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Abstract:	River	systems	in	remote	environments	are	often	challenging	to	monitor	and	10 

understand	where	traditional	gauging	apparatus	are	difficult	to	install	or	where	safety	11 

concerns	prohibit	field	measurements.	In	such	cases,	remote	sensing,	especially	terrestrial	12 

time	lapse	imaging	platforms,	offer	a	means	to	better	understand	these	fluvial	systems.	One	13 

such	environment	is	found	at	the	proglacial	Isortoq	River	in	southwest	Greenland,	a	river	14 

with	a	constantly	shifting	floodplain	and	remote	Arctic	location	that	make	gauging	and	in	15 

situ	measurements	all	but	impossible.	In	order	to	derive	relevant	hydraulic	parameters	for	16 

this	river,	two	RGB	cameras	were	installed	in	July	of	2011,	and	these	cameras	collected	17 

over	10,000	half	hourly	time‐lapse	images	of	the	river	by	September	of	2012.		Existing	18 

approaches	for	extracting	hydraulic	parameters	from	RGB	imagery	require	manual	or	19 

supervised	classification	of	images	into	water	and	non‐water	areas,	a	task	that	was	20 

impractical	for	the	volume	of	data	in	this	study.	As	such,	automated	image	filters	were	21 

developed	that	removed	images	with	environmental	obstacles	(e.g.	shadows,	sun	glint,	22 

snow)	from	the	processing	stream.	Further	image	filtering	was	accomplished	via	a	novel	23 



automated	histogram	similarity	filtering	process.	This	similarity	filtering	allowed	1 

successful	(mean	accuracy	79.6%)	supervised	classification	of	filtered	images	from	training	2 

data	collected	from	just	10%	of	those	images.	Effective	width,	a	hydraulic	parameter	highly	3 

correlated	with	discharge	in	braided	rivers,	was	extracted	from	these	classified	images,	4 

producing	a	hydrograph	proxy	for	the	Isortoq	River	between	2011	and	2012.		This	5 

hydrograph	proxy	shows	agreement	with	historic	flooding	observed	in	other	parts	of	6 

Greenland	in	July	2012	and	offers	promise	that	the	imaging	platform	and	processing	7 

methodology	presented	here	will	be	useful	for	future	monitoring	studies	of	remote	rivers.	8 

1.	Introduction	9 

Proglacial	streams	and	rivers	along	land‐terminating	edges	of	the	Greenland	Ice	10 

Sheet	are	among	the	world’s	most	difficult	fluvial	systems	to	study	in	the	field,	owing	to	11 

their	remoteness,	harsh	climate,	and	braided	morphology.		Discharge	variations	in	large	12 

proglacial	rivers	are	of	particular	scientific	interest,	as	these	systems	typically	derive	water	13 

from	the	interior	ablations	surface	Greenland	Ice	Sheet	and	are	thus	useful	for	inferring	14 

runoff	mass	losses	from	the	ice	sheet	(Rennermalm	et	al.,	2013;	Smith	et	al.	2014).		15 

However,	their	high	sediment	loads,	unstable	banks,	and	dynamic	braided	channels	present	16 

challenges	to	traditional	in	situ	river	gauging	techniques,	and	long	term	hydrographs	for	17 

these	rivers	are	rare.		While	not	unique	to	Greenland,	these	challenges	are	particularly	18 

evident	there,	with	more	than	100	large	(>	1	km	width)	large	braided	rivers	exiting	the	ice	19 

sheet	with	no	observations	of	discharge	whatsoever.		20 

Where	in	situ	methods	are	impractical,	remotely	sensed	imagery	offers	an	21 

increasingly	viable	option	for	obtaining	scientifically	useful	estimates	of	river	discharge	in	22 



remote	or	otherwise	inaccessible	areas	(Smith	et	al.,	1997,	Ashmore	and	Sauks,	2006,	1 

Durand	et	al.,	2010,	Gleason	and	Smith,	2014).		Braided	rivers	in	particular	typically	display	2 

a	power‐law	relationship	between	floodplain	inundation	area	(which	can	be	remotely	3 

sensed)	and	discharge,	which	has	been	exploited	using	satellites,	aerial	imagery,	and	4 

terrestrial	time‐lapse	photography	(Smith	1995;	1996,	Chandler	et	al.,	2002;	Ashmore	and	5 

Sauks,	2006;	Egozi	and	Ashmore	2008;	Smith	and	Pavelsky,	2008;	Bertoldi	et	al.,	2009;	6 

Hundey	and	Ashmore,	2009;	Bertoldi	et	al.,	2010;	Bird	et	al.,	2010;	Ashmore	et	al.,	2011;	7 

Welber	et	al.,	2012;	Williams	et	al.,	2013;	Young	et	al.,	2015).			8 

Regardless	of	the	technology	used,	each	remotely	sensed	image	must	first	be	9 

classified	into	areas	of	water	and	non‐water,	a	task	for	which	numerous	methodologies	10 

exist.	In	satellite	remote	sensing,	NIR	wavelength	image	bands	can	reliably	detect	open	11 

water	surfaces.	However,	satellite	imagery	often	lacks	the	required	spatial	and	temporal	12 

resolution	to	adequately	capture	hydrologic	phenomena,	especially	for	smaller	rivers.	This	13 

has	led	to	the	use	of	non‐metric,	true	color	(RGB)	digital	camera	imagery	to	capture	water	14 

surfaces	as	an	inexpensive	and	image‐on‐demand	alternative	to	satellite	and	airborne	15 

platforms,	especially	for	braided	rivers.	To	calculate	hydraulic	parameters	(e.g.	effective	16 

width,	braiding	index,	sinuosity,	or	bed	slope	elevation),	these	studies	have	commonly	17 

classified	water	surfaces	within	images	either	manually	or	by	supervised	classification	18 

(Egozi	and	Ashmore	2008;	Bertoldi	et	al.,	2009;	Hundey	and	Ashmore,	2009;	Ashmore	et	19 

al.,	2011;	Welber	et	al.,	2012).	Another	parameter	estimation	approach	relies	on	water	20 

surface	delineation	from	automatically	generated	DEMs	constructed	from	stereo‐imagery	21 

and	other	data	sources	(Chandler	et	al.,	2002;	Ashmore	and	Sauks,	2006;	Bird	et	al.,	2010;	22 

Bertoldi	et	al.,	2010).		Additionally,	Young	et	al	(2015)	recently	demonstrated	the	23 



effectiveness	of	calculating	water	stage	change	at	a	station	from	terrestrial	1 

photogrammetry,	which	they	combined	with	assumptions	of	channel	geometry	and	2 

roughness	to	calculate	river	discharge	via	Manning’s	equation.	This	approach	is	highly	3 

effective,	but	limited	to	situations	where	bathymetry	is	known	or	channel	geometry	may	be	4 

simply	described.	Finally,	structure‐from‐motion,	a	technique	that	leverages	multiple	5 

vantage	points	of	the	same	scene	to	reconstruct	topography,	has	also	been	successfully	6 

leveraged	to	calculate	floodplain	geometry	and	water	surface	elevation,	but	is	again	7 

impractical	for	long	term	monitoring	with	large	data	volumes	(e.g.	Fonstad	et	al.,	2013,	8 

Javernick	et	al.,	2014).	9 

	 While	each	of	these	studies	successfully	calculated	hydrologic	parameters	from	10 

remotely	sensed	images,	their	manual	or	time‐intensive	approaches	are	impractical	for	11 

large	data	volumes.	This	is	especially	an	issue	for	long	term	hydrologic	monitoring	sorely	12 

needed	in	many	remote	rivers,	as	using	the	image	platform	and	processing	developed	by	13 

Ashmore	and	Sauks(2006)	and	Welber	et	al.	(2012),	for	instance,	could	easily	generate	tens	14 

of	thousands	of	images	per	year.	Automated	DEM	generation	methods	would	seem	a	ready	15 

alternative,	yet	these	require	numerous	fixed	targets	of	known	position	to	persist	from	16 

image	to	image,	which	are	seldom	found	or	are	difficult	to	install	on	dynamic	braided	river	17 

systems	owing	to	their	constantly	shifting	morphology.	If	such	image	platforms	are	to	be	18 

viable	for	long	term	monitoring	studies,	a	systematic	procedure	for	automatic	image	19 

quality	selection	and	classification,	preferably	for	RGB	image	data,	is	needed.		20 

	 To	that	end,	this	paper	proposes	a	semi‐automated	processing	stream	designed	to	21 

classify	and	extract	hydraulic	parameters	of	interest	from	large	volumes	of	RGB	image	data	22 



collected	from	a	fixed	terrestrial	platform,	and	demonstrates	its	efficacy	in	a	remote	1 

Greenlandic	river.	Automated	filters	are	developed	that	remove	obstacles	to	image	2 

classification	based	on	easily	calculated	environmental	variables,	and	an	image	similarity	3 

filter	is	developed	that	allows	supervised	classification	of	many	images	from	minimal	4 

training	data.	Here,	these	filtering	and	classification	techniques	are	employed	to	extract	5 

effective	width	(We,	inundation	area	divided	by	reach	length),	a	hydraulic	parameter	that	6 

has	been	shown	to	be	highly	correlated	with	discharge	in	braided	rivers	and	has	been	7 

successfully	extracted	from	remotely	sensed	data	in	proglacial	environments	(Smith	et	8 

al.,1996;	Smith,	1997;	Ashhmore	and	Sauks,	2006;		Smith	and	Pavelsky,	2008;	Ashmore	et	9 

al.,	2011).	To	evaluate	the	robustness	of	the	extraction,	we	assess	image	classification	10 

accuracy	using	manually	generated	ground	truth	data.	11 

2.	Data		12 

This	study	was	conducted	on	the	proglacial	Isortoq	River	in	southwestern	13 

Greenland.	The	Isortoq,	one	of	the	largest	braided	rivers	draining	the	Greenland	ice	sheet,	14 

issues	from	the	Issunguata	Sermia	glacier	terminus	with	discharge	dominated	by	15 

meltwater	outflow	from	the	ablating	ice	surface	(Smith	et	al.,	2014).		In	July	2011,	two	16 

Nikon	D200	model	RGB	cameras	(focal	lengths	of	24	and	50mm)	were	installed	250m	17 

above	a	reach	of	the	Isortoq	braid	plain	approximately	3.1	km	downstream	of	the	ice	edge.			18 

The	camera	system	was	identical	to	that	developed	by	the	Extreme	Ice	Survey	project	19 

(www.extremeicesurvey.org)	for	use	in	severe	Arctic	conditions.		In	addition	to	the	20 

cameras,	a	modified	battery	pack	and	electronic	controller	were	housed	inside	a	21 

weatherproof	case	with	an	abrasion‐resistant	viewing	window.		The	case	was	mounted	on	22 



a	survey	tripod	and	powered	by	a	12V	gel	battery	recharged	by	solar	panel. The	cameras	1 

were	oriented	so	as	to	image	sections	of	the	braid	plain	of	approximately	1.5km	x	2.0km	2 

and	2.0km	x	2.3km,	respectively	(Figure	1),	and	captured	one	image	every	30	minutes	3 

when	light	conditions	permitted.		4 

	 Camera	data	collection	commenced	July	22nd,	2011,	and	over	10,000	images	were	5 

retrieved	from	the	cameras	by	September	10th,	2012,	covering	most	of	two	melt	seasons.	6 

The	camera	setup	proved	robust:		the	light	sensor	operated	properly,	the	position	of	the	7 

cameras	remained	unchanged,	and	the	batteries	powering	the	cameras	were	still	functional	8 

after	the	one	year	collection	period	for	the	wide	focus	camera.		However,	a	presumed	Arctic	9 

fox	chewed	through	the	cables	connecting	the	battery	to	the	camera	for	the	more	narrowly	10 

focused	platform	and	halted	data	collection	only	two	months	after	installation.	Therefore,	11 

all	analyses	presented	in	this	paper	refer	to	the	wide	focus	camera,	which	remained	12 

continuously	operable	throughout	the	study	period	July	22nd	2011	–September	10th	2012.	13 

3.	Methods	14 

	 Classifying	the	RGB	image	data	into	water	and	non‐water	areas	to	extract	We	15 

presented	several	technical	challenges	for	the	10,327	images	that	were	collected	by	the	16 

wide	focus	camera	from	July	2011	to	September	2012.		Existing	approaches	for	hydraulic	17 

parameter	extraction	from	RGB	data	require	either	manual	or	supervised	classification	of	18 

water	within	each	image	and	are	thus	inappropriate	for	the	large	data	volumes	generated	19 

in	this	study.	Unsupervised	classification	techniques	provide	a	straightforward	alternative	20 

for	large	time‐lapse	camera	datasets,	yet	also	present	additional	challenges	as	the	images	21 

collected	here	are	extremely	diverse	and	differing	soil	moisture	in	the	braid	plain	gives	the	22 



appearance	of	multiple	classes	of	output.	Environmental	factors	such	as	time‐varying	solar	1 

angles,	blowing	sand,	dense	fog,	shadowing,	snow	and	rain	on	the	camera	lens,	and	acute	2 

sun‐glint	from	water	surface	are	especially	prevalent	in	the	Isortoq	image	data.	These	3 

factors	were	all	addressed,	and	We	accurately	extracted,	by	the	processing	workflow	4 

described	below	and	presented	in	Figure	2.		5 

3.1	Environmental	Filtering	6 

The	first	task	for	extracting	We	was	to	filter	the	large	amount	of	image	data	into	7 

those	images	that	were	most	easily	classified	into	water	and	non‐water	areas	by	8 

eliminating	images	containing	the	environmental	obstacles	described	above.	Once	images	9 

are	classified,	water	area	(and	therefore	We)	may	be	calculated.	Several	filters	were	10 

developed	to	remove	these	poor	quality	images.	First,	images	acquired	during	periods	of	11 

non‐flow	(before	and	after	melt	season	activity)	were	culled.	Next,	images	with	shadowing	12 

were	culled	by	calculating	the	zenith	and	azimuth	angles	of	the	sun	relative	to	the	river	13 

plain.	Through	visual	inspection	of	the	image	time	series,	zenith	angles	less	than	65	degrees	14 

and	azimuth	angles	between	245‐290	and	between	70‐100		degrees	were	found	to	produce	15 

shadows	created	by	steep	valley	walls	that	prevented	accurate	classification	(note	valley	16 

walls,	Figures	1	and	2).	Next,	images	that	exhibited	excessive	sun	glinting	were	removed.	17 

Sun	glint	was	defined	as	when	an	image	exhibited	either	a	ratio	of	the	95th	brightness	18 

percentile	to	the	5th	brightness	percentile	greater	than	1.8	or	contained	more	than	1%	of	19 

pixels	with	brightness	value	greater	than	215.	This	filter	was	necessary,	as	sun	glint	was	20 

observed	both	on	open	water	and	saturated	sand,	making	distinction	between	these	very	21 

different	fluvial	environments	difficult	(Figure	2).	Successful	application	of	these	winter,	22 



shadow,	and	sun	glint	filters	culled	9,487	images	from	the	image	time	series,	leaving	840	1 

images	free	of	environmental	obstacles	that	still	captured	every	day	of	the	two	melt	2 

seasons.	3 

3.2	Similarity	Filtering	4 

Even	with	these	stringent	filters,	unsupervised	classification	was	still	unable	to	5 

delineate	water	surfaces	with	satisfactory	accuracy,	and	the	number	of	images	remaining	6 

was	still	too	large	for	supervised	classification	to	be	feasible.	As	such,	a	semi‐supervised	7 

classification	approach	was	developed.	To	perform	this	classification,	another	image	8 

filtering	was	needed	to	find	images	that	were	similar	enough	to	one	another	to	share	9 

training	data	from	a	small	sample	of	images	in	a	supervised	classification.	The	presence	of	10 

dense	fog,	blowing	sand,	or	cloudiness	changes	the	brightness	values	of	the	imagery,	so	11 

even	images	collected	with	identical	solar	geometry	can	be	difficult	to	classify	in	an	12 

unsupervised	manner.	A	similarity	filter	was	developed	that	selected	images	that	not	only	13 

had	similar	solar	geometry,	but	also	had	the	same	brightness	and	illumination	and	were	all	14 

free	of	environmental	obstacles	not	covered	by	the	first	filtering.	15 

	This	similarity	filtering	was	accomplished	by	calculating	and	comparing	the	16 

histograms	of	each	of	the	red,	green,	and	blue	bands	for	each	image.	Histograms	of	17 

brightness	values	that	fell	into	100	bins	evenly	spaced	from	0	to	255	(reflectance	values)	18 

were	calculated	for	each	band	of	each	image.	Using	the	same	bins	for	each	image	ensured	19 

that	cross	comparison	of	images	would	not	be	affected	by	stretching	of	the	image	data.	20 

Once	these	histograms	were	generated,	the	root	mean	square	error	(RMSE)	between	21 

histogram	counts	per	bin	was	computed	in	a	band‐by‐band	pairwise	permutation,	giving	a	22 

per‐image	and	per‐band	indication	of	the	similarity	of	every	image	to	each	other	image.	23 



The	pairwise	permutation	tests	all	possible	image	pairs	for	similarity.	That	is,	for	any	given	1 

image,	the	histogram	bin	counts	in	each	of	its	RGB	bands	is	compared	against	bin	counts	of	2 

every	other	image	and	the	RMSE	(across	all	bins)	of	each	comparison	is	recorded.	Then,	the	3 

process	is	repeated	for	every	other	image	in	the	set,	which	yields	(n2‐n)/2	RMSE	values	per	4 

image,	where	n	is	the	number	of	images.		These	band‐by‐band	RMSE	values	were	then	5 

averaged	to	arrive	at	an	overall	measure	of	image	similarity:	here	termed	an	image’s	6 

similarity	index.	This	metric	was	used	to	identify	the	20%	of	the	images	that	were	most	7 

similar	to	each	other,	resulting	in	168	images	that	were	collected	at	similar	sun	angles	8 

without	any	environmental	obstacles.	Importantly,	the	similarity	filter	also	produced	9 

images	that	contained	four	basic	elements:	dark	(non‐sun	lit,	turbid)	water,	bright	(sun	lit	10 

or	non‐turbid)	water,	dark	(wet)	sand,	and	bright	(dry)	sand	(see	Fig.	1c),	thus	producing	11 

images	easily	classified	from	lumped	training	data‐	a	process	described	next.	12 

3.3	Georectification	and	classification	13 

Once	the	final	filtering	of	images	was	complete,	images	were	cropped	to	exclude	the	14 

wide	upstream	floodplain	and	georectified	into	ground	coordinates	using	a	4th	degree	15 

polynomial	transformation	implemented	in	ENVI	v4.8	(Figure	2).		Eighty	ground	control	16 

points	were	manually	extracted	from	a	2	m	panchromatic	World	View	2	image	acquired	on	17 

September	23rd,	2011	(paired	with	a	camera	image	collected	10	minutes	later)	and	used	to	18 

define	the	basis	for	the	transformation.	This	warping	polynomial	was	subsequently	applied	19 

to	all	filtered	images.	After	georectification,	each	image	pixel	had	dimensions	of	1m	by	1m,	20 

an	appropriate	resolution	for	camera	data	collected	at	this	scale.	These	georectified	pixels	21 

allowed	calculation	of	water	surface	area,	and	thus	We,	from	the	classified	images.	22 



To	classify	images	into	water	and	non‐water	areas	for	We	extraction,	training	data	1 

representing	four	classes	(dark	water,	bright	water,	dark	sand,	and	bright	sand)	were	2 

manually	collected	from	a	random	10%	sample	(16	images)	of	the	similarity	filtered	3 

images.	The	RGB	statistics	generated	from	these	training	polygons	were	applied	to	all	4 

images	passing	the	similarity	filtering	and	used	to	train	a	maximum	likelihood	supervised	5 

classification	method	performed	in	ENVI	v4.8	for	each	image.	This	process	requires	that	6 

each	image	has	nearly	identical	RGB	composition	in	order	to	be	successful,	which	was	7 

guaranteed	by	the	similarity	filtering.	8 

4.	Results	and	discussion	9 

4.1	Image	Filtering	10 

The	environmental	and	similarity	filters	developed	in	this	study	substantially	11 

reduced	the	number	of	images	available	for	We	extraction	from	image	collection	to	12 

classification.	The	automated	environmental	filtering	removed	9,487	images	with	sun	glint,	13 

shadowing,	or	winter	conditions,	leaving	840	images	for	further	operations.	The	similarity	14 

filtering	further	reduced	the	image	pool	to	168	images	that	were	ultimately	passed	to	15 

classification	and	We	extraction.	This	is	obviously	a	large	percentage	of	images	removed,	16 

but	this	stringent	filtering	left	only	very	high	quality	images	that	were	easily	classified	17 

using	the	semi‐supervised	approach.	However,	this	high	degree	of	culling	still	left	images	18 

with	daily	(or	better)	temporal	resolution	available	for	We	extraction.	If	hourly	or	better	19 

resolution	images	are	needed,	then	the	similarity	filtering	would	need	to	be	performed	on	20 

iterative	batches	of	images,	as	there	are	other	groups	of	images	similar	to	one	another	that	21 

are	not	similar	to	all	images	as	a	whole	that	are	removed	by	the	similarity	filter.	Each	of	22 

these	groups	could	also	be	classified	using	their	own	lumped	training	data	and	output	23 



classes	determined	by	their	composition.	This	would	extend	the	temporal	coverage	of	the	1 

record,	but	since	the	similarity	filter	we	propose	yielded	near	daily	coverage	of	the	river	we	2 

felt	this	simplest	case	to	be	sufficient	for	the	river	in	this	study	and	did	not	identify	further	3 

groups	of	similar	images.		4 

Water	turbidity	could	have	effected	this	successful	filtering.	As	sediment	load	and	5 

river	velocities	change,	water	can	appear	darker	or	brighter	depending	on	river	turbidity,	6 

thus	affecting	our	choice	of	two	water	classes	(‘dark’	and	‘bright’).	In	the	Isortoq,	the	7 

monitoring	section	is	very	close	to	the	glacial	terminus	(~3.1km),	and	as	such	the	sediment	8 

load	is	fairly	constant,	the	river	well	mixed,	and	sediment	relatively	unsorted,	so	‘bright’	water	9 

corresponds	to	sunlight	water,	rather	than	less	turbid	water.		Given	these	conditions,	the	two	10 

classes	do	cover	nearly	all	the	turbidity	values	observed	in	the	Isortoq	River	after	image	11 

similarity	filtering.		In	rivers	with	more	variable	turbidity	or	places	where	the	bed	is	visible	at	12 

low	flows,	more	water/non‐water	classes	and	different	filters	might	be	needed	to	adequately	13 

cover	the	range	of	observed	sediment	loads.		14 

4.2	Accuracy	assessment	15 

The	semi‐supervised	classification	described	here	proved	an	effective	and	unbiased	16 

classification	method.	Figure	3	shows	the	overall	accuracy,	user’s	accuracy	for	water,	and	17 

user’s	accuracy	for	non‐water	as	a	function	of	We	from	a	random	sample	of	56	images	(33%	18 

of	filtered	images).	Accuracy	was	assessed	using	approximately	500	semi‐random,	19 

manually	derived	assessment	points	for	each	class	(water	and	non‐water)	per	image.	Of	20 

particular	interest	were	both	the	overall	accuracy	(total	number	of	correctly	classified	21 

assessment	points	divided	by	total	number	of	assessment	points,	~500),	and	the	user’s	22 

accuracy	for	water	and	non‐water	(percentage	of	image	pixels	classified	correctly	as	23 



assessed	by	the	training	data).	These	metrics	provide	an	assessment	of	classification	1 

performance	from	the	standpoint	of	each	classified	image:	the	paradigm	that	speaks	2 

directly	to	the	fidelity	of	extracted	We.	Accuracy	assessment	indicates	that	overall	accuracy	3 

is	acceptable	(mean	accuracy	for	the	assessment	sample	is	79.6%),	and	neither	overall	4 

accuracy	(r=	‐0.11)	nor	water	user’s	accuracy	(r=	0.35)	show	strong	correlation	with	We.	5 

This	lack	of	correlation	indicates	that	the	classification	of	water	is	not	affected	by	the	extent	6 

of	water	inundation	in	the	scene.	There	is	a	strong	correlation	(r=‐0.79)	between	the	user’s	7 

accuracy	of	non‐water	pixels	and	We,	but	this	negative	correlation	is	a	reflection	of	the	8 

difficulty	of	classifying	the	small	number	of	non‐water	pixels	remaining	in	scenes	where	9 

the	braid	plain	was	nearly	completely	flooded.	The	reason	for	this	successful	classification	10 

was	the	similarity	of	filtered	images,	which	was	guaranteed	by	the	similarity	index	11 

procedure	described	above.	After	classification,	We	was	calculated	as	the	area	of	classified	12 

water	within	a	1,000m	reach	located	where	the	image	data	provided	complete	bank	to	13 

bank	coverage,	indicated	by	the	magenta	polygons	(dashed)	in	Figure	2.		14 

4.3	Extracted	We	hydrograph	15 

	 The	We	hydrograph	shown	in	Figure	4	is	a	proxy	for	discharge	variations	in	the	16 

Isortoq	River	from	2011‐2012.		Gaps	in	the	date	record	indicate	that	there	were	no	images	17 

that	passed	filtering	on	those	dates,	even	though	images	were	acquired	half	hourly.	This	is	18 

a	result	of	prolonged	rain	events,	heavy	fog,	or	strong	winds	that	caused	images	to	be	non‐19 

similar	during	these	days.	Despite	these	gaps,	the	data	record	still	provides	near	daily	20 

coverage,	indicating	that	filtering	did	not	substantially	affect	the	temporal	distribution	of	21 

the	output	data.	Of	note	is	the	large	peak	in	We	seen	in	July	of	2012,	coinciding	with	historic	22 

melting	of	the	Greenland	ice	sheet	(Hall	et	al.,	2013;	Tedesco	et	al.,	2013)	and	destruction	of	23 



the	Watson	River	bridge	in	the	town	of	Kangerlussuaq	(Smith	et	al.,	2014),	located	1 

approximately	15km	south	of	the	Isortoq	River.		2 

Figure	4	also	reveals	that	the	relative	magnitude	of	We	during	this	melt	event	was	an	3 

order	of	magnitude	greater	than	We	in	low	flow	stages.	This	shows	that	the	Isortoq	River	4 

behaves	like	other	braided	rivers	with	non‐cohesive	bed	material,	as	its	width	adjusts	5 

rapidly	to	changing	discharge.	In	addition,	the	peak	We	observed	here	corresponds	to	6 

almost	complete	floodplain	occupation	by	the	river,	highlighting	the	difficulty	of	installing	7 

traditional	gauging	equipment	at	this	site.	8 

5.	Conclusions	9 

	 This	paper	has	demonstrated	the	efficacy	of	a	fixed	position	RGB	time‐lapse	camera	10 

platform	for	hydraulic	parameter	extraction	for	a	large	proglacial	braided	river	in	a	remote	11 

area	of	Greenland.	The	operational	camera	delivered	over	10,000	half	hourly	images	in	just	12 

over	one	year	of	collection,	and	demonstrated	remarkable	climactic	resilience	in	the	13 

Greenlandic	winter.	The	other	camera,	however,	was	lost	to	a	wildlife	attack,	pointing	to	14 

the	need	for	stronger	housing	for	all	camera	components.	Such	a	platform	is	useful	for	15 

extraction	of	multiple	hydraulic	parameters,	including	effective	width	(We),	a	proxy	for	16 

discharge	variations.	To	fully	realize	this	monitoring	potential,	the	We	variations	extracted	17 

for	each	image	could	be	calibrated	with	a	rating	curve	built	from	intermittent	field	data.	18 

The	above	accuracy	assessments	indicate	that	the	semi‐supervised	classification	19 

method	produced	accurate	and	unbiased	results.	An	accurately	delineated	water	surface	is	20 

necessary	to	preserve	the	fidelity	of	extracted	hydraulic	parameters.	The	processing	21 

techniques	described	in	this	paper	fall	short	of	completely	automated	processing,	yet	this	22 



paper	does	present	an	analysis	protocol	that	achieves	a	consistent	standard	of	classification	1 

from	images	that	are	automatically	selected	for	ease	of	classification.	Furthermore,	the	2 

similarity	filtering	presented	herein	allows	for	supervised	classification	of	numerous	3 

images	from	minimal	training	data,	enabling	long	term	hydrologic	records	to	be	maintained	4 

without	onerous	manual	classification	of	imagery	or	photogrammetrically	challenging	DEM	5 

extraction.	6 
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	4 

Figure	1.	Figure	1	shows	example	images	taken	on	July	17,	2012	of	the	Isortoq	River	by	the	5 

two	camera	systems	as	well	as	the	cameras	themselves	(foreground	and	background,	panel	6 

a).	The	Issunguata	Sermia	Glacier	is	seen	in	the	background,	and	nearly	all	water	in	this	7 

river	is	derived	from	its	melting	terminus.	Only	the	wide	focus	camera	(c)	has	a	continuous	8 

data	record	from	2011‐2012,	as	a	presumed	Arctic	fox	severed	the	wiring	on	the	narrow	9 

focus	camera.	The	yellow	polygon	in	the	wide	focus	image	shows	the	target	reach	for	We	10 

extraction,	covering	an	area	of	approximately	1,000	by	2,000m.	11 

Figure	2.		The	processing	steps	required	to	extract	We	from	raw	images	are	shown	here.	12 

Every	step	until	the	final	classification	is	completely	automated,	allowing	for	a	vast	13 

reduction	in	processing	time.	Winter	images	were	selected	by	a	manual	inspection	of	first	14 

and	last	observed	open	water	flow.	Shadowing	was	defined	as	when	solar	zenith	angles	15 

were	less	than	65	degrees	or	solar	azimuth	between	245‐290	or70‐100	degrees,	and	sun	16 

glint	was	defined	as	a	ratio	of	pixel	brightness	and	as	a	total	pixel	value	threshold.	As	Figure	17 

4	shows,	these	filters	did	not	significantly	affect	the	temporality	of	the	data	and	almost	18 

every	day	during	the	two	melt	season	study	duration	is	represented.	19 

Figure	3.	Accuracy	assessment	as	a	function	of	We	from	a	33%	sample	of	post	filtered	20 

images	is	presented	here,	with	overall	accuracy	(a),	water	user’s	accuracy	(b),	and	non‐21 

water	user’s	accuracy	(c)	all	showing	acceptable	performance.	Overall	accuracy	and	water	22 



user’s	accuracy	are	not	strongly	correlated	with	We,	suggesting	that	the	amount	of	water	in	1 

the	scene	does	not	strongly	influence	the	calculation	of	water	area.	Non‐water	accuracy,	2 

however,	is	strongly	affected	by	the	amount	of	water	in	the	scene	as	the	Isortoq	River	3 

occupies	nearly	the	entire	valley	at	high	flow,	making	classification	of	a	few	scattered	non‐4 

water	pixels	challenging.	5 

Figure	4.	Successful	image	classification	allowed	for	extraction	of	We	across	two	melt	6 

seasons	from	the	wide	angle	camera	and	gives	a	proxy	for	discharge	in	the	braided	Isortoq	7 

River.	22	statistical	outliers,	representing	poorly	classified	images,	were	removed	before	8 

generating	this	figure.	These	We	time	series	clearly	show	historic	flooding	in	Greenland	in	9 

July	of	2012,	as	well	as	the	abrupt	start	of	the	2012	melt	season,	and	suggest	that	the	10 

camera	platform	and	semi‐automated	classification	techniques	advanced	here	are	11 

sufficient	for	monitoring	of	this	remote	river.	12 
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