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Abstract: Rainfall induced shallow landslides can lead to loss of life and significant 11	

damage to private and public properties, and transportation systems, etc. Predicting 12	

locations that might be susceptible to shallow landslides is a complex task and 13	

involves many disciplines: hydrology, geotechnical science, geology, hydrogeology, 14	

geomorphology, and statistics. Two main approaches are commonly used: statistical 15	

or physically based models. Reliable model applications involve automatic parameter 16	

calibration, objective quantification of the quality of susceptibility maps, and model 17	

sensitivity analyses. This paper presents a methodology to systemically and 18	

objectively calibrate, verify and compare different models and model performance 19	

indicators in order to identify and select the models whose behaviors are the most 20	

reliable for particular case studies.  21	

The procedure was implemented in a package of models for landslide susceptibility 22	

analysis and integrated in the NewAge-JGrass hydrological model. The package 23	

includes three simplified physically-based models for landslide susceptibility analysis 24	

(M1, M2, and M3) and a component for model verification. It computes eight 25	

goodness of fit indices by comparing pixel-by-pixel model results and measurement 26	

data. The integration of the package in NewAge-JGrass uses other components 27	

such as geographic information system tools to manage input-output processes, and 28	

automatic calibration algorithms to estimate model parameters.  29	

The system was applied for a case study in Calabria (Italy) along the Salerno-Reggio 30	

Calabria highway, between Cosenza and Altilia. The area is extensively subject to 31	

rainfall-induced shallow landslides mainly because of its complex geology and 32	
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climatology. The analysis was carried out considering all the combinations of the 33	

eight optimized indices and the three models. Parameter calibration, verification, and 34	

model performance assessment were performed by a comparison with a detailed 35	

landslide inventory map for the area. The results showed that the index distance to 36	

perfect classification in the receiver operating characteristic plane (D2PC) coupled 37	

with model M3 is the best modeling solution for our test case. 38	

 39	

Keywords: Landslide modelling; Object Modeling System; Models calibration.   40	

 41	

1 INTRODUCTION  42	

 43	

Landslides are one of the main dangerous geo-hazards worldwide and constitute a 44	

serious menace for public safety leading to human and economic losses (Park, 45	

2011). Geo-environmental factors such as geology, land-use, vegetation, climate, 46	

and increasing populations may increase the occurrence of landslides (Sidle and 47	

Ochiai, 2006). Landslide susceptibility assessments, i.e. the likelihood of a landslide 48	

occurring in an area on the basis of local terrain conditions (Brabb, 1984), is not only 49	

crucial for an accurate landslide hazard quantification but also a fundamental tool for 50	

the environmental preservation and responsible urban planning (Cascini et al., 51	

2005).  52	

Many methods for landslide susceptibility mapping have been developed and can be 53	

grouped in two main branches: qualitative and quantitative methods (Glade and 54	

Crozier, 2005; Corominas et al., 2014 and references therein).  55	

Qualitative methods, based on field campaigns and expert knowledge and 56	

experience, are subjective but necessary to validate quantitative method results. 57	

Quantitative methods include statistical and physically based methods. Statistical 58	

methods (e.g. Naranjo et al., 1994; Chung et al., 1995; Guzzetti et al., 1999; Catani 59	

et al., 2005) use different approaches such as bivariate statistics, multivariate 60	

analysis, discriminant analysis, random forest to link instability factors (such as 61	

geology, soil, slope, curvature, and aspect) with past and present landslides. 62	

Bivariate statistical methods ignore the interdependence of instability factors 63	

whereas multivariate analysis is able to statistically consider their interactions. Other 64	

data-driven methods for landslide susceptibility analysis include the use of neural 65	
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networks (Pradhan, 2011; Conforti et al., 2014), support vector machines (Pradhan, 66	

2013 and citations therein), and Bayesian networks (Lee et al., 2002). Deterministic 67	

models (e.g. Montgomery and Dietrich, 1994; Lu and Godt, 2008; Borga et al., 2002; 68	

Simoni et al., 2008; Capparelli and Versace, 2011; Lu and Godt, 2013) synthesize 69	

the interaction between hydrology, geomorphology, and soil mechanics in order to 70	

physically understand and predict the location and timing that trigger landslides. 71	

These models generally include a hydrological and a slope stability component. The 72	

hydrological component simulates infiltration and groundwater flow processes with 73	

different degrees of simplification, from steady state (e.g. Montgomery and Dietrich, 74	

1994) to transient analyses (Simoni et al., 2008). The soil-stability component 75	

simulates the slope safety factor (FS) defined as the ratio of stabilizing to 76	

destabilizing forces. One of the main advantages of data-driven methods for 77	

landslide susceptibility is that they can be easily applied in wide areas while 78	

deterministic models are in general applied in local analyses. The latter are more 79	

computationally expensive and require detailed input data and parameters, which 80	

often involve high uncertainty. On the other hand, data-driven methods assume that 81	

landslides are caused by the same combination of instability factors overall the study 82	

area, whereas deterministic models enable different triggering mechanisms to be 83	

understood and investigated.  84	

The results of a landslide susceptibility analysis strongly depend on the model 85	

hypothesis, parameter values, and parameter estimation method. Questions 86	

regarding the performance evaluation of the landslide susceptibility model, the 87	

choice of the best accurate model, and the selection of the best performing method 88	

for parameter estimation are still open. Thus, is needed a procedure that facilitates 89	

reproducible comparisons between different models and evaluation criteria aimed at 90	

the selection of the most accurate models. 91	

Much effort has been devoted to the crucial problem of evaluating landslide 92	

susceptibility model performances (e.g. Dietrich et al., 2001; Frattini et al., 2010 and 93	

Guzzetti et al., 2006). Accurate discussions about the most common quantitative 94	

measures of goodness of fit (GOF) between measured and modeled data are 95	

discussed in Bennet et al., (2013), Jolliffe and Stephenson, (2012), Beguería (2006), 96	

Brenning (2005) and references therein. We have summarized them in Appendix 1. 97	

Usually one of these indices is selected and used as an objective function (OF) in 98	
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combination with a calibration algorithm in order to obtain the optimal set of model 99	

parameters. However, in most cases the selection of the OF is not justified or 100	

compared with other options.  101	

The wrong classifications in landslide susceptibility analysis not only risk a loss of life 102	

but also have economic consequences. For example locations classified as stable 103	

increase their economical value because no construction restrictions will be applied, 104	

while the reverse is true for locations classified as unstable.  105	

In this work we propose an objective methodology for environmental model analysis 106	

which selects the best performing model based on a quantitative comparison and 107	

assessment of model prediction skills. In this paper the methodology is applied to 108	

assess the performances of simplified landslide susceptibility models. As the 109	

procedure is model independent, it can be used to assess the ability of any type of 110	

environmental model to simulate natural phenomena.  111	

Unlike previous applications, our methodology aims to objectively: i) select a set of 112	

the most appropriate OFs in order to determine the best model parameters; ii) 113	

compare the performance of a model using the parameter sets selected in the 114	

previous step in order to identify the OFs that provides particular and not redundant 115	

information; iii) perform a model parameter sensitivity analysis in order to understand 116	

the relative importance of each parameter and its influence on the model 117	

performance. The methodology enables the user to: i) identify the most appropriate 118	

OFs for estimating the model parameters and ii) compare different models in order to 119	

select the best one that estimates the landslide susceptibility of the study area. 120	

The procedure is implemented in the open source and GIS based hydrological 121	

model, denoted as NewAge-JGrass (Formetta et al., 2014) which uses the Object 122	

Modeling System (OMS, David et al., 2013) modeling framework. OMS is a Java 123	

based modeling framework whch promotes the idea of programming by components. 124	

It provides the model developers with many features such as: multithreading, implicit 125	

parallelism, models interconnection, and a GIS based system.   126	

The NewAge-JGrass system, Fig. 1, contains models, automatic calibration 127	

algorithms for model parameter estimation, and methods for estimating the 128	

goodness of the models prediction. The open source GIS uDig 129	

(http://udig.refractions.net/) and the uDig-Spatial Toolbox (Abera et al., (2014), 130	

https://code.google.com/p/jgrasstools/wiki/JGrassTools4udig) are used as a   131	
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visualization and input/out data management system. The OMS framework has been 132	

previously used as the core for landslides modeling (Formetta et al., 2016; Formetta 133	

et al., 2015). These studies deal with real time early warning systems for landslide 134	

risks and involve 3D physically based hydrological modeling of very small 135	

catchments (up to around 20 km2). In contrast, the current application focuses on 136	

wider areas landslide susceptibility assessments using completely different 137	

physically based models which are presented in the next section.   138	

The methodology presented in this paper for landslide susceptibility analysis (LSA) 139	

represents one model configuration within the more general NewAge-JGrass 140	

system. It includes two new models specifically developed for this paper: 141	

mathematical components for landslide susceptibility mapping and procedures for 142	

landslides susceptibility model verification and selection. The LSA configuration also 143	

uses two models that have already been implemented in NewAge-JGrass: the 144	

geomorphological model set-up and the automatic calibration algorithms for model 145	

parameter estimation.  All the models used in the LSA configuration are presented in 146	

Fig. 1, encircled with a dashed red line.  147	

The methodology is presented in section 2. It was setup considering three different 148	

landslide susceptibility models, eight GOF metrics, and one automatic calibration 149	

algorithm. The flexibility of the system enables more models, and GOF metrics to be 150	

added, and different calibration algorithms can be used. Thus deferent LSA 151	

configurations can be created depending on: the landslide susceptibility model, the 152	

calibration algorithm, and the GOFs selected by the user. Finally, Section 3 presents 153	

a case study of landslide susceptibility mapping along the A3 Salerno-Reggio 154	

Calabria highway in Calabria, which illustrates the capability of the system.  155	

 156	

2  MATERIALS AND METHODS 157	

 158	

2.1 Modelling Framework 159	

 160	

The landslide susceptibility analysis (LSA) is implemented in the context of NewAge-161	

JGrass (Formetta et al., 2014), an open source large-scale hydrological modeling 162	

system. It models the whole hydrological cycle: water balance, energy balance, snow 163	

melting, etc. (Figure 1). The system implements hydrological models, automatic 164	
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calibration algorithms for model parameter optimization, and evaluation, and a GIS 165	

for input output visualization, (Formetta et al., 2011, Formetta et al., 2014). NewAge-166	

JGrass is a component-based model, Each hydrological process is described by a 167	

model (energy balance, evapotranspiration, run off production in figure 1). Each 168	

model implements one or more components (considering for example the model 169	

evapotranspiration in Figure 1, the user can select between three different 170	

components: Penman-Monteith, Priestly-Taylor, and Fao). In addition each 171	

component can be linked to the others and executed at runtime, this building a 172	

model configuration. Figure 1 offers a complete picture of the system and the 173	

integration of the new LSA configuration encircled with dashed red lines. More 174	

precisely the LSA in the current configuration includes two new models: a landslides 175	

susceptibility model and a verification and selection model. The first includes three 176	

components proposed in Montgomery and Dietrich, 1994, Park et al., 2013, and 177	

Rosso et al., 2006, the latter includes the “three step verification procedure” (3SVP), 178	

presented in Section 2. The LSA configuration also includes another two models 179	

previously implemented in the NewAge-JGrass system: i) the Horton Machine for 180	

geomorphological model setup which computes input maps such as slope and total 181	

contributing area and which displays the model’s results, and ii) the particle swarm 182	

for automatic calibration. Subsection 2.1 presents the landslide susceptibility model 183	

and 2.2 presents the model selection procedure (3SVP). 184	

 185	

2.2 Landslide susceptibility models 186	

 187	

The landslide susceptibility models implemented in NewAge-JGrass and presented 188	

in a preliminary application in Formetta et al. (2015) consist of the Montgomery and 189	

Dietrich (1994) model (M1), the Park et al. (2013) model (M2) and the Rosso et al. 190	

(2006) model (M3). The three models derive from simplifications of the infinite slope 191	

equation (Grahm, 1984, Rosso et al., 2006, Formetta et al., 2014) for the factor of 192	

safety: 193	

 194	

FS = C ⋅ (1+ e)
Gs + e ⋅Sr +w ⋅e ⋅ 1− Sr( )#$ %&⋅γw ⋅H ⋅sinα ⋅cosα

+
Gs + e ⋅Sr −w ⋅ 1+ e ⋅Sr( )#$ %&
Gs + e ⋅Sr +w ⋅e ⋅ 1− Sr( )#$ %&

⋅
tanϕ '
tanα

 (1) 195	

 196	
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where FS [-] is the factor of safety, C=C’+Croot is the sum of Croot, the root strength 197	

[kN/m2] and C’ the effective soil cohesion [kN/m2], ϕ ' [-] is the internal soil friction 198	

angle, H is the soil depth [m], α [-] is the slope angle, γw [kN/m3] is the specific weight 199	

of water, and w=h/H [-] where h [m] is the water table height above the failure 200	

surface [m], Gs [-] is the specific gravity of soil, e [-] is the average void ratio and Sr [-201	

] is the average degree of saturation. 202	

The model M1 assumes a hydrological steady-state, flow occurring in the direction 203	

parallel to the slope and neglect cohesion, degree of soil saturation and void ratio. It 204	

computes w as: 205	

 206	

w = h
H
=min Q

T
⋅
TCA
b ⋅sinα

,1.0
"

#
$

%

&
'  (2) 207	

 208	

where T [L2/T] is the soil transmissivity defined as the product of the soil depth and 209	

the saturated hydraulic conductivity, b [L] is the length of the contour line. 210	

Substituting eq. (2) in (1) the model is solved for Q/T assuming FS=1 and stable and 211	

unstable sites are defined using threshold values on log(Q/T) (Montgomery and 212	

Dietrich, 1994). 213	

Unlike M1, the model M2 considers: i) the effect of the degree of soil saturation (Sr [-214	

]) and void ratio (e [-]) above the groundwater table and ii) the stabilizing contribution 215	

of the soil cohesion. The model output is a map of safety factors (FS) for each pixel 216	

of the analyzed area. 217	

The component (M3) considers both the effects of rainfall intensity and duration on 218	

the landslide triggering process. The term w depends on rainfall duration and is 219	

obtained by coupling the conservation of mass of soil water with the Darcy’s law 220	

(Rosso et al., 2006) providing: 221	

 222	

w =

Q
T
⋅
TCA
b ⋅sinα

⋅ 1− exp e+1
e ⋅ 1− Sr( )

⋅
t
T
⋅
TCA
b ⋅sinα

⋅H
#

$
%%

&

'
((

)

*
+
+

,

-
.
.

if t
T
⋅
TCA
b ⋅sinα

⋅H ≤ −
e ⋅ 1− Sr( )
1+ e

⋅ ln 1− T ⋅b ⋅sinα
TCA ⋅Q

#

$
%

&

'
(

1 if t
T
⋅
TCA
b ⋅sinα

⋅H > −
e ⋅ 1− Sr( )
1+ e

⋅ ln 1− T ⋅b ⋅sinα
TCA ⋅Q
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&
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(
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 224	
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These models are suitable for shallow translational landslides controlled by 225	

groundwater flow convergence. Shallow landslides usually have a very low ratio 226	

between the maximum depth (D) and the length (L) of scar (D/L<0.1, Casadei et al., 227	

2003), involve a small volume of the colluvial soil mantle and present a generally 228	

translational failure mechanism (Milledge et al., 2014).  229	

Each component has a user interface which specifies the input and output. Model 230	

inputs are computed in the GIS uDig integrated in the NewAge-JGrass system by 231	

using the Horton Machine package for terrain analysis (Abera et al., 2014). Model 232	

output maps are directly imported in the GIS and are available for the user’s 233	

visualization. 234	

The models that we implemented present an increasing degree of complexity in 235	

terms of the theoretical assumptions for modeling landslide susceptibility. Moving 236	

from M1 to M2, the soil cohesion and soil properties were considered, and moving 237	

from M2 to M3 rainfall of finite duration was used. 238	

 239	

2.3 Automatic calibration and model verification procedure 240	

 241	

In order to assess the models’ performance we developed a model that computes 242	

the most common indices for assessing the quality of a landslide susceptibility map.  243	

These indices are based on a pixel-by-pixel comparison between the observed 244	

landslide map (OL) and predicted landslides (PL). They are binary maps with 245	

positive pixels corresponding to “unstable” ones, and negative pixels that correspond 246	

to “stable” ones. Therefore, four types of outcomes are possible for each cell. A pixel 247	

is a true-positive (tp) if it is mapped as “unstable” both in OL and in PL, which is a 248	

correct alarm with well predicted landslide. A pixel is a true-negative (tn) if it is 249	

mapped as “stable” both in OL in PL, which corresponds to a well predicted stable 250	

area. A pixel is a false-positive (fp) if it is mapped as “unstable” in PL, but is “stable” 251	

in OL; that is a false alarm. A pixel is a false-negative (fn) if it is mapped as “stable” 252	

in PL, but is “unstable” in OL, that is a missed alarm. The concept of the Receiver 253	

Operator Characteristic (ROC, Goodenough et al., 1974) graph is based on the 254	

values assumed by tp, fp, tn. ROCs are used to assess the performance of models 255	

which provides results assigned to one of two classes. The ROC graph is widely 256	

used in many scientific fields such as medicine (Goodenough et al., 1974), 257	
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biometrics (Pepe, 2003) and machine learning (Provost and Fawcett, 2001). The 258	

ROC graph is a Cartesian plane with the FPR on the x-axis and TPR on the y-axis. 259	

FPR is the ratio between false positives and the sum of false positives and true 260	

negatives, and TPR is the ratio between true positives and the sum of true positives 261	

and false negatives. They are defined in Table 1 and commented on Appendix 1. 262	

The performance of a perfect model corresponds to the point P(0,1) on the ROC 263	

plane. Points that fall on the bisector (black solid line, on the plots) are associated 264	

with models that are considered as random: they predict stable or unstable cells with 265	

the same rate. 266	

Eight GOF indices for the quantification of model performances were implemented in 267	

the system. Table (1) shows their definition, range, and optimal values. A more 268	

comprehensive description of the indices is provided in Appendix 1. 269	

Automatic calibration algorithms implemented in NewAge-JGrass as OMS 270	

components can be used in order to tune the model parameters in order to 271	

reproduce the actual landslides. This is possible because each model is an OMS 272	

component and can be linked to the calibration algorithms as it is, without rewriting 273	

or modifying its code. Three calibration algorithms are embedded in the system core: 274	

Luca (Hay et al., 2006), a step-wise algorithm based on shuffled complex evolution 275	

(Duan et al., 1992), Particle Swarm Optimization (PSO), a genetic model presented 276	

in (Kennedy and Eberhart, 1995), and DREAM (Vrugt et al., 2008) an acronym for 277	

Differential Evolution Adaptive Metropolis. In the actual configuration we used a 278	

Particle Swarm Optimization (PSO) algorithm to estimate optimal values of the 279	

model parameters. 280	

During the calibration procedure, the selected algorithm compares the model output 281	

in terms of a binary map (stable or unstable pixel) with the actual landslide, thus 282	

optimizing a selected objective function (OF). The model parameter set for which the 283	

OF assumes its best value is the optimization procedure output. The eight GOF 284	

indices presented in Table 1 were used in turn as OFs and, consequently, eight 285	

optimal parameters sets were provided as the calibration output (one for each 286	

optimised OF). This means that a GOF index selected in Table 1 becomes an OF 287	

when it is used as an objective function of the automatic calibration algorithm. 288	

In order to quantitatively analyze the model performances we implemented a three 289	

steps verification procedure (3SVP). Firstly, we evaluated the performances of each 290	
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OF index for each model. We presented the results in the ROC plane in order to 291	

assess what the OF index(es) was (where), whose optimization provided the best 292	

model performances. Secondly, we verified wheatear each OF metric had its own 293	

information content or wheatear it provided information analogous to other metrics 294	

(and thus not essential). 295	

Lastly, for each model, the sensitivity of each optimal parameter set was tested by 296	

perturbing optimal parameters and by evaluating their effects on the GOF. 297	

 298	

2.4  Site Description 299	

 300	

The test site was located in Calabria, Italy, along the Salerno-Reggio Calabria 301	

highway between Cosenza and Altilia municipalities, in the southern part of the Crati 302	

basin (Figure 2). The mean annual precipitation is about of 1200 mm, distributed 303	

over approximately 100 rainy days, with a mean annual temperature of 16 °C. 304	

Rainfall peaks occur from October to March, when mass wasting and severe water 305	

erosion processes are triggered (Capparelli et al., 2012, Conforti et al., 2011, Iovine 306	

et al., 2010).  307	

In the study area the topographic elevation has an average value of around 450 m 308	

a.s.l., with a maximum value of 730 m a.s.l. Slopes, computed from the 10 meters 309	

resolution digital elevation model, range from 0° to 55°, while the average is about 310	

26°. 311	

The Crati Basin is a Pleistocene-Holocene extensional basin filled by clastic marine 312	

and fluvial deposits (Vezzani, 1968; Colella et al., 1987; Fabbricatore et al., 2014). 313	

The stratigraphic succession of the Crati Basin can be simply divided into two 314	

sedimentary units as suggested by Lanzafame and Tortorici (1986). The first unit is a 315	

Lower Pliocene succession of conglomerates and sandstones passing upward into a 316	

silty clay (Lanzafame and Tortorici, 1986) second unit. This is a series of clayey 317	

deposits grading upward into sandstones and conglomerates which refer to Emilian 318	

and Sicilian, respectively (Lanzafame and Tortorici, 1986), as also suggested by 319	

data provided by Young and Colella (1988).  320	

In the study area the second unit outcrops. A topsoil of about 1.5 - 2.0 m lies on 321	

sandy-gravelly and sandy deposits, which are generally well-stratified. Soils range 322	

from Alfisols (i.e. highly mature soils) to Inceptisols and Entisols (i.e. poorly 323	
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developed soils). Due to the combination of such climatic, geo-structural, and 324	

geomorphological features the test site is one of the most landslide prone areas in 325	

Calabria (Conforti et al., 2014; Carrara and Merenda,1976; Iovine et al., 2006,). 326	

Mass movements were analyzed from 2006 to 2013 by integrating aerial 327	

photography interpretation acquired in 2006, 1:5000 scale topographic maps 328	

analysis, and an extensive field survey. 329	

All the data were digitized and stored in a GIS database (Conforti et al., 2014) and 330	

the result was the map of occurred landslides, presented in Figure 2,D. Digital 331	

elevation model, slope and total contributing area (TCA) maps are presented in 332	

Figures 2, A, B, and C respectively. In order to perform model calibration and 333	

verification, the dataset of occurred landslides was divided in two parts one used for 334	

calibration  (located at bottom of Figure 2,D) and one for validation (located in the 335	

upper part of Figure 2,D). The landslide inventory map refers only to the initiation 336	

area of the landslides. This leads to a fair comparison with the landslide models that 337	

provide only the triggering point and does not include a runout model for landslides 338	

propagation. 339	

 340	

3 RESULTS AND DISCUSSION 341	

 342	

The LSA presented in the paper was applied to the Salerno-Reggio Calabria 343	

highway, between Cosenza and Altilia (southern Italy). Subsection 3.1 describes the 344	

model parameters calibration and the model verification procedure; 3.2 presents the 345	

model performance correlation assessment; 3.3 presents the robustness analysis of 346	

the GOF indices used; and lastly, 3.4 presents the computation of the susceptibility 347	

map. 348	

 349	

3.1 Model calibration and verification 350	

 351	

The three models presented in Section 2 were used to predict the landslide 352	

susceptibility for the study area. Models parameters were optimized using each GOF 353	

index presented in Table 1 in order to fit landslides of the calibration group. Table 2 354	

presents the list of parameters that will be optimized, specifying their initial range of 355	

variation, and the parameters kept constant during the simulation and their value.  356	
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The component PSO provides eigth best parameter sets, one for each optimized 357	

GOF indices. Values for each model (M1, M2 and M3) are presented in Table 3. 358	

Optimal parameter sets differ slightly among the models and among the optimized 359	

GOF indices for a given model. In addition a compensation effect between the 360	

parameter values is evident. High values of friction angle are related to low cohesion 361	

values; high values of critical rainfall are related to high values of soil resistance 362	

parameters. For the model M1, the transmissivity value (74 m2/d) optimizing ACC is 363	

much lower than the transmissivity values obtained by optimizing the other indices 364	

(around 140 m2/d). Similar behavior was observed for the optimal rainfall value which 365	

is 148 [mm/d] optimizing ACC, and around 70 [mm/d] optimizing the other indices. 366	

For the model M2, the optimal transmissivity and rainfall values optimizing CSI (10 367	

[m2/d] and 95 [mm/d]), are much lower than the values obtained by optimizing the 368	

other indices (around 50 [m2/d] and 250 [mm/d] in average). For the model M3, on 369	

the other hand, optimal parameters present the same order of magnitude for all the 370	

optimized indices. This suggests that the variability of the optimal parameter values 371	

for models M1 and M2 could be due to compensate the effects of important physical 372	

processes neglected by those models.  373	

Executing the models using the eight optimal parameters set, true positive rates and 374	

false positive rates are computed by comparing the model output and actual 375	

landslides for both the calibration and verification datasets. The results are 376	

presented in Table 4, for all three models M1, M2 and M3. These points were 377	

reported in the ROC plane to visualize the effects of the optimized objective function 378	

on model performances in a unique graph. This procedure was repeated for the 379	

three models. ROC planes, considering all the GOF indices and all three models, are 380	

included in Appendix 2 both for the calibration and verification period. For models M2 381	

and M3, it is clear that ACC, HSS, and CSI performed the worst. This is also true for 382	

model M1, although, unlike M2 and M3, there is no clear separation between the 383	

performances provided by ACC, HSS, and CSI and the remaining indices. 384	

Among the results provided in Table 4, we focused on the GOF indices, whose 385	

optimization satisfies the condition: FPR<0.4 and TPR>0.7. This choice was made in 386	

order to focus comments on the results exclusively for the GOF indices which 387	

provide acceptable model results and in order to heighten the readability of graphs. 388	
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Figure 3 presents three ROC planes, one for each model, with the optimized GOF 389	

indices that provide FPR<0.4 and TPR>0.7. The results presented in Figure 3 and 390	

Table 4 show that: i) the optimization of AI, D2PC, SI and TSS achieves the best 391	

model performance in the ROC plane, which is verified for all three models; ii) 392	

performances increase as model complexity increases: moving from M1 to M3 points 393	

in the ROC plane approaches the perfect point (TPR=1, FPR=0); iii) by increasing 394	

the model complexity, good model results are achieved, not only in the calibration 395	

but also in the validation dataset. In fact, moving from M1 to M2 soil cohesion and 396	

soil properties were considered, and moving from M2 to M3 rainfall of a finite 397	

duration was used. 398	

The first step of the 3SVP procedure highlights that the optimization of AI, D2PC, SI, 399	

and TSS provides the best performances irrespectively of the model used. 400	

Finally, it is important to consider the limitations of the models used for the current 401	

applications. Models M1 and M2 are not able to mimic the transient nature of 402	

precipitation and infiltration processes, and only M3 is able to account for the 403	

combined effect of storm duration and intensity in the triggering mechanism. In 404	

addition, in this study we neglected effects such as spatial rainfall variability, roads, 405	

and other engineering works. 406	

 407	

3.2 Correlations assessment of the models performances  408	

 409	

The second step in the procedure is to verify the information content of each 410	

optimized OF, checking whether it is the same as other metrics or it is particular 411	

feature of the optimized OF.  412	

Executing a model using one of the eight parameters set (assuming, for example, 413	

the one obtained by optimizing CSI) enables all the remaining GOF indices to be 414	

computed, which we indicate as CSICSI, ACCCSI, HSSCSI, TSSCSI, AICSI, SICSI, 415	

D2PCCSI, ESICSI, both for calibration and for verification dataset. Let us denote this 416	

vector with the name MPCSI: the model performance (MP) vector computed using the 417	

parameter set that optimizes CSI. MPCSI has 16 elements, 8 for the calibration and 8 418	

for the validation dataset. Repeating the same procedure for all eight GOF indices it 419	

gives: MPACC, MPESI, MPSI, MPD2PC, MPTSS, MPAI, MPHS. Figure 4 presents the 420	

correlation plots (Murdoch and Chow, 1996) between all MP vectors, for each model 421	
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M1, M2 or M3. The matrix is symmetric with an ellipse at the intersection of row i and 422	

column j. The color is the absolute value of the correlation coefficient between the 423	

MPi and MPj vectors. The eccentricity of the ellipse is scaled according to the 424	

correlation value: the more prominent it is, the less correlated are the vectors. If the 425	

ellipse leans towards the right, the correlation is positive, if it leans to the left, it is 426	

negative.  427	

All indices present a positive correlation with each other, irrespectively of the model 428	

used. In addition, strong correlations between the MP vectors of AI, D2PC, SI, and 429	

TSS are evident in Figure 4. This confirms that an optimization of AI, D2PC, SI, and 430	

TSS provides similar model performances, irrespectively of the model used. On the 431	

other hand, the remaining GOF indices give quite different information from the 432	

previous four indices, however their performance was worse in the first step of the 433	

analysis. Thus in the case study, using one of the four best GOFs is sufficient for the 434	

parameter estimation. 435	

 436	

3.3 Models sensitivity assessment 437	

 438	

In this step we focused on models M2 and M3 and performed a parameter sensitivity 439	

analysis. Let us consider model M2 and the optimal parameter set computed by 440	

optimizing the Critical Success Index (CSI). Also, considering the cohesion model 441	

parameter, the procedure evolves according to the following steps: 442	

• The starting parameter values are the optimal values derived from the 443	

optimization of the CSI index;  444	

• All the parameters except the analyzed parameter (cohesion) were kept 445	

constant and equal to the optimal parameter set;  446	

• 1000 random values of the analyzed parameter (cohesion) were selected 447	

from a uniform distribution with the lower and upper bound defined in Table 1. 448	

With this procedure 1000 model parameter sets were defined and used to 449	

execute the model. 450	

• 1000 values of the selected GOF index (CSI), computed by comparing model 451	

outputs with the measured data, were used to compute a boxplot of the 452	

parameter C and optimized index CSI. 453	
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The procedure was repeated for each parameter and for each optimized index. 454	

Results are presented in Figures 5 and 6 for models M2 and M3 respectively. 455	

Each column in the figures represents one optimized index and has a number of 456	

boxplots equal to the number of model parameters (5 for M2 and 6 for M3). Each 457	

boxplot represents the range of variation of the optimized index due to a particular 458	

change in the model parameters. The narrower the boxplot for a given optimized 459	

index, the less sensitive the model is to that parameter. For both M2 and M3, the 460	

parameter set obtained by optimizing AI and SI shows the least sensitive behavior 461	

for almost all the parameters. In this case a model parameter perturbation has little 462	

impact on the model’s performances.  However, the models with parameters 463	

obtained by optimizing ACC, TSS, and D2PC are the most sensitive to the 464	

parameter variations and this is reflected in much more evident changes in model 465	

performances. Finally, it is important to consider that the methodology used for 466	

evaluating the parameter sensitivity is based on changing the parameters one-at-467	

time. Although this procedure facilitates an inter-comparison of the results (because 468	

the parameter sensitivity is computed with reference to the optimal parameter set), it 469	

is does not take into account simultaneous variations or interactions between 470	

parameters. 471	

 472	

3.4 Models selections and susceptibility maps 473	

 474	

The selection of the most appropriate model for computing landslide susceptibility 475	

maps is based on what we learn from the previous steps. In the first step we learn 476	

that i) the optimization of AI, D2PC, SI and TSS outperforms the remaining indices 477	

and ii) models M2 and M3 provide more accurate results than M1. The second step 478	

suggests that overall the model results obtained by optimizing AI, D2PC, SI and TSS 479	

are similar each other. Lastly, the third step shows that the model performance 480	

derived from the optimization of AI and SI is less sensitive to input variations than 481	

D2PC and TSS. This could be due to the formulation of AI and SI which gives much 482	

more weight to the true negative compared to D2PC and TSS.  483	

For our application, the model M3 with parameters obtained by optimizing D2PC was 484	

the most sensitive to the parameter variation avoiding, an “insensitive” or flat 485	

response by changing the parameters values. A more sensitive couple model-486	
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optimal parameter set will in fact accommodate any parameters, input data, or 487	

measured data variations responding to these changes with a variation in model 488	

performance. 489	

We thus used the combination of model M3 with parameters obtained by optimizing 490	

D2PC in order to compute the final susceptibility maps in Figure 7. Categories of 491	

landslide susceptibility from classes 1 to 5 are assigned from low to high according 492	

to FS values (e.g. Huang et al., 2007): Class 1 (FS≤1.0), Class 2 (1.0<FS<1.2), 493	

Class 3 (1.2<FS<1.5), Class 4 (1.5<FS<2.0), Class 5 (FS≥2). 494	

 495	

4 Conclusions 496	

 497	

We have presented a procedure to quantitatively calibrate, evaluate, and compare 498	

the performances of environmental models. The procedure was applied for the 499	

analysis of three landslides susceptibility models. It is made up of three steps: i) 500	

model parameters calibration, optimizing different GOF indices and models 501	

evaluation in the ROC plane; ii) computation of the degree of similarities between 502	

different model performances obtained by optimizing all the considered GOF indices; 503	

iii) evaluation of model sensitivity to parameter variations. The first step identifies the 504	

more appropriate OFs for the model parameter optimization. The second step 505	

verifies the information content of each optimized OF, checking whether it is 506	

analogous to other metrics or peculiar to the optimized OF. Finally the last step 507	

quantifies the relative influence of each model parameter on the model performance. 508	

The procedure was conceived as a model configuration of the hydrological system 509	

NewAge-JGrass; it integrates: i) three simplified physically based landslides 510	

susceptibility models; ii) a package for model evaluations based on pixel-by-pixel 511	

comparison of modeled and actual landslides maps; iii) models parameters 512	

calibration algorithms, and iv) the integration with the uDig open-source geographic 513	

information system for model input-output map management.  The system is open-514	

source and available at (https://github.com/formeppe). It is integrated according to 515	

the Object Modeling System standards which enables the user to easily integrate a 516	

generic landslide susceptibility model and use the complete framework presented in 517	

the paper, thus avoiding having to rewrite programming code.  518	
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The procedure was applied in a test case on the Salerno-Reggio Calabria highway 519	

and led to the following conclusions: 1) the OFs AI, D2PC, SI, and TSS coupled with 520	

the models M2 and M3 provided the best performances among the eights metrics 521	

used in the calibration; 2) the four selected OFs provided quite similar model 522	

performances in terms of MP vectors, i.e. one of them would be sufficient for the 523	

model application; 3) M3 showed the best performance by optimizing the D2PC 524	

index. In fact M3 responded to parameter variations with changes in model 525	

performances.  526	

In our application effective precipitation was calibrated because we were performing 527	

a landslide susceptibility analysis and it was useful for demonstrating the method. 528	

However, we are aware that for operational landslide early warning systems, rainfall 529	

constitutes a fundamental input of the predictive process. In addition, the analysis 530	

would profit from data on the rainfall that triggered the landslides, however such data 531	

are currently not available for the study area. 532	

We believe that our system would be useful for decision makers who deal with risk 533	

management assessments. It could be improved by adding new landslide 534	

susceptibility models or different types of model selection procedures.  535	
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Acronyms table 552	

 553	

3SVP Three steps verification procedure 

AI Average Index  

CSI Critical success index  

D2PC Distance to perfect classification 
ESI Equitable success index  
fn False negative 
fp False positive 

FPR False positive rate 

FS  Factor of safety 

GIS Geographic informatic system 
GOF Goodness of fit indices 

HSS Heidke skill score 
LSA Landslide susceptibility analysis 

M1 Model for landslide susceptibility analysis 
proposed in Montgomery and Dietrich, 1994 

M2 Model for landslide susceptibility analysis 
proposed in Park et al., 2013 

M3 Model for landslide susceptibility analysis 
proposed in Rosso et al., 2006 

MP Model performances vector  
OF Objective function 
OL Observed landslide map 

OMS Object modeling system 
PL Predicted landslide map 

PSO Particle Swarm optimization 
ROC  Receiver operating characteristic 

SI Success index 
TCA Total contributing area 

tn True negative 
tp True positive 

TPR  True positive rate 

TSS True Skill Statistic  
 554	

 555	

	556	

 557	

 558	

 559	

 560	

 561	
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Table 1: Indices of goodness of fit for comparison between actual and predicted 756	

landslide. 757	

 758	

Name Definition Range Optimal value 

Critical success 

index (CSI) 
CSI= tp

tp+fp+fn  
[0 ,1] 1.0 

Equitable success 

index (ESI) 
ESI= tp-R

tp+fp+fn-R     
R =

tp+ fn( ) ⋅ tp+ fp( )
tp+ fn+ fp+ tn  

[-1/3,1] 1.0 

Success Index 

(SI) 
SI= 1

2
⋅

tp
tp+ fn

+ tn
fp+ tn

"

#
$

%

&
'
 

[0 ,1] 1.0 

Distance to perfect 

classification 

(D2PC) 

D2PC= 1−TPR( )2 +FPR2  

TPR= tp
tp+fn   

FPR= fp
fp+tn  

[0,1] 0.0 

Average Index 

(AI) 
AI= 1

4
tp

tp+ fn
+

tp
tp+ fp

+
!

"
#

tn
fp+ tn

+
tn

fn+ tn

$

%
&  [0,1] 1.0 

True skill statistic 

(TSS) 
TSS=

tp ⋅ tn( )− fp ⋅ fn( )
tp+ fn( ) ⋅ fp+ tn( )  

[-1,1] 1.0 

Heidke skill score 

(HSS) 
HSS=

2 ⋅ tp ⋅ tn( )− fp ⋅ fn( )
tp+ fn( ) ⋅ fn+ tn( )+ tp+ fp( ) ⋅ fp+ tn( )  

[-∞, 1] 1.0 

Accuracy 

(ACC) 
ACC = (tp + tn)

(tp + fn + fp + tn)  
[0,1] 1.0 

 759	

 760	

 761	

 762	

 763	

 764	

 765	

 766	

 767	

 768	

 769	

 770	
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Table 2: Optimised models’ parameters values 771	

 772	

Model Parameters Constant Value Range value 

Soil Depth [m] - [0.8; 5.0] 

Transmissivity [m2/d] - [10; 150] 

Soil/water density ratio - [1.8; 2.8] 

Friction Angle [°] - [11; 40] 

Rainfall [mm/d] - [50; 300] 

Soil Cohesion [kPa] - [0; 50] 

Degree Of Saturation [-] 0.5 - 

Soil Porosity [-] 0.5 - 

Rainfall Duration [d] - [0.1; 3.0] 

 773	

 774	

 775	

 776	

 777	

 778	

 779	

 780	

 781	

 782	

 783	

 784	

 785	

 786	

 787	

 788	

 789	

 790	

 791	

 792	

 793	

 794	
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Table 3: Optimal parameter sets output of the optimization procedure of each GOF 795	

indices in turn. Results are presented for each model (M1, M2 and M3).  796	

 797	

 798	

 799	

Model: M1 

Optimised Index AI HSS TSS D2PC SI ESI CSI ACC 

Soil Depth [m] 1.32 1.85 1.44 2.80 1.36 2.62 2.42 2.01 

Transmissivity [m2/d] 140.24 146.31 142.68 137.10 147.69 144.66 136.73 74.74 

Soil/water density ratio [-] 2.61 2.56 2.77 2.71 2.78 2.79 2.63 2.72 

Friction Angle [°] 24.20 32.40 22.50 23.10 22.40 29.50 29.50 38.30 

Rainfall [mm/d] 85.38 53.30 71.36 50.00 52.69 69.19 61.35 141.80 

 800	

Model: M2 

Optimised Index AI HSS TSS D2PC SI ESI CSI ACC 

Transmissivity [m2/d] 65.43 33.22 80.45 38.22 84.54 33.24 10.70 55.76 

Cohesion [kPa] 25.17 49.63 49.42 16.94 30.01 41.24 44.58 46.85 

Friction Angle [°] 29.51 38.38 20.01 32.30 24.57 33.78 35.68 34.96 

Rainfall [mm/d] 236.14 293.44 270.42 153.61 294.70 298.44 95.35 299.01 

Soil/water density ratio [-] 2.11 2.40 2.06 2.44 2.77 2.17 2.55 2.19 

Soil Depth [m] 2.35 1.68 2.38 2.44 2.74 1.12 1.37 1.12 

 801	

Model: M3 

Optimised Index AI HSS TSS D2PC SI ESI CSI ACC 

Transmissivity [m2/d] 30.95 26.55 47.03 36.31 57.28 25.84 31.60 48.71 

Cohesion [kPa] 36.88 44.33 28.51 31.60 45.46 41.80 32.05 37.09 

Friction Angle [°] 19.55 36.44 27.80 29.70 21.46 33.27 36.47 38.50 

Rainfall [mm/d] 248.77 230.08 258.82 201.71 299.90 291.32 273.03 193.02 

Soil/water density ratio [-] 2.40 2.57 2.08 2.80 2.65 2.63 2.61 2.44 

Soil Depth [m] 1.84 1.42 2.23 2.92 2.85 1.17 1.13 1.15 

Rainfall Duration [d] 0.12 1.78 1.24 1.96 1.24 0.39 1.30 1.98 

 802	

 803	

 804	

 805	

 806	
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Table 4: Results in term of true-positive rate (TPR) and false-positive rate (FPR), for 807	

each model (M1, M2 and M3), for each optimised GOF index and for both calibration 808	

(CAL) and verification (VAL) dataset. In bold are shown the rows for which the 809	

condition FPR<0.4 and TPR>0.7 is verified.  810	

 811	

  

MODEL: M1 MODEL: M2 MODEL: M3 

Period Optim. Index FPR TPR FPR TPR FPR TPR 

CAL ACC 0.04 0.12 0.03 0.12 0.03 0.13 

CAL AI 0.29 0.70 0.35 0.79 0.38 0.82 

CAL CSI 0.17 0.48 0.10 0.36 0.09 0.32 

CAL D2PC 0.32 0.72 0.32 0.76 0.32 0.75 

CAL ESI 0.17 0.48 0.43 0.82 0.09 0.36 

CAL HSS 0.12 0.35 0.09 0.35 0.09 0.35 

CAL SI 0.34 0.74 0.39 0.85 0.39 0.86 

CAL TSS 0.34 0.73 0.39 0.83 0.37 0.82 

VAL ACC 0.05 0.12 0.03 0.12 0.03 0.10 

VAL AI 0.26 0.56 0.31 0.69 0.34 0.72 

VAL CSI 0.17 0.39 0.09 0.31 0.08 0.29 

VAL D2PC 0.29 0.59 0.28 0.67 0.28 0.66 

VAL ESI 0.17 0.39 0.41 0.76 0.09 0.30 

VAL HSS 0.12 0.30 0.09 0.30 0.09 0.30 

VAL SI 0.30 0.61 0.37 0.75 0.39 0.76 

VAL TSS 0.30 0.62 0.35 0.74 0.34 0.71 

 812	

 813	

 814	

 815	

 816	

 817	

 818	

 819	

 820	

 821	

 822	

 823	
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Figure 1: Integration of the Landslide susceptibility analysis system in 824	

NewAge-JGrass hydrological model. 825	
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 826	
 827	

 828	

 829	

 830	

 831	

 832	

 833	

 834	

 835	

 836	

 837	

 838	

 839	

 840	

 841	
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Figure 2: Test site. A) Digital elevation model (DEM) [m], B) slope [-] expressed as 842	

tangent of the angle, C) total contributing area (TCA) expressed as number of 843	

draining cells and D) Map of actual landslides. 844	
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Figure 3: Models’ performances results in the ROC plane for M1, M2 and M3. Only 

GOF indices whose optimization provides FPR<0.4 and TPR>0.7 were reported.  
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Figure 4: Correlation plot between models’ performance (MP) vector computed by 

optimizing all GOF indices in turn. Results are reported for each model: M1, M2 and 

M3.  
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Figure 5: Model M2 parameters sensitivity analysis. 
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Figure 6: Model M3 parameters sensitivity analysis. 
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Figure 7: Landslide susceptibility maps using model M3 and parameter set obtained 

by optimising D2PC. 
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Appendix 1 
 

1.2 Critical success index (CSI) 
 

CSI, eq. (2), is the number of correct detected lindslide pixels (tp), divided by the 

sum of tp, fn and fp. CSI is also named threat score. It range between 0 and 1 and 

its best value is 1. It penalizes both fn and fp.  

 

CSI= tp
tp+fp+fn

 (2) 

 

1.3 Equitable success index (ESI) 
 

ESI, eq. (3), contrarily to CSI, is able to take into account the true positives 

associated with random chance (R). ESI ranges between -1/3 and 1. Value 1 

indicates perfect score. 

 

ESI= tp-R
tp+fp+fn-R

 3) 

 

R =
tp+ fn( ) ⋅ tp+ fp( )
tp+ fn+ fp+ tn

 (4) 

 

 

1.4 Success index (SI) 
 

SI, eq.(5), equally weight True positive rate (eq. 6) and specificity defined as 1 minus 

false positive rate (FPR), eq. (7). SI varies between 0 and 1 and its best value is 1. 

SI is also named modified success rate. 



Formetta et al. / Evaluating performances of simplified physically based landslide susceptibility models 

	
	

 

SI= 1
2
⋅

tp
tp+ fn

+ tn
fp+ tn

"

#
$

%

&
'=
1
2
⋅ TPR+specificity( )  (5) 

 

TPR= tp
tp+fn

 (6)            FPR= fp
fp+tn

 (7) 

 

 

1.5 Distance to perfect classification (D2PC) 
 

D2PC is defined in eq. (8). It measures the distance, in the plane FPR-TPR between 

an ideal perfect point of coordinates (0,1) and the point of the tested model 

(FPR,TPR). D2PC ranges in 0-1 and its best value are 0. 

 

 

D2PC= 1−TPR( )2 +FPR2  (8) 

 

 

1.6 Average Index (AI) 
 

AI, eq. (9), is the average value between four different indices: i) TPR, ii) Precision, 

iii) the ratio between successfully predicted stable pixels (tn) and the total number of 

actual stable pixels (fp+tn) and iv) the ratio between successfully predicted stable 

pixels (tn) and the number of simulated stable cells (fn+tn). 

 

AI= 1
4

tp
tp+ fn

+
tp

tp+ fp
+

tn
fp+ tn

+
tn

fn+ tn
!

"
#

$

%
&   (9) 

 

 

 
1.7 Heidke skill score (HSS) 
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The fundamental idea of a generic skill score measure is to quantify the model 

performance respect to set of control or reference model. Fixed a measure of model 

accuracy Ma, the skill score formulation is expressed in eq. (10): 

 

SS= Ma −Mc

Mopt −Mc

 (10) 

 

where Mc is the control or reference model accuracy and Mopt is the perfect model  

accuracy. 

SS assumes positive and negative value, if the tested model is perfect Ma = Mopt and 

SS=1, if the tested model is equal to the control model than Ma = Mc and SS=0.   

The marginal probability of a predicted unstable pixel is (tp+fp)/n where n is the total 

number of pixels n=tp+fn+fp+tn. The marginal probability of a landslided unstable 

pixel is (tp+fn)/n. 

The probability of a correct yes forecast by chance is: P1= (tp+fp) (tp+fn)/n2. The 

probability of a correct no forecast by chance is: P2= (tn+fp) (tn+fn)/n2.  

In the HSS, eq. (11), the control model is a model that forecast by chance: Mc = P1+ 

P2, the measure of accuracy is the Accuracy (ACC) defined in eq. (12), and the 

Mopt=1. 

 
HSS=

2 ⋅ tp ⋅ tn( )− fp ⋅ fn( )
tp+ fn( ) ⋅ fn+ tn( )+ tp+ fp( ) ⋅ fp+ tn( )

   (11) 

ACC= tp+tn
tp+fn+fp+tn

(12) 

 

The range of the HSS is -∞ to 1. Negative values indicate that the model provides no 

better results of a random model, 0 means no model skill, and a perfect model 

obtains a HSS of 1. HSS is also named as Cohen's kappa.  

 
 
1.8 True Skill Statistic (TSS) 
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TSS, eq. (13), is the difference between the hit rate and the false alarm rate. It is 

also named Hanssen & Kuipper’s Skill Score and Pierce’s Skill Score. It ranges 

between -1 and 1 and its best value is 1. TSS equal -1 indicates that the model 

provides no better results of a random model. A TSS equal 0 indicates an 

indiscriminate model. 

 TSS measures the ability of the model to distinguish between landslided and non-

landslided pixels. If the number of tn is large the false alarm value is relatively 

overwhelmed. If tn is large, as happens in landslides maps, FPR tends to zero and 

TSS tends to TPR. A problem of TSS is that it treats the hit rate and the false alarm 

rate equally, irrespective of their likely differing consequences. 

 

 

TSS=
tp ⋅ tn( )− fp ⋅ fn( )
tp+ fn( ) ⋅ fp+ tn( )

= TPR−FPR  (13) 

 

 

TSS is similar to Heidke, except the constraint on the reference forecasts is that they 

are constrained to be unbiased. 
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Appendix 2 
 

 
Figure A2-1: Models’ performances results in the ROC plane for M1. 
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Figure A2-2: Models’ performances results in the ROC plane for M2. 
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Figure A2-3: Models’ performances results in the ROC plane for M3. 
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