br>Deleted: to<br>Giuseppe Formetta 10/21/2016 4:46 PM<br>Deleted: s<br>Giuseppe Formetta 10/21/2016 4:47 PM<br>Deleted: s<br>Giuseppe Formetta 10/21/2016 4:47 PM<br>Deleted: are                                                                                                                   |
| Giuseppe Formetta 10/21/2016 4:44 PM<br>Deleted: more<br>Giuseppe Formetta 10/21/2016 4:46 PM<br>Deleted: s<br>Giuseppe Formetta 10/21/2016 4:46 PM<br>Deleted: compared<br>Giuseppe Formetta 10/21/2016 4:46 PM<br>Deleted: to<br>Giuseppe Formetta 10/21/2016 4:46 PM<br>Deleted: s<br>Giuseppe Formetta 10/21/2016 4:47 PM<br>Deleted: are<br>Giuseppe Formetta 10/21/2016 4:47 PM                                                                                                                                 |
| Giuseppe Formetta 10/21/2016 4:44 PM<br>Deleted: more<br>Giuseppe Formetta 10/21/2016 4:46 PM<br>Deleted: s<br>Giuseppe Formetta 10/21/2016 4:46 PM<br>Deleted: compared<br>Giuseppe Formetta 10/21/2016 4:46 PM<br>Deleted: to<br>Giuseppe Formetta 10/21/2016 4:46 PM<br>Deleted: s<br>Giuseppe Formetta 10/21/2016 4:47 PM<br>Deleted: are<br>Giuseppe Formetta 10/21/2016 4:47 PM<br>Deleted: are<br>Giuseppe Formetta 10/21/2016 4:47 PM                                                                         |
| Giuseppe Formetta 10/21/2016 4:44 PM<br>Deleted: more<br>Giuseppe Formetta 10/21/2016 4:46 PM<br>Deleted: s<br>Giuseppe Formetta 10/21/2016 4:46 PM<br>Deleted: compared<br>Giuseppe Formetta 10/21/2016 4:46 PM<br>Deleted: to<br>Giuseppe Formetta 10/21/2016 4:46 PM<br>Deleted: s<br>Giuseppe Formetta 10/21/2016 4:47 PM<br>Deleted: are<br>Giuseppe Formetta 10/21/2016 4:47 PM<br>Deleted: the<br>Giuseppe Formetta 10/21/2016 4:47 PM                                                                         |
| Giuseppe Formetta 10/21/2016 4:44 PM<br>Deleted: more<br>Giuseppe Formetta 10/21/2016 4:46 PM<br>Deleted: s<br>Giuseppe Formetta 10/21/2016 4:46 PM<br>Deleted: compared<br>Giuseppe Formetta 10/21/2016 4:46 PM<br>Deleted: to<br>Giuseppe Formetta 10/21/2016 4:46 PM<br>Deleted: s<br>Giuseppe Formetta 10/21/2016 4:47 PM<br>Deleted: are<br>Giuseppe Formetta 10/21/2016 4:47 PM<br>Deleted: the<br>Giuseppe Formetta 10/21/2016 4:47 PM<br>Deleted: the<br>Giuseppe Formetta 10/21/2016 4:47 PM<br>Deleted: the |
| Giuseppe Formetta 10/21/2016 4:44 PM<br>Deleted: more<br>Giuseppe Formetta 10/21/2016 4:46 PM<br>Deleted: s<br>Giuseppe Formetta 10/21/2016 4:46 PM<br>Deleted: compared<br>Giuseppe Formetta 10/21/2016 4:46 PM<br>Deleted: to<br>Giuseppe Formetta 10/21/2016 4:46 PM<br>Deleted: s<br>Giuseppe Formetta 10/21/2016 4:47 PM<br>Deleted: are<br>Giuseppe Formetta 10/21/2016 4:47 PM<br>Deleted: the<br>Giuseppe Formetta 10/21/2016 4:47 PM                                                                         |

1139 D2PC and TSS. This could be due to the formulation of AI and SI which gives much 1140 more weight to the true negative compared to D2PC and TSS. For our application, the model M3 with parameters obtained by optimizing D2PC was 1141 the most sensitive to the parameter variation avoiding, an "insensitive" or flat 1142 response by changing the parameters values. A more sensitive couple model-1143 1144 optimal parameter set will in fact accommodate any parameters, input data, or measured data variations responding to these changes with a variation in model 1145 1146 performance. We thus used the combination of model M3 with parameters obtained by optimizing 1147 D2PC in order to compute the final susceptibility maps in Figure 7. Categories of

D2PC in order to compute the final susceptibility maps in Figure 7. Categories of
landslide susceptibility from classes 1 to 5 are assigned from low to high according
to FS values (e.g. Huang et al., 2007): Class 1 (FS≤1.0), Class 2 (1.0<FS<1.2),</li>
Class 3 (1.2<FS<1.5), Class 4 (1.5<FS<2.0), Class 5 (FS≥2).</li>

1153 4 Conclusions

1152

1154 We have presented a procedure to quantitatively calibrate, evaluate, and compare 1155 the performances of environmental models. The procedure was applied for the 1156 analysis of three landslides susceptibility models. It is made up of three steps: i) 1157 1158 model parameters calibration, optimizing different GOF indices and models 1159 evaluation in the ROC plane; ii) computation of the degree of similarities between different model performances obtained by optimizing all the considered GOF indices; 1160 1161 iii) evaluation of model sensitivity to parameter variations. The first step identifies the 1162 more appropriate OFs for the model parameter optimization. The second step verifies the information content of each optimized OF, checking whether it is 1163 analogous to other metrics or peculiar to the optimized OF. Finally the last step 1164 1165 guantifies the relative influence of each model parameter on the model performance, The procedure was conceived as a model configuration of the hydrological system 1166 NewAge-JGrass; it integrates: i) three simplified physically based landslides 1167 susceptibility models; ii) a package for model evaluations based on pixel-by-pixel 1168 1169 comparison of modeled and actual landslides maps; iii) models parameters 1170 calibration algorithms, and iv) the integration with the uDig open-source geographic information system for model input-output map management. The system is open-1171

Giuseppe Formetta 10/21/2016 4:47 PM Deleted: behavior Giuseppe Formetta 10/21/2016 4:47 PM Deleted: that Deleted: In particular f Giuseppe Formetta 10/21/2016 4:48 PM Deleted: whit Giuseppe Formetta 10/21/2016 4:49 PM Deleted: eventual Giuseppe Formetta 10/21/2016 4:49 PM Deleted: of Giuseppe Formetta 10/21/2016 4:49 PM Deleted: For this reason w Giuseppe Formetta 10/21/2016 4:49 PM Deleted: the Giuseppe Formetta 10/21/2016 4:50 PM Deleted: for drawing Deleted: f Giuseppe Formetta 10/21/2016 4:50 PM Deleted: s Giuseppe Formetta 10/3/2016 9:07 PM Deleted: < Deleted: > Giuseppe Formetta 10/21/2016 4:50 PM Deleted: The paper presents Giuseppe Formetta 10/21/2016 4:51 PM Deleted: includes Giuseppe Formetta 10/21/2016 4:51 PM Deleted: 3 Giuseppe Formetta 10/21/2016 4:51 PM Deleted: s Giuseppe Formetta 10/21/2016 4:52 PM Deleted: ex Giuseppe Formetta 10/21/2016 4:52 PM Deleted: s Giuseppe Formetta 10/21/2016 4:52 PM Deleted: s Giuseppe Formetta 10/3/2016 9:42 PM Deleted: Giuseppe Formetta 10/21/2016 4:54 PM Deleted: has been Giuseppe Formetta 10/21/2016 4:54 PM Deleted: like Giuseppe Formetta 10/21/2016 4:54 PM Deleted: s Giuseppe Formetta 10/3/2016 9:32 PM

Moved (insertion) [2]

| 1196 | source and available at (https://github.com/formeppe). It is integrated according to    |                           |                       |
|------|-----------------------------------------------------------------------------------------|---------------------------|-----------------------|
| 1197 | the Object Modeling System standards which enables the user to easily integrate a       |                           | Ciuc                  |
| 1198 | generic landslide susceptibility model and use the complete framework presented in      |                           | Gius<br>Dele          |
| 1199 | the paper, thus avoiding having to rewrite programming code.                            |                           |                       |
| 1200 | The procedure was applied in a test case on the Salerno-Reggio Calabria highway         | $\backslash$              | Gius<br>Dele          |
| 1201 | and led to the following conclusions: 1) the OFs AI, D2PC, SI, and TSS coupled with     |                           | Gius                  |
| 1202 | the models M2 and M3 provided the best performances among the eights metrics            |                           | deci                  |
| 1203 | used in the calibration; 2) the four selected OFs provided quite similar model          |                           | impr                  |
| 1204 | performances in terms of MP vectors, i.e. one of them would be sufficient for the       |                           | mod                   |
| 1205 | model application; 3) M3 showed the best performance by optimizing the D2PC             |                           | Gius<br>Dele          |
| 1206 | index. In fact M3 responded to parameter variations with changes in model               |                           | Gius                  |
| 1207 | performances.                                                                           |                           | Dele                  |
| 1208 | In our application effective precipitation was calibrated because we were performing    |                           |                       |
| 1209 | a landslide susceptibility analysis and it was useful for demonstrating the method.     |                           | Gius<br>Dele          |
| 1210 | However, we are aware that for operational landslide early warning systems, rainfall    |                           | were<br>D2P           |
| 1211 | constitutes a fundamental input of the predictive process. In addition, the analysis    | $\langle \rangle \rangle$ | Gius<br>Dele          |
| 1212 | would profit from data on the rainfall that triggered the landslides, however such data |                           | Gius                  |
| 1213 | are currently not available for the study area.                                         |                           | Dele                  |
| 1214 | We believe that our system would be useful for decision makers who deal with risk       |                           | Dele                  |
| 1215 | management assessments. It could be improved by adding new landslide                    |                           | Gius                  |
| 1216 | susceptibility models or different types of model selection procedures                  |                           |                       |
| 1217 |                                                                                         | $\backslash$              | Gius<br>Dele          |
| 1218 | ACKNOWLEDGMENTS                                                                         |                           | trigg<br>such         |
| 1219 | This research was funded by the PON Project No. 01_01503 "Integrated Systems for        |                           | for the Gius          |
| 1220 | Hydrogeological Risk Monitoring, Early Warning and Mitigation Along the Main            |                           | Mov<br>sour           |
| 1221 | Lifelines", CUP B31H11000370005, within the framework of the National Operational       |                           | (http                 |
| 1222 | Program for "Research and Competitiveness" 2007-2013. The authors would like to         |                           | integ<br>Syst         |
| 1223 | acknowledge the editor and the three reviewers (Prof. M. Mergili and two unknown        |                           | to ea<br>susc         |
| 1224 | reviewers) for providing insightful comments and improving the quality of the paper.    |                           | fram<br>avoi<br>syste |
| 1225 | <u>۷</u>                                                                                |                           | that                  |
| 1226 |                                                                                         |                           | asse<br>addi<br>or di |
| 1227 |                                                                                         |                           | proc                  |

1228

Giuseppe Formetta 10/21/2016 4:55 PM Deleted: and this allows

Ciuseppe Formetta 10/21/2016 4:55 PM Deleted: ing Ciuseppe Formetta 10/3/2016 9:32 PM Deleted: The system will be helpful for decision makers that deal with risk management assessment and could be improved by adding new landslide susceptibility models or different types of model selection procedure. . Ciuseppe Formetta 10/3/2016 9:33 PM Deleted: This

Giuseppe Formetta 10/3/2016 9:36 PM

Deleted: was

#### Giuseppe Formetta 10/3/2016 10:14 PM Deleted: the best model performances were provided by model M3 optimizing D2PC index.

Giuseppe Formetta 10/21/2016 4:57 PM Deleted: the

Giuseppe Formetta 10/21/2016 4:57 PM Deleted: we presented the

Giuseppe Formetta 10/21/2016 4:57 PM

Deleted: the

Giuseppe Formetta 10/21/2016 4:58 PM **Deleted:** Moreover

#### iuseppe Formetta 10/21/2016 4:58 PM

**Deleted:** measured rainfall data that triggered the occurred landslides, but that such data are not available at the moment for the study area.

## Giuseppe Formetta 10/3/2016 9:32 PM Moved up [2]: The system is open-

source and available at (https://github.com/formeppe). It is integrated according the Object Modeling System standards and this allows the user to easily integrate a generic landslide susceptibility model and use the complete framework presented in the paper avoiding rewriting programming code. The system will be helpful for decision makers that deal with risk management assessment and could be improved by adding new landslide susceptibility models or different types of model selection procedure.

Giuseppe Formetta 10/21/2016 4:59 PM Deleted: ACKNOWLEDGMENTS ... [39]

# 1267 Acronyms table

# 

| 3SVP | Three steps verification procedure                                                       |
|------|------------------------------------------------------------------------------------------|
| AI   | Average Index                                                                            |
| CSI  | Critical success index                                                                   |
| D2PC | Distance to perfect classification                                                       |
| ESI  | Equitable success index                                                                  |
| fn   | False negative                                                                           |
| fp   | False positive                                                                           |
| FPR  | False positive rate                                                                      |
| FS   | Factor of safety                                                                         |
| GIS  | Geographic informatic system                                                             |
| GOF  | Goodness of fit indices                                                                  |
| HSS  | Heidke skill score                                                                       |
| LSA  | Landslide susceptibility analysis                                                        |
| M1   | Model for landslide susceptibility analysis<br>proposed in Montgomery and Dietrich, 1994 |
| M2   | Model for landslide susceptibility analysis<br>proposed in Park et al., 2013             |
| M3   | Model for landslide susceptibility analysis<br>proposed in Rosso et al., 2006            |
| MP   | Model performances vector                                                                |
| OF   | Objective function                                                                       |
| OL   | Observed landslide map                                                                   |
| OMS  | Object modeling system                                                                   |
| PL   | Predicted landslide map                                                                  |
| PSO  | Particle Swarm optimization                                                              |
| ROC  | Receiver operating characteristic                                                        |
| SI   | Success index                                                                            |
| TCA  | Total contributing area                                                                  |
| tn   | True negative                                                                            |
| tp   | True positive                                                                            |
| TPR  | True positive rate                                                                       |
| TSS  | True Skill Statistic                                                                     |

| 1277 | REFERENCES |  |
|------|------------|--|
|      |            |  |

- 1278
- 1279 Abera W., A. Antonello, S. Franceschi, G. Formetta, R Rigon , "The uDig Spatial
- 1280 Toolbox for hydro-geomorphic analysis" in GEOMORPHOLOGICAL
- 1281 TECHNIQUES, v. 4, n. 1 (2014), p. 1-19. URL:
- 1282 http://www.geomorphology.org.uk/sites/default/files/geom\_tech\_chapters/2.4.1\_GI1283 SToolbox.pdf
- Beguería, S. (2006). Validation and evaluation of predictive models in hazard
  assessment and risk management. *Natural Hazards*, 37(3), 315-329.
- 1286 Bennett ND, Croke BF, Guariso G, Guillaume JH, Hamilton SH, Jakeman AJ,
- 1287 Marsili-Libelli S, Newham LT, Norton JP, Perrin C, Pierce SA. Characterising
- performance of environmental models. Environmental Modelling & Software. 2013Feb 28;40:1-20.
- 1290 Borga, M., Dalla Fontana, G., & Cazorzi, F. (2002). Analysis of topographic and
- climatic control on rainfall-triggered shallow landsliding using a quasi-dynamicwetness index. Journal of Hydrology, 268(1), 56-71.
- 1293 Brabb, E.E., (1984). Innovative approaches to landslide hazard and risk mapping,
- 1294 Proceedings of the 4th International Symposium on Landslides, 16–21 September,
- 1295 Toronto, Ontario, Canada (Canadian Geotechnical Society, Toronto, Ontario,1296 Canada), 1:307–324
- 1297 Brenning, A. "Spatial prediction models for landslide hazards: review,
- 1298 comparison and evaluation." *Natural Hazards and Earth System Science* 5,1299 no. 6 (2005): 853-862.
- 1300 Capparelli, G., & Versace, P. (2011). FLaIR and SUSHI: two mathematical models
- 1301 for early warning of landslides induced by rainfall. Landslides, 8(1), 67-79.
- 1302 Capparelli G, Iaquinta P, Iovine GGR, Terranova OG, Versace P. Modelling the
- 1303 rainfall-induced mobilization of a large slope movement in northern Calabria.
- 1304 Natural Hazards 2012 ;61:247–256.
- 1305 <u>Carrara, A., Merenda, L., 1976. Landslide inventory in Northern Calabria, Southern</u>
   1306 <u>Italy. Geological Society of America Bulletin 87, 1153–1162</u>

1307 Casadei, M., Dietrich, W. E., & Miller, N. L. (2003). Testing a model for predicting the 1308 timing and location of shallow landslide initiation in soil-mantled landscapes. Earth Surface Processes and Landforms, 28(9), 925-950. 1309 1310 Cascini, L., Bonnard, C., Corominas, J., Jibson, R., & Montero-Olarte, J. (2005). 1311 Landslide hazard and risk zoning for urban planning and development. Landslide Risk Management. Taylor and Francis, London, 199-235. 1312 1313 Catani, F., Casagli, N., Ermini, L., Righini, G., & Menduni, G. (2005). Landslide hazard and risk mapping at catchment scale in the Arno River basin. Landslides, 1314 2(4), 329-342. 1315 Chung C-JF, Fabbri AG and van Westen CJ (1995) Multivariate regression analysis 1316 for landslide hazard zonation. Carrara A and Guzzetti F (Eds.) Geographical 1317 Information Systems in assessing natural hazards. Dordrecht, Kluwer Academic 1318 1319 Publishers, 5:107-34 1320 Colella A, De Boer PL, Nio SD. Sedimentology of a marine intermontane Pleistocene Gilbert-type fan-delta complex in the Crati Basin, Calabria, southern Italy. 1321 Sedimentology 1987;34:721-736. 1322 1323 Conforti, M., Pascale, S., Robustelli, G., & Sdao, F. (2014). Evaluation of prediction capability of the artificial neural networks for mapping landslide susceptibility in the 1324 Turbolo River catchment (northern Calabria, Italy). Catena, 113, 236-250. 1325 Conforti M, Aucelli PPC, Robustelli G, Scarciglia F. Geomorphology and GIS 1326 analysis for mapping gully erosion susceptibility in the Turbolo Stream catchment 1327 (Northern Calabria, Italy). Natural Hazards 2011;56:881-898. 1328 Corominas J, Van Westen C, Frattini P, Cascini L, Malet JP, Fotopoulou S, Catani F, 1329 Van Den Eeckhaut M, Mavrouli O, Agliardi F, Pitilakis K. Recommendations for the 1330 quantitative analysis of landslide risk. Bulletin of engineering geology and the 1331 environment. 2014 May 1;73(2):209-63. 1332 1333 Dietrich, W. E., Bellugi, D. and Real De Asua, R. (2001) Validation of the Shallow Landslide Model, SHALSTAB, for Forest Management, in Land Use and 1334 Watersheds: Human Influence on Hydrology and Geomorphology in Urban and 1335 1336 Forest Areas (eds M. S. Wigmosta and S. J. Burges), American Geophysical Union, Washington, D. C., doi: 10.1029/WS002p0195 1337 David, O., Ascough II, J. C., Lloyd, W., Green, T. R., Rojas, K. W., Leavesley, G. H., 1338 1339 & Ahuja, L. R. (2013). A software engineering perspective on environmental

| 1340 | modeling framework design: The Object Modeling System. Environmental                   |
|------|----------------------------------------------------------------------------------------|
| 1341 | Modelling & Software, 39, 201-213.                                                     |
| 1342 | Duan, Q., Sorooshian S., and Gupta V(1992): Effective and efficient global             |
| 1343 | optimization for conceptual rainfall-runoff models. Water Resources Research 28.4      |
| 1344 | (1992): 1015-1031.                                                                     |
| 1345 | Duncan, J. M., and S. G. Wright (2005), Soil Strength and Slope Stability, 297 pp.,    |
| 1346 | New Jersey, John Wiley.                                                                |
| 1347 | Fabbricatore D, Robustelli G, Muto F. Facies analysis and depositional architecture    |
| 1348 | of shelf-type deltas in the Crati Basin (Calabrian Arc, south Italy). Boll. Soc. Geol. |
| 1349 | lt. 2014;133(1):131-148.                                                               |
| 1350 | Formetta, G., Mantilla, R., Franceschi, S., Antonello, A., & Rigon, R. (2011). The     |
| 1351 | JGrass-NewAge system for forecasting and managing the hydrological budgets at          |
| 1352 | the basin scale: models of flow generation and propagation/routing. Geoscientific      |
| 1353 | Model Development, 4(4), 943-955.                                                      |
| 1354 | Formetta, G., Antonello, A., Franceschi, S., David, O., & Rigon, R. (2014).            |
| 1355 | Hydrological modelling with components: A GIS-based open-source framework.             |
| 1356 | Environmental Modelling & Software, 55, 190-200.                                       |
| 1357 | Formetta, G., Capparelli, G., Rigon, R., and Versace, P.: Physically based landslide   |
| 1358 | susceptibility models with different degree of complexity: calibration and             |
| 1359 | verification. International Environmental Modelling and Software Society (iEMSs).      |
| 1360 | 7th Intl. Congress on Env. Modelling and Software, San Diego, CA, June 15-19,          |
| 1361 | USA, Daniel P. Ames, Nigel W.T. Quinn and Andrea E. Rizzoli (Eds.), 2014.              |
| 1362 | http://www.iemss.org/sites/iemss2014/papers/iemss2014_submission_157.pdf               |
| 1363 | G. Formetta, G. Capparelli, and P. Versace , Modelling rainfall induced shallow        |
| 1364 | landslides in the Landslide Early Warning Integrated System project Slopes and         |
| 1365 | Geohazards. January 2015, 1747-1752. Available at:                                     |
| 1366 | http://www.icevirtuallibrary.com/doi/abs/10.1680/ecsmge.60678.vol4.260                 |
| 1367 | Formetta, G., Simoni, S., Godt, J. W., Lu, N., & Rigon, R. (2016). Geomorphological    |
| 1368 | control on variably saturated hillslope hydrology and slope instability. Water         |
| 1369 | Resources Research.                                                                    |
| 1370 | Frattini, P., Crosta, G., & Carrara, A. (2010). Techniques for evaluating the          |
| 1371 | performance of landslide susceptibility models. Engineering geology, 111(1), 62-       |

1372 72.

| 1373 | Guzzetti, Fausto, Alberto Carrara, Mauro Cardinali, and Paola Reichenbach.              |
|------|-----------------------------------------------------------------------------------------|
| 1374 | "Landslide hazard evaluation: a review of current techniques and their                  |
| 1375 | application in a multi-scale study, Central Italy." Geomorphology 31, no. 1             |
| 1376 | (1999): 181-216.                                                                        |
| 1377 | Guzzetti, F., Reichenbach, P., Ardizzone, F., Cardinali, M., & Galli, M. (2006).        |
| 1378 | Estimating the quality of landslide susceptibility models. Geomorphology, 81(1),        |
| 1379 | 166-184.                                                                                |
| 1380 | Glade, T., & Crozier, M. J. (2005). A review of scale dependency in landslide hazard    |
| 1381 | and risk analysis. Landslide hazard and risk, Vol. 3, 75-138.                           |
| 1382 | Goodenough, D.J., Rossmann, K., Lusted, L.B., 1974. Radiographic applications of        |
| 1383 | receiver operating characteristic (ROC) analysis. Radiology 110, 89–95.                 |
| 1384 | Grahm J (1984) Methods of slope stability analysis. In: Brunsden D, Prior DB (eds)      |
| 1385 | Slope instability. Wiley, New York, pp 171–215                                          |
| 1386 | Hay, L.E., G.H. Leavesley, M.P. Clark, S.L. Markstrom, R.J. Viger, and M. Umemoto       |
| 1387 | (2006). Step-Wise, Multiple-Objective Calibration of a Hydrologic Model for a           |
| 1388 | Snowmelt-Dominated Basin. Journal of the American Water Resources                       |
| 1389 | Association 42:877-890, 2006                                                            |
| 1390 | Huang, J. C., Kao, S. J., Hsu, M. L., & Liu, Y. A. (2007). Influence of Specific        |
| 1391 | Contributing Area algorithms on slope failure prediction in landslide modeling.         |
| 1392 | Natural Hazards and Earth System Science, 7(6), 781-792.                                |
| 1393 | Lanzafame G, Tortorici L. La tettonica recente del Fiume Crati (Calabria). Geografia    |
| 1394 | Fisica e Dinamica Quaternaria 1984; 4:11-21.                                            |
| 1395 | Iovine, G., Petrucci, O., Rizzo, V., Tansi, C., 2006. The March 7th 2005 Cavallerizzo   |
| 1396 | (Cerzeto) landslide in Calabria—Southern Italy. Engineering geology for                 |
| 1397 | tomorrow's cities—the 10th IAEG congress, Nottingham (UK), The Geological               |
| 1398 | Society of London, Paper number 785.                                                    |
| 1399 | Lee, S., Choi, J., & Min, K. (2002). Landslide susceptibility analysis and verification |
| 1400 | using the Bayesian probability model. Environmental Geology, 43(1-2), 120-131.          |
| 1401 | Young J, Colella A. Calcarenous nannofossils from the Crati Basin. In: Colella A.       |
| 1402 | (ed.), Fan Deltas-Excursion Guidebook. Università della Calabria, Cosenza, Italy.       |

1403 79-96; 1988.

| 1404 | Kennedy, J., and Eberhart R.(1995): Particle swarm optimization. Neural Networks,     |
|------|---------------------------------------------------------------------------------------|
| 1405 | 1995. Proceedings., IEEE International Conference on. Vol. 4. Perth, WA. IEEE,        |
| 1406 | 1995.                                                                                 |
| 1407 | lovine GGR, Lollino P, Gariano SL, Terranova OG. Coupling limit equilibrium           |
| 1408 | analyses and real-time monitoring to refine a landslide surveillance system in        |
| 1409 | Calabria (southern Italy). Natural Hazards and Earth System Sciences 2010;            |
| 1410 | 10:2341–2354.                                                                         |
| 1411 | Iverson RM. 2000. Landslide triggering by rain infiltration. Water Resources          |
| 1412 | Research 36(7): 1897–1910                                                             |
| 1413 | Jolliffe, I. T., & Stephenson, D. B. (Eds.). (2012). Forecast verification: a         |
| 1414 | practitioner's guide in atmospheric science. University of Exeter, UK.                |
| 1415 | John Wiley & Sons.                                                                    |
| 1416 | Lu, N., and J. Godt (2008), Infinite slope stability under steady unsaturated seepage |
| 1417 | conditions, Water Resour. Res., 44, W11404, doi:10.1029/2008WR006976.                 |
| 1418 | Milledge, D. G., Bellugi, D., McKean, J. A., Densmore, A. L., & Dietrich, W. E.       |
| 1419 | (2014). A multidimensional stability model for predicting shallow landslide size and  |
| 1420 | shape across landscapes. Journal of Geophysical Research: Earth Surface,              |
| 1421 | <i>119</i> (11), 2481-2504.                                                           |
| 1422 | Montgomery, D. R., & Dietrich, W. E. (1994). A physically based model for the         |
| 1423 | topographic control on shallow landsliding. Water resources research, 30(4), 1153-    |
| 1424 | 1171.                                                                                 |
| 1425 | Murdoch, D. J., & Chow, E. D. (1996). A graphical display of large correlation        |
| 1426 | matrices. The American Statistician, 50(2), 178-180.                                  |
| 1427 | Naranjo, J.L., van Westen, C.J. and Soeters, R. (1994) Evaluating the use of training |
| 1428 | areas in bivariate statistical landslide hazard analysis: a case study in Colombia.   |
| 1429 | ITC Journal, 3:292-300.                                                               |
| 1430 | Pepe, M.S., 2003. The Statistical Evaluation of Medical Tests for Classification and  |
| 1431 | Prediction. Oxford University Press, New York.                                        |
| 1432 | Park, N. W. (2011). Application of Dempster-Shafer theory of evidence to GIS-         |
| 1433 | based landslide susceptibility analysis. Environmental Earth Sciences,                |
| 1434 | 62(2), 367-376.                                                                       |

| 1435 | Park, H. J., Lee, J. H., & Woo, I. (2013). Assessment of rainfall-induced shallow        |
|------|------------------------------------------------------------------------------------------|
| 1436 | landslide susceptibility using a GIS-based probabilistic approach. Engineering           |
| 1437 | Geology, 161, 1-15.                                                                      |
| 1438 | Pradhan, B. (2011). An assessment of the use of an advanced neural network model         |
| 1439 | with five different training strategies for the preparation of landslide susceptibility  |
| 1440 | maps. Journal of Data Science, 9(1), 65-81.                                              |
| 1441 | Pradhan, B. (2013). A comparative study on the predictive ability of the decision tree,  |
| 1442 | support vector machine and neuro-fuzzy models in landslide susceptibility                |
| 1443 | mapping using GIS. Computers & Geosciences, 51, 350-365.                                 |
| 1444 | Provost, F., Fawcett, T., 2001. Robust classification for imprecise environments.        |
| 1445 | Machine Learning 42 (3), 203–231.                                                        |
| 1446 | Rosso, R., M. C. Rulli, and G. Vannucchi (2006), A physically based model for the        |
| 1447 | hydrologic control on shallow landsliding, Water Resour. Res., 42, W06410,               |
| 1448 | doi:10.1029/2005WR004369.                                                                |
| 1449 | Sidle, R. C., & Ochiai, H. (2006). Landslides: processes, prediction, and land           |
| 1450 | use (Vol. 18). Washington, DC 20009, USA. American Geophysical Union.                    |
| 1451 | Simoni, S., Zanotti, F., Bertoldi, G., and Rigon, R. (2008): Modeling the probability of |
| 1452 | occurrence of shallow landslides and channelized debris flows using GEOtop-FS,           |
| 1453 | Hydrol. Process., 22, 532{545,                                                           |
| 1454 | Vezzani L. I terreni plio-pleistocenici del basso Crati (Cosenza). Atti dell'Accademia   |
| 1455 | Gioenia di Scienze Naturali di Catania 6:28–84; 1968.                                    |
| 1456 | Vrugt, J. A., C. J. F. ter Braak, M. P. Clark, J. M. Hyman, and B. A. Robinson (2008),   |
| 1457 | Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward          |
| 1458 | with Markov chain Monte Carlo simulation, Water Resour. Res., 44, W00B09,                |
| 1459 | doi:10.1029/2007WR006720.                                                                |
| 1460 |                                                                                          |
| 1461 |                                                                                          |
| 1462 |                                                                                          |
| 1463 |                                                                                          |
| 1464 |                                                                                          |
| 1465 |                                                                                          |
| 1466 |                                                                                          |
| 1467 |                                                                                          |

# **Table 1:** Indices of goodness of fit for comparison between actual and predicted

# 1469 landslide.

## 

| Name                                            | Definition                                                                                                          | Range    | Optimal value |
|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------|---------------|
| Critical success<br>index (CSI)                 | $CSI = \frac{tp}{tp + fp + fn}$                                                                                     | [0 ,1]   | 1.0           |
| Equitable success<br>index (ESI)                | $ESI = \frac{tp-R}{tp+fp+fn-R} \qquad R = \frac{(tp+fn)\cdot(tp+fp)}{tp+fn+fp+tn}$                                  | [-1/3,1] | 1.0           |
| Success Index<br>(SI)                           | $SI = \frac{1}{2} \cdot \left( \frac{tp}{tp + fn} + \frac{tn}{fp + tn} \right)$                                     | [0 ,1]   | 1.0           |
| Distance to perfect<br>classification<br>(D2PC) | $D2PC = \sqrt{(1 - TPR)^2 + FPR^2}$ $TPR = \frac{tp}{tp+fn} FPR = \frac{fp}{fp+tn}$                                 | [0,1]    | 0.0           |
| Average Index<br>(AI)                           | $AI = \frac{1}{4} \left( \frac{tp}{tp + fn} + \frac{tp}{tp + fp} + \frac{tn}{fp + tn} + \frac{tn}{fn + tn} \right)$ | [0,1]    | 1.0           |
| True skill statistic<br>(TSS)                   | $TSS = \frac{(tp \cdot tn) - (fp \cdot fn)}{(tp + fn) \cdot (fp + tn)}$                                             | [-1,1]   | 1.0           |
| Heidke skill score<br>(HSS)                     | $HSS = \frac{2 \cdot (tp \cdot tn) - (fp \cdot fn)}{(tp + fn) \cdot (fn + tn) + (tp + fp) \cdot (fp + tn)}$         | [-∞, 1]  | 1.0           |
| Accuracy<br>(ACC)                               | $ACC = \frac{(tp + tn)}{(tp + fn + fp + tn)}$                                                                       | [0,1]    | 1.0           |

- . .

# **Table 2:** Optimised models' parameters values

## 

| Model Parameters         | Constant Value | Range value |
|--------------------------|----------------|-------------|
| Soil Depth [m]           | -              | [0.8; 5.0]  |
| Transmissivity [m2/d]    | -              | [10; 150]   |
| Soil/water density ratio | -              | [1.8; 2.8]  |
| Friction Angle [°]       | -              | [11; 40]    |
| Rainfall [mm/d]          | -              | [50; 300]   |
| Soil Cohesion [kPa]      | -              | [0; 50]     |
| Degree Of Saturation [-] | 0.5            | -           |
| Soil Porosity [-]        | 0.5            | -           |
| Rainfall Duration [d]    | -              | [0.1; 3.0]  |

# **Table 3:** Optimal parameter sets output of the optimization procedure of each GOF

1510 indices in turn. Results are presented for each model (M1, M2 and M3).

#### 

| Model: M1                    |        |        |        |        |        |        |        |        |
|------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|
| Optimised Index              | AI     | HSS    | TSS    | D2PC   | SI     | ESI    | CSI    | ACC    |
| Soil Depth [m]               | 1.32   | 1.85   | 1.44   | 2.80   | 1.36   | 2.62   | 2.42   | 2.01   |
| Transmissivity [m2/d]        | 140.24 | 146.31 | 142.68 | 137.10 | 147.69 | 144.66 | 136.73 | 74.74  |
| Soil/water density ratio [-] | 2.61   | 2.56   | 2.77   | 2.71   | 2.78   | 2.79   | 2.63   | 2.72   |
| Friction Angle [°]           | 24.20  | 32.40  | 22.50  | 23.10  | 22.40  | 29.50  | 29.50  | 38.30  |
| Rainfall [mm/d]              | 85.38  | 53.30  | 71.36  | 50.00  | 52.69  | 69.19  | 61.35  | 141.80 |

| Model: M2                    |        |        |        |        |        |        |       |        |  |  |
|------------------------------|--------|--------|--------|--------|--------|--------|-------|--------|--|--|
| Optimised Index              | AI     | HSS    | TSS    | D2PC   | SI     | ESI    | CSI   | ACC    |  |  |
| Transmissivity [m2/d]        | 65.43  | 33.22  | 80.45  | 38.22  | 84.54  | 33.24  | 10.70 | 55.76  |  |  |
| Cohesion [kPa]               | 25.17  | 49.63  | 49.42  | 16.94  | 30.01  | 41.24  | 44.58 | 46.85  |  |  |
| Friction Angle [°]           | 29.51  | 38.38  | 20.01  | 32.30  | 24.57  | 33.78  | 35.68 | 34.96  |  |  |
| Rainfall [mm/d]              | 236.14 | 293.44 | 270.42 | 153.61 | 294.70 | 298.44 | 95.35 | 299.01 |  |  |
| Soil/water density ratio [-] | 2.11   | 2.40   | 2.06   | 2.44   | 2.77   | 2.17   | 2.55  | 2.19   |  |  |
| Soil Depth [m]               | 2.35   | 1.68   | 2.38   | 2.44   | 2.74   | 1.12   | 1.37  | 1.12   |  |  |

| Model: M3                    |        |        |        |        |        |        |        |        |  |
|------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--|
| Optimised Index              | AI     | HSS    | TSS    | D2PC   | SI     | ESI    | CSI    | ACC    |  |
| Transmissivity [m2/d]        | 30.95  | 26.55  | 47.03  | 36.31  | 57.28  | 25.84  | 31.60  | 48.71  |  |
| Cohesion [kPa]               | 36.88  | 44.33  | 28.51  | 31.60  | 45.46  | 41.80  | 32.05  | 37.09  |  |
| Friction Angle [°]           | 19.55  | 36.44  | 27.80  | 29.70  | 21.46  | 33.27  | 36.47  | 38.50  |  |
| Rainfall [mm/d]              | 248.77 | 230.08 | 258.82 | 201.71 | 299.90 | 291.32 | 273.03 | 193.02 |  |
| Soil/water density ratio [-] | 2.40   | 2.57   | 2.08   | 2.80   | 2.65   | 2.63   | 2.61   | 2.44   |  |
| Soil Depth [m]               | 1.84   | 1.42   | 2.23   | 2.92   | 2.85   | 1.17   | 1.13   | 1.15   |  |
| Rainfall Duration [d]        | 0.12   | 1.78   | 1.24   | 1.96   | 1.24   | 0.39   | 1.30   | 1.98   |  |
1521 Table 4: Results in term of true-positive rate (TPR) and false-positive rate (FPR), for

 $\ensuremath{$  1522  $\ensuremath{$  each model (M1, M2 and M3), for each optimised GOF index and for both calibration

1523 (CAL) and verification (VAL) dataset. In bold are shown the rows for which the 1524 condition FPR<0.4 and TPR>0.7 is verified.

|        |              | MODEL: M1 |      | MODEL: M2 |      | MODEL: M3 |      |
|--------|--------------|-----------|------|-----------|------|-----------|------|
| Period | Optim. Index | FPR       | TPR  | FPR       | TPR  | FPR       | TPR  |
| CAL    | ACC          | 0.04      | 0.12 | 0.03      | 0.12 | 0.03      | 0.13 |
| CAL    | AI           | 0.29      | 0.70 | 0.35      | 0.79 | 0.38      | 0.82 |
| CAL    | CSI          | 0.17      | 0.48 | 0.10      | 0.36 | 0.09      | 0.32 |
| CAL    | D2PC         | 0.32      | 0.72 | 0.32      | 0.76 | 0.32      | 0.75 |
| CAL    | ESI          | 0.17      | 0.48 | 0.43      | 0.82 | 0.09      | 0.36 |
| CAL    | HSS          | 0.12      | 0.35 | 0.09      | 0.35 | 0.09      | 0.35 |
| CAL    | SI           | 0.34      | 0.74 | 0.39      | 0.85 | 0.39      | 0.86 |
| CAL    | TSS          | 0.34      | 0.73 | 0.39      | 0.83 | 0.37      | 0.82 |
| VAL    | ACC          | 0.05      | 0.12 | 0.03      | 0.12 | 0.03      | 0.10 |
| VAL    | AI           | 0.26      | 0.56 | 0.31      | 0.69 | 0.34      | 0.72 |
| VAL    | CSI          | 0.17      | 0.39 | 0.09      | 0.31 | 0.08      | 0.29 |
| VAL    | D2PC         | 0.29      | 0.59 | 0.28      | 0.67 | 0.28      | 0.66 |
| VAL    | ESI          | 0.17      | 0.39 | 0.41      | 0.76 | 0.09      | 0.30 |
| VAL    | HSS          | 0.12      | 0.30 | 0.09      | 0.30 | 0.09      | 0.30 |
| VAL    | SI           | 0.30      | 0.61 | 0.37      | 0.75 | 0.39      | 0.76 |
| VAL    | TSS          | 0.30      | 0.62 | 0.35      | 0.74 | 0.34      | 0.71 |

- 1538 Figure 1: Integration of the Landslide susceptibility analysis system in
- 1539 NweAge-JGrass hydrological model.

#### Formetta et al. / Evaluating performances of simplified physically based landslide susceptibility models



- 1556 Figure 2: Test site. A) Digital elevation model (DEM) [m], B) slope [-] expressed as
- 1557 tangent of the angle, C) total contributing area (TCA) expressed as number of
- 1558 draining cells and D) Map of actual landslides.



















**Figure 7:** Landslide susceptibility maps using model M3 and parameter set obtained by optimising D2PC.



## Appendix 1

## 1.2 Critical success index (CSI)

CSI, eq. (2), is the number of correct detected lindslide pixels (tp), divided by the sum of tp, fn and fp. CSI is also named threat score. It range between 0 and 1 and its best value is 1. It penalizes both fn and fp.

$$CSI = \frac{tp}{tp+fp+fn}$$
(2)

## 1.3 Equitable success index (ESI)

ESI, eq. (3), contrarily to CSI, is able to take into account the true positives associated with random chance (R). ESI ranges between -1/3 and 1. Value 1 indicates perfect score.

$$ESI = \frac{tp-R}{tp+fp+fn-R}$$
 3)

$$R = \frac{(tp + fn) \cdot (tp + fp)}{tp + fn + fp + tn}$$
(4)

#### 1.4 Success index (SI)

SI, eq.(5), equally weight True positive rate (eq. 6) and specificity defined as 1 minus false positive rate (FPR), eq. (7). SI varies between 0 and 1 and its best value is 1. SI is also named modified success rate.

$$SI = \frac{1}{2} \cdot \left( \frac{tp}{tp + fn} + \frac{tn}{fp + tn} \right) = \frac{1}{2} \cdot \left( TPR + specificity \right)$$
(5)

$$TPR = \frac{tp}{tp+fn}$$
 (6) 
$$FPR = \frac{fp}{fp+tn}$$
 (7)

### 1.5 Distance to perfect classification (D2PC)

D2PC is defined in eq. (8). It measures the distance, in the plane FPR-TPR between an ideal perfect point of coordinates (0,1) and the point of the tested model (FPR,TPR). D2PC ranges in 0-1 and its best value are 0.

$$D2PC = \sqrt{\left(1 - TPR\right)^2 + FPR^2} \quad (8)$$

### 1.6 Average Index (AI)

AI, eq. (9), is the average value between four different indices: i) TPR, ii) Precision, iii) the ratio between successfully predicted stable pixels (tn) and the total number of actual stable pixels (fp+tn) and iv) the ratio between successfully predicted stable pixels (tn) and the number of simulated stable cells (fn+tn).

$$AI = \frac{1}{4} \left( \frac{tp}{tp + fn} + \frac{tp}{tp + fp} + \frac{tn}{fp + tn} + \frac{tn}{fn + tn} \right)$$
(9)

### 1.7 Heidke skill score (HSS)

The fundamental idea of a generic skill score measure is to quantify the model performance respect to set of control or reference model. Fixed a measure of model accuracy  $M_a$ , the skill score formulation is expressed in eq. (10):

$$SS = \frac{M_a - M_c}{M_{opt} - M_c}$$
(10)

where  $M_{c}$  is the control or reference model accuracy and  $M_{\text{opt}}$  is the perfect model accuracy.

SS assumes positive and negative value, if the tested model is perfect  $M_a = M_{opt}$  and SS=1, if the tested model is equal to the control model than  $M_a = M_c$  and SS=0.

The marginal probability of a predicted unstable pixel is (tp+fp)/n where n is the total number of pixels n=tp+fn+fp+tn. The marginal probability of a landslided unstable pixel is (tp+fn)/n.

The probability of a correct yes forecast by chance is: P1=  $(tp+fp) (tp+fn)/n^2$ . The probability of a correct no forecast by chance is: P2=  $(tn+fp) (tn+fn)/n^2$ .

In the HSS, eq. (11), the control model is a model that forecast by chance:  $M_c = P1+P2$ , the measure of accuracy is the Accuracy (ACC) defined in eq. (12), and the  $M_{opt}=1$ .

$$HSS = \frac{2 \cdot (tp \cdot tn) - (fp \cdot fn)}{(tp + fn) \cdot (fn + tn) + (tp + fp) \cdot (fp + tn)}$$
(11)  
$$ACC = \frac{tp + tn}{tp + fn + fp + tn}$$
(12)

The range of the HSS is  $-\infty$  to 1. Negative values indicate that the model provides no better results of a random model, 0 means no model skill, and a perfect model obtains a HSS of 1. HSS is also named as Cohen's kappa.

### 1.8 True Skill Statistic (TSS)

TSS, eq. (13), is the difference between the hit rate and the false alarm rate. It is also named Hanssen & Kuipper's Skill Score and Pierce's Skill Score. It ranges between -1 and 1 and its best value is 1. TSS equal -1 indicates that the model provides no better results of a random model. A TSS equal 0 indicates an indiscriminate model.

TSS measures the ability of the model to distinguish between landslided and nonlandslided pixels. If the number of the is large the false alarm value is relatively overwhelmed. If the is large, as happens in landslides maps, FPR tends to zero and TSS tends to TPR. A problem of TSS is that it treats the hit rate and the false alarm rate equally, irrespective of their likely differing consequences.

$$TSS = \frac{(tp \cdot tn) - (fp \cdot fn)}{(tp + fn) \cdot (fp + tn)} = TPR - FPR$$
(13)

TSS is similar to Heidke, except the constraint on the reference forecasts is that they are constrained to be unbiased.

# Appendix 2



Figure A2-1: Models' performances results in the ROC plane for M1.



Figure A2-2: Models' performances results in the ROC plane for M2.



Figure A2-3: Models' performances results in the ROC plane for M3.

Formetta et al. / Evaluating performances of simplified physically based landslide susceptibility models