
HESSD
12, 1311–1327, 2015

Time-lapse RGB
imagery for a remote

Greenlandic river

C. J. Gleason et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Hydrol. Earth Syst. Sci. Discuss., 12, 1311–1327, 2015
www.hydrol-earth-syst-sci-discuss.net/12/1311/2015/
doi:10.5194/hessd-12-1311-2015
© Author(s) 2015. CC Attribution 3.0 License.

This discussion paper is/has been under review for the journal Hydrology and Earth System
Sciences (HESS). Please refer to the corresponding final paper in HESS if available.

Technical Note: Semi-automated
classification of time-lapse RGB imagery
for a remote Greenlandic river
C. J. Gleason1, L. C. Smith1, D. C. Finnegan2, A. L. LeWinter2, L. H. Pitcher1, and
V. W. Chu1

1Department of Geography, University of California – Los Angeles, 1255 Bunche Hall,
405 Hilgard Avenue, Los Angeles, California 90095-1524, USA
2US Army Cold Regions Research & Engineering Laboratory, Hanover, NH 03755, USA

Received: 30 November 2014 – Accepted: 14 January 2015 – Published: 29 January 2015

Correspondence to: C. J. Gleason (cjgleaso@ucla.edu)

Published by Copernicus Publications on behalf of the European Geosciences Union.

1311

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/1311/2015/hessd-12-1311-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/1311/2015/hessd-12-1311-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
12, 1311–1327, 2015

Time-lapse RGB
imagery for a remote

Greenlandic river

C. J. Gleason et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Abstract

River systems in remote environments are often challenging to monitor and understand
where traditional gauging apparatus are difficult to install or where safety concerns
prohibit field measurements. In such cases, remote sensing, especially terrestrial time
lapse imaging platforms, offer a means to better understand these fluvial systems. One5

such environment is found at the proglacial Isortoq River in southwest Greenland, a
river with a constantly shifting floodplain and remote Arctic location that make gaug-
ing and in situ measurements all but impossible. In order to derive relevant hydraulic
parameters for this river, two RGB cameras were installed in July of 2011, and these
cameras collected over 10 000 half hourly time-lapse images of the river by September10

of 2012. Existing approaches for extracting hydraulic parameters from RGB imagery
require manual or supervised classification of images into water and non-water areas,
a task that was impractical for the volume of data in this study. As such, automated
image filters were developed that removed images with environmental obstacles (e.g.
shadows, sun glint, snow) from the processing stream. Further image filtering was ac-15

complished via a novel automated histogram similarity filtering process. This similarity
filtering allowed successful (mean accuracy 79.6 %) supervised classification of filtered
images from training data collected from just 10 % of those images. Effective width, a
hydraulic parameter highly correlated with discharge in braided rivers, was extracted
from these classified images, producing a hydrograph proxy for the Isortoq River be-20

tween 2011 and 2012. This hydrograph proxy shows agreement with historic flooding
observed in other parts of Greenland in July 2012 and offers promise that the imaging
platform and processing methodology presented here will be useful for future monitor-
ing studies of remote rivers.
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1 Introduction

Proglacial streams and rivers along land-terminating edges of the Greenland Ice Sheet
are among the world’s most difficult fluvial systems to study in the field, owing to
their remoteness, harsh climate, and braided morphology. Discharge variations in large
proglacial rivers are of particular scientific interest, as these systems typically derive5

water from the interior ablations surface Greenland Ice Sheet and are thus useful
for inferring runoff mass losses from the ice sheet (Rennermalm et al., 2013; Smith
et al., 2014). However, their high sediment loads, unstable banks, and dynamic braided
channels present challenges to traditional in situ river gauging techniques, and long
term hydrographs for these rivers are rare. While not unique to Greenland, these chal-10

lenges are particularly evident there, with more than 100 large (> 1 km width) large
braided rivers exiting the ice sheet with no observations of discharge whatsoever.

Where in situ methods are impractical, remotely sensed imagery offers an increas-
ingly viable option for obtaining scientifically useful estimates of river discharge in re-
mote or otherwise inaccessible areas (Smith et al., 1997; Ashmore and Sauks, 2006;15

Durand et al., 2010; Gleason and Smith, 2014). Braided rivers in particular typically
display a power-law relationship between floodplain inundation area (which can be
remotely sensed) and discharge, which has been exploited using satellites and ter-
restrial time-lapse photography (Smith, 1995, 1996; Chandler et al., 2002; Ashmore
and Sauks, 2006; Egozi and Ashmore, 2008; Smith and Pavelsky, 2008; Bertoldi et al.,20

2009; Hundey and Ashmore, 2009; Bertoldi et al., 2010; Bird et al., 2010; Ashmore
et al., 2011; Welber et al., 2012).

Regardless of the technology used, each remotely sensed image must first be classi-
fied into areas of water and non-water, a task for which numerous methodologies exist.
In satellite remote sensing, NIR wavelengths can reliably detect open water surfaces.25

However, satellite imagery often lacks the required spatial and temporal resolution to
adequately capture hydrologic phenomena, especially for smaller rivers. This has led
to the use of non-metric, true color (RGB) digital camera imagery to capture water
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surfaces as an inexpensive and image-on-demand alternative to satellite and airborne
platforms, especially for braided rivers. To calculate hydraulic parameters (e.g. effective
width, braiding index, sinuosity, or bed slope elevation), these studies have commonly
classified water surfaces within images either manually or by supervised classifica-
tion (Egozi and Ashmore, 2008; Bertoldi et al., 2009; Hundey and Ashmore, 2009;5

Ashmore et al., 2011; Welber et al., 2012). Another parameter estimation approach re-
lies on water surface delineation from automatically generated DEMs constructed from
stereo-imagery and other data sources (Chandler et al., 2002; Ashmore and Sauks,
2006; Bird et al., 2010; Bertoldi et al., 2010).

While each of these studies successfully calculated hydrologic parameters from re-10

motely sensed images, their manual, time-intensive approaches are impractical for
large data volumes. This is especially an issue for long term hydrologic monitoring
sorely needed in many remote rivers, as using the image platform and processing de-
veloped by Ashmore and Sauks (2006) and Welber et al. (2012), for instance, could
easily generate tens of thousands of images per year. Automated DEM generation15

methods would seem a ready alternative, yet these require numerous fixed targets of
known position to persist from image to image, which are seldom found or are difficult to
install on dynamic braided river systems owing to their constantly shifting morphology.
If such image platforms are to be viable for long term monitoring studies, a systematic
procedure for automatic image quality selection and classification, preferably for RGB20

image data, is needed.
To that end, this paper proposes a semi-automated processing stream designed to

classify and extract hydraulic parameters of interest from large volumes of RGB im-
age data collected from a fixed terrestrial platform, and demonstrates its efficacy in
a remote Greenlandic river. Automated filters are developed that remove obstacles to25

image classification based on easily calculated environmental variables, and an image
similarity filter is developed that allows supervised classification of many images from
minimal training data. Here, these filtering and classification techniques are employed
to extract effective width We (inundation area divided by reach length), a hydraulic pa-
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rameter that has been shown to be highly correlated with discharge in braided rivers
and has been successfully extracted from remotely sensed data in proglacial envi-
ronments (Smith et al., 1996; Smith, 1997; Ashhmore and Sauks, 2006; Smith and
Pavelsky, 2008; Ashmore et al., 2011). To evaluate the robustness of the extraction, we
assess image classification accuracy using manually generated ground truth data.5

2 Data

This study was conducted on the proglacial Isortoq River in southwestern Greenland.
The Isortoq, one of the largest braided rivers draining the Greenland ice sheet, issues
from the Issunguata Sermia glacier terminus with discharge dominated by meltwa-
ter outflow from the ablating ice surface (Smith et al., 2014). In July 2011, two Nikon10

D200 model RGB cameras (focal lengths of 24 and 50 mm) were installed 250 m above
a reach of the Isortoq braid plain approximately 3.1 km downstream of the ice edge.
The camera system was identical to that developed by the Extreme Ice Survey project
(www.extremeicesurvey.org) for use in severe Arctic conditions. In addition to the cam-
eras, a modified battery pack and electronic controller were housed inside a weather-15

proof case with an abrasion-resistant viewing window. The case was mounted on a sur-
vey tripod and powered by a 12 V gel battery recharged by solar panel. The cameras
were oriented so as to image sections of the braid plain of approximately 1.5km×2.0km
and 2.0km×2.3km, respectively (Fig. 1), and captured one image every 30 min when
light conditions permitted.20

Camera data collection commenced 22 July 2011, and over 20 000 images were
retrieved from the cameras by 10 September 2012, covering most of two melt sea-
sons. The camera setup proved robust: the light sensor operated properly, the position
of the cameras remained unchanged, and the batteries powering the cameras were
still functional after the one year collection period for the wide focus camera. However,25

a presumed Arctic fox chewed through the cables connecting the battery to the camera
for the more narrowly focused platform and halted data collection only two months after
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installation. Therefore, all analyses presented in this paper refer to the wide focus cam-
era, which remained continuously operable throughout the study period 22 July 2011–
10 September 2012.

3 Methods

Classifying the RGB image data into water and non-water areas to extract We pre-5

sented several technical challenges for the 10 327 images that were collected by
the wide focus camera from July 2011 to September 2012. Existing approaches for
hydraulic parameter extraction from RGB data require either manual or supervised
classification of water within each image and are thus inappropriate for the large
data volumes generated in this study. Unsupervised classification techniques provide10

a straightforward alternative for large time-lapse camera datasets, yet also present ad-
ditional challenges as the images collected here are extremely diverse and differing soil
moisture in the braid plain gives the appearance of multiple classes of output. Environ-
mental factors such as time-varying solar angles, blowing sand, dense fog, shadowing,
snow and rain on the camera lens, and acute sun-glint from water surface are espe-15

cially prevalent in the Isortoq image data. These factors were all addressed, and We
accurately extracted, by the processing workflow described below and presented in
Fig. 2.

3.1 Environmental filtering

The first task for extracting We was to filter the large amount of image data into those20

images that were most easily classified into water and non-water areas by eliminat-
ing images containing the environmental obstacles described above. Once images are
classified, water area (and therefore We) may be calculated. Several filters were de-
veloped to remove these poor quality images. First, images acquired during periods of
non-flow (before and after melt season activity) were culled. Next, images with shad-25
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owing were culled by calculating the zenith and azimuth angles of the sun relative to
the river plain. Through visual inspection of the image time series, zenith angles less
than 65◦ and azimuth angles between degrees were found to produce shadows created
by steep valley walls that prevented accurate classification (note valley walls, Figs. 1
and 2). Next, images that exhibited excessive sun glinting were removed. Sun glint was5

defined as when an image exhibited either a ratio of the 95th brightness percentile to
the 5th brightness percentile greater than 1.8 or contained more than 1 % of pixels
with brightness value greater than 215. This filter was necessary, as sun glint was ob-
served both on open water and saturated sand, making distinction between these very
different fluvial environments difficult (Fig. 2). Successful application of these winter,10

shadow, and sun glint filters culled 9487 images from the image time series, leaving
840 images free of environmental obstacles that still represented every day of the two
melt seasons.

3.2 Similarity filtering

Even with these stringent filters, unsupervised classification was still unable to de-15

lineate water surfaces with satisfactory accuracy, and the number of images remain-
ing was still too large for supervised classification to be feasible. As such, a semi-
supervised classification approach was developed. To perform this classification, an-
other image filtering was needed to find images that were similar enough to one another
to share training data from a small sample of images in a supervised classification. The20

presence of dense fog, blowing sand, or cloudiness changes the brightness values of
the imagery, so even images collected with identical solar geometry can be difficult
to classify in an unsupervised manner. A similarity filter was developed that selected
images that not only had similar solar geometry, but also had the same brightness
and illumination and were all free of environmental obstacles not covered by the first25

filtering.
This similarity filtering was accomplished by calculating and comparing the his-

tograms of each of the red, green, and blue bands for each image. Histograms of
1317
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brightness values that fell into 100 bins evenly spaced from 0 to 255 (reflectance val-
ues) were calculated for each band of each image. Using the same bins for each image
ensured that cross comparison of images would not be affected by stretching of the
image data. Once these histograms were generated, the RMSE between histogram
counts per bin was computed in a band-by-band pairwise permutation, giving a per-5

image and per-band indication of the similarity of every image to each other image.
These band-by-band RMSE values were then averaged to arrive at an overall mea-
sure of image similarity. This metric was used to identify the 20 % of the images that
were most similar to each other, resulting in 168 images that were collected at similar
sun angles without any environmental obstacles. In addition, the similarity filter also10

produced images that contained four basic elements: dark (non-sun lit, turbid) water,
bright (sun lit or non-turbid) water, dark (wet) sand, and bright (dry) sand.

3.3 Georectification and classification

Once the final filtering of images was complete, images were cropped to exclude the
wide upstream floodplain and georectified into ground coordinates using a 4th degree15

polynomial transformation implemented in ENVI v4.8 (Fig. 2). Eighty ground control
points were manually extracted from a 2 m panchromatic World View 2 image acquired
on 23 September 2011 (paired with a camera image collected 10 min later) and used
to define the basis for the transformation. This warping polynomial was subsequently
applied to all filtered images. After georectification, each image pixel had dimensions20

of 1 m by 1 m, an appropriate resolution for camera data collected at this scale. These
georectified pixels allowed calculation of water surface area, and thus We, from the
classified images.

To classify images into water and non-water areas for We extraction, training data
representing four classes (dark water, bright water, dark sand, and bright sand) were25

manually collected from a random 10 % sample (16 images) of the similarity filtered
images. The RGB statistics generated from these training polygons were applied to
all images passing the similarity filtering and used to train a maximum likelihood su-
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pervised classification method performed in ENVI v4.8 for each image. This process
requires that each image has nearly identical RGB composition in order to be success-
ful, which was guaranteed by the similarity filtering.

4 Results and discussion

4.1 Accuracy assessment5

The semi-supervised classification described here proved an effective and unbiased
classification method. Figure 3 shows the overall accuracy, user’s accuracy for water,
and user’s accuracy for non-water as a function of We from a random sample of 56 im-
ages (33 % of filtered images). Accuracy was assessed using approximately 500 semi-
random manually derived assessment points for each class (water and non-water) per10

image. Of particular interest were both the overall accuracy (total number of correctly
classified assessment points divided by total number of assessment points, ∼ 500),
and the user’s accuracy for water and non-water (percentage of image pixels classified
correctly as assessed by the training data). These metrics provide an assessment of
classification performance from the standpoint of each classified image: the paradigm15

that speaks directly to the fidelity of extracted We. Accuracy assessment indicates that
overall accuracy is acceptable (mean accuracy for the assessment sample is 79.6 %),
and neither overall accuracy (r = −0.11) nor water user’s accuracy (r = 0.35) show
strong correlation with We. This lack of correlation indicates that the classification of
water is not affected by the extent of water inundation in the scene. There is a strong20

correlation (r = −0.79) between the user’s accuracy of non-water pixels and We, but
this negative correlation is a reflection of the difficulty of classifying the small number
of non-water pixels remaining in scenes where the braid plain was nearly completely
flooded. The reason for this successful classification was the similarity of filtered im-
ages, which was guaranteed by the histogram matching procedure described above.25

After classification, We was calculated as area of classified water within a 1000 m reach
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located where the image data provided complete bank to bank coverage and indicated
by the magenta polygon in Fig. 2.

4.2 Extracted We hydrograph

The We hydrograph shown in Fig. 4 is a proxy for discharge variations in the Isortoq
River from 2011–2012. Gaps in the date record indicate that there were no images that5

passed filtering on those dates, even though images were acquired half hourly. This
is a result of prolonged rain events, heavy fog, or strong winds that caused images
to be non-similar during these days. Despite these gaps, the data record still provides
near daily coverage, indicating that filtering did not substantially affect the temporal
distribution of the output data. Of note is the large peak in We seen in July of 2012,10

coinciding with historic melting of the Greenland ice sheet (Hall et al., 2013; Tedesco
et al., 2013) and destruction of the Watson River bridge in the town of Kangerlussuaq
(Smith et al., 2014), located approximately 15 km south of the Isortoq River.

Figure 4 also reveals that the relative magnitude of We during this melt event was an
order of magnitude greater than We in low flow stages. This shows that the Isortoq River15

behaves like other braided rivers with non-cohesive bed material, as its width adjusts
rapidly to changing discharge. In addition, the peak We observed here corresponds to
almost complete floodplain occupation by the river, highlighting the difficulty of installing
traditional gauging equipment at this site.

5 Conclusions20

This paper has demonstrated the efficacy of a fixed position RGB time-lapse camera
platform for hydraulic parameter extraction for a large proglacial braided river in a re-
mote area of Greenland. The operational camera delivered over 10 000 half hourly
images in just over one year of collection, and demonstrated remarkable resilience in
the Greenlandic winter. Such a platform is useful for extraction of multiple hydraulic pa-25
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rameters, including effective width (We), a proxy for discharge variations. To fully realize
this monitoring potential, the We variations extracted for each image could be calibrated
with a rating curve built from intermittent field data.

The above accuracy assessments indicate that the semi-supervised classification
method produced accurate and unbiased results. An accurately delineated water sur-5

face is necessary to preserve the fidelity of extracted hydraulic parameters. The pro-
cessing techniques described in this paper fall short of completely automated pro-
cessing, yet this paper does present an analysis protocol that achieves a consistent
standard of classification from images that are automatically selected for ease of clas-
sification. Furthermore, the similarity filtering presented herein allows for supervised10

classification of numerous images from minimal training data, enabling long term hy-
drologic records to be maintained without onerous manual classification of imagery or
photogrammetrically challenging DEM extraction.

Acknowledgements. This research was supported by the NASA Remote Sensing Theory ini-
tiative (grant NNX12AB41G), NASA Cryosphere Program (grant NNX11AQ38G) managed by15

Thomas Wagner, and NASA Earth and Space Sciences Fellowship NNX12AN32H. Field logis-
tical support was provided by CH2M Hill Polar Field Services, the Kangerlussuaq International
Science Station (KISS), and Air Greenland.

References

Ashmore, P. and Sauks, E.: Prediction of discharge from water surface width in a braided20

river with implications for at-a-station hydraulic geometry, Water Resour. Res., 42, W03406,
doi:10.1029/2005wr003993, 2006.

Ashmore, P., Bertoldi, W., and Gardner, J. T.: Active width of gravel-bed braided rivers, Earth
Surf. Proc. Land., 36, 1510–1521, doi:10.1002/esp.2182, 2011.

Bertoldi, W., Zanoni, L., and Tubino, M.: Planform dynamics of braided streams, Earth Surf.25

Proc. Land., 34, 547–557, doi:10.1002/esp.1755, 2009.

1321

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/1311/2015/hessd-12-1311-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/1311/2015/hessd-12-1311-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1029/2005wr003993
http://dx.doi.org/10.1002/esp.2182
http://dx.doi.org/10.1002/esp.1755


HESSD
12, 1311–1327, 2015

Time-lapse RGB
imagery for a remote

Greenlandic river

C. J. Gleason et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Bertoldi, W., Zanoni, L., and Tubino, M.: Assessment of morphological changes induced by flow
and flood pulses in a gravel bed braided river: the Tagliamento River (Italy), Geomorphology,
114, 348–360, doi:10.1016/j.geomorph.2009.07.017, 2010.

Bird, S., Hogan, D., and Schwab, J.: Photogrammetric monitoring of small streams under a ri-
parian forest canopy, Earth Surf. Proc. Land., 35, 952–970, 2010.5

Chandler, J., Ashmore, P., Paola, C., Gooch, M., and Varkaris, F.: Monitoring river-channel
change using terrestrial oblique digital imagery and automated digital photogrammetry, Ann.
Assoc. Am. Geogr., 92, 631–644, doi:10.1111/1467-8306.00308, 2002.

Durand, M., Rodriguez, E., Alsdorf, D. E., and Trigg, M.: Estimating river depth from remote
sensing swath interferometry measurements of river height, slope, and width, IEEE J. Sel.10

Top. Appl., 3, 20–31, doi:10.1109/jstars.2009.2033453, 2010.
Egozi, R. and Ashmore, P.: Defining and measuring braiding intensity, Earth Surf. Proc. Land.,

33, 2121–2138, doi:10.1002/esp.1658, 2008.
Gilvear, D. J., Davids, C., and Tyler, A. N.: The use of remotely sensed data to de-

tect channel hydromorphology; River Tummel, Scotland, River Res. Appl., 20, 795–811,15

doi:10.1002/rra.792, 2004.
Gleason, C. J. and Smith, L. C.: Toward global mapping of river discharge using satellite im-

ages and at-many-stations hydraulic geometry, P. Natl. Acad. Sci. USA, 11, 4788–4791,
doi:10.1073/pnas.1317606111, 2014.

Hall, D. K., Comiso, J. C., DiGirolamo, N. E., Shuman, C. A., Box, J. E., and Koenig, L. S.:20

Variability in the surface temperature and melt extent of the Greenland ice sheet. Geophys.
Res. Lett., 40, 2114–2120, doi:10.1002/grl.50240, 2013.

Hundey, E. J. and Ashmore, P. E.: Length scale of braided river morphology, Water Resour.
Res., 45, W08409, doi:10.1029/2008wr007521, 2009.

Rennermalm, A. K., Smith, L. C., Chu, V. W., Box, J. E., Forster, R. R., Van den Broeke, M. R.,25

Van As, D., and Moustafa, S. E.: Evidence of meltwater retention within the Greenland ice
sheet, The Cryosphere, 7, 1433–1445, doi:10.5194/tc-7-1433-2013, 2013.

Smith, L. C.: Satellite remote sensing of river inundation area, stage, and discharge: a review,
Hydrol. Process., 11, 1427–1439, doi:10.1002/(SICI)1099-1085(199708)11:10<1427::AID-
HYP473>3.0.CO;2-S, 1997.30

Smith, L. C. and Pavelsky, T. M.: Estimation of river discharge, propagation speed, and
hydraulic geometry from space: Lena River, Siberia, Water Resour. Res., 44, W03427,
doi:10.1029/2007wr006133, 2008.

1322

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/1311/2015/hessd-12-1311-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/1311/2015/hessd-12-1311-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1016/j.geomorph.2009.07.017
http://dx.doi.org/10.1111/1467-8306.00308
http://dx.doi.org/10.1109/jstars.2009.2033453
http://dx.doi.org/10.1002/esp.1658
http://dx.doi.org/10.1002/rra.792
http://dx.doi.org/10.1073/pnas.1317606111
http://dx.doi.org/10.1002/grl.50240
http://dx.doi.org/10.1029/2008wr007521
http://dx.doi.org/10.5194/tc-7-1433-2013
http://dx.doi.org/10.1002/(SICI)1099-1085(199708)11:10<1427::AID-HYP473>3.0.CO;2-S
http://dx.doi.org/10.1002/(SICI)1099-1085(199708)11:10<1427::AID-HYP473>3.0.CO;2-S
http://dx.doi.org/10.1002/(SICI)1099-1085(199708)11:10<1427::AID-HYP473>3.0.CO;2-S
http://dx.doi.org/10.1029/2007wr006133


HESSD
12, 1311–1327, 2015

Time-lapse RGB
imagery for a remote

Greenlandic river

C. J. Gleason et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Smith, L. C., Isacks, B. L., Bloom, A. L., and Murray, A. B.: Estimation of discharge from three
braided rivers using synthetic aperture radar satellite imagery: potential application to un-
gaged basins, Water Resour. Res., 32, 2021–2034, doi:10.1029/96wr00752, 1996.

Smith, L. C., Chu, V. W., Yang, K., Gleason, C. J., Pitcher, L. H, Rennermalm, A. K., Legli-
eter, C. J., Behar, A. E., Overstreet, B. T., Moustafa, S. E., Tedesco, M., Forster, R. R., LeWin-5

ter, A. L., Finnegan, D. C., Sheng, Y., and Balog, J.: Efficient meltwater drainage through
supraglacial streams and rivers on the southwest Greenland ice sheet, P. Natl. Acad. Sci.
USA, doi:10.1073/pnas.1413024112, in press, 2014.

Tedesco, M., Fettweis, X., Mote, T., Wahr, J., Alexander, P., Box, J. E., and Wouters, B.: Ev-
idence and analysis of 2012 Greenland records from spaceborne observations, a regional10

climate model and reanalysis data, The Cryosphere, 7, 615–630, doi:10.5194/tc-7-615-2013,
2013.

Welber, M., Bertoldi, W., and Tubino, M.: The response of braided planform configuration to
flow variations, bed reworking and vegetation: the case of the Tagliamento River, Italy, Earth
Surf. Proc. Land., 37, 572–582, doi:10.1002/esp.3196, 2012.15

1323

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/1311/2015/hessd-12-1311-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/1311/2015/hessd-12-1311-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1029/96wr00752
http://dx.doi.org/10.1073/pnas.1413024112
http://dx.doi.org/10.5194/tc-7-615-2013
http://dx.doi.org/10.1002/esp.3196


HESSD
12, 1311–1327, 2015

Time-lapse RGB
imagery for a remote

Greenlandic river

C. J. Gleason et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

(a) 

(b) 

(c) 

Figure 1. Fig. 1 shows example images taken on 17 July 2012 of the Isortoq River by the
two camera systems as well as the cameras themselves (foreground and background, a). The
Issunguata Sermia Glacier is seen in the background, and nearly all water in this river is derived
from its melting terminus. Only the wide focus camera (c) has a continuous data record from
2011–2012, as a presumed Arctic fox severed the wiring on the narrow focus camera. The
yellow polygon in the wide focus image shows the target reach for We extraction, covering an
area of approximately 1000 by 2000 m.
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Remove  
winter images 

Remove shadows 

Remove  
sun glint 

Perform 
similarity filtering 

Warp images to 
ground coordinates 

Collect training data 
from 10% of images 

Classify  all images 
from 10% training 

data 

post filtering 

Figure 2. The processing steps required to extract We from raw images are shown here. Every
step until the final classification is completely automated, allowing for a vast reduction in pro-
cessing time. Winter images were selected by a manual inspection of first and last observed
open water flow. Shadowing was defined as when solar zenith angles were less than 65◦ or
solar azimuth between 245–290 or 70–100◦, and sun glint was defined as a ratio of pixel bright-
ness and as a total pixel value threshold. As Fig. 4 shows, these filters did not significantly affect
the temporality of the data and almost every day during the two melt season study duration is
represented.
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Figure 3. Accuracy assessment as a function of We from a 33 % sample of post filtered images
is presented here, with overall accuracy (a), water user’s accuracy (b), and non-water user’s
accuracy (c) all showing acceptable performance. Overall accuracy and water user’s accuracy
are not strongly correlated with We, suggesting that the amount of water in the scene does
not strongly influence the calculation of water area. Non-water accuracy, however, is strongly
affected by the amount of water in the scene as the Isortoq River occupies nearly the entire
valley at high flow, making classification of a few scattered non-water pixels challenging.
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Figure 4. Successful image classification allowed for extraction of We across two melt seasons
from the wide angle camera and gives a proxy for discharge in the braided Isortoq River. 22
statistical outliers, representing poorly classified images, were removed before generating this
figure. These We time series clearly show historic flooding in Greenland in July of 2012, as well
as the abrupt start of the 2012 melt season, and suggest that the camera platform and semi-
automated classification techniques advanced here are sufficient for monitoring of this remote
river.
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